Merge tag 'gpio-for-v3.11-3' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[linux-2.6.git] / drivers / regulator / core.c
blob288c75abc19034c06e62772ea6b6cc62242da473
1 /*
2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
38 #include "dummy.h"
40 #define rdev_crit(rdev, fmt, ...) \
41 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...) \
43 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...) \
45 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...) \
47 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...) \
49 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static LIST_HEAD(regulator_ena_gpio_list);
55 static bool has_full_constraints;
56 static bool board_wants_dummy_regulator;
58 static struct dentry *debugfs_root;
61 * struct regulator_map
63 * Used to provide symbolic supply names to devices.
65 struct regulator_map {
66 struct list_head list;
67 const char *dev_name; /* The dev_name() for the consumer */
68 const char *supply;
69 struct regulator_dev *regulator;
73 * struct regulator_enable_gpio
75 * Management for shared enable GPIO pin
77 struct regulator_enable_gpio {
78 struct list_head list;
79 int gpio;
80 u32 enable_count; /* a number of enabled shared GPIO */
81 u32 request_count; /* a number of requested shared GPIO */
82 unsigned int ena_gpio_invert:1;
86 * struct regulator
88 * One for each consumer device.
90 struct regulator {
91 struct device *dev;
92 struct list_head list;
93 unsigned int always_on:1;
94 unsigned int bypass:1;
95 int uA_load;
96 int min_uV;
97 int max_uV;
98 char *supply_name;
99 struct device_attribute dev_attr;
100 struct regulator_dev *rdev;
101 struct dentry *debugfs;
104 static int _regulator_is_enabled(struct regulator_dev *rdev);
105 static int _regulator_disable(struct regulator_dev *rdev);
106 static int _regulator_get_voltage(struct regulator_dev *rdev);
107 static int _regulator_get_current_limit(struct regulator_dev *rdev);
108 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
109 static void _notifier_call_chain(struct regulator_dev *rdev,
110 unsigned long event, void *data);
111 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
112 int min_uV, int max_uV);
113 static struct regulator *create_regulator(struct regulator_dev *rdev,
114 struct device *dev,
115 const char *supply_name);
117 static const char *rdev_get_name(struct regulator_dev *rdev)
119 if (rdev->constraints && rdev->constraints->name)
120 return rdev->constraints->name;
121 else if (rdev->desc->name)
122 return rdev->desc->name;
123 else
124 return "";
128 * of_get_regulator - get a regulator device node based on supply name
129 * @dev: Device pointer for the consumer (of regulator) device
130 * @supply: regulator supply name
132 * Extract the regulator device node corresponding to the supply name.
133 * returns the device node corresponding to the regulator if found, else
134 * returns NULL.
136 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
138 struct device_node *regnode = NULL;
139 char prop_name[32]; /* 32 is max size of property name */
141 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
143 snprintf(prop_name, 32, "%s-supply", supply);
144 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
146 if (!regnode) {
147 dev_dbg(dev, "Looking up %s property in node %s failed",
148 prop_name, dev->of_node->full_name);
149 return NULL;
151 return regnode;
154 static int _regulator_can_change_status(struct regulator_dev *rdev)
156 if (!rdev->constraints)
157 return 0;
159 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160 return 1;
161 else
162 return 0;
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev *rdev,
167 int *min_uV, int *max_uV)
169 BUG_ON(*min_uV > *max_uV);
171 if (!rdev->constraints) {
172 rdev_err(rdev, "no constraints\n");
173 return -ENODEV;
175 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176 rdev_err(rdev, "operation not allowed\n");
177 return -EPERM;
180 if (*max_uV > rdev->constraints->max_uV)
181 *max_uV = rdev->constraints->max_uV;
182 if (*min_uV < rdev->constraints->min_uV)
183 *min_uV = rdev->constraints->min_uV;
185 if (*min_uV > *max_uV) {
186 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187 *min_uV, *max_uV);
188 return -EINVAL;
191 return 0;
194 /* Make sure we select a voltage that suits the needs of all
195 * regulator consumers
197 static int regulator_check_consumers(struct regulator_dev *rdev,
198 int *min_uV, int *max_uV)
200 struct regulator *regulator;
202 list_for_each_entry(regulator, &rdev->consumer_list, list) {
204 * Assume consumers that didn't say anything are OK
205 * with anything in the constraint range.
207 if (!regulator->min_uV && !regulator->max_uV)
208 continue;
210 if (*max_uV > regulator->max_uV)
211 *max_uV = regulator->max_uV;
212 if (*min_uV < regulator->min_uV)
213 *min_uV = regulator->min_uV;
216 if (*min_uV > *max_uV) {
217 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218 *min_uV, *max_uV);
219 return -EINVAL;
222 return 0;
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev *rdev,
227 int *min_uA, int *max_uA)
229 BUG_ON(*min_uA > *max_uA);
231 if (!rdev->constraints) {
232 rdev_err(rdev, "no constraints\n");
233 return -ENODEV;
235 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236 rdev_err(rdev, "operation not allowed\n");
237 return -EPERM;
240 if (*max_uA > rdev->constraints->max_uA)
241 *max_uA = rdev->constraints->max_uA;
242 if (*min_uA < rdev->constraints->min_uA)
243 *min_uA = rdev->constraints->min_uA;
245 if (*min_uA > *max_uA) {
246 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247 *min_uA, *max_uA);
248 return -EINVAL;
251 return 0;
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
257 switch (*mode) {
258 case REGULATOR_MODE_FAST:
259 case REGULATOR_MODE_NORMAL:
260 case REGULATOR_MODE_IDLE:
261 case REGULATOR_MODE_STANDBY:
262 break;
263 default:
264 rdev_err(rdev, "invalid mode %x specified\n", *mode);
265 return -EINVAL;
268 if (!rdev->constraints) {
269 rdev_err(rdev, "no constraints\n");
270 return -ENODEV;
272 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273 rdev_err(rdev, "operation not allowed\n");
274 return -EPERM;
277 /* The modes are bitmasks, the most power hungry modes having
278 * the lowest values. If the requested mode isn't supported
279 * try higher modes. */
280 while (*mode) {
281 if (rdev->constraints->valid_modes_mask & *mode)
282 return 0;
283 *mode /= 2;
286 return -EINVAL;
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev *rdev)
292 if (!rdev->constraints) {
293 rdev_err(rdev, "no constraints\n");
294 return -ENODEV;
296 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297 rdev_err(rdev, "operation not allowed\n");
298 return -EPERM;
300 return 0;
303 static ssize_t regulator_uV_show(struct device *dev,
304 struct device_attribute *attr, char *buf)
306 struct regulator_dev *rdev = dev_get_drvdata(dev);
307 ssize_t ret;
309 mutex_lock(&rdev->mutex);
310 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311 mutex_unlock(&rdev->mutex);
313 return ret;
315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
317 static ssize_t regulator_uA_show(struct device *dev,
318 struct device_attribute *attr, char *buf)
320 struct regulator_dev *rdev = dev_get_drvdata(dev);
322 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
326 static ssize_t regulator_name_show(struct device *dev,
327 struct device_attribute *attr, char *buf)
329 struct regulator_dev *rdev = dev_get_drvdata(dev);
331 return sprintf(buf, "%s\n", rdev_get_name(rdev));
334 static ssize_t regulator_print_opmode(char *buf, int mode)
336 switch (mode) {
337 case REGULATOR_MODE_FAST:
338 return sprintf(buf, "fast\n");
339 case REGULATOR_MODE_NORMAL:
340 return sprintf(buf, "normal\n");
341 case REGULATOR_MODE_IDLE:
342 return sprintf(buf, "idle\n");
343 case REGULATOR_MODE_STANDBY:
344 return sprintf(buf, "standby\n");
346 return sprintf(buf, "unknown\n");
349 static ssize_t regulator_opmode_show(struct device *dev,
350 struct device_attribute *attr, char *buf)
352 struct regulator_dev *rdev = dev_get_drvdata(dev);
354 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
356 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
358 static ssize_t regulator_print_state(char *buf, int state)
360 if (state > 0)
361 return sprintf(buf, "enabled\n");
362 else if (state == 0)
363 return sprintf(buf, "disabled\n");
364 else
365 return sprintf(buf, "unknown\n");
368 static ssize_t regulator_state_show(struct device *dev,
369 struct device_attribute *attr, char *buf)
371 struct regulator_dev *rdev = dev_get_drvdata(dev);
372 ssize_t ret;
374 mutex_lock(&rdev->mutex);
375 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
376 mutex_unlock(&rdev->mutex);
378 return ret;
380 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
382 static ssize_t regulator_status_show(struct device *dev,
383 struct device_attribute *attr, char *buf)
385 struct regulator_dev *rdev = dev_get_drvdata(dev);
386 int status;
387 char *label;
389 status = rdev->desc->ops->get_status(rdev);
390 if (status < 0)
391 return status;
393 switch (status) {
394 case REGULATOR_STATUS_OFF:
395 label = "off";
396 break;
397 case REGULATOR_STATUS_ON:
398 label = "on";
399 break;
400 case REGULATOR_STATUS_ERROR:
401 label = "error";
402 break;
403 case REGULATOR_STATUS_FAST:
404 label = "fast";
405 break;
406 case REGULATOR_STATUS_NORMAL:
407 label = "normal";
408 break;
409 case REGULATOR_STATUS_IDLE:
410 label = "idle";
411 break;
412 case REGULATOR_STATUS_STANDBY:
413 label = "standby";
414 break;
415 case REGULATOR_STATUS_BYPASS:
416 label = "bypass";
417 break;
418 case REGULATOR_STATUS_UNDEFINED:
419 label = "undefined";
420 break;
421 default:
422 return -ERANGE;
425 return sprintf(buf, "%s\n", label);
427 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
429 static ssize_t regulator_min_uA_show(struct device *dev,
430 struct device_attribute *attr, char *buf)
432 struct regulator_dev *rdev = dev_get_drvdata(dev);
434 if (!rdev->constraints)
435 return sprintf(buf, "constraint not defined\n");
437 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
439 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
441 static ssize_t regulator_max_uA_show(struct device *dev,
442 struct device_attribute *attr, char *buf)
444 struct regulator_dev *rdev = dev_get_drvdata(dev);
446 if (!rdev->constraints)
447 return sprintf(buf, "constraint not defined\n");
449 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
451 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
453 static ssize_t regulator_min_uV_show(struct device *dev,
454 struct device_attribute *attr, char *buf)
456 struct regulator_dev *rdev = dev_get_drvdata(dev);
458 if (!rdev->constraints)
459 return sprintf(buf, "constraint not defined\n");
461 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
463 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
465 static ssize_t regulator_max_uV_show(struct device *dev,
466 struct device_attribute *attr, char *buf)
468 struct regulator_dev *rdev = dev_get_drvdata(dev);
470 if (!rdev->constraints)
471 return sprintf(buf, "constraint not defined\n");
473 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
475 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
477 static ssize_t regulator_total_uA_show(struct device *dev,
478 struct device_attribute *attr, char *buf)
480 struct regulator_dev *rdev = dev_get_drvdata(dev);
481 struct regulator *regulator;
482 int uA = 0;
484 mutex_lock(&rdev->mutex);
485 list_for_each_entry(regulator, &rdev->consumer_list, list)
486 uA += regulator->uA_load;
487 mutex_unlock(&rdev->mutex);
488 return sprintf(buf, "%d\n", uA);
490 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
492 static ssize_t regulator_num_users_show(struct device *dev,
493 struct device_attribute *attr, char *buf)
495 struct regulator_dev *rdev = dev_get_drvdata(dev);
496 return sprintf(buf, "%d\n", rdev->use_count);
499 static ssize_t regulator_type_show(struct device *dev,
500 struct device_attribute *attr, char *buf)
502 struct regulator_dev *rdev = dev_get_drvdata(dev);
504 switch (rdev->desc->type) {
505 case REGULATOR_VOLTAGE:
506 return sprintf(buf, "voltage\n");
507 case REGULATOR_CURRENT:
508 return sprintf(buf, "current\n");
510 return sprintf(buf, "unknown\n");
513 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
514 struct device_attribute *attr, char *buf)
516 struct regulator_dev *rdev = dev_get_drvdata(dev);
518 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
520 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
521 regulator_suspend_mem_uV_show, NULL);
523 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
524 struct device_attribute *attr, char *buf)
526 struct regulator_dev *rdev = dev_get_drvdata(dev);
528 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
530 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
531 regulator_suspend_disk_uV_show, NULL);
533 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
534 struct device_attribute *attr, char *buf)
536 struct regulator_dev *rdev = dev_get_drvdata(dev);
538 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
540 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
541 regulator_suspend_standby_uV_show, NULL);
543 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
544 struct device_attribute *attr, char *buf)
546 struct regulator_dev *rdev = dev_get_drvdata(dev);
548 return regulator_print_opmode(buf,
549 rdev->constraints->state_mem.mode);
551 static DEVICE_ATTR(suspend_mem_mode, 0444,
552 regulator_suspend_mem_mode_show, NULL);
554 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
555 struct device_attribute *attr, char *buf)
557 struct regulator_dev *rdev = dev_get_drvdata(dev);
559 return regulator_print_opmode(buf,
560 rdev->constraints->state_disk.mode);
562 static DEVICE_ATTR(suspend_disk_mode, 0444,
563 regulator_suspend_disk_mode_show, NULL);
565 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
566 struct device_attribute *attr, char *buf)
568 struct regulator_dev *rdev = dev_get_drvdata(dev);
570 return regulator_print_opmode(buf,
571 rdev->constraints->state_standby.mode);
573 static DEVICE_ATTR(suspend_standby_mode, 0444,
574 regulator_suspend_standby_mode_show, NULL);
576 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
577 struct device_attribute *attr, char *buf)
579 struct regulator_dev *rdev = dev_get_drvdata(dev);
581 return regulator_print_state(buf,
582 rdev->constraints->state_mem.enabled);
584 static DEVICE_ATTR(suspend_mem_state, 0444,
585 regulator_suspend_mem_state_show, NULL);
587 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
588 struct device_attribute *attr, char *buf)
590 struct regulator_dev *rdev = dev_get_drvdata(dev);
592 return regulator_print_state(buf,
593 rdev->constraints->state_disk.enabled);
595 static DEVICE_ATTR(suspend_disk_state, 0444,
596 regulator_suspend_disk_state_show, NULL);
598 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
599 struct device_attribute *attr, char *buf)
601 struct regulator_dev *rdev = dev_get_drvdata(dev);
603 return regulator_print_state(buf,
604 rdev->constraints->state_standby.enabled);
606 static DEVICE_ATTR(suspend_standby_state, 0444,
607 regulator_suspend_standby_state_show, NULL);
609 static ssize_t regulator_bypass_show(struct device *dev,
610 struct device_attribute *attr, char *buf)
612 struct regulator_dev *rdev = dev_get_drvdata(dev);
613 const char *report;
614 bool bypass;
615 int ret;
617 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
619 if (ret != 0)
620 report = "unknown";
621 else if (bypass)
622 report = "enabled";
623 else
624 report = "disabled";
626 return sprintf(buf, "%s\n", report);
628 static DEVICE_ATTR(bypass, 0444,
629 regulator_bypass_show, NULL);
632 * These are the only attributes are present for all regulators.
