2 * Core registration and callback routines for MTD
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/proc_fs.h>
36 #include <linux/idr.h>
37 #include <linux/backing-dev.h>
38 #include <linux/gfp.h>
39 #include <linux/slab.h>
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/partitions.h>
47 * backing device capabilities for non-mappable devices (such as NAND flash)
48 * - permits private mappings, copies are taken of the data
50 static struct backing_dev_info mtd_bdi_unmappable
= {
51 .capabilities
= BDI_CAP_MAP_COPY
,
55 * backing device capabilities for R/O mappable devices (such as ROM)
56 * - permits private mappings, copies are taken of the data
57 * - permits non-writable shared mappings
59 static struct backing_dev_info mtd_bdi_ro_mappable
= {
60 .capabilities
= (BDI_CAP_MAP_COPY
| BDI_CAP_MAP_DIRECT
|
61 BDI_CAP_EXEC_MAP
| BDI_CAP_READ_MAP
),
65 * backing device capabilities for writable mappable devices (such as RAM)
66 * - permits private mappings, copies are taken of the data
67 * - permits non-writable shared mappings
69 static struct backing_dev_info mtd_bdi_rw_mappable
= {
70 .capabilities
= (BDI_CAP_MAP_COPY
| BDI_CAP_MAP_DIRECT
|
71 BDI_CAP_EXEC_MAP
| BDI_CAP_READ_MAP
|
75 static int mtd_cls_suspend(struct device
*dev
, pm_message_t state
);
76 static int mtd_cls_resume(struct device
*dev
);
78 static struct class mtd_class
= {
81 .suspend
= mtd_cls_suspend
,
82 .resume
= mtd_cls_resume
,
85 static DEFINE_IDR(mtd_idr
);
87 /* These are exported solely for the purpose of mtd_blkdevs.c. You
88 should not use them for _anything_ else */
89 DEFINE_MUTEX(mtd_table_mutex
);
90 EXPORT_SYMBOL_GPL(mtd_table_mutex
);
92 struct mtd_info
*__mtd_next_device(int i
)
94 return idr_get_next(&mtd_idr
, &i
);
96 EXPORT_SYMBOL_GPL(__mtd_next_device
);
98 static LIST_HEAD(mtd_notifiers
);
101 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
103 /* REVISIT once MTD uses the driver model better, whoever allocates
104 * the mtd_info will probably want to use the release() hook...
106 static void mtd_release(struct device
*dev
)
108 struct mtd_info __maybe_unused
*mtd
= dev_get_drvdata(dev
);
109 dev_t index
= MTD_DEVT(mtd
->index
);
111 /* remove /dev/mtdXro node if needed */
113 device_destroy(&mtd_class
, index
+ 1);
116 static int mtd_cls_suspend(struct device
*dev
, pm_message_t state
)
118 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
120 return mtd
? mtd_suspend(mtd
) : 0;
123 static int mtd_cls_resume(struct device
*dev
)
125 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
132 static ssize_t
mtd_type_show(struct device
*dev
,
133 struct device_attribute
*attr
, char *buf
)
135 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
164 return snprintf(buf
, PAGE_SIZE
, "%s\n", type
);
166 static DEVICE_ATTR(type
, S_IRUGO
, mtd_type_show
, NULL
);
168 static ssize_t
mtd_flags_show(struct device
*dev
,
169 struct device_attribute
*attr
, char *buf
)
171 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
173 return snprintf(buf
, PAGE_SIZE
, "0x%lx\n", (unsigned long)mtd
->flags
);
176 static DEVICE_ATTR(flags
, S_IRUGO
, mtd_flags_show
, NULL
);
178 static ssize_t
mtd_size_show(struct device
*dev
,
179 struct device_attribute
*attr
, char *buf
)
181 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
183 return snprintf(buf
, PAGE_SIZE
, "%llu\n",
184 (unsigned long long)mtd
->size
);
187 static DEVICE_ATTR(size
, S_IRUGO
, mtd_size_show
, NULL
);
189 static ssize_t
mtd_erasesize_show(struct device
*dev
,
190 struct device_attribute
*attr
, char *buf
)
192 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
194 return snprintf(buf
, PAGE_SIZE
