block, sx8: kill blk_insert_request()
[linux-2.6.git] / block / blk-core.c
blob435af23786140cc4874c01342d7db5059b02d0d4
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/block.h>
36 #include "blk.h"
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
43 * For the allocated request tables
45 static struct kmem_cache *request_cachep;
48 * For queue allocation
50 struct kmem_cache *blk_requestq_cachep;
53 * Controlling structure to kblockd
55 static struct workqueue_struct *kblockd_workqueue;
57 static void drive_stat_acct(struct request *rq, int new_io)
59 struct hd_struct *part;
60 int rw = rq_data_dir(rq);
61 int cpu;
63 if (!blk_do_io_stat(rq))
64 return;
66 cpu = part_stat_lock();
68 if (!new_io) {
69 part = rq->part;
70 part_stat_inc(cpu, part, merges[rw]);
71 } else {
72 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
73 if (!hd_struct_try_get(part)) {
75 * The partition is already being removed,
76 * the request will be accounted on the disk only
78 * We take a reference on disk->part0 although that
79 * partition will never be deleted, so we can treat
80 * it as any other partition.
82 part = &rq->rq_disk->part0;
83 hd_struct_get(part);
85 part_round_stats(cpu, part);
86 part_inc_in_flight(part, rw);
87 rq->part = part;
90 part_stat_unlock();
93 void blk_queue_congestion_threshold(struct request_queue *q)
95 int nr;
97 nr = q->nr_requests - (q->nr_requests / 8) + 1;
98 if (nr > q->nr_requests)
99 nr = q->nr_requests;
100 q->nr_congestion_on = nr;
102 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
103 if (nr < 1)
104 nr = 1;
105 q->nr_congestion_off = nr;
109 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
110 * @bdev: device
112 * Locates the passed device's request queue and returns the address of its
113 * backing_dev_info
115 * Will return NULL if the request queue cannot be located.
117 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
119 struct backing_dev_info *ret = NULL;
120 struct request_queue *q = bdev_get_queue(bdev);
122 if (q)
123 ret = &q->backing_dev_info;
124 return ret;
126 EXPORT_SYMBOL(blk_get_backing_dev_info);
128 void blk_rq_init(struct request_queue *q, struct request *rq)
130 memset(rq, 0, sizeof(*rq));
132 INIT_LIST_HEAD(&rq->queuelist);
133 INIT_LIST_HEAD(&rq->timeout_list);
134 rq->cpu = -1;
135 rq->q = q;
136 rq->__sector = (sector_t) -1;
137 INIT_HLIST_NODE(&rq->hash);
138 RB_CLEAR_NODE(&rq->rb_node);
139 rq->cmd = rq->__cmd;
140 rq->cmd_len = BLK_MAX_CDB;
141 rq->tag = -1;
142 rq->ref_count = 1;
143 rq->start_time = jiffies;
144 set_start_time_ns(rq);
145 rq->part = NULL;
147 EXPORT_SYMBOL(blk_rq_init);
149 static void req_bio_endio(struct request *rq, struct bio *bio,
150 unsigned int nbytes, int error)
152 if (error)
153 clear_bit(BIO_UPTODATE, &bio->bi_flags);
154 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
155 error = -EIO;
157 if (unlikely(nbytes > bio->bi_size)) {
158 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
159 __func__, nbytes, bio->bi_size);
160 nbytes = bio->bi_size;
163 if (unlikely(rq->cmd_flags & REQ_QUIET))
164 set_bit(BIO_QUIET, &bio->bi_flags);
166 bio->bi_size -= nbytes;
167 bio->bi_sector += (nbytes >> 9);
169 if (bio_integrity(bio))
170 bio_integrity_advance(bio, nbytes);
172 /* don't actually finish bio if it's part of flush sequence */
173 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
174 bio_endio(bio, error);
177 void blk_dump_rq_flags(struct request *rq, char *msg)
179 int bit;
181 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
182 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
183 rq->cmd_flags);
185 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
186 (unsigned long long)blk_rq_pos(rq),
187 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
188 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
189 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
191 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
192 printk(KERN_INFO " cdb: ");
193 for (bit = 0; bit < BLK_MAX_CDB; bit++)
194 printk("%02x ", rq->cmd[bit]);
195 printk("\n");
198 EXPORT_SYMBOL(blk_dump_rq_flags);
200 static void blk_delay_work(struct work_struct *work)
202 struct request_queue *q;
204 q = container_of(work, struct request_queue, delay_work.work);
205 spin_lock_irq(q->queue_lock);
206 __blk_run_queue(q);
207 spin_unlock_irq(q->queue_lock);
211 * blk_delay_queue - restart queueing after defined interval
212 * @q: The &struct request_queue in question
213 * @msecs: Delay in msecs
215 * Description:
216 * Sometimes queueing needs to be postponed for a little while, to allow
217 * resources to come back. This function will make sure that queueing is
218 * restarted around the specified time.
220 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
222 queue_delayed_work(kblockd_workqueue, &q->delay_work,
223 msecs_to_jiffies(msecs));
225 EXPORT_SYMBOL(blk_delay_queue);
228 * blk_start_queue - restart a previously stopped queue
229 * @q: The &struct request_queue in question
231 * Description:
232 * blk_start_queue() will clear the stop flag on the queue, and call
233 * the request_fn for the queue if it was in a stopped state when
234 * entered. Also see blk_stop_queue(). Queue lock must be held.
236 void blk_start_queue(struct request_queue *q)
238 WARN_ON(!irqs_disabled());
240 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
241 __blk_run_queue(q);
243 EXPORT_SYMBOL(blk_start_queue);
246 * blk_stop_queue - stop a queue
247 * @q: The &struct request_queue in question
249 * Description:
250 * The Linux block layer assumes that a block driver will consume all
251 * entries on the request queue when the request_fn strategy is called.
252 * Often this will not happen, because of hardware limitations (queue
253 * depth settings). If a device driver gets a 'queue full' response,
254 * or if it simply chooses not to queue more I/O at one point, it can
255 * call this function to prevent the request_fn from being called until
256 * the driver has signalled it's ready to go again. This happens by calling
257 * blk_start_queue() to restart queue operations. Queue lock must be held.
259 void blk_stop_queue(struct request_queue *q)
261 __cancel_delayed_work(&q->delay_work);
262 queue_flag_set(QUEUE_FLAG_STOPPED, q);
264 EXPORT_SYMBOL(blk_stop_queue);
267 * blk_sync_queue - cancel any pending callbacks on a queue
268 * @q: the queue
270 * Description:
271 * The block layer may perform asynchronous callback activity
272 * on a queue, such as calling the unplug function after a timeout.
273 * A block device may call blk_sync_queue to ensure that any
274 * such activity is cancelled, thus allowing it to release resources
275 * that the callbacks might use. The caller must already have made sure
276 * that its ->make_request_fn will not re-add plugging prior to calling
277 * this function.
279 * This function does not cancel any asynchronous activity arising
280 * out of elevator or throttling code. That would require elevaotor_exit()
281 * and blk_throtl_exit() to be called with queue lock initialized.
284 void blk_sync_queue(struct request_queue *q)
286 del_timer_sync(&q->timeout);
287 cancel_delayed_work_sync(&q->delay_work);
289 EXPORT_SYMBOL(blk_sync_queue);
292 * __blk_run_queue - run a single device queue
293 * @q: The queue to run
295 * Description:
296 * See @blk_run_queue. This variant must be called with the queue lock
297 * held and interrupts disabled.
299 void __blk_run_queue(struct request_queue *q)
301 if (unlikely(blk_queue_stopped(q)))
302 return;
304 q->request_fn(q);
306 EXPORT_SYMBOL(__blk_run_queue);
309 * blk_run_queue_async - run a single device queue in workqueue context
310 * @q: The queue to run
312 * Description:
313 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
314 * of us.
316 void blk_run_queue_async(struct request_queue *q)
318 if (likely(!blk_queue_stopped(q))) {
319 __cancel_delayed_work(&q->delay_work);
320 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
323 EXPORT_SYMBOL(blk_run_queue_async);
326 * blk_run_queue - run a single device queue
327 * @q: The queue to run
329 * Description:
330 * Invoke request handling on this queue, if it has pending work to do.
331 * May be used to restart queueing when a request has completed.
333 void blk_run_queue(struct request_queue *q)
335 unsigned long flags;
337 spin_lock_irqsave(q->queue_lock, flags);
338 __blk_run_queue(q);
339 spin_unlock_irqrestore(q->queue_lock, flags);
341 EXPORT_SYMBOL(blk_run_queue);
343 void blk_put_queue(struct request_queue *q)
345 kobject_put(&q->kobj);
347 EXPORT_SYMBOL(blk_put_queue);
350 * blk_drain_queue - drain requests from request_queue
351 * @q: queue to drain
352 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
354 * Drain requests from @q. If @drain_all is set, all requests are drained.
355 * If not, only ELVPRIV requests are drained. The caller is responsible
356 * for ensuring that no new requests which need to be drained are queued.
358 void blk_drain_queue(struct request_queue *q, bool drain_all)
360 while (true) {
361 int nr_rqs;
363 spin_lock_irq(q->queue_lock);
365 elv_drain_elevator(q);
366 if (drain_all)
367 blk_throtl_drain(q);
369 __blk_run_queue(q);
371 if (drain_all)
372 nr_rqs = q->rq.count[0] + q->rq.count[1];
373 else
374 nr_rqs = q->rq.elvpriv;
376 spin_unlock_irq(q->queue_lock);
378 if (!nr_rqs)
379 break;
380 msleep(10);
385 * blk_cleanup_queue - shutdown a request queue
386 * @q: request queue to shutdown
388 * Mark @q DEAD, drain all pending requests, destroy and put it. All
389 * future requests will be failed immediately with -ENODEV.