633 * Other attributes are a function of regulator functionality.
635 static struct device_attribute regulator_dev_attrs[] = {
636 __ATTR(name, 0444, regulator_name_show, NULL),
637 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
638 __ATTR(type, 0444, regulator_type_show, NULL),
639 __ATTR_NULL,
642 static void regulator_dev_release(struct device *dev)
644 struct regulator_dev *rdev = dev_get_drvdata(dev);
645 kfree(rdev);
648 static struct class regulator_class = {
649 .name = "regulator",
650 .dev_release = regulator_dev_release,
651 .dev_attrs = regulator_dev_attrs,
654 /* Calculate the new optimum regulator operating mode based on the new total
655 * consumer load. All locks held by caller */
656 static void drms_uA_update(struct regulator_dev *rdev)
658 struct regulator *sibling;
659 int current_uA = 0, output_uV, input_uV, err;
660 unsigned int mode;
662 err = regulator_check_drms(rdev);
663 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
664 (!rdev->desc->ops->get_voltage &&
665 !rdev->desc->ops->get_voltage_sel) ||
666 !rdev->desc->ops->set_mode)
667 return;
669 /* get output voltage */
670 output_uV = _regulator_get_voltage(rdev);
671 if (output_uV <= 0)
672 return;
674 /* get input voltage */
675 input_uV = 0;
676 if (rdev->supply)
677 input_uV = regulator_get_voltage(rdev->supply);
678 if (input_uV <= 0)
679 input_uV = rdev->constraints->input_uV;
680 if (input_uV <= 0)
681 return;
683 /* calc total requested load */
684 list_for_each_entry(sibling, &rdev->consumer_list, list)
685 current_uA += sibling->uA_load;
687 /* now get the optimum mode for our new total regulator load */
688 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
689 output_uV, current_uA);
691 /* check the new mode is allowed */
692 err = regulator_mode_constrain(rdev, &mode);
693 if (err == 0)
694 rdev->desc->ops->set_mode(rdev, mode);
697 static int suspend_set_state(struct regulator_dev *rdev,
698 struct regulator_state *rstate)
700 int ret = 0;
702 /* If we have no suspend mode configration don't set anything;
703 * only warn if the driver implements set_suspend_voltage or
704 * set_suspend_mode callback.
706 if (!rstate->enabled && !rstate->disabled) {
707 if (rdev->desc->ops->set_suspend_voltage ||
708 rdev->desc->ops->set_suspend_mode)
709 rdev_warn(rdev, "No configuration\n");
710 return 0;
713 if (rstate->enabled && rstate->disabled) {
714 rdev_err(rdev, "invalid configuration\n");
715 return -EINVAL;
718 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
719 ret = rdev->desc->ops->set_suspend_enable(rdev);
720 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
721 ret = rdev->desc->ops->set_suspend_disable(rdev);
722 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
723 ret = 0;
725 if (ret < 0) {
726 rdev_err(rdev, "failed to enabled/disable\n");
727 return ret;
730 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
731 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
732 if (ret < 0) {
733 rdev_err(rdev, "failed to set voltage\n");
734 return ret;
738 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
739 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
740 if (ret < 0) {
741 rdev_err(rdev, "failed to set mode\n");
742 return ret;
745 return ret;
748 /* locks held by caller */
749 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
751 if (!rdev->constraints)
752 return -EINVAL;
754 switch (state) {
755 case PM_SUSPEND_STANDBY:
756 return suspend_set_state(rdev,
757 &rdev->constraints->state_standby);
758 case PM_SUSPEND_MEM:
759 return suspend_set_state(rdev,
760 &rdev->constraints->state_mem);
761 case PM_SUSPEND_MAX:
762 return suspend_set_state(rdev,
763 &rdev->constraints->state_disk);
764 default:
765 return -EINVAL;
769 static void print_constraints(struct regulator_dev *rdev)
771 struct regulation_constraints *constraints = rdev->constraints;
772 char buf[80] = "";
773 int count = 0;
774 int ret;
776 if (constraints->min_uV && constraints->max_uV) {
777 if (constraints->min_uV == constraints->max_uV)
778 count += sprintf(buf + count, "%d mV ",
779 constraints->min_uV / 1000);
780 else
781 count += sprintf(buf + count, "%d <--> %d mV ",
782 constraints->min_uV / 1000,
783 constraints->max_uV / 1000);
786 if (!constraints->min_uV ||
787 constraints->min_uV != constraints->max_uV) {
788 ret = _regulator_get_voltage(rdev);
789 if (ret > 0)
790 count += sprintf(buf + count, "at %d mV ", ret / 1000);
793 if (constraints->uV_offset)
794 count += sprintf(buf, "%dmV offset ",
795 constraints->uV_offset / 1000);
797 if (constraints->min_uA && constraints->max_uA) {
798 if (constraints->min_uA == constraints->max_uA)
799 count += sprintf(buf + count, "%d mA ",
800 constraints->min_uA / 1000);
801 else
802 count += sprintf(buf + count, "%d <--> %d mA ",
803 constraints->min_uA / 1000,
804 constraints->max_uA / 1000);
807 if (!constraints->min_uA ||
808 constraints->min_uA != constraints->max_uA) {
809 ret = _regulator_get_current_limit(rdev);
810 if (ret > 0)
811 count += sprintf(buf + count, "at %d mA ", ret / 1000);
814 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
815 count += sprintf(buf + count, "fast ");
816 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
817 count += sprintf(buf + count, "normal ");
818 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
819 count += sprintf(buf + count, "idle ");
820 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
821 count += sprintf(buf + count, "standby");
823 if (!count)
824 sprintf(buf, "no parameters");
826 rdev_info(rdev, "%s\n", buf);
828 if ((constraints->min_uV != constraints->max_uV) &&
829 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
830 rdev_warn(rdev,
831 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
834 static int machine_constraints_voltage(struct regulator_dev *rdev,
835 struct regulation_constraints *constraints)
837 struct regulator_ops *ops = rdev->desc->ops;
838 int ret;
840 /* do we need to apply the constraint voltage */
841 if (rdev->constraints->apply_uV &&
842 rdev->constraints->min_uV == rdev->constraints->max_uV) {
843 ret = _regulator_do_set_voltage(rdev,
844 rdev->constraints->min_uV,
845 rdev->constraints->max_uV);
846 if (ret < 0) {
847 rdev_err(rdev, "failed to apply %duV constraint\n",
848 rdev->constraints->min_uV);
849 return ret;
853 /* constrain machine-level voltage specs to fit
854 * the actual range supported by this regulator.
856 if (ops->list_voltage && rdev->desc->n_voltages) {
857 int count = rdev->desc->n_voltages;
858 int i;
859 int min_uV = INT_MAX;
860 int max_uV = INT_MIN;
861 int cmin = constraints->min_uV;
862 int cmax = constraints->max_uV;
864 /* it's safe to autoconfigure fixed-voltage supplies
865 and the constraints are used by list_voltage. */
866 if (count == 1 && !cmin) {
867 cmin = 1;
868 cmax = INT_MAX;
869 constraints->min_uV = cmin;
870 constraints->max_uV = cmax;
873 /* voltage constraints are optional */
874 if ((cmin == 0) && (cmax == 0))
875 return 0;
877 /* else require explicit machine-level constraints */
878 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
879 rdev_err(rdev, "invalid voltage constraints\n");
880 return -EINVAL;
883 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
884 for (i = 0; i < count; i++) {
885 int value;
887 value = ops->list_voltage(rdev, i);
888 if (value <= 0)
889 continue;
891 /* maybe adjust [min_uV..max_uV] */
892 if (value >= cmin && value < min_uV)
893 min_uV = value;
894 if (value <= cmax && value > max_uV)
895 max_uV = value;
898 /* final: [min_uV..max_uV] valid iff constraints valid */
899 if (max_uV < min_uV) {
900 rdev_err(rdev,
901 "unsupportable voltage constraints %u-%uuV\n",
902 min_uV, max_uV);
903 return -EINVAL;
906 /* use regulator's subset of machine constraints */
907 if (constraints->min_uV < min_uV) {
908 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
909 constraints->min_uV, min_uV);
910 constraints->min_uV = min_uV;
912 if (constraints->max_uV > max_uV) {
913 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
914 constraints->max_uV, max_uV);
915 constraints->max_uV = max_uV;
919 return 0;
923 * set_machine_constraints - sets regulator constraints
924 * @rdev: regulator source
925 * @constraints: constraints to apply
927 * Allows platform initialisation code to define and constrain
928 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
929 * Constraints *must* be set by platform code in order for some
930 * regulator operations to proceed i.e. set_voltage, set_current_limit,
931 * set_mode.
933 static int set_machine_constraints(struct regulator_dev *rdev,
934 const struct regulation_constraints *constraints)
936 int ret = 0;
937 struct regulator_ops *ops = rdev->desc->ops;
939 if (constraints)
940 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
941 GFP_KERNEL);
942 else
943 rdev->constraints = kzalloc(sizeof(*constraints),
944 GFP_KERNEL);
945 if (!rdev->constraints)
946 return -ENOMEM;
948 ret = machine_constraints_voltage(rdev, rdev->constraints);
949 if (ret != 0)
950 goto out;
952 /* do we need to setup our suspend state */
953 if (rdev->constraints->initial_state) {
954 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
955 if (ret < 0) {
956 rdev_err(rdev, "failed to set suspend state\n");
957 goto out;
961 if (rdev->constraints->initial_mode) {
962 if (!ops->set_mode) {
963 rdev_err(rdev, "no set_mode operation\n");
964 ret = -EINVAL;
965 goto out;
968 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
969 if (ret < 0) {
970 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
971 goto out;
975 /* If the constraints say the regulator should be on at this point
976 * and we have control then make sure it is enabled.
978 if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
979 ops->enable) {
980 ret = ops->enable(rdev);
981 if (ret < 0) {
982 rdev_err(rdev, "failed to enable\n");
983 goto out;
987 if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
988 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
989 if (ret < 0) {
990 rdev_err(rdev, "failed to set ramp_delay\n");
991 goto out;
995 print_constraints(rdev);
996 return 0;
997 out:
998 kfree(rdev->constraints);
999 rdev->constraints = NULL;
1000 return ret;
1004 * set_supply - set regulator supply regulator
1005 * @rdev: regulator name
1006 * @supply_rdev: supply regulator name
1008 * Called by platform initialisation code to set the supply regulator for this
1009 * regulator. This ensures that a regulators supply will also be enabled by the
1010 * core if it's child is enabled.
1012 static int set_supply(struct regulator_dev *rdev,
1013 struct regulator_dev *supply_rdev)
1015 int err;
1017 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1019 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1020 if (rdev->supply == NULL) {
1021 err = -ENOMEM;
1022 return err;
1024 supply_rdev->open_count++;
1026 return 0;
1030 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1031 * @rdev: regulator source
1032 * @consumer_dev_name: dev_name() string for device supply applies to
1033 * @supply: symbolic name for supply
1035 * Allows platform initialisation code to map physical regulator
1036 * sources to symbolic names for supplies for use by devices. Devices
1037 * should use these symbolic names to request regulators, avoiding the
1038 * need to provide board-specific regulator names as platform data.