, "%lu\n", (unsigned long)mtd
->erasesize
);
197 static DEVICE_ATTR(erasesize
, S_IRUGO
, mtd_erasesize_show
, NULL
);
199 static ssize_t
mtd_writesize_show(struct device
*dev
,
200 struct device_attribute
*attr
, char *buf
)
202 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
204 return snprintf(buf
, PAGE_SIZE
, "%lu\n", (unsigned long)mtd
->writesize
);
207 static DEVICE_ATTR(writesize
, S_IRUGO
, mtd_writesize_show
, NULL
);
209 static ssize_t
mtd_subpagesize_show(struct device
*dev
,
210 struct device_attribute
*attr
, char *buf
)
212 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
213 unsigned int subpagesize
= mtd
->writesize
>> mtd
->subpage_sft
;
215 return snprintf(buf
, PAGE_SIZE
, "%u\n", subpagesize
);
218 static DEVICE_ATTR(subpagesize
, S_IRUGO
, mtd_subpagesize_show
, NULL
);
220 static ssize_t
mtd_oobsize_show(struct device
*dev
,
221 struct device_attribute
*attr
, char *buf
)
223 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
225 return snprintf(buf
, PAGE_SIZE
, "%lu\n", (unsigned long)mtd
->oobsize
);
228 static DEVICE_ATTR(oobsize
, S_IRUGO
, mtd_oobsize_show
, NULL
);
230 static ssize_t
mtd_numeraseregions_show(struct device
*dev
,
231 struct device_attribute
*attr
, char *buf
)
233 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
235 return snprintf(buf
, PAGE_SIZE
, "%u\n", mtd
->numeraseregions
);
238 static DEVICE_ATTR(numeraseregions
, S_IRUGO
, mtd_numeraseregions_show
,
241 static ssize_t
mtd_name_show(struct device
*dev
,
242 struct device_attribute
*attr
, char *buf
)
244 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
246 return snprintf(buf
, PAGE_SIZE
, "%s\n", mtd
->name
);
249 static DEVICE_ATTR(name
, S_IRUGO
, mtd_name_show
, NULL
);
251 static ssize_t
mtd_ecc_strength_show(struct device
*dev
,
252 struct device_attribute
*attr
, char *buf
)
254 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
256 return snprintf(buf
, PAGE_SIZE
, "%u\n", mtd
->ecc_strength
);
258 static DEVICE_ATTR(ecc_strength
, S_IRUGO
, mtd_ecc_strength_show
, NULL
);
260 static ssize_t
mtd_bitflip_threshold_show(struct device
*dev
,
261 struct device_attribute
*attr
,
264 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
266 return snprintf(buf
, PAGE_SIZE
, "%u\n", mtd
->bitflip_threshold
);
269 static ssize_t
mtd_bitflip_threshold_store(struct device
*dev
,
270 struct device_attribute
*attr
,
271 const char *buf
, size_t count
)
273 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
274 unsigned int bitflip_threshold
;
277 retval
= kstrtouint(buf
, 0, &bitflip_threshold
);
281 mtd
->bitflip_threshold
= bitflip_threshold
;
284 static DEVICE_ATTR(bitflip_threshold
, S_IRUGO
| S_IWUSR
,
285 mtd_bitflip_threshold_show
,
286 mtd_bitflip_threshold_store
);
288 static struct attribute
*mtd_attrs
[] = {
290 &dev_attr_flags
.attr
,
292 &dev_attr_erasesize
.attr
,
293 &dev_attr_writesize
.attr
,
294 &dev_attr_subpagesize
.attr
,
295 &dev_attr_oobsize
.attr
,
296 &dev_attr_numeraseregions
.attr
,
298 &dev_attr_ecc_strength
.attr
,
299 &dev_attr_bitflip_threshold
.attr
,
303 static struct attribute_group mtd_group
= {
307 static const struct attribute_group
*mtd_groups
[] = {
312 static struct device_type mtd_devtype
= {
314 .groups
= mtd_groups
,
315 .release
= mtd_release
,
319 * add_mtd_device - register an MTD device
320 * @mtd: pointer to new MTD device info structure
322 * Add a device to the list of MTD devices present in the system, and
323 * notify each currently active MTD 'user' of its arrival. Returns
324 * zero on success or 1 on failure, which currently will only happen
325 * if there is insufficient memory or a sysfs error.