391 void blk_cleanup_queue(struct request_queue *q)
393 spinlock_t *lock = q->queue_lock;
395 /* mark @q DEAD, no new request or merges will be allowed afterwards */
396 mutex_lock(&q->sysfs_lock);
397 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
399 spin_lock_irq(lock);
400 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
401 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
402 queue_flag_set(QUEUE_FLAG_DEAD, q);
404 if (q->queue_lock != &q->__queue_lock)
405 q->queue_lock = &q->__queue_lock;
407 spin_unlock_irq(lock);
408 mutex_unlock(&q->sysfs_lock);
411 * Drain all requests queued before DEAD marking. The caller might
412 * be trying to tear down @q before its elevator is initialized, in
413 * which case we don't want to call into draining.
415 if (q->elevator)
416 blk_drain_queue(q, true);
418 /* @q won't process any more request, flush async actions */
419 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
420 blk_sync_queue(q);
422 /* @q is and will stay empty, shutdown and put */
423 blk_put_queue(q);
425 EXPORT_SYMBOL(blk_cleanup_queue);
427 static int blk_init_free_list(struct request_queue *q)
429 struct request_list *rl = &q->rq;
431 if (unlikely(rl->rq_pool))
432 return 0;
434 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
435 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
436 rl->elvpriv = 0;
437 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
438 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
440 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
441 mempool_free_slab, request_cachep, q->node);
443 if (!rl->rq_pool)
444 return -ENOMEM;
446 return 0;
449 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
451 return blk_alloc_queue_node(gfp_mask, -1);
453 EXPORT_SYMBOL(blk_alloc_queue);
455 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
457 struct request_queue *q;
458 int err;
460 q = kmem_cache_alloc_node(blk_requestq_cachep,
461 gfp_mask | __GFP_ZERO, node_id);
462 if (!q)
463 return NULL;
465 q->backing_dev_info.ra_pages =
466 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
467 q->backing_dev_info.state = 0;
468 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
469 q->backing_dev_info.name = "block";
471 err = bdi_init(&q->backing_dev_info);
472 if (err) {
473 kmem_cache_free(blk_requestq_cachep, q);
474 return NULL;
477 if (blk_throtl_init(q)) {
478 kmem_cache_free(blk_requestq_cachep, q);
479 return NULL;
482 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
483 laptop_mode_timer_fn, (unsigned long) q);
484 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
485 INIT_LIST_HEAD(&q->timeout_list);
486 INIT_LIST_HEAD(&q->flush_queue[0]);
487 INIT_LIST_HEAD(&q->flush_queue[1]);
488 INIT_LIST_HEAD(&q->flush_data_in_flight);
489 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
491 kobject_init(&q->kobj, &blk_queue_ktype);
493 mutex_init(&q->sysfs_lock);
494 spin_lock_init(&q->__queue_lock);
497 * By default initialize queue_lock to internal lock and driver can
498 * override it later if need be.
500 q->queue_lock = &q->__queue_lock;
502 return q;
504 EXPORT_SYMBOL(blk_alloc_queue_node);
507 * blk_init_queue - prepare a request queue for use with a block device
508 * @rfn: The function to be called to process requests that have been
509 * placed on the queue.
510 * @lock: Request queue spin lock
512 * Description:
513 * If a block device wishes to use the standard request handling procedures,
514 * which sorts requests and coalesces adjacent requests, then it must
515 * call blk_init_queue(). The function @rfn will be called when there
516 * are requests on the queue that need to be processed. If the device
517 * supports plugging, then @rfn may not be called immediately when requests
518 * are available on the queue, but may be called at some time later instead.
519 * Plugged queues are generally unplugged when a buffer belonging to one
520 * of the requests on the queue is needed, or due to memory pressure.
522 * @rfn is not required, or even expected, to remove all requests off the
523 * queue, but only as many as it can handle at a time. If it does leave
524 * requests on the queue, it is responsible for arranging that the requests
525 * get dealt with eventually.
527 * The queue spin lock must be held while manipulating the requests on the
528 * request queue; this lock will be taken also from interrupt context, so irq
529 * disabling is needed for it.
531 * Function returns a pointer to the initialized request queue, or %NULL if
532 * it didn't succeed.
534 * Note:
535 * blk_init_queue() must be paired with a blk_cleanup_queue() call
536 * when the block device is deactivated (such as at module unload).
539 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
541 return blk_init_queue_node(rfn, lock, -1);
543 EXPORT_SYMBOL(blk_init_queue);
545 struct request_queue *
546 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
548 struct request_queue *uninit_q, *q;
550 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
551 if (!uninit_q)
552 return NULL;
554 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
555 if (!q)
556 blk_cleanup_queue(uninit_q);
558 return q;
560 EXPORT_SYMBOL(blk_init_queue_node);
562 struct request_queue *
563 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
564 spinlock_t *lock)
566 return blk_init_allocated_queue_node(q, rfn, lock, -1);
568 EXPORT_SYMBOL(blk_init_allocated_queue);
570 struct request_queue *
571 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
572 spinlock_t *lock, int node_id)
574 if (!q)
575 return NULL;
577 q->node = node_id;
578 if (blk_init_free_list(q))
579 return NULL;
581 q->request_fn = rfn;
582 q->prep_rq_fn = NULL;
583 q->unprep_rq_fn = NULL;
584 q->queue_flags = QUEUE_FLAG_DEFAULT;
586 /* Override internal queue lock with supplied lock pointer */
587 if (lock)
588 q->queue_lock = lock;
591 * This also sets hw/phys segments, boundary and size
593 blk_queue_make_request(q, blk_queue_bio);
595 q->sg_reserved_size = INT_MAX;
598 * all done
600 if (!elevator_init(q, NULL)) {
601 blk_queue_congestion_threshold(q);
602 return q;
605 return NULL;
607 EXPORT_SYMBOL(blk_init_allocated_queue_node);
609 int blk_get_queue(struct request_queue *q)
611 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
612 kobject_get(&q->kobj);
613 return 0;
616 return 1;
618 EXPORT_SYMBOL(blk_get_queue);
620 static inline void blk_free_request(struct request_queue *q, struct request *rq)
622 if (rq->cmd_flags & REQ_ELVPRIV)
623 elv_put_request(q, rq);
624 mempool_free(rq, q->rq.rq_pool);
627 static struct request *
628 blk_alloc_request(struct request_queue *q, unsigned int flags, gfp_t gfp_mask)
630 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
632 if (!rq)
633 return NULL;
635 blk_rq_init(q, rq);
637 rq->cmd_flags = flags | REQ_ALLOCED;
639 if ((flags & REQ_ELVPRIV) &&
640 unlikely(elv_set_request(q, rq, gfp_mask))) {
641 mempool_free(rq, q->rq.rq_pool);
642 return NULL;
645 return rq;
649 * ioc_batching returns true if the ioc is a valid batching request and
650 * should be given priority access to a request.
652 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
654 if (!ioc)
655 return 0;
658 * Make sure the process is able to allocate at least 1 request
659 * even if the batch times out, otherwise we could theoretically
660 * lose wakeups.
662 return ioc->nr_batch_requests == q->nr_batching ||
663 (ioc->nr_batch_requests > 0
664 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
668 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
669 * will cause the process to be a "batcher" on all queues in the system. This
670 * is the behaviour we want though - once it gets a wakeup it should be given
671 * a nice run.
673 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
675 if (!ioc || ioc_batching(q, ioc))
676 return;
678 ioc->nr_batch_requests = q->nr_batching;
679 ioc->last_waited = jiffies;
682 static void __freed_request(struct request_queue *q, int sync)
684 struct request_list *rl = &q->rq;
686 if (rl->count[sync] < queue_congestion_off_threshold(q))
687 blk_clear_queue_congested(q, sync);
689 if (rl->count[sync] + 1 <= q->nr_requests) {
690 if (waitqueue_active(&rl->wait[sync]))
691 wake_up(&rl->wait[sync]);
693 blk_clear_queue_full(q, sync);
698 * A request has just been released. Account for it, update the full and
699 * congestion status, wake up any waiters. Called under q->queue_lock.
701 static void freed_request(struct request_queue *q, unsigned int flags)
703 struct request_list *rl = &q->rq;
704 int sync = rw_is_sync(flags);
706 rl->count[sync]--;
707 if (flags & REQ_ELVPRIV)
708 rl->elvpriv--;
710 __freed_request(q, sync);
712 if (unlikely(rl->starved[sync ^ 1]))
713 __freed_request(q, sync ^ 1);
717 * Determine if elevator data should be initialized when allocating the
718 * request associated with @bio.
720 static bool blk_rq_should_init_elevator(struct bio *bio)
722 if (!bio)
723 return true;
726 * Flush requests do not use the elevator so skip initialization.
727 * This allows a request to share the flush and elevator data.
729 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
730 return false;
732 return true;
736 * get_request - get a free request
737 * @q: request_queue to allocate request from
738 * @rw_flags: RW and SYNC flags
739 * @bio: bio to allocate request for (can be %NULL)
740 * @gfp_mask: allocation mask
742 * Get a free request from @q. This function may fail under memory
743 * pressure or if @q is dead.
