2 * arch/sparc64/mm/init.c
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/percpu.h>
26 #include <linux/memblock.h>
27 #include <linux/mmzone.h>
28 #include <linux/gfp.h>
32 #include <asm/pgalloc.h>
33 #include <asm/pgtable.h>
34 #include <asm/oplib.h>
35 #include <asm/iommu.h>
37 #include <asm/uaccess.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
41 #include <asm/starfire.h>
43 #include <asm/spitfire.h>
44 #include <asm/sections.h>
46 #include <asm/hypervisor.h>
48 #include <asm/mdesc.h>
49 #include <asm/cpudata.h>
54 unsigned long kern_linear_pte_xor
[4] __read_mostly
;
56 /* A bitmap, two bits for every 256MB of physical memory. These two
57 * bits determine what page size we use for kernel linear
58 * translations. They form an index into kern_linear_pte_xor[]. The
59 * value in the indexed slot is XOR'd with the TLB miss virtual
60 * address to form the resulting TTE. The mapping is:
67 * All sun4v chips support 256MB pages. Only SPARC-T4 and later
68 * support 2GB pages, and hopefully future cpus will support the 16GB
69 * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there
70 * if these larger page sizes are not supported by the cpu.
72 * It would be nice to determine this from the machine description
73 * 'cpu' properties, but we need to have this table setup before the
74 * MDESC is initialized.
76 unsigned long kpte_linear_bitmap
[KPTE_BITMAP_BYTES
/ sizeof(unsigned long)];
78 #ifndef CONFIG_DEBUG_PAGEALLOC
79 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
80 * Space is allocated for this right after the trap table in
81 * arch/sparc64/kernel/head.S
83 extern struct tsb swapper_4m_tsb
[KERNEL_TSB4M_NENTRIES
];
86 static unsigned long cpu_pgsz_mask
;
90 static struct linux_prom64_registers pavail
[MAX_BANKS
];
91 static int pavail_ents
;
93 static int cmp_p64(const void *a
, const void *b
)
95 const struct linux_prom64_registers
*x
= a
, *y
= b
;
97 if (x
->phys_addr
> y
->phys_addr
)
99 if (x
->phys_addr
< y
->phys_addr
)
104 static void __init
read_obp_memory(const char *property
,
105 struct linux_prom64_registers
*regs
,
108 phandle node
= prom_finddevice("/memory");
109 int prop_size
= prom_getproplen(node
, property
);
112 ents
= prop_size
/ sizeof(struct linux_prom64_registers
);
113 if (ents
> MAX_BANKS
) {
114 prom_printf("The machine has more %s property entries than "
115 "this kernel can support (%d).\n",
116 property
, MAX_BANKS
);
120 ret
= prom_getproperty(node
, property
, (char *) regs
, prop_size
);
122 prom_printf("Couldn't get %s property from /memory.\n",
127 /* Sanitize what we got from the firmware, by page aligning
130 for (i
= 0; i
< ents
; i
++) {
131 unsigned long base
, size
;
133 base
= regs
[i
].phys_addr
;
134 size
= regs
[i
].reg_size
;
137 if (base
& ~PAGE_MASK
) {
138 unsigned long new_base
= PAGE_ALIGN(base
);
140 size
-= new_base
- base
;
141 if ((long) size
< 0L)
146 /* If it is empty, simply get rid of it.
147 * This simplifies the logic of the other
148 * functions that process these arrays.
150 memmove(®s
[i
], ®s
[i
+ 1],
151 (ents
- i
- 1) * sizeof(regs
[0]));
156 regs
[i
].phys_addr
= base
;
157 regs
[i
].reg_size
= size
;
162 sort(regs
, ents
, sizeof(struct linux_prom64_registers
),
166 unsigned long sparc64_valid_addr_bitmap
[VALID_ADDR_BITMAP_BYTES
/
167 sizeof(unsigned long)];
168 EXPORT_SYMBOL(sparc64_valid_addr_bitmap
);
170 /* Kernel physical address base and size in bytes. */
171 unsigned long kern_base __read_mostly
;
172 unsigned long kern_size __read_mostly
;
174 /* Initial ramdisk setup */
175 extern unsigned long sparc_ramdisk_image64
;
176 extern unsigned int sparc_ramdisk_image
;
177 extern unsigned int sparc_ramdisk_size
;
179 struct page
*mem_map_zero __read_mostly
;
180 EXPORT_SYMBOL(mem_map_zero
);
182 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly
;
184 unsigned long sparc64_kern_pri_context __read_mostly
;
185 unsigned long sparc64_kern_pri_nuc_bits __read_mostly
;
186 unsigned long sparc64_kern_sec_context __read_mostly
;
188 int num_kernel_image_mappings
;
190 #ifdef CONFIG_DEBUG_DCFLUSH
191 atomic_t dcpage_flushes
= ATOMIC_INIT(0);
193 atomic_t dcpage_flushes_xcall
= ATOMIC_INIT(0);
197 inline void flush_dcache_page_impl(struct page
*page
)
199 BUG_ON(tlb_type
== hypervisor
);
200 #ifdef CONFIG_DEBUG_DCFLUSH
201 atomic_inc(&dcpage_flushes
);
204 #ifdef DCACHE_ALIASING_POSSIBLE
205 __flush_dcache_page(page_address(page
),
206 ((tlb_type
== spitfire
) &&
207 page_mapping(page
) != NULL
));
209 if (page_mapping(page
) != NULL
&&
210 tlb_type
== spitfire
)
211 __flush_icache_page(__pa(page_address(page
)));
215 #define PG_dcache_dirty PG_arch_1
216 #define PG_dcache_cpu_shift 32UL
217 #define PG_dcache_cpu_mask \
218 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
220 #define dcache_dirty_cpu(page) \
221 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
223 static inline void set_dcache_dirty(struct page
*page
, int this_cpu
)
225 unsigned long mask
= this_cpu
;
226 unsigned long non_cpu_bits
;
228 non_cpu_bits
= ~(PG_dcache_cpu_mask
<< PG_dcache_cpu_shift
);
229 mask
= (mask
<< PG_dcache_cpu_shift
) | (1UL << PG_dcache_dirty
);
231 __asm__
__volatile__("1:\n\t"
233 "and %%g7, %1, %%g1\n\t"
234 "or %%g1, %0, %%g1\n\t"
235 "casx [%2], %%g7, %%g1\n\t"
237 "bne,pn %%xcc, 1b\n\t"
240 : "r" (mask
), "r" (non_cpu_bits
), "r" (&page
->flags
)
244 static inline void clear_dcache_dirty_cpu(struct page
*page
, unsigned long cpu
)
246 unsigned long mask
= (1UL << PG_dcache_dirty
);
248 __asm__
__volatile__("! test_and_clear_dcache_dirty\n"
251 "srlx %%g7, %4, %%g1\n\t"
252 "and %%g1, %3, %%g1\n\t"
254 "bne,pn %%icc, 2f\n\t"
255 " andn %%g7, %1, %%g1\n\t"
256 "casx [%2], %%g7, %%g1\n\t"
258 "bne,pn %%xcc, 1b\n\t"
262 : "r" (cpu
), "r" (mask
), "r" (&page
->flags
),
263 "i" (PG_dcache_cpu_mask
),
264 "i" (PG_dcache_cpu_shift
)
268 static inline void tsb_insert(struct tsb
*ent
, unsigned long tag
, unsigned long pte
)
270 unsigned long tsb_addr
= (unsigned long) ent
;
272 if (tlb_type
== cheetah_plus
|| tlb_type
== hypervisor
)
273 tsb_addr
= __pa(tsb_addr
);
275 __tsb_insert(tsb_addr
, tag
, pte
);
278 unsigned long _PAGE_ALL_SZ_BITS __read_mostly
;
280 static void flush_dcache(unsigned long pfn
)
284 page
= pfn_to_page(pfn
);
286 unsigned long pg_flags
;
288 pg_flags
= page
->flags
;
289 if (pg_flags
& (1UL << PG_dcache_dirty
)) {
290 int cpu
= ((pg_flags
>> PG_dcache_cpu_shift
) &
292 int this_cpu
= get_cpu();
294 /* This is just to optimize away some function calls
298 flush_dcache_page_impl(page
);
300 smp_flush_dcache_page_impl(page
, cpu
);
302 clear_dcache_dirty_cpu(page
, cpu
);
309 /* mm->context.lock must be held */
310 static void __update_mmu_tsb_insert(struct mm_struct
*mm
, unsigned long tsb_index
,
311 unsigned long tsb_hash_shift
, unsigned long address
,
314 struct tsb
*tsb
= mm
->context
.tsb_block
[tsb_index
].tsb
;
320 tsb
+= ((address
>> tsb_hash_shift
) &
321 (mm
->context
.tsb_block
[tsb_index
].tsb_nentries
- 1UL));
322 tag
= (address
>> 22UL);
323 tsb_insert(tsb
, tag
, tte
);
326 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
327 static inline bool is_hugetlb_pte(pte_t pte
)
329 if ((tlb_type
== hypervisor
&&
330 (pte_val(pte
) & _PAGE_SZALL_4V
) == _PAGE_SZHUGE_4V
) ||
331 (tlb_type
!= hypervisor
&&
332 (pte_val(pte
) & _PAGE_SZALL_4U
) == _PAGE_SZHUGE_4U
))
338 void update_mmu_cache(struct vm_area_struct
*vma
, unsigned long address
, pte_t
*ptep
)
340 struct mm_struct
*mm
;
344 if (tlb_type
!= hypervisor
) {
345 unsigned long pfn
= pte_pfn(pte
);
353 spin_lock_irqsave(&mm
->context
.lock
, flags
);
355 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
356 if (mm
->context
.huge_pte_count
&& is_hugetlb_pte(pte
))
357 __update_mmu_tsb_insert(mm
, MM_TSB_HUGE
, REAL_HPAGE_SHIFT
,
358 address
, pte_val(pte
));
361 __update_mmu_tsb_insert(mm
, MM_TSB_BASE
, PAGE_SHIFT
,
362 address
, pte_val(pte
));
364 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
367 void flush_dcache_page(struct page
*page
)
369 struct address_space
*mapping
;
372 if (tlb_type
== hypervisor
)
375 /* Do not bother with the expensive D-cache flush if it
376 * is merely the zero page. The 'bigcore' testcase in GDB
377 * causes this case to run millions of times.