328 int add_mtd_device(struct mtd_info
*mtd
)
330 struct mtd_notifier
*not;
333 if (!mtd
->backing_dev_info
) {
336 mtd
->backing_dev_info
= &mtd_bdi_rw_mappable
;
339 mtd
->backing_dev_info
= &mtd_bdi_ro_mappable
;
342 mtd
->backing_dev_info
= &mtd_bdi_unmappable
;
347 BUG_ON(mtd
->writesize
== 0);
348 mutex_lock(&mtd_table_mutex
);
350 i
= idr_alloc(&mtd_idr
, mtd
, 0, 0, GFP_KERNEL
);
357 /* default value if not set by driver */
358 if (mtd
->bitflip_threshold
== 0)
359 mtd
->bitflip_threshold
= mtd
->ecc_strength
;
361 if (is_power_of_2(mtd
->erasesize
))
362 mtd
->erasesize_shift
= ffs(mtd
->erasesize
) - 1;
364 mtd
->erasesize_shift
= 0;
366 if (is_power_of_2(mtd
->writesize
))
367 mtd
->writesize_shift
= ffs(mtd
->writesize
) - 1;
369 mtd
->writesize_shift
= 0;
371 mtd
->erasesize_mask
= (1 << mtd
->erasesize_shift
) - 1;
372 mtd
->writesize_mask
= (1 << mtd
->writesize_shift
) - 1;
374 /* Some chips always power up locked. Unlock them now */
375 if ((mtd
->flags
& MTD_WRITEABLE
) && (mtd
->flags
& MTD_POWERUP_LOCK
)) {
376 error
= mtd_unlock(mtd
, 0, mtd
->size
);
377 if (error
&& error
!= -EOPNOTSUPP
)
379 "%s: unlock failed, writes may not work\n",
383 /* Caller should have set dev.parent to match the
386 mtd
->dev
.type
= &mtd_devtype
;
387 mtd
->dev
.class = &mtd_class
;
388 mtd
->dev
.devt
= MTD_DEVT(i
);
389 dev_set_name(&mtd
->dev
, "mtd%d", i
);
390 dev_set_drvdata(&mtd
->dev
, mtd
);
391 if (device_register(&mtd
->dev
) != 0)
395 device_create(&mtd_class
, mtd
->dev
.parent
,
399 pr_debug("mtd: Giving out device %d to %s\n", i
, mtd
->name
);
400 /* No need to get a refcount on the module containing
401 the notifier, since we hold the mtd_table_mutex */
402 list_for_each_entry(not, &mtd_notifiers
, list
)
405 mutex_unlock(&mtd_table_mutex
);
406 /* We _know_ we aren't being removed, because
407 our caller is still holding us here. So none
408 of this try_ nonsense, and no bitching about it
410 __module_get(THIS_MODULE
);
414 idr_remove(&mtd_idr
, i
);
416 mutex_unlock(&mtd_table_mutex
);
421 * del_mtd_device - unregister an MTD device
422 * @mtd: pointer to MTD device info structure
424 * Remove a device from the list of MTD devices present in the system,
425 * and notify each currently active MTD 'user' of its departure.
426 * Returns zero on success or 1 on failure, which currently will happen
427 * if the requested device does not appear to be present in the list.
430 int del_mtd_device(struct mtd_info
*mtd
)
433 struct mtd_notifier
*not;
435 mutex_lock(&mtd_table_mutex
);
437 if (idr_find(&mtd_idr
, mtd
->index
) != mtd
) {
442 /* No need to get a refcount on the module containing
443 the notifier, since we hold the mtd_table_mutex */
444 list_for_each_entry(not, &mtd_notifiers
, list
)
448 printk(KERN_NOTICE
"Removing MTD device #%d (%s) with use count %d\n",
449 mtd
->index
, mtd
->name
, mtd
->usecount
);
452 device_unregister(&mtd
->dev
);
454 idr_remove(&mtd_idr
, mtd
->index
);
456 module_put(THIS_MODULE
);
461 mutex_unlock(&mtd_table_mutex
);
466 * mtd_device_parse_register - parse partitions and register an MTD device.