745 * Must be callled with @q->queue_lock held and,
746 * Returns %NULL on failure, with @q->queue_lock held.
747 * Returns !%NULL on success, with @q->queue_lock *not held*.
749 static struct request *get_request(struct request_queue *q, int rw_flags,
750 struct bio *bio, gfp_t gfp_mask)
752 struct request *rq = NULL;
753 struct request_list *rl = &q->rq;
754 struct io_context *ioc = NULL;
755 const bool is_sync = rw_is_sync(rw_flags) != 0;
756 int may_queue;
758 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
759 return NULL;
761 may_queue = elv_may_queue(q, rw_flags);
762 if (may_queue == ELV_MQUEUE_NO)
763 goto rq_starved;
765 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
766 if (rl->count[is_sync]+1 >= q->nr_requests) {
767 ioc = current_io_context(GFP_ATOMIC, q->node);
769 * The queue will fill after this allocation, so set
770 * it as full, and mark this process as "batching".
771 * This process will be allowed to complete a batch of
772 * requests, others will be blocked.
774 if (!blk_queue_full(q, is_sync)) {
775 ioc_set_batching(q, ioc);
776 blk_set_queue_full(q, is_sync);
777 } else {
778 if (may_queue != ELV_MQUEUE_MUST
779 && !ioc_batching(q, ioc)) {
781 * The queue is full and the allocating
782 * process is not a "batcher", and not
783 * exempted by the IO scheduler
785 goto out;
789 blk_set_queue_congested(q, is_sync);
793 * Only allow batching queuers to allocate up to 50% over the defined
794 * limit of requests, otherwise we could have thousands of requests
795 * allocated with any setting of ->nr_requests
797 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
798 goto out;
800 rl->count[is_sync]++;
801 rl->starved[is_sync] = 0;
803 if (blk_rq_should_init_elevator(bio) &&
804 !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags)) {
805 rw_flags |= REQ_ELVPRIV;
806 rl->elvpriv++;
809 if (blk_queue_io_stat(q))
810 rw_flags |= REQ_IO_STAT;
811 spin_unlock_irq(q->queue_lock);
813 rq = blk_alloc_request(q, rw_flags, gfp_mask);
814 if (unlikely(!rq)) {
816 * Allocation failed presumably due to memory. Undo anything
817 * we might have messed up.
819 * Allocating task should really be put onto the front of the
820 * wait queue, but this is pretty rare.
822 spin_lock_irq(q->queue_lock);
823 freed_request(q, rw_flags);
826 * in the very unlikely event that allocation failed and no
827 * requests for this direction was pending, mark us starved
828 * so that freeing of a request in the other direction will
829 * notice us. another possible fix would be to split the
830 * rq mempool into READ and WRITE
832 rq_starved:
833 if (unlikely(rl->count[is_sync] == 0))
834 rl->starved[is_sync] = 1;
836 goto out;
840 * ioc may be NULL here, and ioc_batching will be false. That's
841 * OK, if the queue is under the request limit then requests need
842 * not count toward the nr_batch_requests limit. There will always
843 * be some limit enforced by BLK_BATCH_TIME.
845 if (ioc_batching(q, ioc))
846 ioc->nr_batch_requests--;
848 trace_block_getrq(q, bio, rw_flags & 1);
849 out:
850 return rq;
854 * get_request_wait - get a free request with retry
855 * @q: request_queue to allocate request from
856 * @rw_flags: RW and SYNC flags
857 * @bio: bio to allocate request for (can be %NULL)
859 * Get a free request from @q. This function keeps retrying under memory
860 * pressure and fails iff @q is dead.
862 * Must be callled with @q->queue_lock held and,
863 * Returns %NULL on failure, with @q->queue_lock held.
864 * Returns !%NULL on success, with @q->queue_lock *not held*.
866 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
867 struct bio *bio)
869 const bool is_sync = rw_is_sync(rw_flags) != 0;
870 struct request *rq;
872 rq = get_request(q, rw_flags, bio, GFP_NOIO);
873 while (!rq) {
874 DEFINE_WAIT(wait);
875 struct io_context *ioc;
876 struct request_list *rl = &q->rq;
878 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
879 return NULL;
881 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
882 TASK_UNINTERRUPTIBLE);
884 trace_block_sleeprq(q, bio, rw_flags & 1);
886 spin_unlock_irq(q->queue_lock);
887 io_schedule();
890 * After sleeping, we become a "batching" process and
891 * will be able to allocate at least one request, and
892 * up to a big batch of them for a small period time.
893 * See ioc_batching, ioc_set_batching
895 ioc = current_io_context(GFP_NOIO, q->node);
896 ioc_set_batching(q, ioc);
898 spin_lock_irq(q->queue_lock);
899 finish_wait(&rl->wait[is_sync], &wait);
901 rq = get_request(q, rw_flags, bio, GFP_NOIO);
904 return rq;
907 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
909 struct request *rq;
911 BUG_ON(rw != READ && rw != WRITE);
913 spin_lock_irq(q->queue_lock);
914 if (gfp_mask & __GFP_WAIT)
915 rq = get_request_wait(q, rw, NULL);
916 else
917 rq = get_request(q, rw, NULL, gfp_mask);
918 if (!rq)
919 spin_unlock_irq(q->queue_lock);
920 /* q->queue_lock is unlocked at this point */
922 return rq;
924 EXPORT_SYMBOL(blk_get_request);
927 * blk_make_request - given a bio, allocate a corresponding struct request.
928 * @q: target request queue
929 * @bio: The bio describing the memory mappings that will be submitted for IO.
930 * It may be a chained-bio properly constructed by block/bio layer.
931 * @gfp_mask: gfp flags to be used for memory allocation
933 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
934 * type commands. Where the struct request needs to be farther initialized by
935 * the caller. It is passed a &struct bio, which describes the memory info of
936 * the I/O transfer.
938 * The caller of blk_make_request must make sure that bi_io_vec
939 * are set to describe the memory buffers. That bio_data_dir() will return
940 * the needed direction of the request. (And all bio's in the passed bio-chain
941 * are properly set accordingly)
943 * If called under none-sleepable conditions, mapped bio buffers must not
944 * need bouncing, by calling the appropriate masked or flagged allocator,
945 * suitable for the target device. Otherwise the call to blk_queue_bounce will
946 * BUG.
948 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
949 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
950 * anything but the first bio in the chain. Otherwise you risk waiting for IO
951 * completion of a bio that hasn't been submitted yet, thus resulting in a
952 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
953 * of bio_alloc(), as that avoids the mempool deadlock.
954 * If possible a big IO should be split into smaller parts when allocation
955 * fails. Partial allocation should not be an error, or you risk a live-lock.
957 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
958 gfp_t gfp_mask)
960 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
962 if (unlikely(!rq))
963 return ERR_PTR(-ENOMEM);
965 for_each_bio(bio) {
966 struct bio *bounce_bio = bio;
967 int ret;
969 blk_queue_bounce(q, &bounce_bio);
970 ret = blk_rq_append_bio(q, rq, bounce_bio);
971 if (unlikely(ret)) {
972 blk_put_request(rq);
973 return ERR_PTR(ret);
977 return rq;
979 EXPORT_SYMBOL(blk_make_request);
982 * blk_requeue_request - put a request back on queue
983 * @q: request queue where request should be inserted
984 * @rq: request to be inserted
986 * Description:
987 * Drivers often keep queueing requests until the hardware cannot accept
988 * more, when that condition happens we need to put the request back
989 * on the queue. Must be called with queue lock held.
991 void blk_requeue_request(struct request_queue *q, struct request *rq)
993 blk_delete_timer(rq);
994 blk_clear_rq_complete(rq);
995 trace_block_rq_requeue(q, rq);
997 if (blk_rq_tagged(rq))
998 blk_queue_end_tag(q, rq);
1000 BUG_ON(blk_queued_rq(rq));
1002 elv_requeue_request(q, rq);
1004 EXPORT_SYMBOL(blk_requeue_request);
1006 static void add_acct_request(struct request_queue *q, struct request *rq,
1007 int where)
1009 drive_stat_acct(rq, 1);
1010 __elv_add_request(q, rq, where);
1013 static void part_round_stats_single(int cpu, struct hd_struct *part,
1014 unsigned long now)
1016 if (now == part->stamp)
1017 return;
1019 if (part_in_flight(part)) {
1020 __part_stat_add(cpu, part, time_in_queue,
1021 part_in_flight(part) * (now - part->stamp));
1022 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1024 part->stamp = now;
1028 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1029 * @cpu: cpu number for stats access
1030 * @part: target partition
1032 * The average IO queue length and utilisation statistics are maintained
1033 * by observing the current state of the queue length and the amount of
1034 * time it has been in this state for.
1036 * Normally, that accounting is done on IO completion, but that can result
1037 * in more than a second's worth of IO being accounted for within any one
1038 * second, leading to >100% utilisation. To deal with that, we call this
1039 * function to do a round-off before returning the results when reading
1040 * /proc/diskstats. This accounts immediately for all queue usage up to
1041 * the current jiffies and restarts the counters again.