379 if (page
== ZERO_PAGE(0))
382 this_cpu
= get_cpu();
384 mapping
= page_mapping(page
);
385 if (mapping
&& !mapping_mapped(mapping
)) {
386 int dirty
= test_bit(PG_dcache_dirty
, &page
->flags
);
388 int dirty_cpu
= dcache_dirty_cpu(page
);
390 if (dirty_cpu
== this_cpu
)
392 smp_flush_dcache_page_impl(page
, dirty_cpu
);
394 set_dcache_dirty(page
, this_cpu
);
396 /* We could delay the flush for the !page_mapping
397 * case too. But that case is for exec env/arg
398 * pages and those are %99 certainly going to get
399 * faulted into the tlb (and thus flushed) anyways.
401 flush_dcache_page_impl(page
);
407 EXPORT_SYMBOL(flush_dcache_page
);
409 void __kprobes
flush_icache_range(unsigned long start
, unsigned long end
)
411 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
412 if (tlb_type
== spitfire
) {
415 /* This code only runs on Spitfire cpus so this is
416 * why we can assume _PAGE_PADDR_4U.
418 for (kaddr
= start
; kaddr
< end
; kaddr
+= PAGE_SIZE
) {
419 unsigned long paddr
, mask
= _PAGE_PADDR_4U
;
421 if (kaddr
>= PAGE_OFFSET
)
422 paddr
= kaddr
& mask
;
424 pgd_t
*pgdp
= pgd_offset_k(kaddr
);
425 pud_t
*pudp
= pud_offset(pgdp
, kaddr
);
426 pmd_t
*pmdp
= pmd_offset(pudp
, kaddr
);
427 pte_t
*ptep
= pte_offset_kernel(pmdp
, kaddr
);
429 paddr
= pte_val(*ptep
) & mask
;
431 __flush_icache_page(paddr
);
435 EXPORT_SYMBOL(flush_icache_range
);
437 void mmu_info(struct seq_file
*m
)
439 static const char *pgsz_strings
[] = {
440 "8K", "64K", "512K", "4MB", "32MB",
441 "256MB", "2GB", "16GB",
445 if (tlb_type
== cheetah
)
446 seq_printf(m
, "MMU Type\t: Cheetah\n");
447 else if (tlb_type
== cheetah_plus
)
448 seq_printf(m
, "MMU Type\t: Cheetah+\n");
449 else if (tlb_type
== spitfire
)
450 seq_printf(m
, "MMU Type\t: Spitfire\n");
451 else if (tlb_type
== hypervisor
)
452 seq_printf(m
, "MMU Type\t: Hypervisor (sun4v)\n");
454 seq_printf(m
, "MMU Type\t: ???\n");
456 seq_printf(m
, "MMU PGSZs\t: ");
458 for (i
= 0; i
< ARRAY_SIZE(pgsz_strings
); i
++) {
459 if (cpu_pgsz_mask
& (1UL << i
)) {
460 seq_printf(m
, "%s%s",
461 printed
? "," : "", pgsz_strings
[i
]);
467 #ifdef CONFIG_DEBUG_DCFLUSH
468 seq_printf(m
, "DCPageFlushes\t: %d\n",
469 atomic_read(&dcpage_flushes
));
471 seq_printf(m
, "DCPageFlushesXC\t: %d\n",
472 atomic_read(&dcpage_flushes_xcall
));
473 #endif /* CONFIG_SMP */
474 #endif /* CONFIG_DEBUG_DCFLUSH */
477 struct linux_prom_translation prom_trans
[512] __read_mostly
;
478 unsigned int prom_trans_ents __read_mostly
;
480 unsigned long kern_locked_tte_data
;
482 /* The obp translations are saved based on 8k pagesize, since obp can
483 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
484 * HI_OBP_ADDRESS range are handled in ktlb.S.
486 static inline int in_obp_range(unsigned long vaddr
)
488 return (vaddr
>= LOW_OBP_ADDRESS
&&
489 vaddr
< HI_OBP_ADDRESS
);
492 static int cmp_ptrans(const void *a
, const void *b
)
494 const struct linux_prom_translation
*x
= a
, *y
= b
;
496 if (x
->virt
> y
->virt
)
498 if (x
->virt
< y
->virt
)
503 /* Read OBP translations property into 'prom_trans[]'. */
504 static void __init
read_obp_translations(void)
506 int n
, node
, ents
, first
, last
, i
;
508 node
= prom_finddevice("/virtual-memory");
509 n
= prom_getproplen(node
, "translations");
510 if (unlikely(n
== 0 || n
== -1)) {
511 prom_printf("prom_mappings: Couldn't get size.\n");
514 if (unlikely(n
> sizeof(prom_trans
))) {
515 prom_printf("prom_mappings: Size %d is too big.\n", n
);
519 if ((n
= prom_getproperty(node
, "translations",
520 (char *)&prom_trans
[0],
521 sizeof(prom_trans
))) == -1) {
522 prom_printf("prom_mappings: Couldn't get property.\n");
526 n
= n
/ sizeof(struct linux_prom_translation
);
530 sort(prom_trans
, ents
, sizeof(struct linux_prom_translation
),
533 /* Now kick out all the non-OBP entries. */
534 for (i
= 0; i
< ents
; i
++) {
535 if (in_obp_range(prom_trans
[i
].virt
))
539 for (; i
< ents
; i
++) {
540 if (!in_obp_range(prom_trans
[i
].virt
))
545 for (i
= 0; i
< (last
- first
); i
++) {
546 struct linux_prom_translation
*src
= &prom_trans
[i
+ first
];
547 struct linux_prom_translation
*dest
= &prom_trans
[i
];
551 for (; i
< ents
; i
++) {
552 struct linux_prom_translation
*dest
= &prom_trans
[i
];
553 dest
->virt
= dest
->size
= dest
->data
= 0x0UL
;
556 prom_trans_ents
= last
- first
;
558 if (tlb_type
== spitfire
) {
559 /* Clear diag TTE bits. */
560 for (i
= 0; i
< prom_trans_ents
; i
++)
561 prom_trans
[i
].data
&= ~0x0003fe0000000000UL
;
564 /* Force execute bit on. */
565 for (i
= 0; i
< prom_trans_ents
; i
++)
566 prom_trans
[i
].data
|= (tlb_type
== hypervisor
?
567 _PAGE_EXEC_4V
: _PAGE_EXEC_4U
);
570 static void __init
hypervisor_tlb_lock(unsigned long vaddr
,
574 unsigned long ret
= sun4v_mmu_map_perm_addr(vaddr
, 0, pte
, mmu
);
577 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
578 "errors with %lx\n", vaddr
, 0, pte
, mmu
, ret
);
583 static unsigned long kern_large_tte(unsigned long paddr
);
585 static void __init
remap_kernel(void)
587 unsigned long phys_page
, tte_vaddr
, tte_data
;
588 int i
, tlb_ent
= sparc64_highest_locked_tlbent();
590 tte_vaddr
= (unsigned long) KERNBASE
;
591 phys_page
= (prom_boot_mapping_phys_low
>> 22UL) << 22UL;
592 tte_data
= kern_large_tte(phys_page
);
594 kern_locked_tte_data
= tte_data
;
596 /* Now lock us into the TLBs via Hypervisor or OBP. */
597 if (tlb_type
== hypervisor
) {
598 for (i
= 0; i
< num_kernel_image_mappings
; i
++) {
599 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_DMMU
);
600 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_IMMU
);
601 tte_vaddr
+= 0x400000;
602 tte_data
+= 0x400000;
605 for (i
= 0; i
< num_kernel_image_mappings
; i
++) {
606 prom_dtlb_load(tlb_ent
- i
, tte_data
, tte_vaddr
);
607 prom_itlb_load(tlb_ent
- i
, tte_data
, tte_vaddr
);
608 tte_vaddr
+= 0x400000;
609 tte_data
+= 0x400000;
611 sparc64_highest_unlocked_tlb_ent
= tlb_ent
- i
;
613 if (tlb_type
== cheetah_plus
) {
614 sparc64_kern_pri_context
= (CTX_CHEETAH_PLUS_CTX0
|
615 CTX_CHEETAH_PLUS_NUC
);
616 sparc64_kern_pri_nuc_bits
= CTX_CHEETAH_PLUS_NUC
;
617 sparc64_kern_sec_context
= CTX_CHEETAH_PLUS_CTX0
;
622 static void __init
inherit_prom_mappings(void)
624 /* Now fixup OBP's idea about where we really are mapped. */
625 printk("Remapping the kernel... ");
630 void prom_world(int enter
)
635 __asm__
__volatile__("flushw");
638 void __flush_dcache_range(unsigned long start
, unsigned long end
)
642 if (tlb_type
== spitfire
) {
645 for (va
= start
; va
< end
; va
+= 32) {
646 spitfire_put_dcache_tag(va
& 0x3fe0, 0x0);
650 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
653 for (va
= start
; va
< end
; va
+= 32)
654 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
658 "i" (ASI_DCACHE_INVALIDATE
));
661 EXPORT_SYMBOL(__flush_dcache_range
);
663 /* get_new_mmu_context() uses "cache + 1". */
664 DEFINE_SPINLOCK(ctx_alloc_lock
);
665 unsigned long tlb_context_cache
= CTX_FIRST_VERSION
- 1;
666 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
667 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
668 DECLARE_BITMAP(mmu_context_bmap
, MAX_CTX_NR
);
670 /* Caller does TLB context flushing on local CPU if necessary.