468 * @mtd: the MTD device to register
469 * @types: the list of MTD partition probes to try, see
470 * 'parse_mtd_partitions()' for more information
471 * @parser_data: MTD partition parser-specific data
472 * @parts: fallback partition information to register, if parsing fails;
473 * only valid if %nr_parts > %0
474 * @nr_parts: the number of partitions in parts, if zero then the full
475 * MTD device is registered if no partition info is found
477 * This function aggregates MTD partitions parsing (done by
478 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
479 * basically follows the most common pattern found in many MTD drivers:
481 * * It first tries to probe partitions on MTD device @mtd using parsers
482 * specified in @types (if @types is %NULL, then the default list of parsers
483 * is used, see 'parse_mtd_partitions()' for more information). If none are
484 * found this functions tries to fallback to information specified in
486 * * If any partitioning info was found, this function registers the found
488 * * If no partitions were found this function just registers the MTD device
491 * Returns zero in case of success and a negative error code in case of failure.
493 int mtd_device_parse_register(struct mtd_info
*mtd
, const char * const *types
,
494 struct mtd_part_parser_data
*parser_data
,
495 const struct mtd_partition
*parts
,
499 struct mtd_partition
*real_parts
;
501 err
= parse_mtd_partitions(mtd
, types
, &real_parts
, parser_data
);
502 if (err
<= 0 && nr_parts
&& parts
) {
503 real_parts
= kmemdup(parts
, sizeof(*parts
) * nr_parts
,
512 err
= add_mtd_partitions(mtd
, real_parts
, err
);
514 } else if (err
== 0) {
515 err
= add_mtd_device(mtd
);
522 EXPORT_SYMBOL_GPL(mtd_device_parse_register
);
525 * mtd_device_unregister - unregister an existing MTD device.
527 * @master: the MTD device to unregister. This will unregister both the master
528 * and any partitions if registered.
530 int mtd_device_unregister(struct mtd_info
*master
)
534 err
= del_mtd_partitions(master
);
538 if (!device_is_registered(&master
->dev
))
541 return del_mtd_device(master
);
543 EXPORT_SYMBOL_GPL(mtd_device_unregister
);
546 * register_mtd_user - register a 'user' of MTD devices.
547 * @new: pointer to notifier info structure
549 * Registers a pair of callbacks function to be called upon addition
550 * or removal of MTD devices. Causes the 'add' callback to be immediately
551 * invoked for each MTD device currently present in the system.
553 void register_mtd_user (struct mtd_notifier
*new)
555 struct mtd_info
*mtd
;
557 mutex_lock(&mtd_table_mutex
);
559 list_add(&new->list
, &mtd_notifiers
);
561 __module_get(THIS_MODULE
);
563 mtd_for_each_device(mtd
)
566 mutex_unlock(&mtd_table_mutex
);
568 EXPORT_SYMBOL_GPL(register_mtd_user
);
571 * unregister_mtd_user - unregister a 'user' of MTD devices.
572 * @old: pointer to notifier info structure
574 * Removes a callback function pair from the list of 'users' to be
575 * notified upon addition or removal of MTD devices. Causes the
576 * 'remove' callback to be immediately invoked for each MTD device
577 * currently present in the system.
579 int unregister_mtd_user (struct mtd_notifier
*old
)
581 struct mtd_info
*mtd
;
583 mutex_lock(&mtd_table_mutex
);
585 module_put(THIS_MODULE
);
587 mtd_for_each_device(mtd
)
590 list_del(&old
->list
);
591 mutex_unlock(&mtd_table_mutex
);
594 EXPORT_SYMBOL_GPL(unregister_mtd_user
);
597 * get_mtd_device - obtain a validated handle for an MTD device
598 * @mtd: last known address of the required MTD device
599 * @num: internal device number of the required MTD device
601 * Given a number and NULL address, return the num'th entry in the device
602 * table, if any. Given an address and num == -1, search the device table
603 * for a device with that address and return if it's still present. Given
604 * both, return the num'th driver only if its address matches. Return
607 struct mtd_info
*get_mtd_device(struct mtd_info
*mtd
, int num
)
609 struct mtd_info
*ret
= NULL
, *other
;
612 mutex_lock(&mtd_table_mutex
);
615 mtd_for_each_device(other
) {
621 } else if (num
>= 0) {
622 ret
= idr_find(&mtd_idr
, num
);
623 if (mtd
&& mtd
!= ret
)
632 err
= __get_mtd_device(ret
);
636 mutex_unlock(&mtd_table_mutex
);
639 EXPORT_SYMBOL_GPL(get_mtd_device
);
642 int __get_mtd_device(struct mtd_info
*mtd
)
646 if (!try_module_get(mtd
->owner
))
649 if (mtd
->_get_device
) {
650 err
= mtd
->_get_device(mtd
);
653 module_put(mtd
->owner
);
660 EXPORT_SYMBOL_GPL(__get_mtd_device
);
663 * get_mtd_device_nm - obtain a validated handle for an MTD device by
665 * @name: MTD device name to open
667 * This function returns MTD device description structure in case of
668 * success and an error code in case of failure.