1040 static int set_consumer_device_supply(struct regulator_dev *rdev,
1041 const char *consumer_dev_name,
1042 const char *supply)
1044 struct regulator_map *node;
1045 int has_dev;
1047 if (supply == NULL)
1048 return -EINVAL;
1050 if (consumer_dev_name != NULL)
1051 has_dev = 1;
1052 else
1053 has_dev = 0;
1055 list_for_each_entry(node, &regulator_map_list, list) {
1056 if (node->dev_name && consumer_dev_name) {
1057 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1058 continue;
1059 } else if (node->dev_name || consumer_dev_name) {
1060 continue;
1063 if (strcmp(node->supply, supply) != 0)
1064 continue;
1066 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1067 consumer_dev_name,
1068 dev_name(&node->regulator->dev),
1069 node->regulator->desc->name,
1070 supply,
1071 dev_name(&rdev->dev), rdev_get_name(rdev));
1072 return -EBUSY;
1075 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1076 if (node == NULL)
1077 return -ENOMEM;
1079 node->regulator = rdev;
1080 node->supply = supply;
1082 if (has_dev) {
1083 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1084 if (node->dev_name == NULL) {
1085 kfree(node);
1086 return -ENOMEM;
1090 list_add(&node->list, &regulator_map_list);
1091 return 0;
1094 static void unset_regulator_supplies(struct regulator_dev *rdev)
1096 struct regulator_map *node, *n;
1098 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1099 if (rdev == node->regulator) {
1100 list_del(&node->list);
1101 kfree(node->dev_name);
1102 kfree(node);
1107 #define REG_STR_SIZE 64
1109 static struct regulator *create_regulator(struct regulator_dev *rdev,
1110 struct device *dev,
1111 const char *supply_name)
1113 struct regulator *regulator;
1114 char buf[REG_STR_SIZE];
1115 int err, size;
1117 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1118 if (regulator == NULL)
1119 return NULL;
1121 mutex_lock(&rdev->mutex);
1122 regulator->rdev = rdev;
1123 list_add(&regulator->list, &rdev->consumer_list);
1125 if (dev) {
1126 regulator->dev = dev;
1128 /* Add a link to the device sysfs entry */
1129 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1130 dev->kobj.name, supply_name);
1131 if (size >= REG_STR_SIZE)
1132 goto overflow_err;
1134 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1135 if (regulator->supply_name == NULL)
1136 goto overflow_err;
1138 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1139 buf);
1140 if (err) {
1141 rdev_warn(rdev, "could not add device link %s err %d\n",
1142 dev->kobj.name, err);
1143 /* non-fatal */
1145 } else {
1146 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1147 if (regulator->supply_name == NULL)
1148 goto overflow_err;
1151 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1152 rdev->debugfs);
1153 if (!regulator->debugfs) {
1154 rdev_warn(rdev, "Failed to create debugfs directory\n");
1155 } else {
1156 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1157 &regulator->uA_load);
1158 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1159 &regulator->min_uV);
1160 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1161 &regulator->max_uV);
1165 * Check now if the regulator is an always on regulator - if
1166 * it is then we don't need to do nearly so much work for
1167 * enable/disable calls.
1169 if (!_regulator_can_change_status(rdev) &&
1170 _regulator_is_enabled(rdev))
1171 regulator->always_on = true;
1173 mutex_unlock(&rdev->mutex);
1174 return regulator;
1175 overflow_err:
1176 list_del(&regulator->list);
1177 kfree(regulator);
1178 mutex_unlock(&rdev->mutex);
1179 return NULL;
1182 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1184 if (!rdev->desc->ops->enable_time)
1185 return rdev->desc->enable_time;
1186 return rdev->desc->ops->enable_time(rdev);
1189 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1190 const char *supply,
1191 int *ret)
1193 struct regulator_dev *r;
1194 struct device_node *node;
1195 struct regulator_map *map;
1196 const char *devname = NULL;
1198 /* first do a dt based lookup */
1199 if (dev && dev->of_node) {
1200 node = of_get_regulator(dev, supply);
1201 if (node) {
1202 list_for_each_entry(r, &regulator_list, list)
1203 if (r->dev.parent &&
1204 node == r->dev.of_node)
1205 return r;
1206 } else {
1208 * If we couldn't even get the node then it's
1209 * not just that the device didn't register
1210 * yet, there's no node and we'll never
1211 * succeed.
1213 *ret = -ENODEV;
1217 /* if not found, try doing it non-dt way */
1218 if (dev)
1219 devname = dev_name(dev);
1221 list_for_each_entry(r, &regulator_list, list)
1222 if (strcmp(rdev_get_name(r), supply) == 0)
1223 return r;
1225 list_for_each_entry(map, &regulator_map_list, list) {
1226 /* If the mapping has a device set up it must match */
1227 if (map->dev_name &&
1228 (!devname || strcmp(map->dev_name, devname)))
1229 continue;
1231 if (strcmp(map->supply, supply) == 0)
1232 return map->regulator;
1236 return NULL;
1239 /* Internal regulator request function */
1240 static struct regulator *_regulator_get(struct device *dev, const char *id,
1241 int exclusive)
1243 struct regulator_dev *rdev;
1244 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1245 const char *devname = NULL;
1246 int ret = 0;
1248 if (id == NULL) {
1249 pr_err("get() with no identifier\n");
1250 return regulator;
1253 if (dev)
1254 devname = dev_name(dev);
1256 mutex_lock(&regulator_list_mutex);
1258 rdev = regulator_dev_lookup(dev, id, &ret);
1259 if (rdev)
1260 goto found;
1263 * If we have return value from dev_lookup fail, we do not expect to
1264 * succeed, so, quit with appropriate error value
1266 if (ret) {
1267 regulator = ERR_PTR(ret);
1268 goto out;
1271 if (board_wants_dummy_regulator) {
1272 rdev = dummy_regulator_rdev;
1273 goto found;
1276 #ifdef CONFIG_REGULATOR_DUMMY
1277 if (!devname)
1278 devname = "deviceless";
1280 /* If the board didn't flag that it was fully constrained then
1281 * substitute in a dummy regulator so consumers can continue.
1283 if (!has_full_constraints) {
1284 pr_warn("%s supply %s not found, using dummy regulator\n",
1285 devname, id);
1286 rdev = dummy_regulator_rdev;
1287 goto found;
1289 #endif
1291 mutex_unlock(&regulator_list_mutex);
1292 return regulator;
1294 found:
1295 if (rdev->exclusive) {
1296 regulator = ERR_PTR(-EPERM);
1297 goto out;
1300 if (exclusive && rdev->open_count) {
1301 regulator = ERR_PTR(-EBUSY);
1302 goto out;
1305 if (!try_module_get(rdev->owner))
1306 goto out;
1308 regulator = create_regulator(rdev, dev, id);
1309 if (regulator == NULL) {
1310 regulator = ERR_PTR(-ENOMEM);
1311 module_put(rdev->owner);
1312 goto out;
1315 rdev->open_count++;
1316 if (exclusive) {
1317 rdev->exclusive = 1;
1319 ret = _regulator_is_enabled(rdev);
1320 if (ret > 0)
1321 rdev->use_count = 1;
1322 else
1323 rdev->use_count = 0;
1326 out:
1327 mutex_unlock(&regulator_list_mutex);
1329 return regulator;
1333 * regulator_get - lookup and obtain a reference to a regulator.
1334 * @dev: device for regulator "consumer"
1335 * @id: Supply name or regulator ID.
1337 * Returns a struct regulator corresponding to the regulator producer,
1338 * or IS_ERR() condition containing errno.
1340 * Use of supply names configured via regulator_set_device_supply() is
1341 * strongly encouraged. It is recommended that the supply name used
1342 * should match the name used for the supply and/or the relevant
1343 * device pins in the datasheet.
1345 struct regulator *regulator_get(struct device *dev, const char *id)
1347 return _regulator_get(dev, id, 0);
1349 EXPORT_SYMBOL_GPL(regulator_get);
1351 static void devm_regulator_release(struct device *dev, void *res)
1353 regulator_put(*(struct regulator **)res);
1357 * devm_regulator_get - Resource managed regulator_get()
1358 * @dev: device for regulator "consumer"
1359 * @id: Supply name or regulator ID.
1361 * Managed regulator_get(). Regulators returned from this function are
1362 * automatically regulator_put() on driver detach. See regulator_get() for more
1363 * information.
1365 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1367 struct regulator **ptr, *regulator;
1369 ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1370 if (!ptr)
1371 return ERR_PTR(-ENOMEM);
1373 regulator = regulator_get(dev, id);
1374 if (!IS_ERR(regulator)) {
1375 *ptr = regulator;
1376 devres_add(dev, ptr);
1377 } else {
1378 devres_free(ptr);
1381 return regulator;
1383 EXPORT_SYMBOL_GPL(devm_regulator_get);
1386 * regulator_get_exclusive - obtain exclusive access to a regulator.
1387 * @dev: device for regulator "consumer"
1388 * @id: Supply name or regulator ID.
1390 * Returns a struct regulator corresponding to the regulator producer,
1391 * or IS_ERR() condition containing errno. Other consumers will be
1392 * unable to obtain this reference is held and the use count for the
1393 * regulator will be initialised to reflect the current state of the
1394 * regulator.
1396 * This is intended for use by consumers which cannot tolerate shared
1397 * use of the regulator such as those which need to force the
1398 * regulator off for correct operation of the hardware they are
1399 * controlling.
1401 * Use of supply names configured via regulator_set_device_supply() is
1402 * strongly encouraged. It is recommended that the supply name used
1403 * should match the name used for the supply and/or the relevant
1404 * device pins in the datasheet.
1406 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1408 return _regulator_get(dev, id, 1);
1410 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1412 /* Locks held by regulator_put() */
1413 static void _regulator_put(struct regulator *regulator)
1415 struct regulator_dev *rdev;
1417 if (regulator == NULL || IS_ERR(regulator))
1418 return;
1420 rdev = regulator->rdev;
1422 debugfs_remove_recursive(regulator->debugfs);
1424 /* remove any sysfs entries */
1425 if (regulator->dev)
1426 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1427 kfree(regulator->supply_name);
1428 list_del(&regulator->list);
1429 kfree(regulator);
1431 rdev->open_count--;
1432 rdev->exclusive = 0;
1434 module_put(rdev->owner);
1438 * regulator_put - "free" the regulator source
1439 * @regulator: regulator source
1441 * Note: drivers must ensure that all regulator_enable calls made on this
1442 * regulator source are balanced by regulator_disable calls prior to calling
1443 * this function.
1445 void regulator_put(struct regulator *regulator)
1447 mutex_lock(&regulator_list_mutex);
1448 _regulator_put(regulator);
1449 mutex_unlock(&regulator_list_mutex);
1451 EXPORT_SYMBOL_GPL(regulator_put);
1453 static int devm_regulator_match(struct device *dev, void *res, void *data)
1455 struct regulator **r = res;
1456 if (!r || !*r) {
1457 WARN_ON(!r || !*r);
1458 return 0;
1460 return *r == data;
1464 * devm_regulator_put - Resource managed regulator_put()
1465 * @regulator: regulator to free
1467 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1468 * this function will not need to be called and the resource management
1469 * code will ensure that the resource is freed.
1471 void devm_regulator_put(struct regulator *regulator)
1473 int rc;
1475 rc = devres_release(regulator->dev, devm_regulator_release,
1476 devm_regulator_match, regulator);
1477 if (rc != 0)
1478 WARN_ON(rc);
1480 EXPORT_SYMBOL_GPL(devm_regulator_put);
1482 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1483 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1484 const struct regulator_config *config)
1486 struct regulator_enable_gpio *pin;
1487 int ret;
1489 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1490 if (pin->gpio == config->ena_gpio) {
1491 rdev_dbg(rdev, "GPIO %d is already used\n",
1492 config->ena_gpio);
1493 goto update_ena_gpio_to_rdev;
1497 ret = gpio_request_one(config->ena_gpio,
1498 GPIOF_DIR_OUT | config->ena_gpio_flags,
1499 rdev_get_name(rdev));
1500 if (ret)
1501 return ret;
1503 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1504 if (pin == NULL) {
1505 gpio_free(config->ena_gpio);
1506 return -ENOMEM;
1509 pin->gpio = config->ena_gpio;
1510 pin->ena_gpio_invert = config->ena_gpio_invert;
1511 list_add(&pin->list, &regulator_ena_gpio_list);
1513 update_ena_gpio_to_rdev:
1514 pin->request_count++;
1515 rdev->ena_pin = pin;
1516 return 0;
1519 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1521 struct regulator_enable_gpio *pin, *n;
1523 if (!rdev->ena_pin)
1524 return;
1526 /* Free the GPIO only in case of no use */
1527 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1528 if (pin->gpio == rdev->ena_pin->gpio) {
1529 if (pin->request_count <= 1) {
1530 pin->request_count = 0;
1531 gpio_free(pin->gpio);
1532 list_del(&pin->list);
1533 kfree(pin);
1534 } else {
1535 pin->request_count--;
1542 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1543 * @rdev: regulator_dev structure
1544 * @enable: enable GPIO at initial use?