671 * The caller also ensures that CTX_VALID(mm->context) is false.
673 * We must be careful about boundary cases so that we never
674 * let the user have CTX 0 (nucleus) or we ever use a CTX
675 * version of zero (and thus NO_CONTEXT would not be caught
676 * by version mis-match tests in mmu_context.h).
678 * Always invoked with interrupts disabled.
680 void get_new_mmu_context(struct mm_struct
*mm
)
682 unsigned long ctx
, new_ctx
;
683 unsigned long orig_pgsz_bits
;
686 spin_lock(&ctx_alloc_lock
);
687 orig_pgsz_bits
= (mm
->context
.sparc64_ctx_val
& CTX_PGSZ_MASK
);
688 ctx
= (tlb_context_cache
+ 1) & CTX_NR_MASK
;
689 new_ctx
= find_next_zero_bit(mmu_context_bmap
, 1 << CTX_NR_BITS
, ctx
);
691 if (new_ctx
>= (1 << CTX_NR_BITS
)) {
692 new_ctx
= find_next_zero_bit(mmu_context_bmap
, ctx
, 1);
693 if (new_ctx
>= ctx
) {
695 new_ctx
= (tlb_context_cache
& CTX_VERSION_MASK
) +
698 new_ctx
= CTX_FIRST_VERSION
;
700 /* Don't call memset, for 16 entries that's just
703 mmu_context_bmap
[0] = 3;
704 mmu_context_bmap
[1] = 0;
705 mmu_context_bmap
[2] = 0;
706 mmu_context_bmap
[3] = 0;
707 for (i
= 4; i
< CTX_BMAP_SLOTS
; i
+= 4) {
708 mmu_context_bmap
[i
+ 0] = 0;
709 mmu_context_bmap
[i
+ 1] = 0;
710 mmu_context_bmap
[i
+ 2] = 0;
711 mmu_context_bmap
[i
+ 3] = 0;
717 mmu_context_bmap
[new_ctx
>>6] |= (1UL << (new_ctx
& 63));
718 new_ctx
|= (tlb_context_cache
& CTX_VERSION_MASK
);
720 tlb_context_cache
= new_ctx
;
721 mm
->context
.sparc64_ctx_val
= new_ctx
| orig_pgsz_bits
;
722 spin_unlock(&ctx_alloc_lock
);
724 if (unlikely(new_version
))
725 smp_new_mmu_context_version();
728 static int numa_enabled
= 1;
729 static int numa_debug
;
731 static int __init
early_numa(char *p
)
736 if (strstr(p
, "off"))
739 if (strstr(p
, "debug"))
744 early_param("numa", early_numa
);
746 #define numadbg(f, a...) \
747 do { if (numa_debug) \
748 printk(KERN_INFO f, ## a); \
751 static void __init
find_ramdisk(unsigned long phys_base
)
753 #ifdef CONFIG_BLK_DEV_INITRD
754 if (sparc_ramdisk_image
|| sparc_ramdisk_image64
) {
755 unsigned long ramdisk_image
;
757 /* Older versions of the bootloader only supported a
758 * 32-bit physical address for the ramdisk image
759 * location, stored at sparc_ramdisk_image. Newer
760 * SILO versions set sparc_ramdisk_image to zero and
761 * provide a full 64-bit physical address at
762 * sparc_ramdisk_image64.
764 ramdisk_image
= sparc_ramdisk_image
;
766 ramdisk_image
= sparc_ramdisk_image64
;
768 /* Another bootloader quirk. The bootloader normalizes
769 * the physical address to KERNBASE, so we have to
770 * factor that back out and add in the lowest valid
771 * physical page address to get the true physical address.
773 ramdisk_image
-= KERNBASE
;
774 ramdisk_image
+= phys_base
;
776 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
777 ramdisk_image
, sparc_ramdisk_size
);
779 initrd_start
= ramdisk_image
;
780 initrd_end
= ramdisk_image
+ sparc_ramdisk_size
;
782 memblock_reserve(initrd_start
, sparc_ramdisk_size
);
784 initrd_start
+= PAGE_OFFSET
;
785 initrd_end
+= PAGE_OFFSET
;
790 struct node_mem_mask
{
794 static struct node_mem_mask node_masks
[MAX_NUMNODES
];
795 static int num_node_masks
;
797 int numa_cpu_lookup_table
[NR_CPUS
];
798 cpumask_t numa_cpumask_lookup_table
[MAX_NUMNODES
];
800 #ifdef CONFIG_NEED_MULTIPLE_NODES
802 struct mdesc_mblock
{
805 u64 offset
; /* RA-to-PA */
807 static struct mdesc_mblock
*mblocks
;
808 static int num_mblocks
;
810 static unsigned long ra_to_pa(unsigned long addr
)
814 for (i
= 0; i
< num_mblocks
; i
++) {
815 struct mdesc_mblock
*m
= &mblocks
[i
];
817 if (addr
>= m
->base
&&
818 addr
< (m
->base
+ m
->size
)) {
826 static int find_node(unsigned long addr
)
830 addr
= ra_to_pa(addr
);
831 for (i
= 0; i
< num_node_masks
; i
++) {
832 struct node_mem_mask
*p
= &node_masks
[i
];
834 if ((addr
& p
->mask
) == p
->val
)
840 static u64
memblock_nid_range(u64 start
, u64 end
, int *nid
)
842 *nid
= find_node(start
);
844 while (start
< end
) {
845 int n
= find_node(start
);
859 /* This must be invoked after performing all of the necessary
860 * memblock_set_node() calls for 'nid'. We need to be able to get
861 * correct data from get_pfn_range_for_nid().
863 static void __init
allocate_node_data(int nid
)
865 struct pglist_data
*p
;
866 unsigned long start_pfn
, end_pfn
;
867 #ifdef CONFIG_NEED_MULTIPLE_NODES
870 paddr
= memblock_alloc_try_nid(sizeof(struct pglist_data
), SMP_CACHE_BYTES
, nid
);
872 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid
);
875 NODE_DATA(nid
) = __va(paddr
);
876 memset(NODE_DATA(nid
), 0, sizeof(struct pglist_data
));
878 NODE_DATA(nid
)->node_id
= nid
;
883 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
884 p
->node_start_pfn
= start_pfn
;
885 p
->node_spanned_pages
= end_pfn
- start_pfn
;
888 static void init_node_masks_nonnuma(void)
892 numadbg("Initializing tables for non-numa.\n");
894 node_masks
[0].mask
= node_masks
[0].val
= 0;
897 for (i
= 0; i
< NR_CPUS
; i
++)
898 numa_cpu_lookup_table
[i
] = 0;
900 cpumask_setall(&numa_cpumask_lookup_table
[0]);
903 #ifdef CONFIG_NEED_MULTIPLE_NODES
904 struct pglist_data
*node_data
[MAX_NUMNODES
];
906 EXPORT_SYMBOL(numa_cpu_lookup_table
);
907 EXPORT_SYMBOL(numa_cpumask_lookup_table
);
908 EXPORT_SYMBOL(node_data
);
910 struct mdesc_mlgroup
{
916 static struct mdesc_mlgroup
*mlgroups
;
917 static int num_mlgroups
;
919 static int scan_pio_for_cfg_handle(struct mdesc_handle
*md
, u64 pio
,
924 mdesc_for_each_arc(arc
, md
, pio
, MDESC_ARC_TYPE_FWD
) {
925 u64 target
= mdesc_arc_target(md
, arc
);
928 val
= mdesc_get_property(md
, target
,
930 if (val
&& *val
== cfg_handle
)
936 static int scan_arcs_for_cfg_handle(struct mdesc_handle
*md
, u64 grp
,
939 u64 arc
, candidate
, best_latency
= ~(u64
)0;
941 candidate
= MDESC_NODE_NULL
;
942 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_FWD
) {
943 u64 target
= mdesc_arc_target(md
, arc
);
944 const char *name
= mdesc_node_name(md
, target
);
947 if (strcmp(name
, "pio-latency-group"))
950 val
= mdesc_get_property(md
, target
, "latency", NULL
);
954 if (*val
< best_latency
) {
960 if (candidate
== MDESC_NODE_NULL
)
963 return scan_pio_for_cfg_handle(md
, candidate
, cfg_handle
);
966 int of_node_to_nid(struct device_node
*dp
)
968 const struct linux_prom64_registers
*regs
;
969 struct mdesc_handle
*md
;
974 /* This is the right thing to do on currently supported
975 * SUN4U NUMA platforms as well, as the PCI controller does
976 * not sit behind any particular memory controller.