670 struct mtd_info
*get_mtd_device_nm(const char *name
)
673 struct mtd_info
*mtd
= NULL
, *other
;
675 mutex_lock(&mtd_table_mutex
);
677 mtd_for_each_device(other
) {
678 if (!strcmp(name
, other
->name
)) {
687 err
= __get_mtd_device(mtd
);
691 mutex_unlock(&mtd_table_mutex
);
695 mutex_unlock(&mtd_table_mutex
);
698 EXPORT_SYMBOL_GPL(get_mtd_device_nm
);
700 void put_mtd_device(struct mtd_info
*mtd
)
702 mutex_lock(&mtd_table_mutex
);
703 __put_mtd_device(mtd
);
704 mutex_unlock(&mtd_table_mutex
);
707 EXPORT_SYMBOL_GPL(put_mtd_device
);
709 void __put_mtd_device(struct mtd_info
*mtd
)
712 BUG_ON(mtd
->usecount
< 0);
714 if (mtd
->_put_device
)
715 mtd
->_put_device(mtd
);
717 module_put(mtd
->owner
);
719 EXPORT_SYMBOL_GPL(__put_mtd_device
);
722 * Erase is an asynchronous operation. Device drivers are supposed
723 * to call instr->callback() whenever the operation completes, even
724 * if it completes with a failure.
725 * Callers are supposed to pass a callback function and wait for it
726 * to be called before writing to the block.
728 int mtd_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
730 if (instr
->addr
> mtd
->size
|| instr
->len
> mtd
->size
- instr
->addr
)
732 if (!(mtd
->flags
& MTD_WRITEABLE
))
734 instr
->fail_addr
= MTD_FAIL_ADDR_UNKNOWN
;
736 instr
->state
= MTD_ERASE_DONE
;
737 mtd_erase_callback(instr
);
740 return mtd
->_erase(mtd
, instr
);
742 EXPORT_SYMBOL_GPL(mtd_erase
);
745 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
747 int mtd_point(struct mtd_info
*mtd
, loff_t from
, size_t len
, size_t *retlen
,
748 void **virt
, resource_size_t
*phys
)
756 if (from
< 0 || from
> mtd
->size
|| len
> mtd
->size
- from
)
760 return mtd
->_point(mtd
, from
, len
, retlen
, virt
, phys
);
762 EXPORT_SYMBOL_GPL(mtd_point
);
764 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
765 int mtd_unpoint(struct mtd_info
*mtd
, loff_t from
, size_t len
)
769 if (from
< 0 || from
> mtd
->size
|| len
> mtd
->size
- from
)
773 return mtd
->_unpoint(mtd
, from
, len
);
775 EXPORT_SYMBOL_GPL(mtd_unpoint
);
778 * Allow NOMMU mmap() to directly map the device (if not NULL)
779 * - return the address to which the offset maps
780 * - return -ENOSYS to indicate refusal to do the mapping
782 unsigned long mtd_get_unmapped_area(struct mtd_info
*mtd
, unsigned long len
,
783 unsigned long offset
, unsigned long flags
)
785 if (!mtd
->_get_unmapped_area
)
787 if (offset
> mtd
->size
|| len
> mtd
->size
- offset
)
789 return mtd
->_get_unmapped_area(mtd
, len
, offset
, flags
);
791 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area
);
793 int mtd_read(struct mtd_info
*mtd
, loff_t from
, size_t len
, size_t *retlen
,
798 if (from
< 0 || from
> mtd
->size
|| len
> mtd
->size
- from
)
804 * In the absence of an error, drivers return a non-negative integer
805 * representing the maximum number of bitflips that were corrected on
806 * any one ecc region (if applicable; zero otherwise).