1546 * GPIO is enabled in case of initial use. (enable_count is 0)
1547 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1549 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1551 struct regulator_enable_gpio *pin = rdev->ena_pin;
1553 if (!pin)
1554 return -EINVAL;
1556 if (enable) {
1557 /* Enable GPIO at initial use */
1558 if (pin->enable_count == 0)
1559 gpio_set_value_cansleep(pin->gpio,
1560 !pin->ena_gpio_invert);
1562 pin->enable_count++;
1563 } else {
1564 if (pin->enable_count > 1) {
1565 pin->enable_count--;
1566 return 0;
1569 /* Disable GPIO if not used */
1570 if (pin->enable_count <= 1) {
1571 gpio_set_value_cansleep(pin->gpio,
1572 pin->ena_gpio_invert);
1573 pin->enable_count = 0;
1577 return 0;
1580 static int _regulator_do_enable(struct regulator_dev *rdev)
1582 int ret, delay;
1584 /* Query before enabling in case configuration dependent. */
1585 ret = _regulator_get_enable_time(rdev);
1586 if (ret >= 0) {
1587 delay = ret;
1588 } else {
1589 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1590 delay = 0;
1593 trace_regulator_enable(rdev_get_name(rdev));
1595 if (rdev->ena_pin) {
1596 ret = regulator_ena_gpio_ctrl(rdev, true);
1597 if (ret < 0)
1598 return ret;
1599 rdev->ena_gpio_state = 1;
1600 } else if (rdev->desc->ops->enable) {
1601 ret = rdev->desc->ops->enable(rdev);
1602 if (ret < 0)
1603 return ret;
1604 } else {
1605 return -EINVAL;
1608 /* Allow the regulator to ramp; it would be useful to extend
1609 * this for bulk operations so that the regulators can ramp
1610 * together. */
1611 trace_regulator_enable_delay(rdev_get_name(rdev));
1613 if (delay >= 1000) {
1614 mdelay(delay / 1000);
1615 udelay(delay % 1000);
1616 } else if (delay) {
1617 udelay(delay);
1620 trace_regulator_enable_complete(rdev_get_name(rdev));
1622 return 0;
1625 /* locks held by regulator_enable() */
1626 static int _regulator_enable(struct regulator_dev *rdev)
1628 int ret;
1630 /* check voltage and requested load before enabling */
1631 if (rdev->constraints &&
1632 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1633 drms_uA_update(rdev);
1635 if (rdev->use_count == 0) {
1636 /* The regulator may on if it's not switchable or left on */
1637 ret = _regulator_is_enabled(rdev);
1638 if (ret == -EINVAL || ret == 0) {
1639 if (!_regulator_can_change_status(rdev))
1640 return -EPERM;
1642 ret = _regulator_do_enable(rdev);
1643 if (ret < 0)
1644 return ret;
1646 } else if (ret < 0) {
1647 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1648 return ret;
1650 /* Fallthrough on positive return values - already enabled */
1653 rdev->use_count++;
1655 return 0;
1659 * regulator_enable - enable regulator output
1660 * @regulator: regulator source
1662 * Request that the regulator be enabled with the regulator output at
1663 * the predefined voltage or current value. Calls to regulator_enable()
1664 * must be balanced with calls to regulator_disable().
1666 * NOTE: the output value can be set by other drivers, boot loader or may be
1667 * hardwired in the regulator.
1669 int regulator_enable(struct regulator *regulator)
1671 struct regulator_dev *rdev = regulator->rdev;
1672 int ret = 0;
1674 if (regulator->always_on)
1675 return 0;
1677 if (rdev->supply) {
1678 ret = regulator_enable(rdev->supply);
1679 if (ret != 0)
1680 return ret;
1683 mutex_lock(&rdev->mutex);
1684 ret = _regulator_enable(rdev);
1685 mutex_unlock(&rdev->mutex);
1687 if (ret != 0 && rdev->supply)
1688 regulator_disable(rdev->supply);
1690 return ret;
1692 EXPORT_SYMBOL_GPL(regulator_enable);
1694 static int _regulator_do_disable(struct regulator_dev *rdev)
1696 int ret;
1698 trace_regulator_disable(rdev_get_name(rdev));
1700 if (rdev->ena_pin) {
1701 ret = regulator_ena_gpio_ctrl(rdev, false);
1702 if (ret < 0)
1703 return ret;
1704 rdev->ena_gpio_state = 0;
1706 } else if (rdev->desc->ops->disable) {
1707 ret = rdev->desc->ops->disable(rdev);
1708 if (ret != 0)
1709 return ret;
1712 trace_regulator_disable_complete(rdev_get_name(rdev));
1714 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1715 NULL);
1716 return 0;
1719 /* locks held by regulator_disable() */
1720 static int _regulator_disable(struct regulator_dev *rdev)
1722 int ret = 0;
1724 if (WARN(rdev->use_count <= 0,
1725 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1726 return -EIO;
1728 /* are we the last user and permitted to disable ? */
1729 if (rdev->use_count == 1 &&
1730 (rdev->constraints && !rdev->constraints->always_on)) {
1732 /* we are last user */
1733 if (_regulator_can_change_status(rdev)) {
1734 ret = _regulator_do_disable(rdev);
1735 if (ret < 0) {
1736 rdev_err(rdev, "failed to disable\n");
1737 return ret;
1741 rdev->use_count = 0;
1742 } else if (rdev->use_count > 1) {
1744 if (rdev->constraints &&
1745 (rdev->constraints->valid_ops_mask &
1746 REGULATOR_CHANGE_DRMS))
1747 drms_uA_update(rdev);
1749 rdev->use_count--;
1752 return ret;
1756 * regulator_disable - disable regulator output
1757 * @regulator: regulator source
1759 * Disable the regulator output voltage or current. Calls to
1760 * regulator_enable() must be balanced with calls to
1761 * regulator_disable().
1763 * NOTE: this will only disable the regulator output if no other consumer
1764 * devices have it enabled, the regulator device supports disabling and
1765 * machine constraints permit this operation.
1767 int regulator_disable(struct regulator *regulator)
1769 struct regulator_dev *rdev = regulator->rdev;
1770 int ret = 0;
1772 if (regulator->always_on)
1773 return 0;
1775 mutex_lock(&rdev->mutex);
1776 ret = _regulator_disable(rdev);
1777 mutex_unlock(&rdev->mutex);
1779 if (ret == 0 && rdev->supply)
1780 regulator_disable(rdev->supply);
1782 return ret;
1784 EXPORT_SYMBOL_GPL(regulator_disable);
1786 /* locks held by regulator_force_disable() */
1787 static int _regulator_force_disable(struct regulator_dev *rdev)
1789 int ret = 0;
1791 /* force disable */
1792 if (rdev->desc->ops->disable) {
1793 /* ah well, who wants to live forever... */
1794 ret = rdev->desc->ops->disable(rdev);
1795 if (ret < 0) {
1796 rdev_err(rdev, "failed to force disable\n");
1797 return ret;
1799 /* notify other consumers that power has been forced off */
1800 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1801 REGULATOR_EVENT_DISABLE, NULL);
1804 return ret;
1808 * regulator_force_disable - force disable regulator output
1809 * @regulator: regulator source
1811 * Forcibly disable the regulator output voltage or current.
1812 * NOTE: this *will* disable the regulator output even if other consumer
1813 * devices have it enabled. This should be used for situations when device
1814 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1816 int regulator_force_disable(struct regulator *regulator)
1818 struct regulator_dev *rdev = regulator->rdev;
1819 int ret;
1821 mutex_lock(&rdev->mutex);
1822 regulator->uA_load = 0;
1823 ret = _regulator_force_disable(regulator->rdev);
1824 mutex_unlock(&rdev->mutex);
1826 if (rdev->supply)
1827 while (rdev->open_count--)
1828 regulator_disable(rdev->supply);
1830 return ret;
1832 EXPORT_SYMBOL_GPL(regulator_force_disable);
1834 static void regulator_disable_work(struct work_struct *work)
1836 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1837 disable_work.work);
1838 int count, i, ret;
1840 mutex_lock(&rdev->mutex);
1842 BUG_ON(!rdev->deferred_disables);
1844 count = rdev->deferred_disables;
1845 rdev->deferred_disables = 0;
1847 for (i = 0; i < count; i++) {
1848 ret = _regulator_disable(rdev);
1849 if (ret != 0)
1850 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1853 mutex_unlock(&rdev->mutex);
1855 if (rdev->supply) {
1856 for (i = 0; i < count; i++) {
1857 ret = regulator_disable(rdev->supply);
1858 if (ret != 0) {
1859 rdev_err(rdev,
1860 "Supply disable failed: %d\n", ret);
1867 * regulator_disable_deferred - disable regulator output with delay
1868 * @regulator: regulator source
1869 * @ms: miliseconds until the regulator is disabled
1871 * Execute regulator_disable() on the regulator after a delay. This
1872 * is intended for use with devices that require some time to quiesce.
1874 * NOTE: this will only disable the regulator output if no other consumer
1875 * devices have it enabled, the regulator device supports disabling and
1876 * machine constraints permit this operation.
1878 int regulator_disable_deferred(struct regulator *regulator, int ms)
1880 struct regulator_dev *rdev = regulator->rdev;
1881 int ret;
1883 if (regulator->always_on)
1884 return 0;
1886 if (!ms)
1887 return regulator_disable(regulator);
1889 mutex_lock(&rdev->mutex);
1890 rdev->deferred_disables++;
1891 mutex_unlock(&rdev->mutex);
1893 ret = schedule_delayed_work(&rdev->disable_work,
1894 msecs_to_jiffies(ms));
1895 if (ret < 0)
1896 return ret;
1897 else
1898 return 0;
1900 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1903 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1905 * @rdev: regulator to operate on
1907 * Regulators that use regmap for their register I/O can set the
1908 * enable_reg and enable_mask fields in their descriptor and then use
1909 * this as their is_enabled operation, saving some code.
1911 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1913 unsigned int val;
1914 int ret;
1916 ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1917 if (ret != 0)
1918 return ret;
1920 if (rdev->desc->enable_is_inverted)
1921 return (val & rdev->desc->enable_mask) == 0;
1922 else
1923 return (val & rdev->desc->enable_mask) != 0;
1925 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1928 * regulator_enable_regmap - standard enable() for regmap users
1930 * @rdev: regulator to operate on
1932 * Regulators that use regmap for their register I/O can set the
1933 * enable_reg and enable_mask fields in their descriptor and then use
1934 * this as their enable() operation, saving some code.
1936 int regulator_enable_regmap(struct regulator_dev *rdev)
1938 unsigned int val;
1940 if (rdev->desc->enable_is_inverted)
1941 val = 0;
1942 else
1943 val = rdev->desc->enable_mask;
1945 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1946 rdev->desc->enable_mask, val);
1948 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1951 * regulator_disable_regmap - standard disable() for regmap users
1953 * @rdev: regulator to operate on
1955 * Regulators that use regmap for their register I/O can set the
1956 * enable_reg and enable_mask fields in their descriptor and then use
1957 * this as their disable() operation, saving some code.
1959 int regulator_disable_regmap(struct regulator_dev *rdev)
1961 unsigned int val;
1963 if (rdev->desc->enable_is_inverted)
1964 val = rdev->desc->enable_mask;
1965 else
1966 val = 0;
1968 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1969 rdev->desc->enable_mask, val);
1971 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1973 static int _regulator_is_enabled(struct regulator_dev *rdev)
1975 /* A GPIO control always takes precedence */
1976 if (rdev->ena_pin)
1977 return rdev->ena_gpio_state;
1979 /* If we don't know then assume that the regulator is always on */
1980 if (!rdev->desc->ops->is_enabled)
1981 return 1;
1983 return rdev->desc->ops->is_enabled(rdev);
1987 * regulator_is_enabled - is the regulator output enabled
1988 * @regulator: regulator source
1990 * Returns positive if the regulator driver backing the source/client
1991 * has requested that the device be enabled, zero if it hasn't, else a
1992 * negative errno code.
1994 * Note that the device backing this regulator handle can have multiple
1995 * users, so it might be enabled even if regulator_enable() was never
1996 * called for this particular source.
1998 int regulator_is_enabled(struct regulator *regulator)
2000 int ret;
2002 if (regulator->always_on)
2003 return 1;
2005 mutex_lock(&regulator->rdev->mutex);
2006 ret = _regulator_is_enabled(regulator->rdev);
2007 mutex_unlock(&regulator->rdev->mutex);
2009 return ret;
2011 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2014 * regulator_can_change_voltage - check if regulator can change voltage
2015 * @regulator: regulator source
2017 * Returns positive if the regulator driver backing the source/client
2018 * can change its voltage, false otherwise. Usefull for detecting fixed
2019 * or dummy regulators and disabling voltage change logic in the client
2020 * driver.
2022 int regulator_can_change_voltage(struct regulator *regulator)
2024 struct regulator_dev *rdev = regulator->rdev;
2026 if (rdev->constraints &&
2027 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2028 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2029 return 1;
2031 if (rdev->desc->continuous_voltage_range &&
2032 rdev->constraints->min_uV && rdev->constraints->max_uV &&
2033 rdev->constraints->min_uV != rdev->constraints->max_uV)
2034 return 1;
2037 return 0;
2039 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2042 * regulator_count_voltages - count regulator_list_voltage() selectors
2043 * @regulator: regulator source
2045 * Returns number of selectors, or negative errno. Selectors are
2046 * numbered starting at zero, and typically correspond to bitfields
2047 * in hardware registers.
2049 int regulator_count_voltages(struct regulator *regulator)
2051 struct regulator_dev *rdev = regulator->rdev;
2053 return rdev->desc->n_voltages ? : -EINVAL;
2055 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2058 * regulator_list_voltage_linear - List voltages with simple calculation
2060 * @rdev: Regulator device
2061 * @selector: Selector to convert into a voltage
2063 * Regulators with a simple linear mapping between voltages and
2064 * selectors can set min_uV and uV_step in the regulator descriptor
2065 * and then use this function as their list_voltage() operation,
2067 int regulator_list_voltage_linear(struct regulator_dev *rdev,
2068 unsigned int selector)
2070 if (selector >= rdev->desc->n_voltages)
2071 return -EINVAL;
2072 if (selector < rdev->desc->linear_min_sel)
2073 return 0;
2075 selector -= rdev->desc->linear_min_sel;
2077 return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
2079 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
2082 * regulator_list_voltage_table - List voltages with table based mapping
2084 * @rdev: Regulator device
2085 * @selector: Selector to convert into a voltage
2087 * Regulators with table based mapping between voltages and
2088 * selectors can set volt_table in the regulator descriptor
2089 * and then use this function as their list_voltage() operation.