981 regs
= of_get_property(dp
, "reg", NULL
);
985 cfg_handle
= (regs
->phys_addr
>> 32UL) & 0x0fffffff;
991 mdesc_for_each_node_by_name(md
, grp
, "group") {
992 if (!scan_arcs_for_cfg_handle(md
, grp
, cfg_handle
)) {
1004 static void __init
add_node_ranges(void)
1006 struct memblock_region
*reg
;
1008 for_each_memblock(memory
, reg
) {
1009 unsigned long size
= reg
->size
;
1010 unsigned long start
, end
;
1014 while (start
< end
) {
1015 unsigned long this_end
;
1018 this_end
= memblock_nid_range(start
, end
, &nid
);
1020 numadbg("Setting memblock NUMA node nid[%d] "
1021 "start[%lx] end[%lx]\n",
1022 nid
, start
, this_end
);
1024 memblock_set_node(start
, this_end
- start
, nid
);
1030 static int __init
grab_mlgroups(struct mdesc_handle
*md
)
1032 unsigned long paddr
;
1036 mdesc_for_each_node_by_name(md
, node
, "memory-latency-group")
1041 paddr
= memblock_alloc(count
* sizeof(struct mdesc_mlgroup
),
1046 mlgroups
= __va(paddr
);
1047 num_mlgroups
= count
;
1050 mdesc_for_each_node_by_name(md
, node
, "memory-latency-group") {
1051 struct mdesc_mlgroup
*m
= &mlgroups
[count
++];
1056 val
= mdesc_get_property(md
, node
, "latency", NULL
);
1058 val
= mdesc_get_property(md
, node
, "address-match", NULL
);
1060 val
= mdesc_get_property(md
, node
, "address-mask", NULL
);
1063 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1064 "match[%llx] mask[%llx]\n",
1065 count
- 1, m
->node
, m
->latency
, m
->match
, m
->mask
);
1071 static int __init
grab_mblocks(struct mdesc_handle
*md
)
1073 unsigned long paddr
;
1077 mdesc_for_each_node_by_name(md
, node
, "mblock")
1082 paddr
= memblock_alloc(count
* sizeof(struct mdesc_mblock
),
1087 mblocks
= __va(paddr
);
1088 num_mblocks
= count
;
1091 mdesc_for_each_node_by_name(md
, node
, "mblock") {
1092 struct mdesc_mblock
*m
= &mblocks
[count
++];
1095 val
= mdesc_get_property(md
, node
, "base", NULL
);
1097 val
= mdesc_get_property(md
, node
, "size", NULL
);
1099 val
= mdesc_get_property(md
, node
,
1100 "address-congruence-offset", NULL
);
1102 /* The address-congruence-offset property is optional.
1103 * Explicity zero it be identifty this.
1110 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1111 count
- 1, m
->base
, m
->size
, m
->offset
);
1117 static void __init
numa_parse_mdesc_group_cpus(struct mdesc_handle
*md
,
1118 u64 grp
, cpumask_t
*mask
)
1122 cpumask_clear(mask
);
1124 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_BACK
) {
1125 u64 target
= mdesc_arc_target(md
, arc
);
1126 const char *name
= mdesc_node_name(md
, target
);
1129 if (strcmp(name
, "cpu"))
1131 id
= mdesc_get_property(md
, target
, "id", NULL
);
1132 if (*id
< nr_cpu_ids
)
1133 cpumask_set_cpu(*id
, mask
);
1137 static struct mdesc_mlgroup
* __init
find_mlgroup(u64 node
)
1141 for (i
= 0; i
< num_mlgroups
; i
++) {
1142 struct mdesc_mlgroup
*m
= &mlgroups
[i
];
1143 if (m
->node
== node
)
1149 static int __init
numa_attach_mlgroup(struct mdesc_handle
*md
, u64 grp
,
1152 struct mdesc_mlgroup
*candidate
= NULL
;
1153 u64 arc
, best_latency
= ~(u64
)0;
1154 struct node_mem_mask
*n
;
1156 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_FWD
) {
1157 u64 target
= mdesc_arc_target(md
, arc
);
1158 struct mdesc_mlgroup
*m
= find_mlgroup(target
);
1161 if (m
->latency
< best_latency
) {
1163 best_latency
= m
->latency
;
1169 if (num_node_masks
!= index
) {
1170 printk(KERN_ERR
"Inconsistent NUMA state, "
1171 "index[%d] != num_node_masks[%d]\n",
1172 index
, num_node_masks
);
1176 n
= &node_masks
[num_node_masks
++];
1178 n
->mask
= candidate
->mask
;
1179 n
->val
= candidate
->match
;
1181 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1182 index
, n
->mask
, n
->val
, candidate
->latency
);
1187 static int __init
numa_parse_mdesc_group(struct mdesc_handle
*md
, u64 grp
,
1193 numa_parse_mdesc_group_cpus(md
, grp
, &mask
);
1195 for_each_cpu(cpu
, &mask
)
1196 numa_cpu_lookup_table
[cpu
] = index
;
1197 cpumask_copy(&numa_cpumask_lookup_table
[index
], &mask
);
1200 printk(KERN_INFO
"NUMA GROUP[%d]: cpus [ ", index
);
1201 for_each_cpu(cpu
, &mask
)
1206 return numa_attach_mlgroup(md
, grp
, index
);
1209 static int __init
numa_parse_mdesc(void)
1211 struct mdesc_handle
*md
= mdesc_grab();
1215 node
= mdesc_node_by_name(md
, MDESC_NODE_NULL
, "latency-groups");
1216 if (node
== MDESC_NODE_NULL
) {
1221 err
= grab_mblocks(md
);
1225 err
= grab_mlgroups(md
);
1230 mdesc_for_each_node_by_name(md
, node
, "group") {
1231 err
= numa_parse_mdesc_group(md
, node
, count
);
1239 for (i
= 0; i
< num_node_masks
; i
++) {
1240 allocate_node_data(i
);
1250 static int __init
numa_parse_jbus(void)
1252 unsigned long cpu
, index
;
1254 /* NUMA node id is encoded in bits 36 and higher, and there is
1255 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1258 for_each_present_cpu(cpu
) {
1259 numa_cpu_lookup_table
[cpu
] = index
;
1260 cpumask_copy(&numa_cpumask_lookup_table
[index
], cpumask_of(cpu
));
1261 node_masks
[index
].mask
= ~((1UL << 36UL) - 1UL);
1262 node_masks
[index
].val
= cpu
<< 36UL;
1266 num_node_masks
= index
;
1270 for (index
= 0; index
< num_node_masks
; index
++) {
1271 allocate_node_data(index
);
1272 node_set_online(index
);
1278 static int __init
numa_parse_sun4u(void)
1280 if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
1283 __asm__ ("rdpr %%ver, %0" : "=r" (ver
));
1284 if ((ver
>> 32UL) == __JALAPENO_ID
||
1285 (ver
>> 32UL) == __SERRANO_ID
)
1286 return numa_parse_jbus();
1291 static int __init
bootmem_init_numa(void)
1295 numadbg("bootmem_init_numa()\n");
1298 if (tlb_type
== hypervisor
)
1299 err
= numa_parse_mdesc();
1301 err
= numa_parse_sun4u();
1308 static int bootmem_init_numa(void)
1315 static void __init
bootmem_init_nonnuma(void)
1317 unsigned long top_of_ram
= memblock_end_of_DRAM();
1318 unsigned long total_ram
= memblock_phys_mem_size();
1320 numadbg("bootmem_init_nonnuma()\n");
1322 printk(KERN_INFO
"Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1323 top_of_ram
, total_ram
);
1324 printk(KERN_INFO
"Memory hole size: %ldMB\n",
1325 (top_of_ram
- total_ram
) >> 20);
1327 init_node_masks_nonnuma();
1328 memblock_set_node(0, (phys_addr_t
)ULLONG_MAX
, 0);
1329 allocate_node_data(0);
1333 static unsigned long __init
bootmem_init(unsigned long phys_base
)
1335 unsigned long end_pfn
;
1337 end_pfn
= memblock_end_of_DRAM() >> PAGE_SHIFT
;
1338 max_pfn
= max_low_pfn
= end_pfn
;
1339 min_low_pfn
= (phys_base
>> PAGE_SHIFT
);
1341 if (bootmem_init_numa() < 0)
1342 bootmem_init_nonnuma();
1344 /* Dump memblock with node info. */
1345 memblock_dump_all();
1347 /* XXX cpu notifier XXX */
1349 sparse_memory_present_with_active_regions(MAX_NUMNODES
);
1355 static struct linux_prom64_registers pall
[MAX_BANKS
] __initdata
;
1356 static int pall_ents __initdata
;
1358 #ifdef CONFIG_DEBUG_PAGEALLOC
1359 static unsigned long __ref
kernel_map_range(unsigned long pstart
,
1360 unsigned long pend
, pgprot_t prot
)
1362 unsigned long vstart
= PAGE_OFFSET
+ pstart
;
1363 unsigned long vend
= PAGE_OFFSET
+ pend
;
1364 unsigned long alloc_bytes
= 0UL;
1366 if ((vstart
& ~PAGE_MASK
) || (vend
& ~PAGE_MASK
)) {
1367 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1372 while (vstart
< vend
) {
1373 unsigned long this_end
, paddr
= __pa(vstart
);
1374 pgd_t
*pgd
= pgd_offset_k(vstart
);
1379 pud
= pud_offset(pgd
, vstart
);
1380 if (pud_none(*pud
)) {
1383 new = __alloc_bootmem(PAGE_SIZE
, PAGE_SIZE
, PAGE_SIZE
);
1384 alloc_bytes
+= PAGE_SIZE