1043 void part_round_stats(int cpu, struct hd_struct *part)
1045 unsigned long now = jiffies;
1047 if (part->partno)
1048 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1049 part_round_stats_single(cpu, part, now);
1051 EXPORT_SYMBOL_GPL(part_round_stats);
1054 * queue lock must be held
1056 void __blk_put_request(struct request_queue *q, struct request *req)
1058 if (unlikely(!q))
1059 return;
1060 if (unlikely(--req->ref_count))
1061 return;
1063 elv_completed_request(q, req);
1065 /* this is a bio leak */
1066 WARN_ON(req->bio != NULL);
1069 * Request may not have originated from ll_rw_blk. if not,
1070 * it didn't come out of our reserved rq pools
1072 if (req->cmd_flags & REQ_ALLOCED) {
1073 unsigned int flags = req->cmd_flags;
1075 BUG_ON(!list_empty(&req->queuelist));
1076 BUG_ON(!hlist_unhashed(&req->hash));
1078 blk_free_request(q, req);
1079 freed_request(q, flags);
1082 EXPORT_SYMBOL_GPL(__blk_put_request);
1084 void blk_put_request(struct request *req)
1086 unsigned long flags;
1087 struct request_queue *q = req->q;
1089 spin_lock_irqsave(q->queue_lock, flags);
1090 __blk_put_request(q, req);
1091 spin_unlock_irqrestore(q->queue_lock, flags);
1093 EXPORT_SYMBOL(blk_put_request);
1096 * blk_add_request_payload - add a payload to a request
1097 * @rq: request to update
1098 * @page: page backing the payload
1099 * @len: length of the payload.
1101 * This allows to later add a payload to an already submitted request by
1102 * a block driver. The driver needs to take care of freeing the payload
1103 * itself.
1105 * Note that this is a quite horrible hack and nothing but handling of
1106 * discard requests should ever use it.
1108 void blk_add_request_payload(struct request *rq, struct page *page,
1109 unsigned int len)
1111 struct bio *bio = rq->bio;
1113 bio->bi_io_vec->bv_page = page;
1114 bio->bi_io_vec->bv_offset = 0;
1115 bio->bi_io_vec->bv_len = len;
1117 bio->bi_size = len;
1118 bio->bi_vcnt = 1;
1119 bio->bi_phys_segments = 1;
1121 rq->__data_len = rq->resid_len = len;
1122 rq->nr_phys_segments = 1;
1123 rq->buffer = bio_data(bio);
1125 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1127 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1128 struct bio *bio)
1130 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1132 if (!ll_back_merge_fn(q, req, bio))
1133 return false;
1135 trace_block_bio_backmerge(q, bio);
1137 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1138 blk_rq_set_mixed_merge(req);
1140 req->biotail->bi_next = bio;
1141 req->biotail = bio;
1142 req->__data_len += bio->bi_size;
1143 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1145 drive_stat_acct(req, 0);
1146 elv_bio_merged(q, req, bio);
1147 return true;
1150 static bool bio_attempt_front_merge(struct request_queue *q,
1151 struct request *req, struct bio *bio)
1153 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1155 if (!ll_front_merge_fn(q, req, bio))
1156 return false;
1158 trace_block_bio_frontmerge(q, bio);
1160 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1161 blk_rq_set_mixed_merge(req);
1163 bio->bi_next = req->bio;
1164 req->bio = bio;
1167 * may not be valid. if the low level driver said
1168 * it didn't need a bounce buffer then it better
1169 * not touch req->buffer either...
1171 req->buffer = bio_data(bio);
1172 req->__sector = bio->bi_sector;
1173 req->__data_len += bio->bi_size;
1174 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1176 drive_stat_acct(req, 0);
1177 elv_bio_merged(q, req, bio);
1178 return true;
1182 * attempt_plug_merge - try to merge with %current's plugged list
1183 * @q: request_queue new bio is being queued at
1184 * @bio: new bio being queued
1185 * @request_count: out parameter for number of traversed plugged requests
1187 * Determine whether @bio being queued on @q can be merged with a request
1188 * on %current's plugged list. Returns %true if merge was successful,
1189 * otherwise %false.
1191 * This function is called without @q->queue_lock; however, elevator is
1192 * accessed iff there already are requests on the plugged list which in
1193 * turn guarantees validity of the elevator.
1195 * Note that, on successful merge, elevator operation
1196 * elevator_bio_merged_fn() will be called without queue lock. Elevator
1197 * must be ready for this.
1199 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1200 unsigned int *request_count)
1202 struct blk_plug *plug;
1203 struct request *rq;
1204 bool ret = false;
1206 plug = current->plug;
1207 if (!plug)
1208 goto out;
1209 *request_count = 0;
1211 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1212 int el_ret;
1214 (*request_count)++;
1216 if (rq->q != q)
1217 continue;
1219 el_ret = elv_try_merge(rq, bio);
1220 if (el_ret == ELEVATOR_BACK_MERGE) {
1221 ret = bio_attempt_back_merge(q, rq, bio);
1222 if (ret)
1223 break;
1224 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1225 ret = bio_attempt_front_merge(q, rq, bio);
1226 if (ret)
1227 break;
1230 out:
1231 return ret;
1234 void init_request_from_bio(struct request *req, struct bio *bio)
1236 req->cmd_type = REQ_TYPE_FS;
1238 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1239 if (bio->bi_rw & REQ_RAHEAD)
1240 req->cmd_flags |= REQ_FAILFAST_MASK;
1242 req->errors = 0;
1243 req->__sector = bio->bi_sector;
1244 req->ioprio = bio_prio(bio);
1245 blk_rq_bio_prep(req->q, req, bio);
1248 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1250 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1251 struct blk_plug *plug;
1252 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1253 struct request *req;
1254 unsigned int request_count = 0;
1257 * low level driver can indicate that it wants pages above a
1258 * certain limit bounced to low memory (ie for highmem, or even
1259 * ISA dma in theory)
1261 blk_queue_bounce(q, &bio);
1263 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1264 spin_lock_irq(q->queue_lock);
1265 where = ELEVATOR_INSERT_FLUSH;
1266 goto get_rq;
1270 * Check if we can merge with the plugged list before grabbing
1271 * any locks.
1273 if (attempt_plug_merge(q, bio, &request_count))
1274 return;
1276 spin_lock_irq(q->queue_lock);
1278 el_ret = elv_merge(q, &req, bio);
1279 if (el_ret == ELEVATOR_BACK_MERGE) {
1280 if (bio_attempt_back_merge(q, req, bio)) {
1281 if (!attempt_back_merge(q, req))
1282 elv_merged_request(q, req, el_ret);
1283 goto out_unlock;
1285 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1286 if (bio_attempt_front_merge(q, req, bio)) {
1287 if (!attempt_front_merge(q, req))
1288 elv_merged_request(q, req, el_ret);
1289 goto out_unlock;
1293 get_rq:
1295 * This sync check and mask will be re-done in init_request_from_bio(),
1296 * but we need to set it earlier to expose the sync flag to the
1297 * rq allocator and io schedulers.
1299 rw_flags = bio_data_dir(bio);
1300 if (sync)
1301 rw_flags |= REQ_SYNC;
1304 * Grab a free request. This is might sleep but can not fail.
1305 * Returns with the queue unlocked.
1307 req = get_request_wait(q, rw_flags, bio);
1308 if (unlikely(!req)) {
1309 bio_endio(bio, -ENODEV); /* @q is dead */
1310 goto out_unlock;
1314 * After dropping the lock and possibly sleeping here, our request
1315 * may now be mergeable after it had proven unmergeable (above).
1316 * We don't worry about that case for efficiency. It won't happen
1317 * often, and the elevators are able to handle it.
1319 init_request_from_bio(req, bio);
1321 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1322 req->cpu = raw_smp_processor_id();
1324 plug = current->plug;
1325 if (plug) {
1327 * If this is the first request added after a plug, fire
1328 * of a plug trace. If others have been added before, check
1329 * if we have multiple devices in this plug. If so, make a
1330 * note to sort the list before dispatch.
1332 if (list_empty(&plug->list))
1333 trace_block_plug(q);
1334 else {
1335 if (!plug->should_sort) {
1336 struct request *__rq;
1338 __rq = list_entry_rq(plug->list.prev);
1339 if (__rq->q != q)
1340 plug->should_sort = 1;
1342 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1343 blk_flush_plug_list(plug, false);
1344 trace_block_plug(q);
1347 list_add_tail(&req->queuelist, &plug->list);
1348 drive_stat_acct(req, 1);
1349 } else {
1350 spin_lock_irq(q->queue_lock);
1351 add_acct_request(q, req, where);
1352 __blk_run_queue(q);
1353 out_unlock:
1354 spin_unlock_irq(q->queue_lock);
1357 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1360 * If bio->bi_dev is a partition, remap the location
1362 static inline void blk_partition_remap(struct bio *bio)
1364 struct block_device *bdev = bio->bi_bdev;
1366 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1367 struct hd_struct *p = bdev->bd_part;
1369 bio->bi_sector += p->start_sect;
1370 bio->bi_bdev = bdev->bd_contains;
1372 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1373 bdev->bd_dev,
1374 bio->bi_sector - p->start_sect);
1378 static void handle_bad_sector(struct bio *bio)
1380 char b[BDEVNAME_SIZE];
1382 printk(KERN_INFO "attempt to access beyond end of device\n");
1383 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1384 bdevname(bio->bi_bdev, b),
1385 bio->bi_rw,
1386 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1387 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1389 set_bit(BIO_EOF, &bio->bi_flags);
1392 #ifdef CONFIG_FAIL_MAKE_REQUEST
1394 static DECLARE_FAULT_ATTR(fail_make_request);
1396 static int __init setup_fail_make_request(char *str)
1398 return setup_fault_attr(&fail_make_request, str);
1400 __setup("fail_make_request=", setup_fail_make_request);
1402 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1404 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1407 static int __init fail_make_request_debugfs(void)
1409 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1410 NULL, &fail_make_request);
1412 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1415 late_initcall(fail_make_request_debugfs);
1417 #else /* CONFIG_FAIL_MAKE_REQUEST */
1419 static inline bool should_fail_request(struct hd_struct *part,
1420 unsigned int bytes)
1422 return false;
1425 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1428 * Check whether this bio extends beyond the end of the device.