2091 int regulator_list_voltage_table(struct regulator_dev *rdev,
2092 unsigned int selector)
2094 if (!rdev->desc->volt_table) {
2095 BUG_ON(!rdev->desc->volt_table);
2096 return -EINVAL;
2099 if (selector >= rdev->desc->n_voltages)
2100 return -EINVAL;
2102 return rdev->desc->volt_table[selector];
2104 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
2107 * regulator_list_voltage - enumerate supported voltages
2108 * @regulator: regulator source
2109 * @selector: identify voltage to list
2110 * Context: can sleep
2112 * Returns a voltage that can be passed to @regulator_set_voltage(),
2113 * zero if this selector code can't be used on this system, or a
2114 * negative errno.
2116 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2118 struct regulator_dev *rdev = regulator->rdev;
2119 struct regulator_ops *ops = rdev->desc->ops;
2120 int ret;
2122 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2123 return -EINVAL;
2125 mutex_lock(&rdev->mutex);
2126 ret = ops->list_voltage(rdev, selector);
2127 mutex_unlock(&rdev->mutex);
2129 if (ret > 0) {
2130 if (ret < rdev->constraints->min_uV)
2131 ret = 0;
2132 else if (ret > rdev->constraints->max_uV)
2133 ret = 0;
2136 return ret;
2138 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2141 * regulator_get_linear_step - return the voltage step size between VSEL values
2142 * @regulator: regulator source
2144 * Returns the voltage step size between VSEL values for linear
2145 * regulators, or return 0 if the regulator isn't a linear regulator.
2147 unsigned int regulator_get_linear_step(struct regulator *regulator)
2149 struct regulator_dev *rdev = regulator->rdev;
2151 return rdev->desc->uV_step;
2153 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2156 * regulator_is_supported_voltage - check if a voltage range can be supported
2158 * @regulator: Regulator to check.
2159 * @min_uV: Minimum required voltage in uV.
2160 * @max_uV: Maximum required voltage in uV.
2162 * Returns a boolean or a negative error code.
2164 int regulator_is_supported_voltage(struct regulator *regulator,
2165 int min_uV, int max_uV)
2167 struct regulator_dev *rdev = regulator->rdev;
2168 int i, voltages, ret;
2170 /* If we can't change voltage check the current voltage */
2171 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2172 ret = regulator_get_voltage(regulator);
2173 if (ret >= 0)
2174 return (min_uV <= ret && ret <= max_uV);
2175 else
2176 return ret;
2179 /* Any voltage within constrains range is fine? */
2180 if (rdev->desc->continuous_voltage_range)
2181 return min_uV >= rdev->constraints->min_uV &&
2182 max_uV <= rdev->constraints->max_uV;
2184 ret = regulator_count_voltages(regulator);
2185 if (ret < 0)
2186 return ret;
2187 voltages = ret;
2189 for (i = 0; i < voltages; i++) {
2190 ret = regulator_list_voltage(regulator, i);
2192 if (ret >= min_uV && ret <= max_uV)
2193 return 1;
2196 return 0;
2198 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2201 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2203 * @rdev: regulator to operate on
2205 * Regulators that use regmap for their register I/O can set the
2206 * vsel_reg and vsel_mask fields in their descriptor and then use this
2207 * as their get_voltage_vsel operation, saving some code.
2209 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2211 unsigned int val;
2212 int ret;
2214 ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2215 if (ret != 0)
2216 return ret;
2218 val &= rdev->desc->vsel_mask;
2219 val >>= ffs(rdev->desc->vsel_mask) - 1;
2221 return val;
2223 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2226 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2228 * @rdev: regulator to operate on
2229 * @sel: Selector to set
2231 * Regulators that use regmap for their register I/O can set the
2232 * vsel_reg and vsel_mask fields in their descriptor and then use this
2233 * as their set_voltage_vsel operation, saving some code.
2235 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2237 int ret;
2239 sel <<= ffs(rdev->desc->vsel_mask) - 1;
2241 ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2242 rdev->desc->vsel_mask, sel);
2243 if (ret)
2244 return ret;
2246 if (rdev->desc->apply_bit)
2247 ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
2248 rdev->desc->apply_bit,
2249 rdev->desc->apply_bit);
2250 return ret;
2252 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2255 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2257 * @rdev: Regulator to operate on
2258 * @min_uV: Lower bound for voltage
2259 * @max_uV: Upper bound for voltage
2261 * Drivers implementing set_voltage_sel() and list_voltage() can use
2262 * this as their map_voltage() operation. It will find a suitable
2263 * voltage by calling list_voltage() until it gets something in bounds
2264 * for the requested voltages.
2266 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2267 int min_uV, int max_uV)
2269 int best_val = INT_MAX;
2270 int selector = 0;
2271 int i, ret;
2273 /* Find the smallest voltage that falls within the specified
2274 * range.
2276 for (i = 0; i < rdev->desc->n_voltages; i++) {
2277 ret = rdev->desc->ops->list_voltage(rdev, i);
2278 if (ret < 0)
2279 continue;
2281 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2282 best_val = ret;
2283 selector = i;
2287 if (best_val != INT_MAX)
2288 return selector;
2289 else
2290 return -EINVAL;
2292 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2295 * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
2297 * @rdev: Regulator to operate on
2298 * @min_uV: Lower bound for voltage
2299 * @max_uV: Upper bound for voltage
2301 * Drivers that have ascendant voltage list can use this as their
2302 * map_voltage() operation.
2304 int regulator_map_voltage_ascend(struct regulator_dev *rdev,
2305 int min_uV, int max_uV)
2307 int i, ret;
2309 for (i = 0; i < rdev->desc->n_voltages; i++) {
2310 ret = rdev->desc->ops->list_voltage(rdev, i);
2311 if (ret < 0)
2312 continue;
2314 if (ret > max_uV)
2315 break;
2317 if (ret >= min_uV && ret <= max_uV)
2318 return i;
2321 return -EINVAL;
2323 EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
2326 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2328 * @rdev: Regulator to operate on
2329 * @min_uV: Lower bound for voltage
2330 * @max_uV: Upper bound for voltage
2332 * Drivers providing min_uV and uV_step in their regulator_desc can
2333 * use this as their map_voltage() operation.
2335 int regulator_map_voltage_linear(struct regulator_dev *rdev,
2336 int min_uV, int max_uV)
2338 int ret, voltage;
2340 /* Allow uV_step to be 0 for fixed voltage */
2341 if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2342 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2343 return 0;
2344 else
2345 return -EINVAL;
2348 if (!rdev->desc->uV_step) {
2349 BUG_ON(!rdev->desc->uV_step);
2350 return -EINVAL;
2353 if (min_uV < rdev->desc->min_uV)
2354 min_uV = rdev->desc->min_uV;
2356 ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2357 if (ret < 0)
2358 return ret;
2360 ret += rdev->desc->linear_min_sel;
2362 /* Map back into a voltage to verify we're still in bounds */
2363 voltage = rdev->desc->ops->list_voltage(rdev, ret);
2364 if (voltage < min_uV || voltage > max_uV)
2365 return -EINVAL;
2367 return ret;
2369 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2371 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2372 int min_uV, int max_uV)
2374 int ret;
2375 int delay = 0;
2376 int best_val = 0;
2377 unsigned int selector;
2378 int old_selector = -1;
2380 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2382 min_uV += rdev->constraints->uV_offset;
2383 max_uV += rdev->constraints->uV_offset;
2386 * If we can't obtain the old selector there is not enough
2387 * info to call set_voltage_time_sel().
2389 if (_regulator_is_enabled(rdev) &&
2390 rdev->desc->ops->set_voltage_time_sel &&
2391 rdev->desc->ops->get_voltage_sel) {
2392 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2393 if (old_selector < 0)
2394 return old_selector;
2397 if (rdev->desc->ops->set_voltage) {
2398 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2399 &selector);
2401 if (ret >= 0) {
2402 if (rdev->desc->ops->list_voltage)
2403 best_val = rdev->desc->ops->list_voltage(rdev,
2404 selector);
2405 else
2406 best_val = _regulator_get_voltage(rdev);
2409 } else if (rdev->desc->ops->set_voltage_sel) {
2410 if (rdev->desc->ops->map_voltage) {
2411 ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2412 max_uV);
2413 } else {
2414 if (rdev->desc->ops->list_voltage ==
2415 regulator_list_voltage_linear)
2416 ret = regulator_map_voltage_linear(rdev,
2417 min_uV, max_uV);
2418 else
2419 ret = regulator_map_voltage_iterate(rdev,
2420 min_uV, max_uV);
2423 if (ret >= 0) {
2424 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2425 if (min_uV <= best_val && max_uV >= best_val) {
2426 selector = ret;
2427 if (old_selector == selector)
2428 ret = 0;
2429 else
2430 ret = rdev->desc->ops->set_voltage_sel(
2431 rdev, ret);
2432 } else {
2433 ret = -EINVAL;
2436 } else {
2437 ret = -EINVAL;
2440 /* Call set_voltage_time_sel if successfully obtained old_selector */
2441 if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2442 old_selector != selector && rdev->desc->ops->set_voltage_time_sel) {
2444 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2445 old_selector, selector);
2446 if (delay < 0) {
2447 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2448 delay);
2449 delay = 0;
2452 /* Insert any necessary delays */
2453 if (delay >= 1000) {
2454 mdelay(delay / 1000);
2455 udelay(delay % 1000);
2456 } else if (delay) {
2457 udelay(delay);
2461 if (ret == 0 && best_val >= 0) {
2462 unsigned long data = best_val;
2464 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2465 (void *)data);
2468 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2470 return ret;
2474 * regulator_set_voltage - set regulator output voltage
2475 * @regulator: regulator source
2476 * @min_uV: Minimum required voltage in uV
2477 * @max_uV: Maximum acceptable voltage in uV
2479 * Sets a voltage regulator to the desired output voltage. This can be set
2480 * during any regulator state. IOW, regulator can be disabled or enabled.
2482 * If the regulator is enabled then the voltage will change to the new value
2483 * immediately otherwise if the regulator is disabled the regulator will
2484 * output at the new voltage when enabled.
2486 * NOTE: If the regulator is shared between several devices then the lowest
2487 * request voltage that meets the system constraints will be used.
2488 * Regulator system constraints must be set for this regulator before
2489 * calling this function otherwise this call will fail.
2491 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2493 struct regulator_dev *rdev = regulator->rdev;
2494 int ret = 0;
2495 int old_min_uV, old_max_uV;
2497 mutex_lock(&rdev->mutex);
2499 /* If we're setting the same range as last time the change
2500 * should be a noop (some cpufreq implementations use the same
2501 * voltage for multiple frequencies, for example).
2503 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2504 goto out;
2506 /* sanity check */
2507 if (!rdev->desc->ops->set_voltage &&
2508 !rdev->desc->ops->set_voltage_sel) {
2509 ret = -EINVAL;
2510 goto out;
2513 /* constraints check */
2514 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2515 if (ret < 0)
2516 goto out;
2518 /* restore original values in case of error */
2519 old_min_uV = regulator->min_uV;
2520 old_max_uV = regulator->max_uV;
2521 regulator->min_uV = min_uV;
2522 regulator->max_uV = max_uV;
2524 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2525 if (ret < 0)
2526 goto out2;
2528 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2529 if (ret < 0)
2530 goto out2;
2532 out:
2533 mutex_unlock(&rdev->mutex);
2534 return ret;
2535 out2:
2536 regulator->min_uV = old_min_uV;
2537 regulator->max_uV = old_max_uV;
2538 mutex_unlock(&rdev->mutex);
2539 return ret;
2541 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2544 * regulator_set_voltage_time - get raise/fall time
2545 * @regulator: regulator source
2546 * @old_uV: starting voltage in microvolts
2547 * @new_uV: target voltage in microvolts
2549 * Provided with the starting and ending voltage, this function attempts to
2550 * calculate the time in microseconds required to rise or fall to this new
2551 * voltage.
2553 int regulator_set_voltage_time(struct regulator *regulator,
2554 int old_uV, int new_uV)
2556 struct regulator_dev *rdev = regulator->rdev;
2557 struct regulator_ops *ops = rdev->desc->ops;
2558 int old_sel = -1;
2559 int new_sel = -1;
2560 int voltage;
2561 int i;
2563 /* Currently requires operations to do this */
2564 if (!ops->list_voltage || !ops->set_voltage_time_sel
2565 || !rdev->desc->n_voltages)
2566 return -EINVAL;
2568 for (i = 0; i < rdev->desc->n_voltages; i++) {
2569 /* We only look for exact voltage matches here */
2570 voltage = regulator_list_voltage(regulator, i);
2571 if (voltage < 0)
2572 return -EINVAL;
2573 if (voltage == 0)
2574 continue;
2575 if (voltage == old_uV)
2576 old_sel = i;
2577 if (voltage == new_uV)
2578 new_sel = i;
2581 if (old_sel < 0 || new_sel < 0)
2582 return -EINVAL;
2584 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2586 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2589 * regulator_set_voltage_time_sel - get raise/fall time
2590 * @rdev: regulator source device
2591 * @old_selector: selector for starting voltage
2592 * @new_selector: selector for target voltage
2594 * Provided with the starting and target voltage selectors, this function
2595 * returns time in microseconds required to rise or fall to this new voltage
2597 * Drivers providing ramp_delay in regulation_constraints can use this as their
2598 * set_voltage_time_sel() operation.