808 ret_code
= mtd
->_read(mtd
, from
, len
, retlen
, buf
);
809 if (unlikely(ret_code
< 0))
811 if (mtd
->ecc_strength
== 0)
812 return 0; /* device lacks ecc */
813 return ret_code
>= mtd
->bitflip_threshold
? -EUCLEAN
: 0;
815 EXPORT_SYMBOL_GPL(mtd_read
);
817 int mtd_write(struct mtd_info
*mtd
, loff_t to
, size_t len
, size_t *retlen
,
821 if (to
< 0 || to
> mtd
->size
|| len
> mtd
->size
- to
)
823 if (!mtd
->_write
|| !(mtd
->flags
& MTD_WRITEABLE
))
827 return mtd
->_write(mtd
, to
, len
, retlen
, buf
);
829 EXPORT_SYMBOL_GPL(mtd_write
);
832 * In blackbox flight recorder like scenarios we want to make successful writes
833 * in interrupt context. panic_write() is only intended to be called when its
834 * known the kernel is about to panic and we need the write to succeed. Since
835 * the kernel is not going to be running for much longer, this function can
836 * break locks and delay to ensure the write succeeds (but not sleep).
838 int mtd_panic_write(struct mtd_info
*mtd
, loff_t to
, size_t len
, size_t *retlen
,
842 if (!mtd
->_panic_write
)
844 if (to
< 0 || to
> mtd
->size
|| len
> mtd
->size
- to
)
846 if (!(mtd
->flags
& MTD_WRITEABLE
))
850 return mtd
->_panic_write(mtd
, to
, len
, retlen
, buf
);
852 EXPORT_SYMBOL_GPL(mtd_panic_write
);
854 int mtd_read_oob(struct mtd_info
*mtd
, loff_t from
, struct mtd_oob_ops
*ops
)
857 ops
->retlen
= ops
->oobretlen
= 0;
861 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
862 * similar to mtd->_read(), returning a non-negative integer
863 * representing max bitflips. In other cases, mtd->_read_oob() may
864 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
866 ret_code
= mtd
->_read_oob(mtd
, from
, ops
);
867 if (unlikely(ret_code
< 0))
869 if (mtd
->ecc_strength
== 0)
870 return 0; /* device lacks ecc */
871 return ret_code
>= mtd
->bitflip_threshold
? -EUCLEAN
: 0;
873 EXPORT_SYMBOL_GPL(mtd_read_oob
);
876 * Method to access the protection register area, present in some flash
877 * devices. The user data is one time programmable but the factory data is read
880 int mtd_get_fact_prot_info(struct mtd_info
*mtd
, struct otp_info
*buf
,
883 if (!mtd
->_get_fact_prot_info
)
887 return mtd
->_get_fact_prot_info(mtd
, buf
, len
);
889 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info
);
891 int mtd_read_fact_prot_reg(struct mtd_info
*mtd
, loff_t from
, size_t len
,
892 size_t *retlen
, u_char
*buf
)
895 if (!mtd
->_read_fact_prot_reg
)
899 return mtd
->_read_fact_prot_reg(mtd
, from
, len
, retlen
, buf
);
901 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg
);
903 int mtd_get_user_prot_info(struct mtd_info
*mtd
, struct otp_info
*buf
,
906 if (!mtd
->_get_user_prot_info
)
910 return mtd
->_get_user_prot_info(mtd
, buf
, len
);
912 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info
);
914 int mtd_read_user_prot_reg(struct mtd_info
*mtd
, loff_t from
, size_t len
,
915 size_t *retlen
, u_char
*buf
)
918 if (!mtd
->_read_user_prot_reg
)
922 return mtd
->_read_user_prot_reg(mtd
, from
, len
, retlen
, buf
);
924 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg
);
926 int mtd_write_user_prot_reg(struct mtd_info
*mtd
, loff_t to
, size_t len
,
927 size_t *retlen
, u_char
*buf
)
930 if (!mtd
->_write_user_prot_reg
)
934 return mtd