1430 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1432 sector_t maxsector;
1434 if (!nr_sectors)
1435 return 0;
1437 /* Test device or partition size, when known. */
1438 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1439 if (maxsector) {
1440 sector_t sector = bio->bi_sector;
1442 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1444 * This may well happen - the kernel calls bread()
1445 * without checking the size of the device, e.g., when
1446 * mounting a device.
1448 handle_bad_sector(bio);
1449 return 1;
1453 return 0;
1456 static noinline_for_stack bool
1457 generic_make_request_checks(struct bio *bio)
1459 struct request_queue *q;
1460 int nr_sectors = bio_sectors(bio);
1461 int err = -EIO;
1462 char b[BDEVNAME_SIZE];
1463 struct hd_struct *part;
1465 might_sleep();
1467 if (bio_check_eod(bio, nr_sectors))
1468 goto end_io;
1470 q = bdev_get_queue(bio->bi_bdev);
1471 if (unlikely(!q)) {
1472 printk(KERN_ERR
1473 "generic_make_request: Trying to access "
1474 "nonexistent block-device %s (%Lu)\n",
1475 bdevname(bio->bi_bdev, b),
1476 (long long) bio->bi_sector);
1477 goto end_io;
1480 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1481 nr_sectors > queue_max_hw_sectors(q))) {
1482 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1483 bdevname(bio->bi_bdev, b),
1484 bio_sectors(bio),
1485 queue_max_hw_sectors(q));
1486 goto end_io;
1489 part = bio->bi_bdev->bd_part;
1490 if (should_fail_request(part, bio->bi_size) ||
1491 should_fail_request(&part_to_disk(part)->part0,
1492 bio->bi_size))
1493 goto end_io;
1496 * If this device has partitions, remap block n
1497 * of partition p to block n+start(p) of the disk.
1499 blk_partition_remap(bio);
1501 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1502 goto end_io;
1504 if (bio_check_eod(bio, nr_sectors))
1505 goto end_io;
1508 * Filter flush bio's early so that make_request based
1509 * drivers without flush support don't have to worry
1510 * about them.
1512 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1513 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1514 if (!nr_sectors) {
1515 err = 0;
1516 goto end_io;
1520 if ((bio->bi_rw & REQ_DISCARD) &&
1521 (!blk_queue_discard(q) ||
1522 ((bio->bi_rw & REQ_SECURE) &&
1523 !blk_queue_secdiscard(q)))) {
1524 err = -EOPNOTSUPP;
1525 goto end_io;
1528 if (blk_throtl_bio(q, bio))
1529 return false; /* throttled, will be resubmitted later */
1531 trace_block_bio_queue(q, bio);
1532 return true;
1534 end_io:
1535 bio_endio(bio, err);
1536 return false;
1540 * generic_make_request - hand a buffer to its device driver for I/O
1541 * @bio: The bio describing the location in memory and on the device.
1543 * generic_make_request() is used to make I/O requests of block
1544 * devices. It is passed a &struct bio, which describes the I/O that needs
1545 * to be done.
1547 * generic_make_request() does not return any status. The
1548 * success/failure status of the request, along with notification of
1549 * completion, is delivered asynchronously through the bio->bi_end_io
1550 * function described (one day) else where.
1552 * The caller of generic_make_request must make sure that bi_io_vec
1553 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1554 * set to describe the device address, and the
1555 * bi_end_io and optionally bi_private are set to describe how
1556 * completion notification should be signaled.
1558 * generic_make_request and the drivers it calls may use bi_next if this
1559 * bio happens to be merged with someone else, and may resubmit the bio to
1560 * a lower device by calling into generic_make_request recursively, which
1561 * means the bio should NOT be touched after the call to ->make_request_fn.
1563 void generic_make_request(struct bio *bio)
1565 struct bio_list bio_list_on_stack;
1567 if (!generic_make_request_checks(bio))
1568 return;
1571 * We only want one ->make_request_fn to be active at a time, else
1572 * stack usage with stacked devices could be a problem. So use
1573 * current->bio_list to keep a list of requests submited by a
1574 * make_request_fn function. current->bio_list is also used as a
1575 * flag to say if generic_make_request is currently active in this
1576 * task or not. If it is NULL, then no make_request is active. If
1577 * it is non-NULL, then a make_request is active, and new requests
1578 * should be added at the tail
1580 if (current->bio_list) {
1581 bio_list_add(current->bio_list, bio);
1582 return;
1585 /* following loop may be a bit non-obvious, and so deserves some
1586 * explanation.
1587 * Before entering the loop, bio->bi_next is NULL (as all callers
1588 * ensure that) so we have a list with a single bio.
1589 * We pretend that we have just taken it off a longer list, so
1590 * we assign bio_list to a pointer to the bio_list_on_stack,
1591 * thus initialising the bio_list of new bios to be
1592 * added. ->make_request() may indeed add some more bios
1593 * through a recursive call to generic_make_request. If it
1594 * did, we find a non-NULL value in bio_list and re-enter the loop
1595 * from the top. In this case we really did just take the bio
1596 * of the top of the list (no pretending) and so remove it from
1597 * bio_list, and call into ->make_request() again.
1599 BUG_ON(bio->bi_next);
1600 bio_list_init(&bio_list_on_stack);
1601 current->bio_list = &bio_list_on_stack;
1602 do {
1603 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1605 q->make_request_fn(q, bio);
1607 bio = bio_list_pop(current->bio_list);
1608 } while (bio);
1609 current->bio_list = NULL; /* deactivate */
1611 EXPORT_SYMBOL(generic_make_request);
1614 * submit_bio - submit a bio to the block device layer for I/O
1615 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1616 * @bio: The &struct bio which describes the I/O
1618 * submit_bio() is very similar in purpose to generic_make_request(), and
1619 * uses that function to do most of the work. Both are fairly rough
1620 * interfaces; @bio must be presetup and ready for I/O.
1623 void submit_bio(int rw, struct bio *bio)
1625 int count = bio_sectors(bio);
1627 bio->bi_rw |= rw;
1630 * If it's a regular read/write or a barrier with data attached,
1631 * go through the normal accounting stuff before submission.
1633 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1634 if (rw & WRITE) {
1635 count_vm_events(PGPGOUT, count);
1636 } else {
1637 task_io_account_read(bio->bi_size);
1638 count_vm_events(PGPGIN, count);
1641 if (unlikely(block_dump)) {
1642 char b[BDEVNAME_SIZE];
1643 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1644 current->comm, task_pid_nr(current),
1645 (rw & WRITE) ? "WRITE" : "READ",
1646 (unsigned long long)bio->bi_sector,
1647 bdevname(bio->bi_bdev, b),
1648 count);
1652 generic_make_request(bio);
1654 EXPORT_SYMBOL(submit_bio);
1657 * blk_rq_check_limits - Helper function to check a request for the queue limit
1658 * @q: the queue
1659 * @rq: the request being checked
1661 * Description:
1662 * @rq may have been made based on weaker limitations of upper-level queues
1663 * in request stacking drivers, and it may violate the limitation of @q.
1664 * Since the block layer and the underlying device driver trust @rq
1665 * after it is inserted to @q, it should be checked against @q before
1666 * the insertion using this generic function.
1668 * This function should also be useful for request stacking drivers
1669 * in some cases below, so export this function.
1670 * Request stacking drivers like request-based dm may change the queue
1671 * limits while requests are in the queue (e.g. dm's table swapping).
1672 * Such request stacking drivers should check those requests agaist
1673 * the new queue limits again when they dispatch those requests,
1674 * although such checkings are also done against the old queue limits
1675 * when submitting requests.
1677 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1679 if (rq->cmd_flags & REQ_DISCARD)
1680 return 0;
1682 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1683 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1684 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1685 return -EIO;
1689 * queue's settings related to segment counting like q->bounce_pfn
1690 * may differ from that of other stacking queues.
1691 * Recalculate it to check the request correctly on this queue's
1692 * limitation.
1694 blk_recalc_rq_segments(rq);
1695 if (rq->nr_phys_segments > queue_max_segments(q)) {
1696 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1697 return -EIO;
1700 return 0;
1702 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1705 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1706 * @q: the queue to submit the request
1707 * @rq: the request being queued
1709 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1711 unsigned long flags;
1712 int where = ELEVATOR_INSERT_BACK;
1714 if (blk_rq_check_limits(q, rq))
1715 return -EIO;
1717 if (rq->rq_disk &&
1718 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1719 return -EIO;
1721 spin_lock_irqsave(q->queue_lock, flags);
1724 * Submitting request must be dequeued before calling this function
1725 * because it will be linked to another request_queue
1727 BUG_ON(blk_queued_rq(rq));
1729 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1730 where = ELEVATOR_INSERT_FLUSH;
1732 add_acct_request(q, rq, where);
1733 if (where == ELEVATOR_INSERT_FLUSH)
1734 __blk_run_queue(q);
1735 spin_unlock_irqrestore(q->queue_lock, flags);
1737 return 0;
1739 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1742 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1743 * @rq: request to examine
1745 * Description:
1746 * A request could be merge of IOs which require different failure
1747 * handling. This function determines the number of bytes which
1748 * can be failed from the beginning of the request without
1749 * crossing into area which need to be retried further.