2600 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2601 unsigned int old_selector,
2602 unsigned int new_selector)
2604 unsigned int ramp_delay = 0;
2605 int old_volt, new_volt;
2607 if (rdev->constraints->ramp_delay)
2608 ramp_delay = rdev->constraints->ramp_delay;
2609 else if (rdev->desc->ramp_delay)
2610 ramp_delay = rdev->desc->ramp_delay;
2612 if (ramp_delay == 0) {
2613 rdev_warn(rdev, "ramp_delay not set\n");
2614 return 0;
2617 /* sanity check */
2618 if (!rdev->desc->ops->list_voltage)
2619 return -EINVAL;
2621 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2622 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2624 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2626 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2629 * regulator_sync_voltage - re-apply last regulator output voltage
2630 * @regulator: regulator source
2632 * Re-apply the last configured voltage. This is intended to be used
2633 * where some external control source the consumer is cooperating with
2634 * has caused the configured voltage to change.
2636 int regulator_sync_voltage(struct regulator *regulator)
2638 struct regulator_dev *rdev = regulator->rdev;
2639 int ret, min_uV, max_uV;
2641 mutex_lock(&rdev->mutex);
2643 if (!rdev->desc->ops->set_voltage &&
2644 !rdev->desc->ops->set_voltage_sel) {
2645 ret = -EINVAL;
2646 goto out;
2649 /* This is only going to work if we've had a voltage configured. */
2650 if (!regulator->min_uV && !regulator->max_uV) {
2651 ret = -EINVAL;
2652 goto out;
2655 min_uV = regulator->min_uV;
2656 max_uV = regulator->max_uV;
2658 /* This should be a paranoia check... */
2659 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2660 if (ret < 0)
2661 goto out;
2663 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2664 if (ret < 0)
2665 goto out;
2667 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2669 out:
2670 mutex_unlock(&rdev->mutex);
2671 return ret;
2673 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2675 static int _regulator_get_voltage(struct regulator_dev *rdev)
2677 int sel, ret;
2679 if (rdev->desc->ops->get_voltage_sel) {
2680 sel = rdev->desc->ops->get_voltage_sel(rdev);
2681 if (sel < 0)
2682 return sel;
2683 ret = rdev->desc->ops->list_voltage(rdev, sel);
2684 } else if (rdev->desc->ops->get_voltage) {
2685 ret = rdev->desc->ops->get_voltage(rdev);
2686 } else if (rdev->desc->ops->list_voltage) {
2687 ret = rdev->desc->ops->list_voltage(rdev, 0);
2688 } else {
2689 return -EINVAL;
2692 if (ret < 0)
2693 return ret;
2694 return ret - rdev->constraints->uV_offset;
2698 * regulator_get_voltage - get regulator output voltage
2699 * @regulator: regulator source
2701 * This returns the current regulator voltage in uV.
2703 * NOTE: If the regulator is disabled it will return the voltage value. This
2704 * function should not be used to determine regulator state.
2706 int regulator_get_voltage(struct regulator *regulator)
2708 int ret;
2710 mutex_lock(&regulator->rdev->mutex);
2712 ret = _regulator_get_voltage(regulator->rdev);
2714 mutex_unlock(&regulator->rdev->mutex);
2716 return ret;
2718 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2721 * regulator_set_current_limit - set regulator output current limit
2722 * @regulator: regulator source
2723 * @min_uA: Minimum supported current in uA
2724 * @max_uA: Maximum supported current in uA
2726 * Sets current sink to the desired output current. This can be set during
2727 * any regulator state. IOW, regulator can be disabled or enabled.
2729 * If the regulator is enabled then the current will change to the new value
2730 * immediately otherwise if the regulator is disabled the regulator will
2731 * output at the new current when enabled.
2733 * NOTE: Regulator system constraints must be set for this regulator before
2734 * calling this function otherwise this call will fail.
2736 int regulator_set_current_limit(struct regulator *regulator,
2737 int min_uA, int max_uA)
2739 struct regulator_dev *rdev = regulator->rdev;
2740 int ret;
2742 mutex_lock(&rdev->mutex);
2744 /* sanity check */
2745 if (!rdev->desc->ops->set_current_limit) {
2746 ret = -EINVAL;
2747 goto out;
2750 /* constraints check */
2751 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2752 if (ret < 0)
2753 goto out;
2755 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2756 out:
2757 mutex_unlock(&rdev->mutex);
2758 return ret;
2760 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2762 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2764 int ret;
2766 mutex_lock(&rdev->mutex);
2768 /* sanity check */
2769 if (!rdev->desc->ops->get_current_limit) {
2770 ret = -EINVAL;
2771 goto out;
2774 ret = rdev->desc->ops->get_current_limit(rdev);
2775 out:
2776 mutex_unlock(&rdev->mutex);
2777 return ret;
2781 * regulator_get_current_limit - get regulator output current
2782 * @regulator: regulator source
2784 * This returns the current supplied by the specified current sink in uA.
2786 * NOTE: If the regulator is disabled it will return the current value. This
2787 * function should not be used to determine regulator state.
2789 int regulator_get_current_limit(struct regulator *regulator)
2791 return _regulator_get_current_limit(regulator->rdev);
2793 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2796 * regulator_set_mode - set regulator operating mode
2797 * @regulator: regulator source
2798 * @mode: operating mode - one of the REGULATOR_MODE constants
2800 * Set regulator operating mode to increase regulator efficiency or improve
2801 * regulation performance.
2803 * NOTE: Regulator system constraints must be set for this regulator before
2804 * calling this function otherwise this call will fail.
2806 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2808 struct regulator_dev *rdev = regulator->rdev;
2809 int ret;
2810 int regulator_curr_mode;
2812 mutex_lock(&rdev->mutex);
2814 /* sanity check */
2815 if (!rdev->desc->ops->set_mode) {
2816 ret = -EINVAL;
2817 goto out;
2820 /* return if the same mode is requested */
2821 if (rdev->desc->ops->get_mode) {
2822 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2823 if (regulator_curr_mode == mode) {
2824 ret = 0;
2825 goto out;
2829 /* constraints check */
2830 ret = regulator_mode_constrain(rdev, &mode);
2831 if (ret < 0)
2832 goto out;
2834 ret = rdev->desc->ops->set_mode(rdev, mode);
2835 out:
2836 mutex_unlock(&rdev->mutex);
2837 return ret;
2839 EXPORT_SYMBOL_GPL(regulator_set_mode);
2841 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2843 int ret;
2845 mutex_lock(&rdev->mutex);
2847 /* sanity check */
2848 if (!rdev->desc->ops->get_mode) {
2849 ret = -EINVAL;
2850 goto out;
2853 ret = rdev->desc->ops->get_mode(rdev);
2854 out:
2855 mutex_unlock(&rdev->mutex);
2856 return ret;
2860 * regulator_get_mode - get regulator operating mode
2861 * @regulator: regulator source
2863 * Get the current regulator operating mode.
2865 unsigned int regulator_get_mode(struct regulator *regulator)
2867 return _regulator_get_mode(regulator->rdev);
2869 EXPORT_SYMBOL_GPL(regulator_get_mode);
2872 * regulator_set_optimum_mode - set regulator optimum operating mode
2873 * @regulator: regulator source
2874 * @uA_load: load current
2876 * Notifies the regulator core of a new device load. This is then used by
2877 * DRMS (if enabled by constraints) to set the most efficient regulator
2878 * operating mode for the new regulator loading.
2880 * Consumer devices notify their supply regulator of the maximum power
2881 * they will require (can be taken from device datasheet in the power
2882 * consumption tables) when they change operational status and hence power
2883 * state. Examples of operational state changes that can affect power
2884 * consumption are :-
2886 * o Device is opened / closed.
2887 * o Device I/O is about to begin or has just finished.
2888 * o Device is idling in between work.
2890 * This information is also exported via sysfs to userspace.
2892 * DRMS will sum the total requested load on the regulator and change
2893 * to the most efficient operating mode if platform constraints allow.
2895 * Returns the new regulator mode or error.
2897 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2899 struct regulator_dev *rdev = regulator->rdev;
2900 struct regulator *consumer;
2901 int ret, output_uV, input_uV = 0, total_uA_load = 0;
2902 unsigned int mode;
2904 if (rdev->supply)
2905 input_uV = regulator_get_voltage(rdev->supply);
2907 mutex_lock(&rdev->mutex);
2910 * first check to see if we can set modes at all, otherwise just
2911 * tell the consumer everything is OK.
2913 regulator->uA_load = uA_load;
2914 ret = regulator_check_drms(rdev);
2915 if (ret < 0) {
2916 ret = 0;
2917 goto out;
2920 if (!rdev->desc->ops->get_optimum_mode)
2921 goto out;
2924 * we can actually do this so any errors are indicators of
2925 * potential real failure.
2927 ret = -EINVAL;
2929 if (!rdev->desc->ops->set_mode)
2930 goto out;
2932 /* get output voltage */
2933 output_uV = _regulator_get_voltage(rdev);
2934 if (output_uV <= 0) {
2935 rdev_err(rdev, "invalid output voltage found\n");
2936 goto out;
2939 /* No supply? Use constraint voltage */
2940 if (input_uV <= 0)
2941 input_uV = rdev->constraints->input_uV;
2942 if (input_uV <= 0) {
2943 rdev_err(rdev, "invalid input voltage found\n");
2944 goto out;
2947 /* calc total requested load for this regulator */
2948 list_for_each_entry(consumer, &rdev->consumer_list, list)
2949 total_uA_load += consumer->uA_load;
2951 mode = rdev->desc->ops->get_optimum_mode(rdev,
2952 input_uV, output_uV,
2953 total_uA_load);
2954 ret = regulator_mode_constrain(rdev, &mode);
2955 if (ret < 0) {
2956 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2957 total_uA_load, input_uV, output_uV);
2958 goto out;
2961 ret = rdev->desc->ops->set_mode(rdev, mode);
2962 if (ret < 0) {
2963 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2964 goto out;
2966 ret = mode;
2967 out:
2968 mutex_unlock(&rdev->mutex);
2969 return ret;
2971 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2974 * regulator_set_bypass_regmap - Default set_bypass() using regmap
2976 * @rdev: device to operate on.
2977 * @enable: state to set.
2979 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2981 unsigned int val;
2983 if (enable)
2984 val = rdev->desc->bypass_mask;
2985 else
2986 val = 0;
2988 return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2989 rdev->desc->bypass_mask, val);
2991 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2994 * regulator_get_bypass_regmap - Default get_bypass() using regmap
2996 * @rdev: device to operate on.
2997 * @enable: current state.
2999 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
3001 unsigned int val;
3002 int ret;
3004 ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
3005 if (ret != 0)
3006 return ret;
3008 *enable = val & rdev->desc->bypass_mask;
3010 return 0;
3012 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
3015 * regulator_allow_bypass - allow the regulator to go into bypass mode
3017 * @regulator: Regulator to configure
3018 * @enable: enable or disable bypass mode
3020 * Allow the regulator to go into bypass mode if all other consumers
3021 * for the regulator also enable bypass mode and the machine
3022 * constraints allow this. Bypass mode means that the regulator is
3023 * simply passing the input directly to the output with no regulation.
3025 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3027 struct regulator_dev *rdev = regulator->rdev;
3028 int ret = 0;
3030 if (!rdev->desc->ops->set_bypass)
3031 return 0;
3033 if (rdev->constraints &&
3034 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3035 return 0;
3037 mutex_lock(&rdev->mutex);
3039 if (enable && !regulator->bypass) {
3040 rdev->bypass_count++;
3042 if (rdev->bypass_count == rdev->open_count) {
3043 ret = rdev->desc->ops->set_bypass(rdev, enable);
3044 if (ret != 0)
3045 rdev->bypass_count--;
3048 } else if (!enable && regulator->bypass) {
3049 rdev->bypass_count--;
3051 if (rdev->bypass_count != rdev->open_count) {
3052 ret = rdev->desc->ops->set_bypass(rdev, enable);
3053 if (ret != 0)
3054 rdev->bypass_count++;
3058 if (ret == 0)
3059 regulator->bypass = enable;
3061 mutex_unlock(&rdev->mutex);
3063 return ret;
3065 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3068 * regulator_register_notifier - register regulator event notifier
3069 * @regulator: regulator source
3070 * @nb: notifier block
3072 * Register notifier block to receive regulator events.
3074 int regulator_register_notifier(struct regulator *regulator,
3075 struct notifier_block *nb)
3077 return blocking_notifier_chain_register(&regulator->rdev->notifier,
3078 nb);
3080 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3083 * regulator_unregister_notifier - unregister regulator event notifier
3084 * @regulator: regulator source
3085 * @nb: notifier block
3087 * Unregister regulator event notifier block.
3089 int regulator_unregister_notifier(struct regulator *regulator,
3090 struct notifier_block *nb)
3092 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3093 nb);
3095 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3097 /* notify regulator consumers and downstream regulator consumers.
