2 * sched_clock for unstable cpu clocks
4 * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6 * Updates and enhancements:
7 * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
10 * Ingo Molnar <mingo@redhat.com>
11 * Guillaume Chazarain <guichaz@gmail.com>
16 * cpu_clock(i) provides a fast (execution time) high resolution
17 * clock with bounded drift between CPUs. The value of cpu_clock(i)
18 * is monotonic for constant i. The timestamp returned is in nanoseconds.
20 * ######################### BIG FAT WARNING ##########################
21 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
23 * ####################################################################
25 * There is no strict promise about the base, although it tends to start
26 * at 0 on boot (but people really shouldn't rely on that).
28 * cpu_clock(i) -- can be used from any context, including NMI.
29 * sched_clock_cpu(i) -- must be used with local IRQs disabled (implied by NMI)
30 * local_clock() -- is cpu_clock() on the current cpu.
34 * The implementation either uses sched_clock() when
35 * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
36 * sched_clock() is assumed to provide these properties (mostly it means
37 * the architecture provides a globally synchronized highres time source).
39 * Otherwise it tries to create a semi stable clock from a mixture of other
42 * - GTOD (clock monotomic)
44 * - explicit idle events
46 * We use GTOD as base and use sched_clock() deltas to improve resolution. The
47 * deltas are filtered to provide monotonicity and keeping it within an
50 * Furthermore, explicit sleep and wakeup hooks allow us to account for time
51 * that is otherwise invisible (TSC gets stopped).
56 * The !IRQ-safetly of sched_clock() and sched_clock_cpu() comes from things
57 * like cpufreq interrupts that can change the base clock (TSC) multiplier
58 * and cause funny jumps in time -- although the filtering provided by
59 * sched_clock_cpu() should mitigate serious artifacts we cannot rely on it
60 * in general since for !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK we fully rely on
63 #include <linux/spinlock.h>
64 #include <linux/hardirq.h>
65 #include <linux/export.h>
66 #include <linux/percpu.h>
67 #include <linux/ktime.h>
68 #include <linux/sched.h>
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
75 unsigned long long __attribute__((weak
)) sched_clock(void)
77 return (unsigned long long)(jiffies
- INITIAL_JIFFIES
)
78 * (NSEC_PER_SEC
/ HZ
);
80 EXPORT_SYMBOL_GPL(sched_clock
);
82 __read_mostly
int sched_clock_running
;
84 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
85 __read_mostly
int sched_clock_stable
;
87 struct sched_clock_data
{
93 static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data
, sched_clock_data
);
95 static inline struct sched_clock_data
*this_scd(void)
97 return &__get_cpu_var(sched_clock_data
);
100 static inline struct sched_clock_data
*cpu_sdc(int cpu
)
102 return &per_cpu(sched_clock_data
, cpu
);
105 void sched_clock_init(void)
107 u64 ktime_now
= ktime_to_ns(ktime_get());
110 for_each_possible_cpu(cpu
) {
111 struct sched_clock_data
*scd
= cpu_sdc(cpu
);
114 scd
->tick_gtod
= ktime_now
;
115 scd
->clock
= ktime_now
;
118 sched_clock_running
= 1;
122 * min, max except they take wrapping into account
125 static inline u64
wrap_min(u64 x
, u64 y
)
127 return (s64
)(x
- y
) < 0 ? x
: y
;
130 static inline u64
wrap_max(u64 x
, u64 y
)
132 return (s64
)(x
- y
) > 0 ? x
: y
;
136 * update the percpu scd from the raw @now value
138 * - filter out backward motion
139 * - use the GTOD tick value to create a window to filter crazy TSC values
141 static u64
sched_clock_local(struct sched_clock_data
*scd
)
143 u64 now
, clock
, old_clock
, min_clock
, max_clock
;
148 delta
= now
- scd
->tick_raw
;
149 if (unlikely(delta
< 0))
152 old_clock
= scd
->clock
;
155 * scd->clock = clamp(scd->tick_gtod + delta,
156 * max(scd->tick_gtod, scd->clock),
157 * scd->tick_gtod + TICK_NSEC);
160 clock
= scd
->tick_gtod
+ delta
;
161 min_clock
= wrap_max(scd
->tick_gtod
, old_clock
);
162 max_clock
= wrap_max(old_clock
, scd
->tick_gtod
+ TICK_NSEC
);
164 clock
= wrap_max(clock
, min_clock
);
165 clock
= wrap_min(clock
, max_clock
);
167 if (cmpxchg64(&scd
->clock
, old_clock
, clock
) != old_clock
)
173 static u64
sched_clock_remote(struct sched_clock_data
*scd
)
175 struct sched_clock_data
*my_scd
= this_scd();
176 u64 this_clock
, remote_clock
;
177 u64
*ptr
, old_val
, val
;
179 #if BITS_PER_LONG != 64
182 * Careful here: The local and the remote clock values need to
183 * be read out atomic as we need to compare the values and
184 * then update either the local or the remote side. So the
185 * cmpxchg64 below only protects one readout.