1751 * Return:
1752 * The number of bytes to fail.
1754 * Context:
1755 * queue_lock must be held.
1757 unsigned int blk_rq_err_bytes(const struct request *rq)
1759 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1760 unsigned int bytes = 0;
1761 struct bio *bio;
1763 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1764 return blk_rq_bytes(rq);
1767 * Currently the only 'mixing' which can happen is between
1768 * different fastfail types. We can safely fail portions
1769 * which have all the failfast bits that the first one has -
1770 * the ones which are at least as eager to fail as the first
1771 * one.
1773 for (bio = rq->bio; bio; bio = bio->bi_next) {
1774 if ((bio->bi_rw & ff) != ff)
1775 break;
1776 bytes += bio->bi_size;
1779 /* this could lead to infinite loop */
1780 BUG_ON(blk_rq_bytes(rq) && !bytes);
1781 return bytes;
1783 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1785 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1787 if (blk_do_io_stat(req)) {
1788 const int rw = rq_data_dir(req);
1789 struct hd_struct *part;
1790 int cpu;
1792 cpu = part_stat_lock();
1793 part = req->part;
1794 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1795 part_stat_unlock();
1799 static void blk_account_io_done(struct request *req)
1802 * Account IO completion. flush_rq isn't accounted as a
1803 * normal IO on queueing nor completion. Accounting the
1804 * containing request is enough.
1806 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
1807 unsigned long duration = jiffies - req->start_time;
1808 const int rw = rq_data_dir(req);
1809 struct hd_struct *part;
1810 int cpu;
1812 cpu = part_stat_lock();
1813 part = req->part;
1815 part_stat_inc(cpu, part, ios[rw]);
1816 part_stat_add(cpu, part, ticks[rw], duration);
1817 part_round_stats(cpu, part);
1818 part_dec_in_flight(part, rw);
1820 hd_struct_put(part);
1821 part_stat_unlock();
1826 * blk_peek_request - peek at the top of a request queue
1827 * @q: request queue to peek at
1829 * Description:
1830 * Return the request at the top of @q. The returned request
1831 * should be started using blk_start_request() before LLD starts
1832 * processing it.
1834 * Return:
1835 * Pointer to the request at the top of @q if available. Null
1836 * otherwise.
1838 * Context:
1839 * queue_lock must be held.
1841 struct request *blk_peek_request(struct request_queue *q)
1843 struct request *rq;
1844 int ret;
1846 while ((rq = __elv_next_request(q)) != NULL) {
1847 if (!(rq->cmd_flags & REQ_STARTED)) {
1849 * This is the first time the device driver
1850 * sees this request (possibly after
1851 * requeueing). Notify IO scheduler.
1853 if (rq->cmd_flags & REQ_SORTED)
1854 elv_activate_rq(q, rq);
1857 * just mark as started even if we don't start
1858 * it, a request that has been delayed should
1859 * not be passed by new incoming requests
1861 rq->cmd_flags |= REQ_STARTED;
1862 trace_block_rq_issue(q, rq);
1865 if (!q->boundary_rq || q->boundary_rq == rq) {
1866 q->end_sector = rq_end_sector(rq);
1867 q->boundary_rq = NULL;
1870 if (rq->cmd_flags & REQ_DONTPREP)
1871 break;
1873 if (q->dma_drain_size && blk_rq_bytes(rq)) {
1875 * make sure space for the drain appears we
1876 * know we can do this because max_hw_segments
1877 * has been adjusted to be one fewer than the
1878 * device can handle
1880 rq->nr_phys_segments++;
1883 if (!q->prep_rq_fn)
1884 break;
1886 ret = q->prep_rq_fn(q, rq);
1887 if (ret == BLKPREP_OK) {
1888 break;
1889 } else if (ret == BLKPREP_DEFER) {
1891 * the request may have been (partially) prepped.
1892 * we need to keep this request in the front to
1893 * avoid resource deadlock. REQ_STARTED will
1894 * prevent other fs requests from passing this one.
1896 if (q->dma_drain_size && blk_rq_bytes(rq) &&
1897 !(rq->cmd_flags & REQ_DONTPREP)) {
1899 * remove the space for the drain we added
1900 * so that we don't add it again
1902 --rq->nr_phys_segments;
1905 rq = NULL;
1906 break;
1907 } else if (ret == BLKPREP_KILL) {
1908 rq->cmd_flags |= REQ_QUIET;
1910 * Mark this request as started so we don't trigger
1911 * any debug logic in the end I/O path.
1913 blk_start_request(rq);
1914 __blk_end_request_all(rq, -EIO);
1915 } else {
1916 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1917 break;
1921 return rq;
1923 EXPORT_SYMBOL(blk_peek_request);
1925 void blk_dequeue_request(struct request *rq)
1927 struct request_queue *q = rq->q;
1929 BUG_ON(list_empty(&rq->queuelist));
1930 BUG_ON(ELV_ON_HASH(rq));
1932 list_del_init(&rq->queuelist);
1935 * the time frame between a request being removed from the lists
1936 * and to it is freed is accounted as io that is in progress at
1937 * the driver side.
1939 if (blk_account_rq(rq)) {
1940 q->in_flight[rq_is_sync(rq)]++;
1941 set_io_start_time_ns(rq);
1946 * blk_start_request - start request processing on the driver
1947 * @req: request to dequeue
1949 * Description:
1950 * Dequeue @req and start timeout timer on it. This hands off the
1951 * request to the driver.
1953 * Block internal functions which don't want to start timer should
1954 * call blk_dequeue_request().
1956 * Context:
1957 * queue_lock must be held.
1959 void blk_start_request(struct request *req)
1961 blk_dequeue_request(req);
1964 * We are now handing the request to the hardware, initialize
1965 * resid_len to full count and add the timeout handler.
1967 req->resid_len = blk_rq_bytes(req);
1968 if (unlikely(blk_bidi_rq(req)))
1969 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1971 blk_add_timer(req);
1973 EXPORT_SYMBOL(blk_start_request);
1976 * blk_fetch_request - fetch a request from a request queue
1977 * @q: request queue to fetch a request from
1979 * Description:
1980 * Return the request at the top of @q. The request is started on
1981 * return and LLD can start processing it immediately.
1983 * Return:
1984 * Pointer to the request at the top of @q if available. Null
1985 * otherwise.
1987 * Context:
1988 * queue_lock must be held.
1990 struct request *blk_fetch_request(struct request_queue *q)
1992 struct request *rq;
1994 rq = blk_peek_request(q);
1995 if (rq)
1996 blk_start_request(rq);
1997 return rq;
1999 EXPORT_SYMBOL(blk_fetch_request);
2002 * blk_update_request - Special helper function for request stacking drivers
2003 * @req: the request being processed
2004 * @error: %0 for success, < %0 for error
2005 * @nr_bytes: number of bytes to complete @req
2007 * Description:
2008 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2009 * the request structure even if @req doesn't have leftover.
2010 * If @req has leftover, sets it up for the next range of segments.
2012 * This special helper function is only for request stacking drivers
2013 * (e.g. request-based dm) so that they can handle partial completion.
2014 * Actual device drivers should use blk_end_request instead.
2016 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2017 * %false return from this function.
2019 * Return:
2020 * %false - this request doesn't have any more data
2021 * %true - this request has more data
2023 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2025 int total_bytes, bio_nbytes, next_idx = 0;
2026 struct bio *bio;
2028 if (!req->bio)
2029 return false;
2031 trace_block_rq_complete(req->q, req);
2034 * For fs requests, rq is just carrier of independent bio's
2035 * and each partial completion should be handled separately.
2036 * Reset per-request error on each partial completion.
2038 * TODO: tj: This is too subtle. It would be better to let
2039 * low level drivers do what they see fit.
2041 if (req->cmd_type == REQ_TYPE_FS)
2042 req->errors = 0;
2044 if (error && req->cmd_type == REQ_TYPE_FS &&
2045 !(req->cmd_flags & REQ_QUIET)) {
2046 char *error_type;
2048 switch (error) {
2049 case -ENOLINK:
2050 error_type = "recoverable transport";
2051 break;
2052 case -EREMOTEIO:
2053 error_type = "critical target";
2054 break;
2055 case -EBADE:
2056 error_type = "critical nexus";
2057 break;
2058 case -EIO:
2059 default:
2060 error_type = "I/O";
2061 break;
2063 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2064 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2065 (unsigned long long)blk_rq_pos(req));
2068 blk_account_io_completion(req, nr_bytes);
2070 total_bytes = bio_nbytes = 0;
2071 while ((bio = req->bio) != NULL) {
2072 int nbytes;
2074 if (nr_bytes >= bio->bi_size) {
2075 req->bio = bio->bi_next;
2076 nbytes = bio->bi_size;
2077 req_bio_endio(req, bio, nbytes, error);
2078 next_idx = 0;
2079 bio_nbytes = 0;
2080 } else {
2081 int idx = bio->bi_idx + next_idx;
2083 if (unlikely(idx >= bio->bi_vcnt)) {
2084 blk_dump_rq_flags(req, "__end_that");
2085 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2086 __func__, idx, bio->bi_vcnt);
2087 break;
2090 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2091 BIO_BUG_ON(nbytes > bio->bi_size);
2094 * not a complete bvec done
2096 if (unlikely(nbytes > nr_bytes)) {
2097 bio_nbytes += nr_bytes;
2098 total_bytes += nr_bytes;
2099 break;
2103 * advance to the next vector
2105 next_idx++;
2106 bio_nbytes += nbytes;
2109 total_bytes += nbytes;
2110 nr_bytes -= nbytes;
2112 bio = req->bio;
2113 if (bio) {
2115 * end more in this run, or just return 'not-done'
2117 if (unlikely(nr_bytes <= 0))
2118 break;
2123 * completely done
2125 if (!req->bio) {
2127 * Reset counters so that the request stacking driver
2128 * can find how many bytes remain in the request
2129 * later.