3098 * Note mutex must be held by caller.
3100 static void _notifier_call_chain(struct regulator_dev *rdev,
3101 unsigned long event, void *data)
3103 /* call rdev chain first */
3104 blocking_notifier_call_chain(&rdev->notifier, event, data);
3108 * regulator_bulk_get - get multiple regulator consumers
3110 * @dev: Device to supply
3111 * @num_consumers: Number of consumers to register
3112 * @consumers: Configuration of consumers; clients are stored here.
3114 * @return 0 on success, an errno on failure.
3116 * This helper function allows drivers to get several regulator
3117 * consumers in one operation. If any of the regulators cannot be
3118 * acquired then any regulators that were allocated will be freed
3119 * before returning to the caller.
3121 int regulator_bulk_get(struct device *dev, int num_consumers,
3122 struct regulator_bulk_data *consumers)
3124 int i;
3125 int ret;
3127 for (i = 0; i < num_consumers; i++)
3128 consumers[i].consumer = NULL;
3130 for (i = 0; i < num_consumers; i++) {
3131 consumers[i].consumer = regulator_get(dev,
3132 consumers[i].supply);
3133 if (IS_ERR(consumers[i].consumer)) {
3134 ret = PTR_ERR(consumers[i].consumer);
3135 dev_err(dev, "Failed to get supply '%s': %d\n",
3136 consumers[i].supply, ret);
3137 consumers[i].consumer = NULL;
3138 goto err;
3142 return 0;
3144 err:
3145 while (--i >= 0)
3146 regulator_put(consumers[i].consumer);
3148 return ret;
3150 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3153 * devm_regulator_bulk_get - managed get multiple regulator consumers
3155 * @dev: Device to supply
3156 * @num_consumers: Number of consumers to register
3157 * @consumers: Configuration of consumers; clients are stored here.
3159 * @return 0 on success, an errno on failure.
3161 * This helper function allows drivers to get several regulator
3162 * consumers in one operation with management, the regulators will
3163 * automatically be freed when the device is unbound. If any of the
3164 * regulators cannot be acquired then any regulators that were
3165 * allocated will be freed before returning to the caller.
3167 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
3168 struct regulator_bulk_data *consumers)
3170 int i;
3171 int ret;
3173 for (i = 0; i < num_consumers; i++)
3174 consumers[i].consumer = NULL;
3176 for (i = 0; i < num_consumers; i++) {
3177 consumers[i].consumer = devm_regulator_get(dev,
3178 consumers[i].supply);
3179 if (IS_ERR(consumers[i].consumer)) {
3180 ret = PTR_ERR(consumers[i].consumer);
3181 dev_err(dev, "Failed to get supply '%s': %d\n",
3182 consumers[i].supply, ret);
3183 consumers[i].consumer = NULL;
3184 goto err;
3188 return 0;
3190 err:
3191 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
3192 devm_regulator_put(consumers[i].consumer);
3194 return ret;
3196 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
3198 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3200 struct regulator_bulk_data *bulk = data;
3202 bulk->ret = regulator_enable(bulk->consumer);
3206 * regulator_bulk_enable - enable multiple regulator consumers
3208 * @num_consumers: Number of consumers
3209 * @consumers: Consumer data; clients are stored here.
3210 * @return 0 on success, an errno on failure
3212 * This convenience API allows consumers to enable multiple regulator
3213 * clients in a single API call. If any consumers cannot be enabled
3214 * then any others that were enabled will be disabled again prior to
3215 * return.
3217 int regulator_bulk_enable(int num_consumers,
3218 struct regulator_bulk_data *consumers)
3220 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3221 int i;
3222 int ret = 0;
3224 for (i = 0; i < num_consumers; i++) {
3225 if (consumers[i].consumer->always_on)
3226 consumers[i].ret = 0;
3227 else
3228 async_schedule_domain(regulator_bulk_enable_async,
3229 &consumers[i], &async_domain);
3232 async_synchronize_full_domain(&async_domain);
3234 /* If any consumer failed we need to unwind any that succeeded */
3235 for (i = 0; i < num_consumers; i++) {
3236 if (consumers[i].ret != 0) {
3237 ret = consumers[i].ret;
3238 goto err;
3242 return 0;
3244 err:
3245 for (i = 0; i < num_consumers; i++) {
3246 if (consumers[i].ret < 0)
3247 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3248 consumers[i].ret);
3249 else
3250 regulator_disable(consumers[i].consumer);
3253 return ret;
3255 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3258 * regulator_bulk_disable - disable multiple regulator consumers
3260 * @num_consumers: Number of consumers
3261 * @consumers: Consumer data; clients are stored here.
3262 * @return 0 on success, an errno on failure
3264 * This convenience API allows consumers to disable multiple regulator
3265 * clients in a single API call. If any consumers cannot be disabled
3266 * then any others that were disabled will be enabled again prior to
3267 * return.
3269 int regulator_bulk_disable(int num_consumers,
3270 struct regulator_bulk_data *consumers)
3272 int i;
3273 int ret, r;
3275 for (i = num_consumers - 1; i >= 0; --i) {
3276 ret = regulator_disable(consumers[i].consumer);
3277 if (ret != 0)
3278 goto err;
3281 return 0;
3283 err:
3284 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3285 for (++i; i < num_consumers; ++i) {
3286 r = regulator_enable(consumers[i].consumer);
3287 if (r != 0)
3288 pr_err("Failed to reename %s: %d\n",
3289 consumers[i].supply, r);
3292 return ret;
3294 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3297 * regulator_bulk_force_disable - force disable multiple regulator consumers
3299 * @num_consumers: Number of consumers
3300 * @consumers: Consumer data; clients are stored here.
3301 * @return 0 on success, an errno on failure
3303 * This convenience API allows consumers to forcibly disable multiple regulator
3304 * clients in a single API call.
3305 * NOTE: This should be used for situations when device damage will
3306 * likely occur if the regulators are not disabled (e.g. over temp).
3307 * Although regulator_force_disable function call for some consumers can
3308 * return error numbers, the function is called for all consumers.
3310 int regulator_bulk_force_disable(int num_consumers,
3311 struct regulator_bulk_data *consumers)
3313 int i;
3314 int ret;
3316 for (i = 0; i < num_consumers; i++)
3317 consumers[i].ret =
3318 regulator_force_disable(consumers[i].consumer);
3320 for (i = 0; i < num_consumers; i++) {
3321 if (consumers[i].ret != 0) {
3322 ret = consumers[i].ret;
3323 goto out;
3327 return 0;
3328 out:
3329 return ret;
3331 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3334 * regulator_bulk_free - free multiple regulator consumers
3336 * @num_consumers: Number of consumers
3337 * @consumers: Consumer data; clients are stored here.
3339 * This convenience API allows consumers to free multiple regulator
3340 * clients in a single API call.
3342 void regulator_bulk_free(int num_consumers,
3343 struct regulator_bulk_data *consumers)
3345 int i;
3347 for (i = 0; i < num_consumers; i++) {
3348 regulator_put(consumers[i].consumer);
3349 consumers[i].consumer = NULL;
3352 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3355 * regulator_notifier_call_chain - call regulator event notifier
3356 * @rdev: regulator source
3357 * @event: notifier block
3358 * @data: callback-specific data.
3360 * Called by regulator drivers to notify clients a regulator event has
3361 * occurred. We also notify regulator clients downstream.
3362 * Note lock must be held by caller.
3364 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3365 unsigned long event, void *data)
3367 _notifier_call_chain(rdev, event, data);
3368 return NOTIFY_DONE;
3371 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3374 * regulator_mode_to_status - convert a regulator mode into a status
3376 * @mode: Mode to convert
3378 * Convert a regulator mode into a status.
3380 int regulator_mode_to_status(unsigned int mode)
3382 switch (mode) {
3383 case REGULATOR_MODE_FAST:
3384 return REGULATOR_STATUS_FAST;
3385 case REGULATOR_MODE_NORMAL:
3386 return REGULATOR_STATUS_NORMAL;
3387 case REGULATOR_MODE_IDLE:
3388 return REGULATOR_STATUS_IDLE;
3389 case REGULATOR_MODE_STANDBY:
3390 return REGULATOR_STATUS_STANDBY;
3391 default:
3392 return REGULATOR_STATUS_UNDEFINED;
3395 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3398 * To avoid cluttering sysfs (and memory) with useless state, only
3399 * create attributes that can be meaningfully displayed.
3401 static int add_regulator_attributes(struct regulator_dev *rdev)
3403 struct device *dev = &rdev->dev;
3404 struct regulator_ops *ops = rdev->desc->ops;
3405 int status = 0;
3407 /* some attributes need specific methods to be displayed */
3408 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3409 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3410 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3411 status = device_create_file(dev, &dev_attr_microvolts);
3412 if (status < 0)
3413 return status;
3415 if (ops->get_current_limit) {
3416 status = device_create_file(dev, &dev_attr_microamps);
3417 if (status < 0)
3418 return status;
3420 if (ops->get_mode) {
3421 status = device_create_file(dev, &dev_attr_opmode);
3422 if (status < 0)
3423 return status;
3425 if (rdev->ena_pin || ops->is_enabled) {
3426 status = device_create_file(dev, &dev_attr_state);
3427 if (status < 0)
3428 return status;
3430 if (ops->get_status) {
3431 status = device_create_file(dev, &dev_attr_status);
3432 if (status < 0)
3433 return status;
3435 if (ops->get_bypass) {
3436 status = device_create_file(dev, &dev_attr_bypass);
3437 if (status < 0)
3438 return status;
3441 /* some attributes are type-specific */
3442 if (rdev->desc->type == REGULATOR_CURRENT) {
3443 status = device_create_file(dev, &dev_attr_requested_microamps);
3444 if (status < 0)
3445 return status;
3448 /* all the other attributes exist to support constraints;
3449 * don't show them if there are no constraints, or if the
3450 * relevant supporting methods are missing.
3452 if (!rdev->constraints)
3453 return status;
3455 /* constraints need specific supporting methods */
3456 if (ops->set_voltage || ops->set_voltage_sel) {
3457 status = device_create_file(dev, &dev_attr_min_microvolts);
3458 if (status < 0)
3459 return status;
3460 status = device_create_file(dev, &dev_attr_max_microvolts);
3461 if (status < 0)
3462 return status;
3464 if (ops->set_current_limit) {
3465 status = device_create_file(dev, &dev_attr_min_microamps);
3466 if (status < 0)
3467 return status;
3468 status = device_create_file(dev, &dev_attr_max_microamps);
3469 if (status < 0)
3470 return status;
3473 status = device_create_file(dev, &dev_attr_suspend_standby_state);
3474 if (status < 0)
3475 return status;
3476 status = device_create_file(dev, &dev_attr_suspend_mem_state);
3477 if (status < 0)
3478 return status;
3479 status = device_create_file(dev, &dev_attr_suspend_disk_state);
3480 if (status < 0)
3481 return status;
3483 if (ops->set_suspend_voltage) {
3484 status = device_create_file(dev,
3485 &dev_attr_suspend_standby_microvolts);
3486 if (status < 0)
3487 return status;
3488 status = device_create_file(dev,
3489 &dev_attr_suspend_mem_microvolts);
3490 if (status < 0)
3491 return status;
3492 status = device_create_file(dev,
3493 &dev_attr_suspend_disk_microvolts);
3494 if (status < 0)
3495 return status;
3498 if (ops->set_suspend_mode) {
3499 status = device_create_file(dev,
3500 &dev_attr_suspend_standby_mode);
3501 if (status < 0)
3502 return status;
3503 status = device_create_file(dev,
3504 &dev_attr_suspend_mem_mode);
3505 if (status < 0)
3506 return status;
3507 status = device_create_file(dev,
3508 &dev_attr_suspend_disk_mode);
3509 if (status < 0)
3510 return status;
3513 return status;
3516 static void rdev_init_debugfs(struct regulator_dev *rdev)
3518 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3519 if (!rdev->debugfs) {
3520 rdev_warn(rdev, "Failed to create debugfs directory\n");
3521 return;
3524 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3525 &rdev->use_count);
3526 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3527 &rdev->open_count);
3528 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3529 &rdev->bypass_count);
3533 * regulator_register - register regulator
3534 * @regulator_desc: regulator to register
3535 * @config: runtime configuration for regulator
3537 * Called by regulator drivers to register a regulator.
3538 * Returns a valid pointer to struct regulator_dev on success
3539 * or an ERR_PTR() on error.