->_write_user_prot_reg(mtd
, to
, len
, retlen
, buf
);
936 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg
);
938 int mtd_lock_user_prot_reg(struct mtd_info
*mtd
, loff_t from
, size_t len
)
940 if (!mtd
->_lock_user_prot_reg
)
944 return mtd
->_lock_user_prot_reg(mtd
, from
, len
);
946 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg
);
948 /* Chip-supported device locking */
949 int mtd_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
953 if (ofs
< 0 || ofs
> mtd
->size
|| len
> mtd
->size
- ofs
)
957 return mtd
->_lock(mtd
, ofs
, len
);
959 EXPORT_SYMBOL_GPL(mtd_lock
);
961 int mtd_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
965 if (ofs
< 0 || ofs
> mtd
->size
|| len
> mtd
->size
- ofs
)
969 return mtd
->_unlock(mtd
, ofs
, len
);
971 EXPORT_SYMBOL_GPL(mtd_unlock
);
973 int mtd_is_locked(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
975 if (!mtd
->_is_locked
)
977 if (ofs
< 0 || ofs
> mtd
->size
|| len
> mtd
->size
- ofs
)
981 return mtd
->_is_locked(mtd
, ofs
, len
);
983 EXPORT_SYMBOL_GPL(mtd_is_locked
);
985 int mtd_block_isbad(struct mtd_info
*mtd
, loff_t ofs
)
987 if (!mtd
->_block_isbad
)
989 if (ofs
< 0 || ofs
> mtd
->size
)
991 return mtd
->_block_isbad(mtd
, ofs
);
993 EXPORT_SYMBOL_GPL(mtd_block_isbad
);
995 int mtd_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
997 if (!mtd
->_block_markbad
)
999 if (ofs
< 0 || ofs
> mtd
->size
)
1001 if (!(mtd
->flags
& MTD_WRITEABLE
))
1003 return mtd
->_block_markbad(mtd
, ofs
);
1005 EXPORT_SYMBOL_GPL(mtd_block_markbad
);
1008 * default_mtd_writev - the default writev method
1009 * @mtd: mtd device description object pointer
1010 * @vecs: the vectors to write
1011 * @count: count of vectors in @vecs
1012 * @to: the MTD device offset to write to
1013 * @retlen: on exit contains the count of bytes written to the MTD device.
1015 * This function returns zero in case of success and a negative error code in
1018 static int default_mtd_writev(struct mtd_info
*mtd
, const struct kvec
*vecs
,
1019 unsigned long count
, loff_t to
, size_t *retlen
)
1022 size_t totlen
= 0, thislen
;
1025 for (i
= 0; i
< count
; i
++) {
1026 if (!vecs
[i
].iov_len
)
1028 ret
= mtd_write(mtd
, to
, vecs
[i
].iov_len
, &thislen
,
1031 if (ret
|| thislen
!= vecs
[i
].iov_len
)
1033 to
+= vecs
[i
].iov_len
;
1040 * mtd_writev - the vector-based MTD write method
1041 * @mtd: mtd device description object pointer
1042 * @vecs: the vectors to write
1043 * @count: count of vectors in @vecs
1044 * @to: the MTD device offset to write to
1045 * @retlen: on exit contains the count of bytes written to the MTD device.
1047 * This function returns zero in case of success and a negative error code in
1050 int mtd_writev(struct mtd_info
*mtd
, const struct kvec
*vecs
,
1051 unsigned long count
, loff_t to
, size_t *retlen
)
1054 if (!(mtd
->flags
& MTD_WRITEABLE
))
1057 return default_mtd_writev(mtd
, vecs
, count
, to
, retlen
);
1058 return mtd
->_writev(mtd
, vecs
, count
, to
, retlen
);
1060 EXPORT_SYMBOL_GPL(mtd_writev
);
1063 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1064 * @mtd: mtd device description object pointer
1065 * @size: a pointer to the ideal or maximum size of the allocation, points
1066 * to the actual allocation size on success.