2131 req->__data_len = 0;
2132 return false;
2136 * if the request wasn't completed, update state
2138 if (bio_nbytes) {
2139 req_bio_endio(req, bio, bio_nbytes, error);
2140 bio->bi_idx += next_idx;
2141 bio_iovec(bio)->bv_offset += nr_bytes;
2142 bio_iovec(bio)->bv_len -= nr_bytes;
2145 req->__data_len -= total_bytes;
2146 req->buffer = bio_data(req->bio);
2148 /* update sector only for requests with clear definition of sector */
2149 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2150 req->__sector += total_bytes >> 9;
2152 /* mixed attributes always follow the first bio */
2153 if (req->cmd_flags & REQ_MIXED_MERGE) {
2154 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2155 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2159 * If total number of sectors is less than the first segment
2160 * size, something has gone terribly wrong.
2162 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2163 blk_dump_rq_flags(req, "request botched");
2164 req->__data_len = blk_rq_cur_bytes(req);
2167 /* recalculate the number of segments */
2168 blk_recalc_rq_segments(req);
2170 return true;
2172 EXPORT_SYMBOL_GPL(blk_update_request);
2174 static bool blk_update_bidi_request(struct request *rq, int error,
2175 unsigned int nr_bytes,
2176 unsigned int bidi_bytes)
2178 if (blk_update_request(rq, error, nr_bytes))
2179 return true;
2181 /* Bidi request must be completed as a whole */
2182 if (unlikely(blk_bidi_rq(rq)) &&
2183 blk_update_request(rq->next_rq, error, bidi_bytes))
2184 return true;
2186 if (blk_queue_add_random(rq->q))
2187 add_disk_randomness(rq->rq_disk);
2189 return false;
2193 * blk_unprep_request - unprepare a request
2194 * @req: the request
2196 * This function makes a request ready for complete resubmission (or
2197 * completion). It happens only after all error handling is complete,
2198 * so represents the appropriate moment to deallocate any resources
2199 * that were allocated to the request in the prep_rq_fn. The queue
2200 * lock is held when calling this.
2202 void blk_unprep_request(struct request *req)
2204 struct request_queue *q = req->q;
2206 req->cmd_flags &= ~REQ_DONTPREP;
2207 if (q->unprep_rq_fn)
2208 q->unprep_rq_fn(q, req);
2210 EXPORT_SYMBOL_GPL(blk_unprep_request);
2213 * queue lock must be held
2215 static void blk_finish_request(struct request *req, int error)
2217 if (blk_rq_tagged(req))
2218 blk_queue_end_tag(req->q, req);
2220 BUG_ON(blk_queued_rq(req));
2222 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2223 laptop_io_completion(&req->q->backing_dev_info);
2225 blk_delete_timer(req);
2227 if (req->cmd_flags & REQ_DONTPREP)
2228 blk_unprep_request(req);
2231 blk_account_io_done(req);
2233 if (req->end_io)
2234 req->end_io(req, error);
2235 else {
2236 if (blk_bidi_rq(req))
2237 __blk_put_request(req->next_rq->q, req->next_rq);
2239 __blk_put_request(req->q, req);
2244 * blk_end_bidi_request - Complete a bidi request
2245 * @rq: the request to complete
2246 * @error: %0 for success, < %0 for error
2247 * @nr_bytes: number of bytes to complete @rq
2248 * @bidi_bytes: number of bytes to complete @rq->next_rq
2250 * Description:
2251 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2252 * Drivers that supports bidi can safely call this member for any
2253 * type of request, bidi or uni. In the later case @bidi_bytes is
2254 * just ignored.
2256 * Return:
2257 * %false - we are done with this request
2258 * %true - still buffers pending for this request
2260 static bool blk_end_bidi_request(struct request *rq, int error,
2261 unsigned int nr_bytes, unsigned int bidi_bytes)
2263 struct request_queue *q = rq->q;
2264 unsigned long flags;
2266 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2267 return true;
2269 spin_lock_irqsave(q->queue_lock, flags);
2270 blk_finish_request(rq, error);
2271 spin_unlock_irqrestore(q->queue_lock, flags);
2273 return false;
2277 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2278 * @rq: the request to complete
2279 * @error: %0 for success, < %0 for error
2280 * @nr_bytes: number of bytes to complete @rq
2281 * @bidi_bytes: number of bytes to complete @rq->next_rq
2283 * Description:
2284 * Identical to blk_end_bidi_request() except that queue lock is
2285 * assumed to be locked on entry and remains so on return.
2287 * Return:
2288 * %false - we are done with this request
2289 * %true - still buffers pending for this request
2291 bool __blk_end_bidi_request(struct request *rq, int error,
2292 unsigned int nr_bytes, unsigned int bidi_bytes)
2294 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2295 return true;
2297 blk_finish_request(rq, error);
2299 return false;
2303 * blk_end_request - Helper function for drivers to complete the request.
2304 * @rq: the request being processed
2305 * @error: %0 for success, < %0 for error
2306 * @nr_bytes: number of bytes to complete
2308 * Description:
2309 * Ends I/O on a number of bytes attached to @rq.
2310 * If @rq has leftover, sets it up for the next range of segments.
2312 * Return:
2313 * %false - we are done with this request
2314 * %true - still buffers pending for this request
2316 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2318 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2320 EXPORT_SYMBOL(blk_end_request);
2323 * blk_end_request_all - Helper function for drives to finish the request.
2324 * @rq: the request to finish
2325 * @error: %0 for success, < %0 for error
2327 * Description:
2328 * Completely finish @rq.
2330 void blk_end_request_all(struct request *rq, int error)
2332 bool pending;
2333 unsigned int bidi_bytes = 0;
2335 if (unlikely(blk_bidi_rq(rq)))
2336 bidi_bytes = blk_rq_bytes(rq->next_rq);
2338 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2339 BUG_ON(pending);
2341 EXPORT_SYMBOL(blk_end_request_all);
2344 * blk_end_request_cur - Helper function to finish the current request chunk.
2345 * @rq: the request to finish the current chunk for
2346 * @error: %0 for success, < %0 for error
2348 * Description:
2349 * Complete the current consecutively mapped chunk from @rq.
2351 * Return:
2352 * %false - we are done with this request
2353 * %true - still buffers pending for this request
2355 bool blk_end_request_cur(struct request *rq, int error)
2357 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2359 EXPORT_SYMBOL(blk_end_request_cur);
2362 * blk_end_request_err - Finish a request till the next failure boundary.
2363 * @rq: the request to finish till the next failure boundary for
2364 * @error: must be negative errno
2366 * Description:
2367 * Complete @rq till the next failure boundary.
2369 * Return:
2370 * %false - we are done with this request
2371 * %true - still buffers pending for this request
2373 bool blk_end_request_err(struct request *rq, int error)
2375 WARN_ON(error >= 0);
2376 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2378 EXPORT_SYMBOL_GPL(blk_end_request_err);
2381 * __blk_end_request - Helper function for drivers to complete the request.
2382 * @rq: the request being processed
2383 * @error: %0 for success, < %0 for error
2384 * @nr_bytes: number of bytes to complete
2386 * Description:
2387 * Must be called with queue lock held unlike blk_end_request().
2389 * Return:
2390 * %false - we are done with this request
2391 * %true - still buffers pending for this request
2393 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2395 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2397 EXPORT_SYMBOL(__blk_end_request);
2400 * __blk_end_request_all - Helper function for drives to finish the request.
2401 * @rq: the request to finish
2402 * @error: %0 for success, < %0 for error
2404 * Description:
2405 * Completely finish @rq. Must be called with queue lock held.
2407 void __blk_end_request_all(struct request *rq, int error)
2409 bool pending;
2410 unsigned int bidi_bytes = 0;
2412 if (unlikely(blk_bidi_rq(rq)))
2413 bidi_bytes = blk_rq_bytes(rq->next_rq);
2415 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2416 BUG_ON(pending);
2418 EXPORT_SYMBOL(__blk_end_request_all);
2421 * __blk_end_request_cur - Helper function to finish the current request chunk.
2422 * @rq: the request to finish the current chunk for
2423 * @error: %0 for success, < %0 for error
2425 * Description:
2426 * Complete the current consecutively mapped chunk from @rq. Must
2427 * be called with queue lock held.
2429 * Return:
2430 * %false - we are done with this request
2431 * %true - still buffers pending for this request
2433 bool __blk_end_request_cur(struct request *rq, int error)
2435 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2437 EXPORT_SYMBOL(__blk_end_request_cur);
2440 * __blk_end_request_err - Finish a request till the next failure boundary.
2441 * @rq: the request to finish till the next failure boundary for
2442 * @error: must be negative errno
2444 * Description:
2445 * Complete @rq till the next failure boundary. Must be called
2446 * with queue lock held.