3541 struct regulator_dev *
3542 regulator_register(const struct regulator_desc *regulator_desc,
3543 const struct regulator_config *config)
3545 const struct regulation_constraints *constraints = NULL;
3546 const struct regulator_init_data *init_data;
3547 static atomic_t regulator_no = ATOMIC_INIT(0);
3548 struct regulator_dev *rdev;
3549 struct device *dev;
3550 int ret, i;
3551 const char *supply = NULL;
3553 if (regulator_desc == NULL || config == NULL)
3554 return ERR_PTR(-EINVAL);
3556 dev = config->dev;
3557 WARN_ON(!dev);
3559 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3560 return ERR_PTR(-EINVAL);
3562 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3563 regulator_desc->type != REGULATOR_CURRENT)
3564 return ERR_PTR(-EINVAL);
3566 /* Only one of each should be implemented */
3567 WARN_ON(regulator_desc->ops->get_voltage &&
3568 regulator_desc->ops->get_voltage_sel);
3569 WARN_ON(regulator_desc->ops->set_voltage &&
3570 regulator_desc->ops->set_voltage_sel);
3572 /* If we're using selectors we must implement list_voltage. */
3573 if (regulator_desc->ops->get_voltage_sel &&
3574 !regulator_desc->ops->list_voltage) {
3575 return ERR_PTR(-EINVAL);
3577 if (regulator_desc->ops->set_voltage_sel &&
3578 !regulator_desc->ops->list_voltage) {
3579 return ERR_PTR(-EINVAL);
3582 init_data = config->init_data;
3584 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3585 if (rdev == NULL)
3586 return ERR_PTR(-ENOMEM);
3588 mutex_lock(&regulator_list_mutex);
3590 mutex_init(&rdev->mutex);
3591 rdev->reg_data = config->driver_data;
3592 rdev->owner = regulator_desc->owner;
3593 rdev->desc = regulator_desc;
3594 if (config->regmap)
3595 rdev->regmap = config->regmap;
3596 else if (dev_get_regmap(dev, NULL))
3597 rdev->regmap = dev_get_regmap(dev, NULL);
3598 else if (dev->parent)
3599 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3600 INIT_LIST_HEAD(&rdev->consumer_list);
3601 INIT_LIST_HEAD(&rdev->list);
3602 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3603 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3605 /* preform any regulator specific init */
3606 if (init_data && init_data->regulator_init) {
3607 ret = init_data->regulator_init(rdev->reg_data);
3608 if (ret < 0)
3609 goto clean;
3612 /* register with sysfs */
3613 rdev->dev.class = &regulator_class;
3614 rdev->dev.of_node = config->of_node;
3615 rdev->dev.parent = dev;
3616 dev_set_name(&rdev->dev, "regulator.%d",
3617 atomic_inc_return(&regulator_no) - 1);
3618 ret = device_register(&rdev->dev);
3619 if (ret != 0) {
3620 put_device(&rdev->dev);
3621 goto clean;
3624 dev_set_drvdata(&rdev->dev, rdev);
3626 if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3627 ret = regulator_ena_gpio_request(rdev, config);
3628 if (ret != 0) {
3629 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3630 config->ena_gpio, ret);
3631 goto wash;
3634 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3635 rdev->ena_gpio_state = 1;
3637 if (config->ena_gpio_invert)
3638 rdev->ena_gpio_state = !rdev->ena_gpio_state;
3641 /* set regulator constraints */
3642 if (init_data)
3643 constraints = &init_data->constraints;
3645 ret = set_machine_constraints(rdev, constraints);
3646 if (ret < 0)
3647 goto scrub;
3649 /* add attributes supported by this regulator */
3650 ret = add_regulator_attributes(rdev);
3651 if (ret < 0)
3652 goto scrub;
3654 if (init_data && init_data->supply_regulator)
3655 supply = init_data->supply_regulator;
3656 else if (regulator_desc->supply_name)
3657 supply = regulator_desc->supply_name;
3659 if (supply) {
3660 struct regulator_dev *r;
3662 r = regulator_dev_lookup(dev, supply, &ret);
3664 if (ret == -ENODEV) {
3666 * No supply was specified for this regulator and
3667 * there will never be one.
3669 ret = 0;
3670 goto add_dev;
3671 } else if (!r) {
3672 dev_err(dev, "Failed to find supply %s\n", supply);
3673 ret = -EPROBE_DEFER;
3674 goto scrub;
3677 ret = set_supply(rdev, r);
3678 if (ret < 0)
3679 goto scrub;
3681 /* Enable supply if rail is enabled */
3682 if (_regulator_is_enabled(rdev)) {
3683 ret = regulator_enable(rdev->supply);
3684 if (ret < 0)
3685 goto scrub;
3689 add_dev:
3690 /* add consumers devices */
3691 if (init_data) {
3692 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3693 ret = set_consumer_device_supply(rdev,
3694 init_data->consumer_supplies[i].dev_name,
3695 init_data->consumer_supplies[i].supply);
3696 if (ret < 0) {
3697 dev_err(dev, "Failed to set supply %s\n",
3698 init_data->consumer_supplies[i].supply);
3699 goto unset_supplies;
3704 list_add(&rdev->list, &regulator_list);
3706 rdev_init_debugfs(rdev);
3707 out:
3708 mutex_unlock(&regulator_list_mutex);
3709 return rdev;
3711 unset_supplies:
3712 unset_regulator_supplies(rdev);
3714 scrub:
3715 if (rdev->supply)
3716 _regulator_put(rdev->supply);
3717 regulator_ena_gpio_free(rdev);
3718 kfree(rdev->constraints);
3719 wash:
3720 device_unregister(&rdev->dev);
3721 /* device core frees rdev */
3722 rdev = ERR_PTR(ret);
3723 goto out;
3725 clean:
3726 kfree(rdev);
3727 rdev = ERR_PTR(ret);
3728 goto out;
3730 EXPORT_SYMBOL_GPL(regulator_register);
3733 * regulator_unregister - unregister regulator
3734 * @rdev: regulator to unregister
3736 * Called by regulator drivers to unregister a regulator.
3738 void regulator_unregister(struct regulator_dev *rdev)
3740 if (rdev == NULL)
3741 return;
3743 if (rdev->supply)
3744 regulator_put(rdev->supply);
3745 mutex_lock(&regulator_list_mutex);
3746 debugfs_remove_recursive(rdev->debugfs);
3747 flush_work(&rdev->disable_work.work);
3748 WARN_ON(rdev->open_count);
3749 unset_regulator_supplies(rdev);
3750 list_del(&rdev->list);
3751 kfree(rdev->constraints);
3752 regulator_ena_gpio_free(rdev);
3753 device_unregister(&rdev->dev);
3754 mutex_unlock(&regulator_list_mutex);
3756 EXPORT_SYMBOL_GPL(regulator_unregister);
3759 * regulator_suspend_prepare - prepare regulators for system wide suspend
3760 * @state: system suspend state
3762 * Configure each regulator with it's suspend operating parameters for state.
3763 * This will usually be called by machine suspend code prior to supending.
3765 int regulator_suspend_prepare(suspend_state_t state)
3767 struct regulator_dev *rdev;
3768 int ret = 0;
3770 /* ON is handled by regulator active state */
3771 if (state == PM_SUSPEND_ON)
3772 return -EINVAL;
3774 mutex_lock(&regulator_list_mutex);
3775 list_for_each_entry(rdev, &regulator_list, list) {
3777 mutex_lock(&rdev->mutex);
3778 ret = suspend_prepare(rdev, state);
3779 mutex_unlock(&rdev->mutex);
3781 if (ret < 0) {
3782 rdev_err(rdev, "failed to prepare\n");
3783 goto out;
3786 out:
3787 mutex_unlock(&regulator_list_mutex);
3788 return ret;
3790 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3793 * regulator_suspend_finish - resume regulators from system wide suspend
3795 * Turn on regulators that might be turned off by regulator_suspend_prepare
3796 * and that should be turned on according to the regulators properties.
3798 int regulator_suspend_finish(void)
3800 struct regulator_dev *rdev;
3801 int ret = 0, error;
3803 mutex_lock(&regulator_list_mutex);
3804 list_for_each_entry(rdev, &regulator_list, list) {
3805 struct regulator_ops *ops = rdev->desc->ops;
3807 mutex_lock(&rdev->mutex);
3808 if ((rdev->use_count > 0 || rdev->constraints->always_on) &&
3809 ops->enable) {
3810 error = ops->enable(rdev);
3811 if (error)
3812 ret = error;
3813 } else {
3814 if (!has_full_constraints)
3815 goto unlock;
3816 if (!ops->disable)
3817 goto unlock;
3818 if (!_regulator_is_enabled(rdev))
3819 goto unlock;
3821 error = ops->disable(rdev);
3822 if (error)
3823 ret = error;
3825 unlock:
3826 mutex_unlock(&rdev->mutex);
3828 mutex_unlock(&regulator_list_mutex);
3829 return ret;
3831 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3834 * regulator_has_full_constraints - the system has fully specified constraints
3836 * Calling this function will cause the regulator API to disable all
3837 * regulators which have a zero use count and don't have an always_on
3838 * constraint in a late_initcall.
3840 * The intention is that this will become the default behaviour in a
3841 * future kernel release so users are encouraged to use this facility
3842 * now.
3844 void regulator_has_full_constraints(void)
3846 has_full_constraints = 1;
3848 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3851 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3853 * Calling this function will cause the regulator API to provide a
3854 * dummy regulator to consumers if no physical regulator is found,
3855 * allowing most consumers to proceed as though a regulator were
3856 * configured. This allows systems such as those with software
3857 * controllable regulators for the CPU core only to be brought up more
3858 * readily.
3860 void regulator_use_dummy_regulator(void)
3862 board_wants_dummy_regulator = true;
3864 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3867 * rdev_get_drvdata - get rdev regulator driver data
3868 * @rdev: regulator
3870 * Get rdev regulator driver private data. This call can be used in the
3871 * regulator driver context.
3873 void *rdev_get_drvdata(struct regulator_dev *rdev)
3875 return rdev->reg_data;
3877 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3880 * regulator_get_drvdata - get regulator driver data
3881 * @regulator: regulator
3883 * Get regulator driver private data. This call can be used in the consumer
3884 * driver context when non API regulator specific functions need to be called.
3886 void *regulator_get_drvdata(struct regulator *regulator)
3888 return regulator->rdev->reg_data;
3890 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3893 * regulator_set_drvdata - set regulator driver data
3894 * @regulator: regulator
3895 * @data: data
3897 void regulator_set_drvdata(struct regulator *regulator, void *data)
3899 regulator->rdev->reg_data = data;
3901 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3904 * regulator_get_id - get regulator ID
3905 * @rdev: regulator
3907 int rdev_get_id(struct regulator_dev *rdev)
3909 return rdev->desc->id;
3911 EXPORT_SYMBOL_GPL(rdev_get_id);
3913 struct device *rdev_get_dev(struct regulator_dev *rdev)
3915 return &rdev->dev;
3917 EXPORT_SYMBOL_GPL(rdev_get_dev);
3919 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3921 return reg_init_data->driver_data;
3923 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3925 #ifdef CONFIG_DEBUG_FS
3926 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3927 size_t count, loff_t *ppos)
3929 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3930 ssize_t len, ret = 0;
3931 struct regulator_map *map;
3933 if (!buf)
3934 return -ENOMEM;
3936 list_for_each_entry(map, &regulator_map_list, list) {
3937 len = snprintf(buf + ret, PAGE_SIZE - ret,
3938 "%s -> %s.%s\n",
3939 rdev_get_name(map->regulator), map->dev_name,
3940 map->supply);
3941 if (len >= 0)
3942 ret += len;
3943 if (ret > PAGE_SIZE) {
3944 ret = PAGE_SIZE;
3945 break;
3949 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3951 kfree(buf);
3953 return ret;
3955 #endif
3957 static const struct file_operations supply_map_fops = {
3958 #ifdef CONFIG_DEBUG_FS
3959 .read = supply_map_read_file,
3960 .llseek = default_llseek,
3961 #endif
3964 static int __init regulator_init(void)
3966 int ret;
3968 ret = class_register(&regulator_class);
3970 debugfs_root = debugfs_create_dir("regulator", NULL);
3971 if (!debugfs_root)
3972 pr_warn("regulator: Failed to create debugfs directory\n");
3974 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3975 &supply_map_fops);
3977 regulator_dummy_init();
3979 return ret;
3982 /* init early to allow our consumers to complete system booting */
3983 core_initcall(regulator_init);
3985 static int __init regulator_init_complete(void)
3987 struct regulator_dev *rdev;
3988 struct regulator_ops *ops;
3989 struct regulation_constraints *c;
3990 int enabled, ret;
3993 * Since DT doesn't provide an idiomatic mechanism for
3994 * enabling full constraints and since it's much more natural
3995 * with DT to provide them just assume that a DT enabled
3996 * system has full constraints.
3998 if (of_have_populated_dt())
3999 has_full_constraints = true;
4001 mutex_lock(&regulator_list_mutex);
4003 /* If we have a full configuration then disable any regulators
4004 * which are not in use or always_on. This will become the
4005 * default behaviour in the future.
4007 list_for_each_entry(rdev, &regulator_list, list) {
4008 ops = rdev->desc->ops;
4009 c = rdev->constraints;
4011 if (!ops->disable || (c && c->always_on))
4012 continue;
4014 mutex_lock(&rdev->mutex);
4016 if (rdev->use_count)
4017 goto unlock;
4019 /* If we can't read the status assume it's on. */
4020 if (ops->is_enabled)
4021 enabled = ops->is_enabled(rdev);
4022 else
4023 enabled = 1;
4025 if (!enabled)
4026 goto unlock;
4028 if (has_full_constraints) {
4029 /* We log since this may kill the system if it
4030 * goes wrong. */
4031 rdev_info(rdev, "disabling\n");
4032 ret = ops->disable(rdev);
4033 if (ret != 0) {
4034 rdev_err(rdev, "couldn't disable: %d\n", ret);
4036 } else {
4037 /* The intention is that in future we will
4038 * assume that full constraints are provided
4039 * so warn even if we aren't going to do
4040 * anything here.
4042 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4045 unlock:
4046 mutex_unlock(&rdev->mutex);
4049 mutex_unlock(&regulator_list_mutex);
4051 return 0;
4053 late_initcall(regulator_init_complete);