187 * We must reread via sched_clock_local() in the retry case on
188 * 32bit as an NMI could use sched_clock_local() via the
189 * tracer and hit between the readout of
190 * the low32bit and the high 32bit portion.
192 this_clock
= sched_clock_local(my_scd
);
194 * We must enforce atomic readout on 32bit, otherwise the
195 * update on the remote cpu can hit inbetween the readout of
196 * the low32bit and the high 32bit portion.
198 remote_clock
= cmpxchg64(&scd
->clock
, 0, 0);
201 * On 64bit the read of [my]scd->clock is atomic versus the
202 * update, so we can avoid the above 32bit dance.
204 sched_clock_local(my_scd
);
206 this_clock
= my_scd
->clock
;
207 remote_clock
= scd
->clock
;
211 * Use the opportunity that we have both locks
212 * taken to couple the two clocks: we take the
213 * larger time as the latest time for both
214 * runqueues. (this creates monotonic movement)
216 if (likely((s64
)(remote_clock
- this_clock
) < 0)) {
218 old_val
= remote_clock
;
222 * Should be rare, but possible:
224 ptr
= &my_scd
->clock
;
225 old_val
= this_clock
;
229 if (cmpxchg64(ptr
, old_val
, val
) != old_val
)
236 * Similar to cpu_clock(), but requires local IRQs to be disabled.
240 u64
sched_clock_cpu(int cpu
)
242 struct sched_clock_data
*scd
;
245 WARN_ON_ONCE(!irqs_disabled());
247 if (sched_clock_stable
)
248 return sched_clock();
250 if (unlikely(!sched_clock_running
))
255 if (cpu
!= smp_processor_id())
256 clock
= sched_clock_remote(scd
);
258 clock
= sched_clock_local(scd
);
263 void sched_clock_tick(void)
265 struct sched_clock_data
*scd
;
268 if (sched_clock_stable
)
271 if (unlikely(!sched_clock_running
))
274 WARN_ON_ONCE(!irqs_disabled());
277 now_gtod
= ktime_to_ns(ktime_get());
281 scd
->tick_gtod
= now_gtod
;
282 sched_clock_local(scd
);
286 * We are going deep-idle (irqs are disabled):
288 void sched_clock_idle_sleep_event(void)
290 sched_clock_cpu(smp_processor_id());
292 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event
);
295 * We just idled delta nanoseconds (called with irqs disabled):
297 void sched_clock_idle_wakeup_event(u64 delta_ns
)
299 if (timekeeping_suspended
)
303 touch_softlockup_watchdog();
305 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event
);
308 * As outlined at the top, provides a fast, high resolution, nanosecond
309 * time source that is monotonic per cpu argument and has bounded drift
312 * ######################### BIG FAT WARNING ##########################
313 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
314 * # go backwards !! #
315 * ####################################################################
317 u64
cpu_clock(int cpu
)
322 local_irq_save(flags
);
323 clock
= sched_clock_cpu(cpu
);
324 local_irq_restore(flags
);
330 * Similar to cpu_clock() for the current cpu. Time will only be observed
331 * to be monotonic if care is taken to only compare timestampt taken on the
336 u64
local_clock(void)
341 local_irq_save(flags
);
342 clock
= sched_clock_cpu(smp_processor_id());
343 local_irq_restore(flags
);
348 #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
350 void sched_clock_init(void)
352 sched_clock_running
= 1;
355 u64
sched_clock_cpu(int cpu
)
357 if (unlikely(!sched_clock_running
))
360 return sched_clock();
363 u64
cpu_clock(int cpu
)
365 return sched_clock_cpu(cpu
);
368 u64
local_clock(void)
370 return sched_clock_cpu(0);
373 #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
375 EXPORT_SYMBOL_GPL(cpu_clock
);
376 EXPORT_SYMBOL_GPL(local_clock
);