2448 * Return:
2449 * %false - we are done with this request
2450 * %true - still buffers pending for this request
2452 bool __blk_end_request_err(struct request *rq, int error)
2454 WARN_ON(error >= 0);
2455 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2457 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2459 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2460 struct bio *bio)
2462 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2463 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2465 if (bio_has_data(bio)) {
2466 rq->nr_phys_segments = bio_phys_segments(q, bio);
2467 rq->buffer = bio_data(bio);
2469 rq->__data_len = bio->bi_size;
2470 rq->bio = rq->biotail = bio;
2472 if (bio->bi_bdev)
2473 rq->rq_disk = bio->bi_bdev->bd_disk;
2476 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2478 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2479 * @rq: the request to be flushed
2481 * Description:
2482 * Flush all pages in @rq.
2484 void rq_flush_dcache_pages(struct request *rq)
2486 struct req_iterator iter;
2487 struct bio_vec *bvec;
2489 rq_for_each_segment(bvec, rq, iter)
2490 flush_dcache_page(bvec->bv_page);
2492 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2493 #endif
2496 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2497 * @q : the queue of the device being checked
2499 * Description:
2500 * Check if underlying low-level drivers of a device are busy.
2501 * If the drivers want to export their busy state, they must set own
2502 * exporting function using blk_queue_lld_busy() first.
2504 * Basically, this function is used only by request stacking drivers
2505 * to stop dispatching requests to underlying devices when underlying
2506 * devices are busy. This behavior helps more I/O merging on the queue
2507 * of the request stacking driver and prevents I/O throughput regression
2508 * on burst I/O load.
2510 * Return:
2511 * 0 - Not busy (The request stacking driver should dispatch request)
2512 * 1 - Busy (The request stacking driver should stop dispatching request)
2514 int blk_lld_busy(struct request_queue *q)
2516 if (q->lld_busy_fn)
2517 return q->lld_busy_fn(q);
2519 return 0;
2521 EXPORT_SYMBOL_GPL(blk_lld_busy);
2524 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2525 * @rq: the clone request to be cleaned up
2527 * Description:
2528 * Free all bios in @rq for a cloned request.
2530 void blk_rq_unprep_clone(struct request *rq)
2532 struct bio *bio;
2534 while ((bio = rq->bio) != NULL) {
2535 rq->bio = bio->bi_next;
2537 bio_put(bio);
2540 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2543 * Copy attributes of the original request to the clone request.
2544 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2546 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2548 dst->cpu = src->cpu;
2549 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2550 dst->cmd_type = src->cmd_type;
2551 dst->__sector = blk_rq_pos(src);
2552 dst->__data_len = blk_rq_bytes(src);
2553 dst->nr_phys_segments = src->nr_phys_segments;
2554 dst->ioprio = src->ioprio;
2555 dst->extra_len = src->extra_len;
2559 * blk_rq_prep_clone - Helper function to setup clone request
2560 * @rq: the request to be setup
2561 * @rq_src: original request to be cloned
2562 * @bs: bio_set that bios for clone are allocated from
2563 * @gfp_mask: memory allocation mask for bio
2564 * @bio_ctr: setup function to be called for each clone bio.
2565 * Returns %0 for success, non %0 for failure.
2566 * @data: private data to be passed to @bio_ctr
2568 * Description:
2569 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2570 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2571 * are not copied, and copying such parts is the caller's responsibility.
2572 * Also, pages which the original bios are pointing to are not copied
2573 * and the cloned bios just point same pages.
2574 * So cloned bios must be completed before original bios, which means
2575 * the caller must complete @rq before @rq_src.
2577 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2578 struct bio_set *bs, gfp_t gfp_mask,
2579 int (*bio_ctr)(struct bio *, struct bio *, void *),
2580 void *data)
2582 struct bio *bio, *bio_src;
2584 if (!bs)
2585 bs = fs_bio_set;
2587 blk_rq_init(NULL, rq);
2589 __rq_for_each_bio(bio_src, rq_src) {
2590 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2591 if (!bio)
2592 goto free_and_out;
2594 __bio_clone(bio, bio_src);
2596 if (bio_integrity(bio_src) &&
2597 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2598 goto free_and_out;
2600 if (bio_ctr && bio_ctr(bio, bio_src, data))
2601 goto free_and_out;
2603 if (rq->bio) {
2604 rq->biotail->bi_next = bio;
2605 rq->biotail = bio;
2606 } else
2607 rq->bio = rq->biotail = bio;
2610 __blk_rq_prep_clone(rq, rq_src);
2612 return 0;
2614 free_and_out:
2615 if (bio)
2616 bio_free(bio, bs);
2617 blk_rq_unprep_clone(rq);
2619 return -ENOMEM;
2621 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2623 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2625 return queue_work(kblockd_workqueue, work);
2627 EXPORT_SYMBOL(kblockd_schedule_work);
2629 int kblockd_schedule_delayed_work(struct request_queue *q,
2630 struct delayed_work *dwork, unsigned long delay)
2632 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2634 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2636 #define PLUG_MAGIC 0x91827364
2639 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2640 * @plug: The &struct blk_plug that needs to be initialized
2642 * Description:
2643 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2644 * pending I/O should the task end up blocking between blk_start_plug() and
2645 * blk_finish_plug(). This is important from a performance perspective, but
2646 * also ensures that we don't deadlock. For instance, if the task is blocking
2647 * for a memory allocation, memory reclaim could end up wanting to free a
2648 * page belonging to that request that is currently residing in our private
2649 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2650 * this kind of deadlock.
2652 void blk_start_plug(struct blk_plug *plug)
2654 struct task_struct *tsk = current;
2656 plug->magic = PLUG_MAGIC;
2657 INIT_LIST_HEAD(&plug->list);
2658 INIT_LIST_HEAD(&plug->cb_list);
2659 plug->should_sort = 0;
2662 * If this is a nested plug, don't actually assign it. It will be
2663 * flushed on its own.
2665 if (!tsk->plug) {
2667 * Store ordering should not be needed here, since a potential
2668 * preempt will imply a full memory barrier
2670 tsk->plug = plug;
2673 EXPORT_SYMBOL(blk_start_plug);
2675 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2677 struct request *rqa = container_of(a, struct request, queuelist);
2678 struct request *rqb = container_of(b, struct request, queuelist);
2680 return !(rqa->q <= rqb->q);
2684 * If 'from_schedule' is true, then postpone the dispatch of requests
2685 * until a safe kblockd context. We due this to avoid accidental big
2686 * additional stack usage in driver dispatch, in places where the originally
2687 * plugger did not intend it.
2689 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2690 bool from_schedule)
2691 __releases(q->queue_lock)
2693 trace_block_unplug(q, depth, !from_schedule);
2696 * If we are punting this to kblockd, then we can safely drop
2697 * the queue_lock before waking kblockd (which needs to take
2698 * this lock).
2700 if (from_schedule) {
2701 spin_unlock(q->queue_lock);
2702 blk_run_queue_async(q);
2703 } else {
2704 __blk_run_queue(q);
2705 spin_unlock(q->queue_lock);
2710 static void flush_plug_callbacks(struct blk_plug *plug)
2712 LIST_HEAD(callbacks);
2714 if (list_empty(&plug->cb_list))
2715 return;
2717 list_splice_init(&plug->cb_list, &callbacks);
2719 while (!list_empty(&callbacks)) {
2720 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2721 struct blk_plug_cb,
2722 list);
2723 list_del(&cb->list);
2724 cb->callback(cb);
2728 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2730 struct request_queue *q;
2731 unsigned long flags;
2732 struct request *rq;
2733 LIST_HEAD(list);
2734 unsigned int depth;
2736 BUG_ON(plug->magic != PLUG_MAGIC);
2738 flush_plug_callbacks(plug);
2739 if (list_empty(&plug->list))
2740 return;
2742 list_splice_init(&plug->list, &list);
2744 if (plug->should_sort) {
2745 list_sort(NULL, &list, plug_rq_cmp);
2746 plug->should_sort = 0;
2749 q = NULL;
2750 depth = 0;
2753 * Save and disable interrupts here, to avoid doing it for every
2754 * queue lock we have to take.
2756 local_irq_save(flags);
2757 while (!list_empty(&list)) {
2758 rq = list_entry_rq(list.next);
2759 list_del_init(&rq->queuelist);
2760 BUG_ON(!rq->q);
2761 if (rq->q != q) {
2763 * This drops the queue lock
2765 if (q)
2766 queue_unplugged(q, depth, from_schedule);
2767 q = rq->q;
2768 depth = 0;
2769 spin_lock(q->queue_lock);
2772 * rq is already accounted, so use raw insert
2774 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2775 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2776 else
2777 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
2779 depth++;
2783 * This drops the queue lock
2785 if (q)
2786 queue_unplugged(q, depth, from_schedule);
2788 local_irq_restore(flags);
2791 void blk_finish_plug(struct blk_plug *plug)
2793 blk_flush_plug_list(plug, false);
2795 if (plug == current->plug)
2796 current->plug = NULL;
2798 EXPORT_SYMBOL(blk_finish_plug);
2800 int __init blk_dev_init(void)
2802 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2803 sizeof(((struct request *)0)->cmd_flags));
2805 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2806 kblockd_workqueue = alloc_workqueue("kblockd",
2807 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2808 if (!kblockd_workqueue)
2809 panic("Failed to create kblockd\n");
2811 request_cachep = kmem_cache_create("blkdev_requests",
2812 sizeof(struct request), 0, SLAB_PANIC, NULL);
2814 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2815 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2817 return 0;