;
1385 pud_populate(&init_mm
, pud
, new);
1388 pmd
= pmd_offset(pud
, vstart
);
1389 if (!pmd_present(*pmd
)) {
1392 new = __alloc_bootmem(PAGE_SIZE
, PAGE_SIZE
, PAGE_SIZE
);
1393 alloc_bytes
+= PAGE_SIZE
;
1394 pmd_populate_kernel(&init_mm
, pmd
, new);
1397 pte
= pte_offset_kernel(pmd
, vstart
);
1398 this_end
= (vstart
+ PMD_SIZE
) & PMD_MASK
;
1399 if (this_end
> vend
)
1402 while (vstart
< this_end
) {
1403 pte_val(*pte
) = (paddr
| pgprot_val(prot
));
1405 vstart
+= PAGE_SIZE
;
1414 extern unsigned int kvmap_linear_patch
[1];
1415 #endif /* CONFIG_DEBUG_PAGEALLOC */
1417 static void __init
kpte_set_val(unsigned long index
, unsigned long val
)
1419 unsigned long *ptr
= kpte_linear_bitmap
;
1421 val
<<= ((index
% (BITS_PER_LONG
/ 2)) * 2);
1422 ptr
+= (index
/ (BITS_PER_LONG
/ 2));
1427 static const unsigned long kpte_shift_min
= 28; /* 256MB */
1428 static const unsigned long kpte_shift_max
= 34; /* 16GB */
1429 static const unsigned long kpte_shift_incr
= 3;
1431 static unsigned long kpte_mark_using_shift(unsigned long start
, unsigned long end
,
1432 unsigned long shift
)
1434 unsigned long size
= (1UL << shift
);
1435 unsigned long mask
= (size
- 1UL);
1436 unsigned long remains
= end
- start
;
1439 if (remains
< size
|| (start
& mask
))
1444 * shift 28 --> kern_linear_pte_xor index 1
1445 * shift 31 --> kern_linear_pte_xor index 2
1446 * shift 34 --> kern_linear_pte_xor index 3
1448 val
= ((shift
- kpte_shift_min
) / kpte_shift_incr
) + 1;
1451 if (shift
!= kpte_shift_max
)
1455 unsigned long index
= start
>> kpte_shift_min
;
1457 kpte_set_val(index
, val
);
1459 start
+= 1UL << kpte_shift_min
;
1460 remains
-= 1UL << kpte_shift_min
;
1466 static void __init
mark_kpte_bitmap(unsigned long start
, unsigned long end
)
1468 unsigned long smallest_size
, smallest_mask
;
1471 smallest_size
= (1UL << kpte_shift_min
);
1472 smallest_mask
= (smallest_size
- 1UL);
1474 while (start
< end
) {
1475 unsigned long orig_start
= start
;
1477 for (s
= kpte_shift_max
; s
>= kpte_shift_min
; s
-= kpte_shift_incr
) {
1478 start
= kpte_mark_using_shift(start
, end
, s
);
1480 if (start
!= orig_start
)
1484 if (start
== orig_start
)
1485 start
= (start
+ smallest_size
) & ~smallest_mask
;
1489 static void __init
init_kpte_bitmap(void)
1493 for (i
= 0; i
< pall_ents
; i
++) {
1494 unsigned long phys_start
, phys_end
;
1496 phys_start
= pall
[i
].phys_addr
;
1497 phys_end
= phys_start
+ pall
[i
].reg_size
;
1499 mark_kpte_bitmap(phys_start
, phys_end
);
1503 static void __init
kernel_physical_mapping_init(void)
1505 #ifdef CONFIG_DEBUG_PAGEALLOC
1506 unsigned long i
, mem_alloced
= 0UL;
1508 for (i
= 0; i
< pall_ents
; i
++) {
1509 unsigned long phys_start
, phys_end
;
1511 phys_start
= pall
[i
].phys_addr
;
1512 phys_end
= phys_start
+ pall
[i
].reg_size
;
1514 mem_alloced
+= kernel_map_range(phys_start
, phys_end
,
1518 printk("Allocated %ld bytes for kernel page tables.\n",
1521 kvmap_linear_patch
[0] = 0x01000000; /* nop */
1522 flushi(&kvmap_linear_patch
[0]);
1528 #ifdef CONFIG_DEBUG_PAGEALLOC
1529 void kernel_map_pages(struct page
*page
, int numpages
, int enable
)
1531 unsigned long phys_start
= page_to_pfn(page
) << PAGE_SHIFT
;
1532 unsigned long phys_end
= phys_start
+ (numpages
* PAGE_SIZE
);
1534 kernel_map_range(phys_start
, phys_end
,
1535 (enable
? PAGE_KERNEL
: __pgprot(0)));
1537 flush_tsb_kernel_range(PAGE_OFFSET
+ phys_start
,
1538 PAGE_OFFSET
+ phys_end
);
1540 /* we should perform an IPI and flush all tlbs,
1541 * but that can deadlock->flush only current cpu.
1543 __flush_tlb_kernel_range(PAGE_OFFSET
+ phys_start
,
1544 PAGE_OFFSET
+ phys_end
);
1548 unsigned long __init
find_ecache_flush_span(unsigned long size
)
1552 for (i
= 0; i
< pavail_ents
; i
++) {
1553 if (pavail
[i
].reg_size
>= size
)
1554 return pavail
[i
].phys_addr
;
1560 unsigned long PAGE_OFFSET
;
1561 EXPORT_SYMBOL(PAGE_OFFSET
);
1563 static void __init
page_offset_shift_patch_one(unsigned int *insn
, unsigned long phys_bits
)
1565 unsigned long final_shift
;
1566 unsigned int val
= *insn
;
1569 /* We are patching in ilog2(max_supported_phys_address), and
1570 * we are doing so in a manner similar to a relocation addend.
1571 * That is, we are adding the shift value to whatever value
1572 * is in the shift instruction count field already.
1577 /* If we are trying to shift >= 64 bits, clear the destination
1578 * register. This can happen when phys_bits ends up being equal
1579 * to MAX_PHYS_ADDRESS_BITS.
1581 final_shift
= (cnt
+ (64 - phys_bits
));
1582 if (final_shift
>= 64) {
1583 unsigned int rd
= (val
>> 25) & 0x1f;
1585 val
= 0x80100000 | (rd
<< 25);
1591 __asm__
__volatile__("flush %0"
1596 static void __init
page_offset_shift_patch(unsigned long phys_bits
)
1598 extern unsigned int __page_offset_shift_patch
;
1599 extern unsigned int __page_offset_shift_patch_end
;
1602 p
= &__page_offset_shift_patch
;
1603 while (p
< &__page_offset_shift_patch_end
) {
1604 unsigned int *insn
= (unsigned int *)(unsigned long)*p
;
1606 page_offset_shift_patch_one(insn
, phys_bits
);
1612 static void __init
setup_page_offset(void)
1614 unsigned long max_phys_bits
= 40;
1616 if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
1618 } else if (tlb_type
== hypervisor
) {
1619 switch (sun4v_chip_type
) {
1620 case SUN4V_CHIP_NIAGARA1
:
1621 case SUN4V_CHIP_NIAGARA2
:
1624 case SUN4V_CHIP_NIAGARA3
:
1627 case SUN4V_CHIP_NIAGARA4
:
1628 case SUN4V_CHIP_NIAGARA5
:
1629 case SUN4V_CHIP_SPARC64X
:
1636 if (max_phys_bits
> MAX_PHYS_ADDRESS_BITS
) {
1637 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1642 PAGE_OFFSET
= PAGE_OFFSET_BY_BITS(max_phys_bits
);
1644 pr_info("PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1645 PAGE_OFFSET
, max_phys_bits
);
1647 page_offset_shift_patch(max_phys_bits
);
1650 static void __init
tsb_phys_patch(void)
1652 struct tsb_ldquad_phys_patch_entry
*pquad
;
1653 struct tsb_phys_patch_entry
*p
;
1655 pquad
= &__tsb_ldquad_phys_patch
;
1656 while (pquad
< &__tsb_ldquad_phys_patch_end
) {
1657 unsigned long addr
= pquad
->addr
;
1659 if (tlb_type
== hypervisor
)
1660 *(unsigned int *) addr
= pquad
->sun4v_insn
;
1662 *(unsigned int *) addr
= pquad
->sun4u_insn
;
1664 __asm__
__volatile__("flush %0"
1671 p
= &__tsb_phys_patch
;
1672 while (p
< &__tsb_phys_patch_end
) {
1673 unsigned long addr
= p
->addr
;
1675 *(unsigned int *) addr
= p
->insn
;
1677 __asm__
__volatile__("flush %0"
1685 /* Don't mark as init, we give this to the Hypervisor. */
1686 #ifndef CONFIG_DEBUG_PAGEALLOC
1687 #define NUM_KTSB_DESCR 2
1689 #define NUM_KTSB_DESCR 1
1691 static struct hv_tsb_descr ktsb_descr
[NUM_KTSB_DESCR
];
1692 extern struct tsb swapper_tsb
[KERNEL_TSB_NENTRIES
];
1694 static void patch_one_ktsb_phys(unsigned int *start
, unsigned int *end
, unsigned long pa
)
1696 pa
>>= KTSB_PHYS_SHIFT
;
1698 while (start
< end
) {
1699 unsigned int *ia
= (unsigned int *)(unsigned long)*start
;
1701 ia
[0] = (ia
[0] & ~0x3fffff) | (pa
>> 10);
1702 __asm__
__volatile__("flush %0" : : "r" (ia
));
1704 ia
[1] = (ia
[1] & ~0x3ff) | (pa
& 0x3ff);
1705 __asm__
__volatile__("flush %0" : : "r" (ia
+ 1));
1711 static void ktsb_phys_patch(void)
1713 extern unsigned int __swapper_tsb_phys_patch
;
1714 extern unsigned int __swapper_tsb_phys_patch_end
;
1715 unsigned long ktsb_pa
;
1717 ktsb_pa
= kern_base
+ ((unsigned long)&swapper_tsb
[0] - KERNBASE
);
1718 patch_one_ktsb_phys(&__swapper_tsb_phys_patch
,
1719 &__swapper_tsb_phys_patch_end
, ktsb_pa