1068 * This routine attempts to allocate a contiguous kernel buffer up to
1069 * the specified size, backing off the size of the request exponentially
1070 * until the request succeeds or until the allocation size falls below
1071 * the system page size. This attempts to make sure it does not adversely
1072 * impact system performance, so when allocating more than one page, we
1073 * ask the memory allocator to avoid re-trying, swapping, writing back
1074 * or performing I/O.
1076 * Note, this function also makes sure that the allocated buffer is aligned to
1077 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1079 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1080 * to handle smaller (i.e. degraded) buffer allocations under low- or
1081 * fragmented-memory situations where such reduced allocations, from a
1082 * requested ideal, are allowed.
1084 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1086 void *mtd_kmalloc_up_to(const struct mtd_info
*mtd
, size_t *size
)
1088 gfp_t flags
= __GFP_NOWARN
| __GFP_WAIT
|
1089 __GFP_NORETRY
| __GFP_NO_KSWAPD
;
1090 size_t min_alloc
= max_t(size_t, mtd
->writesize
, PAGE_SIZE
);
1093 *size
= min_t(size_t, *size
, KMALLOC_MAX_SIZE
);
1095 while (*size
> min_alloc
) {
1096 kbuf
= kmalloc(*size
, flags
);
1101 *size
= ALIGN(*size
, mtd
->writesize
);
1105 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1106 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1108 return kmalloc(*size
, GFP_KERNEL
);
1110 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to
);
1112 #ifdef CONFIG_PROC_FS
1114 /*====================================================================*/
1115 /* Support for /proc/mtd */
1117 static int mtd_proc_show(struct seq_file
*m
, void *v
)
1119 struct mtd_info
*mtd
;
1121 seq_puts(m
, "dev: size erasesize name\n");
1122 mutex_lock(&mtd_table_mutex
);
1123 mtd_for_each_device(mtd
) {
1124 seq_printf(m
, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1125 mtd
->index
, (unsigned long long)mtd
->size
,
1126 mtd
->erasesize
, mtd
->name
);
1128 mutex_unlock(&mtd_table_mutex
);
1132 static int mtd_proc_open(struct inode
*inode
, struct file
*file
)
1134 return single_open(file
, mtd_proc_show
, NULL
);
1137 static const struct file_operations mtd_proc_ops
= {
1138 .open
= mtd_proc_open
,
1140 .llseek
= seq_lseek
,
1141 .release
= single_release
,
1143 #endif /* CONFIG_PROC_FS */
1145 /*====================================================================*/
1148 static int __init
mtd_bdi_init(struct backing_dev_info
*bdi
, const char *name
)
1152 ret
= bdi_init(bdi
);
1154 ret
= bdi_register(bdi
, NULL
, "%s", name
);
1162 static struct proc_dir_entry
*proc_mtd
;
1164 static int __init
init_mtd(void)
1168 ret
= class_register(&mtd_class
);
1172 ret
= mtd_bdi_init(&mtd_bdi_unmappable
, "mtd-unmap");
1176 ret
= mtd_bdi_init(&mtd_bdi_ro_mappable
, "mtd-romap");
1180 ret
= mtd_bdi_init(&mtd_bdi_rw_mappable
, "mtd-rwmap");
1184 proc_mtd
= proc_create("mtd", 0, NULL
, &mtd_proc_ops
);
1186 ret
= init_mtdchar();
1194 remove_proc_entry("mtd", NULL
);
1196 bdi_destroy(&mtd_bdi_ro_mappable
);
1198 bdi_destroy(&mtd_bdi_unmappable
);
1200 class_unregister(&mtd_class
);
1202 pr_err("Error registering mtd class or bdi: %d\n", ret
);
1206 static void __exit
cleanup_mtd(void)
1210 remove_proc_entry("mtd", NULL
);
1211 class_unregister(&mtd_class
);
1212 bdi_destroy(&mtd_bdi_unmappable
);
1213 bdi_destroy(&mtd_bdi_ro_mappable
);
1214 bdi_destroy(&mtd_bdi_rw_mappable
);
1217 module_init(init_mtd
);
1218 module_exit(cleanup_mtd
);
1220 MODULE_LICENSE("GPL");
1221 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1222 MODULE_DESCRIPTION("Core MTD registration and access routines");