);
1720 #ifndef CONFIG_DEBUG_PAGEALLOC
1722 extern unsigned int __swapper_4m_tsb_phys_patch
;
1723 extern unsigned int __swapper_4m_tsb_phys_patch_end
;
1724 ktsb_pa
= (kern_base
+
1725 ((unsigned long)&swapper_4m_tsb
[0] - KERNBASE
));
1726 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch
,
1727 &__swapper_4m_tsb_phys_patch_end
, ktsb_pa
);
1732 static void __init
sun4v_ktsb_init(void)
1734 unsigned long ktsb_pa
;
1736 /* First KTSB for PAGE_SIZE mappings. */
1737 ktsb_pa
= kern_base
+ ((unsigned long)&swapper_tsb
[0] - KERNBASE
);
1739 switch (PAGE_SIZE
) {
1742 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_8K
;
1743 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_8K
;
1747 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_64K
;
1748 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_64K
;
1752 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_512K
;
1753 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_512K
;
1756 case 4 * 1024 * 1024:
1757 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_4MB
;
1758 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_4MB
;
1762 ktsb_descr
[0].assoc
= 1;
1763 ktsb_descr
[0].num_ttes
= KERNEL_TSB_NENTRIES
;
1764 ktsb_descr
[0].ctx_idx
= 0;
1765 ktsb_descr
[0].tsb_base
= ktsb_pa
;
1766 ktsb_descr
[0].resv
= 0;
1768 #ifndef CONFIG_DEBUG_PAGEALLOC
1769 /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */
1770 ktsb_pa
= (kern_base
+
1771 ((unsigned long)&swapper_4m_tsb
[0] - KERNBASE
));
1773 ktsb_descr
[1].pgsz_idx
= HV_PGSZ_IDX_4MB
;
1774 ktsb_descr
[1].pgsz_mask
= ((HV_PGSZ_MASK_4MB
|
1775 HV_PGSZ_MASK_256MB
|
1777 HV_PGSZ_MASK_16GB
) &
1779 ktsb_descr
[1].assoc
= 1;
1780 ktsb_descr
[1].num_ttes
= KERNEL_TSB4M_NENTRIES
;
1781 ktsb_descr
[1].ctx_idx
= 0;
1782 ktsb_descr
[1].tsb_base
= ktsb_pa
;
1783 ktsb_descr
[1].resv
= 0;
1787 void sun4v_ktsb_register(void)
1789 unsigned long pa
, ret
;
1791 pa
= kern_base
+ ((unsigned long)&ktsb_descr
[0] - KERNBASE
);
1793 ret
= sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR
, pa
);
1795 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1796 "errors with %lx\n", pa
, ret
);
1801 static void __init
sun4u_linear_pte_xor_finalize(void)
1803 #ifndef CONFIG_DEBUG_PAGEALLOC
1804 /* This is where we would add Panther support for
1805 * 32MB and 256MB pages.
1810 static void __init
sun4v_linear_pte_xor_finalize(void)
1812 #ifndef CONFIG_DEBUG_PAGEALLOC
1813 if (cpu_pgsz_mask
& HV_PGSZ_MASK_256MB
) {
1814 kern_linear_pte_xor
[1] = (_PAGE_VALID
| _PAGE_SZ256MB_4V
) ^
1816 kern_linear_pte_xor
[1] |= (_PAGE_CP_4V
| _PAGE_CV_4V
|
1817 _PAGE_P_4V
| _PAGE_W_4V
);
1819 kern_linear_pte_xor
[1] = kern_linear_pte_xor
[0];
1822 if (cpu_pgsz_mask
& HV_PGSZ_MASK_2GB
) {
1823 kern_linear_pte_xor
[2] = (_PAGE_VALID
| _PAGE_SZ2GB_4V
) ^
1825 kern_linear_pte_xor
[2] |= (_PAGE_CP_4V
| _PAGE_CV_4V
|
1826 _PAGE_P_4V
| _PAGE_W_4V
);
1828 kern_linear_pte_xor
[2] = kern_linear_pte_xor
[1];
1831 if (cpu_pgsz_mask
& HV_PGSZ_MASK_16GB
) {
1832 kern_linear_pte_xor
[3] = (_PAGE_VALID
| _PAGE_SZ16GB_4V
) ^
1834 kern_linear_pte_xor
[3] |= (_PAGE_CP_4V
| _PAGE_CV_4V
|
1835 _PAGE_P_4V
| _PAGE_W_4V
);
1837 kern_linear_pte_xor
[3] = kern_linear_pte_xor
[2];
1842 /* paging_init() sets up the page tables */
1844 static unsigned long last_valid_pfn
;
1845 pgd_t swapper_pg_dir
[PTRS_PER_PGD
];
1847 static void sun4u_pgprot_init(void);
1848 static void sun4v_pgprot_init(void);
1850 void __init
paging_init(void)
1852 unsigned long end_pfn
, shift
, phys_base
;
1853 unsigned long real_end
, i
;
1856 setup_page_offset();
1858 /* These build time checkes make sure that the dcache_dirty_cpu()
1859 * page->flags usage will work.
1861 * When a page gets marked as dcache-dirty, we store the
1862 * cpu number starting at bit 32 in the page->flags. Also,
1863 * functions like clear_dcache_dirty_cpu use the cpu mask
1864 * in 13-bit signed-immediate instruction fields.
1868 * Page flags must not reach into upper 32 bits that are used
1869 * for the cpu number
1871 BUILD_BUG_ON(NR_PAGEFLAGS
> 32);
1874 * The bit fields placed in the high range must not reach below
1875 * the 32 bit boundary. Otherwise we cannot place the cpu field
1876 * at the 32 bit boundary.
1878 BUILD_BUG_ON(SECTIONS_WIDTH
+ NODES_WIDTH
+ ZONES_WIDTH
+
1879 ilog2(roundup_pow_of_two(NR_CPUS
)) > 32);
1881 BUILD_BUG_ON(NR_CPUS
> 4096);
1883 kern_base
= (prom_boot_mapping_phys_low
>> 22UL) << 22UL;
1884 kern_size
= (unsigned long)&_end
- (unsigned long)KERNBASE
;
1886 /* Invalidate both kernel TSBs. */
1887 memset(swapper_tsb
, 0x40, sizeof(swapper_tsb
));
1888 #ifndef CONFIG_DEBUG_PAGEALLOC
1889 memset(swapper_4m_tsb
, 0x40, sizeof(swapper_4m_tsb
));
1892 if (tlb_type
== hypervisor
)
1893 sun4v_pgprot_init();
1895 sun4u_pgprot_init();
1897 if (tlb_type
== cheetah_plus
||
1898 tlb_type
== hypervisor
) {
1903 if (tlb_type
== hypervisor
)
1904 sun4v_patch_tlb_handlers();
1906 /* Find available physical memory...
1908 * Read it twice in order to work around a bug in openfirmware.
1909 * The call to grab this table itself can cause openfirmware to
1910 * allocate memory, which in turn can take away some space from
1911 * the list of available memory. Reading it twice makes sure
1912 * we really do get the final value.
1914 read_obp_translations();
1915 read_obp_memory("reg", &pall
[0], &pall_ents
);
1916 read_obp_memory("available", &pavail
[0], &pavail_ents
);
1917 read_obp_memory("available", &pavail
[0], &pavail_ents
);
1919 phys_base
= 0xffffffffffffffffUL
;
1920 for (i
= 0; i
< pavail_ents
; i
++) {
1921 phys_base
= min(phys_base
, pavail
[i
].phys_addr
);
1922 memblock_add(pavail
[i
].phys_addr
, pavail
[i
].reg_size
);
1925 memblock_reserve(kern_base
, kern_size
);
1927 find_ramdisk(phys_base
);
1929 memblock_enforce_memory_limit(cmdline_memory_size
);
1931 memblock_allow_resize();
1932 memblock_dump_all();
1934 set_bit(0, mmu_context_bmap
);
1936 shift
= kern_base
+ PAGE_OFFSET
- ((unsigned long)KERNBASE
);
1938 real_end
= (unsigned long)_end
;
1939 num_kernel_image_mappings
= DIV_ROUND_UP(real_end
- KERNBASE
, 1 << 22);
1940 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1941 num_kernel_image_mappings
);
1943 /* Set kernel pgd to upper alias so physical page computations
1946 init_mm
.pgd
+= ((shift
) / (sizeof(pgd_t
)));
1948 memset(swapper_low_pmd_dir
, 0, sizeof(swapper_low_pmd_dir
));
1950 /* Now can init the kernel/bad page tables. */
1951 pud_set(pud_offset(&swapper_pg_dir
[0], 0),
1952 swapper_low_pmd_dir
+ (shift
/ sizeof(pgd_t
)));
1954 inherit_prom_mappings();
1958 /* Ok, we can use our TLB miss and window trap handlers safely. */
1963 prom_build_devicetree();
1964 of_populate_present_mask();
1966 of_fill_in_cpu_data();
1969 if (tlb_type
== hypervisor
) {
1971 mdesc_populate_present_mask(cpu_all_mask
);
1973 mdesc_fill_in_cpu_data(cpu_all_mask
);
1975 mdesc_get_page_sizes(cpu_all_mask
, &cpu_pgsz_mask
);
1977 sun4v_linear_pte_xor_finalize();
1980 sun4v_ktsb_register();
1982 unsigned long impl
, ver
;
1984 cpu_pgsz_mask
= (HV_PGSZ_MASK_8K
| HV_PGSZ_MASK_64K
|
1985 HV_PGSZ_MASK_512K
| HV_PGSZ_MASK_4MB
);
1987 __asm__
__volatile__("rdpr %%ver, %0" : "=r" (ver
));
1988 impl
= ((ver
>> 32) & 0xffff);
1989 if (impl
== PANTHER_IMPL
)
1990 cpu_pgsz_mask
|= (HV_PGSZ_MASK_32MB
|
1991 HV_PGSZ_MASK_256MB
);
1993 sun4u_linear_pte_xor_finalize();
1996 /* Flush the TLBs and the 4M TSB so that the updated linear
1997 * pte XOR settings are realized for all mappings.
2000 #ifndef CONFIG_DEBUG_PAGEALLOC
2001 memset(swapper_4m_tsb
, 0x40, sizeof(swapper_4m_tsb
));
2005 /* Setup bootmem... */
2006 last_valid_pfn
= end_pfn
= bootmem_init(phys_base
);
2008 /* Once the OF device tree and MDESC have been setup, we know
2009 * the list of possible cpus. Therefore we can allocate the
2012 for_each_possible_cpu(i
) {
2013 node
= cpu_to_node(i
);
2015 softirq_stack
[i
] = __alloc_bootmem_node(NODE_DATA(node
),
2018 hardirq_stack
[i
] = __alloc_bootmem_node(NODE_DATA(node
),
2023 kernel_physical_mapping_init();
2026 unsigned long max_zone_pfns
[MAX_NR_ZONES
];
2028 memset(max_zone_pfns
, 0, sizeof(max_zone_pfns
));
2030 max_zone_pfns
[ZONE_NORMAL
] = end_pfn
;
2032 free_area_init_nodes(max_zone_pfns
);
2035 printk("Booting Linux...\n");
2038 int page_in_phys_avail(unsigned long paddr
)
2044 for (i
= 0; i
< pavail_ents
; i
++) {
2045 unsigned long start
, end
;
2047 start
= pavail
[i
].phys_addr
;
2048 end
= start
+ pavail
[i
].reg_size
;
2050 if (paddr
>= start
&& paddr
< end
)
2053 if (paddr
>= kern_base
&& paddr
< (kern_base
+ kern_size
))
2055 #ifdef CONFIG_BLK_DEV_INITRD
2056 if (paddr
>= __pa(initrd_start
) &&
2057 paddr
< __pa(PAGE_ALIGN(initrd_end
)))
2064 static struct linux_prom64_registers pavail_rescan
[MAX_BANKS
] __initdata
;
2065 static int pavail_rescan_ents __initdata
;
2067 /* Certain OBP calls, such as fetching "available" properties, can
2068 * claim physical memory. So, along with initializing the valid
2069 * address bitmap, what we do here is refetch the physical available
2070 * memory list again, and make sure it provides at least as much
2071 * memory as 'pavail' does.
2073 static void __init
setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap
)
2077 read_obp_memory("available", &pavail_rescan
[0], &pavail_rescan_ents
);
2079 for (i
= 0; i
< pavail_ents
; i
++) {
2080 unsigned long old_start
, old_end
;
2082 old_start
= pavail
[i
].phys_addr
;
2083 old_end
= old_start
+ pavail
[i
].reg_size
;
2084 while (old_start
< old_end
) {
2087 for (n
= 0; n
< pavail_rescan_ents
; n
++) {
2088 unsigned long new_start
, new_end
;
2090 new_start
= pavail_rescan
[n
].phys_addr
;
2091 new_end
= new_start
+
2092 pavail_rescan
[n
].reg_size
;
2094 if (new_start
<= old_start
&&
2095 new_end
>= (old_start
+ PAGE_SIZE
)) {
2096 set_bit(old_start
>> 22, bitmap
);
2101 prom_printf("mem_init: Lost memory in pavail\n");
2102 prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
2103 pavail
[i
].phys_addr
,
2104 pavail
[i
].reg_size
);
2105 prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
2106 pavail_rescan
[i
].phys_addr
,
2107 pavail_rescan
[i
].reg_size
);
2108 prom_printf("mem_init: Cannot continue, aborting.\n");
2112 old_start
+= PAGE_SIZE
;
2117 static void __init
patch_tlb_miss_handler_bitmap(void)
2119 extern unsigned int valid_addr_bitmap_insn
[];
2120 extern unsigned int valid_addr_bitmap_patch
[];
2122 valid_addr_bitmap_insn
[1] = valid_addr_bitmap_patch
[1];
2124 valid_addr_bitmap_insn
[0] = valid_addr_bitmap_patch
[0];
2125 flushi(&valid_addr_bitmap_insn
[0]);
2128 static void __init
register_page_bootmem_info(void)
2130 #ifdef CONFIG_NEED_MULTIPLE_NODES
2133 for_each_online_node(i
)
2134 if (NODE_DATA(i
)->node_spanned_pages
)
2135 register_page_bootmem_info_node(NODE_DATA(i
));
2138 void __init
mem_init(void)
2140 unsigned long addr
, last
;
2142 addr
= PAGE_OFFSET
+ kern_base
;
2143 last
= PAGE_ALIGN(kern_size
) + addr
;
2144 while (addr
< last
) {
2145 set_bit(__pa(addr
) >> 22, sparc64_valid_addr_bitmap
);
2149 setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap
);
2150 patch_tlb_miss_handler_bitmap();
2152 high_memory
= __va(last_valid_pfn
<< PAGE_SHIFT
);
2154 register_page_bootmem_info();
2158 * Set up the zero page, mark it reserved, so that page count
2159 * is not manipulated when freeing the page from user ptes.
2161 mem_map_zero
= alloc_pages(GFP_KERNEL
|__GFP_ZERO
, 0);
2162 if (mem_map_zero
== NULL
) {
2163 prom_printf("paging_init: Cannot alloc zero page.\n");
2166 mark_page_reserved(mem_map_zero
);
2168 mem_init_print_info(NULL
);
2170 if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
)
2171 cheetah_ecache_flush_init();
2174 void free_initmem(void)
2176 unsigned long addr
, initend
;
2179 /* If the physical memory maps were trimmed by kernel command
2180 * line options, don't even try freeing this initmem stuff up.
2181 * The kernel image could have been in the trimmed out region
2182 * and if so the freeing below will free invalid page structs.
2184 if (cmdline_memory_size
)
2188 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2190 addr
= PAGE_ALIGN((unsigned long)(__init_begin
));
2191 initend
= (unsigned long)(__init_end
) & PAGE_MASK
;
2192 for (; addr
< initend
; addr
+= PAGE_SIZE
) {
2196 ((unsigned long) __va(kern_base
)) -
2197 ((unsigned long) KERNBASE
));
2198 memset((void *)addr
, POISON_FREE_INITMEM
, PAGE_SIZE
);
2201 free_reserved_page(virt_to_page(page
));
2205 #ifdef CONFIG_BLK_DEV_INITRD
2206 void free_initrd_mem(unsigned long start
, unsigned long end
)
2208 free_reserved_area((void *)start
, (void *)end
, POISON_FREE_INITMEM
,
2213 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2214 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2215 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2216 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2217 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2218 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2220 pgprot_t PAGE_KERNEL __read_mostly
;
2221 EXPORT_SYMBOL(PAGE_KERNEL
);
2223 pgprot_t PAGE_KERNEL_LOCKED __read_mostly
;
2224 pgprot_t PAGE_COPY __read_mostly
;
2226 pgprot_t PAGE_SHARED __read_mostly
;
2227 EXPORT_SYMBOL(PAGE_SHARED
);
2229 unsigned long pg_iobits __read_mostly
;
2231 unsigned long _PAGE_IE __read_mostly
;
2232 EXPORT_SYMBOL(_PAGE_IE
);
2234 unsigned long _PAGE_E __read_mostly
;
2235 EXPORT_SYMBOL(_PAGE_E
);
2237 unsigned long _PAGE_CACHE __read_mostly
;
2238 EXPORT_SYMBOL(_PAGE_CACHE
);
2240 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2241 unsigned long vmemmap_table
[VMEMMAP_SIZE
];
2243 static long __meminitdata addr_start
, addr_end
;
2244 static int __meminitdata node_start
;
2246 int __meminit
vmemmap_populate(unsigned long vstart
, unsigned long vend
,
2249 unsigned long phys_start
= (vstart
- VMEMMAP_BASE
);
2250 unsigned long phys_end
= (vend
- VMEMMAP_BASE
);
2251 unsigned long addr
= phys_start
& VMEMMAP_CHUNK_MASK
;
2252 unsigned long end
= VMEMMAP_ALIGN(phys_end
);
2253 unsigned long pte_base
;
2255 pte_base
= (_PAGE_VALID
| _PAGE_SZ4MB_4U
|
2256 _PAGE_CP_4U
| _PAGE_CV_4U
|
2257 _PAGE_P_4U
| _PAGE_W_4U
);
2258 if (tlb_type
== hypervisor
)
2259 pte_base
= (_PAGE_VALID
| _PAGE_SZ4MB_4V
|
2260 _PAGE_CP_4V
| _PAGE_CV_4V
|
2261 _PAGE_P_4V
| _PAGE_W_4V
);
2263 for (; addr
< end
; addr
+= VMEMMAP_CHUNK
) {
2264 unsigned long *vmem_pp
=
2265 vmemmap_table
+ (addr
>> VMEMMAP_CHUNK_SHIFT
);
2268 if (!(*vmem_pp
& _PAGE_VALID
)) {
2269 block
= vmemmap_alloc_block(1UL << 22, node
);
2273 *vmem_pp
= pte_base
| __pa(block
);
2275 /* check to see if we have contiguous blocks */
2276 if (addr_end
!= addr
|| node_start
!= node
) {
2278 printk(KERN_DEBUG
" [%lx-%lx] on node %d\n",
2279 addr_start
, addr_end
-1, node_start
);
2283 addr_end
= addr
+ VMEMMAP_CHUNK
;
2289 void __meminit
vmemmap_populate_print_last(void)
2292 printk(KERN_DEBUG
" [%lx-%lx] on node %d\n",
2293 addr_start
, addr_end
-1, node_start
);
2300 void vmemmap_free(unsigned long start
, unsigned long end
)
2304 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2306 static void prot_init_common(unsigned long page_none
,
2307 unsigned long page_shared
,
2308 unsigned long page_copy
,
2309 unsigned long page_readonly
,
2310 unsigned long page_exec_bit
)
2312 PAGE_COPY
= __pgprot(page_copy
);
2313 PAGE_SHARED
= __pgprot(page_shared
);
2315 protection_map
[0x0] = __pgprot(page_none
);
2316 protection_map
[0x1] = __pgprot(page_readonly
& ~page_exec_bit
);
2317 protection_map
[0x2] = __pgprot(page_copy
& ~page_exec_bit
);
2318 protection_map
[0x3] = __pgprot(page_copy
& ~page_exec_bit
);
2319 protection_map
[0x4] = __pgprot(page_readonly
);
2320 protection_map
[0x5] = __pgprot(page_readonly
);
2321 protection_map
[0x6] = __pgprot(page_copy
);
2322 protection_map
[0x7] = __pgprot(page_copy
);
2323 protection_map
[0x8] = __pgprot(page_none
);
2324 protection_map
[0x9] = __pgprot(page_readonly
& ~page_exec_bit
);
2325 protection_map
[0xa] = __pgprot(page_shared
& ~page_exec_bit
);
2326 protection_map
[0xb] = __pgprot(page_shared
& ~page_exec_bit
);
2327 protection_map
[0xc] = __pgprot(page_readonly
);
2328 protection_map
[0xd] = __pgprot(page_readonly
);
2329 protection_map
[0xe] = __pgprot(page_shared
);
2330 protection_map
[0xf] = __pgprot(page_shared
);
2333 static void __init
sun4u_pgprot_init(void)
2335 unsigned long page_none
, page_shared
, page_copy
, page_readonly
;
2336 unsigned long page_exec_bit
;
2339 PAGE_KERNEL
= __pgprot (_PAGE_PRESENT_4U
| _PAGE_VALID
|
2340 _PAGE_CACHE_4U
| _PAGE_P_4U
|
2341 __ACCESS_BITS_4U
| __DIRTY_BITS_4U
|
2343 PAGE_KERNEL_LOCKED
= __pgprot (_PAGE_PRESENT_4U
| _PAGE_VALID
|
2344 _PAGE_CACHE_4U
| _PAGE_P_4U
|
2345 __ACCESS_BITS_4U
| __DIRTY_BITS_4U
|
2346 _PAGE_EXEC_4U
| _PAGE_L_4U
);
2348 _PAGE_IE
= _PAGE_IE_4U
;
2349 _PAGE_E
= _PAGE_E_4U
;
2350 _PAGE_CACHE
= _PAGE_CACHE_4U
;
2352 pg_iobits
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| __DIRTY_BITS_4U
|
2353 __ACCESS_BITS_4U
| _PAGE_E_4U
);
2355 #ifdef CONFIG_DEBUG_PAGEALLOC
2356 kern_linear_pte_xor
[0] = _PAGE_VALID
^ PAGE_OFFSET
;
2358 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZ4MB_4U
) ^
2361 kern_linear_pte_xor
[0] |= (_PAGE_CP_4U
| _PAGE_CV_4U
|
2362 _PAGE_P_4U
| _PAGE_W_4U
);
2364 for (i
= 1; i
< 4; i
++)
2365 kern_linear_pte_xor
[i
] = kern_linear_pte_xor
[0];
2367 _PAGE_ALL_SZ_BITS
= (_PAGE_SZ4MB_4U
| _PAGE_SZ512K_4U
|
2368 _PAGE_SZ64K_4U
| _PAGE_SZ8K_4U
|
2369 _PAGE_SZ32MB_4U
| _PAGE_SZ256MB_4U
);
2372 page_none
= _PAGE_PRESENT_4U
| _PAGE_ACCESSED_4U
| _PAGE_CACHE_4U
;
2373 page_shared
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2374 __ACCESS_BITS_4U
| _PAGE_WRITE_4U
| _PAGE_EXEC_4U
);
2375 page_copy
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2376 __ACCESS_BITS_4U
| _PAGE_EXEC_4U
);
2377 page_readonly
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2378 __ACCESS_BITS_4U
| _PAGE_EXEC_4U
);
2380 page_exec_bit
= _PAGE_EXEC_4U
;
2382 prot_init_common(page_none
, page_shared
, page_copy
, page_readonly
,
2386 static void __init
sun4v_pgprot_init(void)
2388 unsigned long page_none
, page_shared
, page_copy
, page_readonly
;
2389 unsigned long page_exec_bit
;
2392 PAGE_KERNEL
= __pgprot (_PAGE_PRESENT_4V
| _PAGE_VALID
|
2393 _PAGE_CACHE_4V
| _PAGE_P_4V
|
2394 __ACCESS_BITS_4V
| __DIRTY_BITS_4V
|
2396 PAGE_KERNEL_LOCKED
= PAGE_KERNEL
;
2398 _PAGE_IE
= _PAGE_IE_4V
;
2399 _PAGE_E
= _PAGE_E_4V
;
2400 _PAGE_CACHE
= _PAGE_CACHE_4V
;
2402 #ifdef CONFIG_DEBUG_PAGEALLOC
2403 kern_linear_pte_xor
[0] = _PAGE_VALID
^ PAGE_OFFSET
;
2405 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZ4MB_4V
) ^
2408 kern_linear_pte_xor
[0] |= (_PAGE_CP_4V
| _PAGE_CV_4V
|
2409 _PAGE_P_4V
| _PAGE_W_4V
);
2411 for (i
= 1; i
< 4; i
++)
2412 kern_linear_pte_xor
[i
] = kern_linear_pte_xor
[0];
2414 pg_iobits
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| __DIRTY_BITS_4V
|
2415 __ACCESS_BITS_4V
| _PAGE_E_4V
);
2417 _PAGE_ALL_SZ_BITS
= (_PAGE_SZ16GB_4V
| _PAGE_SZ2GB_4V
|
2418 _PAGE_SZ256MB_4V
| _PAGE_SZ32MB_4V
|
2419 _PAGE_SZ4MB_4V
| _PAGE_SZ512K_4V
|
2420 _PAGE_SZ64K_4V
| _PAGE_SZ8K_4V
);
2422 page_none
= _PAGE_PRESENT_4V
| _PAGE_ACCESSED_4V
| _PAGE_CACHE_4V
;
2423 page_shared
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| _PAGE_CACHE_4V
|
2424 __ACCESS_BITS_4V
| _PAGE_WRITE_4V
| _PAGE_EXEC_4V
);
2425 page_copy
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| _PAGE_CACHE_4V
|
2426 __ACCESS_BITS_4V
| _PAGE_EXEC_4V
);
2427 page_readonly
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| _PAGE_CACHE_4V
|
2428 __ACCESS_BITS_4V
| _PAGE_EXEC_4V
);
2430 page_exec_bit
= _PAGE_EXEC_4V
;
2432 prot_init_common(page_none
, page_shared
, page_copy
, page_readonly
,
2436 unsigned long pte_sz_bits(unsigned long sz
)
2438 if (tlb_type
== hypervisor
) {
2442 return _PAGE_SZ8K_4V
;
2444 return _PAGE_SZ64K_4V
;
2446 return _PAGE_SZ512K_4V
;
2447 case 4 * 1024 * 1024:
2448 return _PAGE_SZ4MB_4V
;
2454 return _PAGE_SZ8K_4U
;
2456 return _PAGE_SZ64K_4U
;
2458 return _PAGE_SZ512K_4U
;
2459 case 4 * 1024 * 1024:
2460 return _PAGE_SZ4MB_4U
;
2465 pte_t
mk_pte_io(unsigned long page
, pgprot_t prot
, int space
, unsigned long page_size
)
2469 pte_val(pte
) = page
| pgprot_val(pgprot_noncached(prot
));
2470 pte_val(pte
) |= (((unsigned long)space
) << 32);
2471 pte_val(pte
) |= pte_sz_bits(page_size
);
2476 static unsigned long kern_large_tte(unsigned long paddr
)
2480 val
= (_PAGE_VALID
| _PAGE_SZ4MB_4U
|
2481 _PAGE_CP_4U
| _PAGE_CV_4U
| _PAGE_P_4U
|
2482 _PAGE_EXEC_4U
| _PAGE_L_4U
| _PAGE_W_4U
);
2483 if (tlb_type
== hypervisor
)
2484 val
= (_PAGE_VALID
| _PAGE_SZ4MB_4V
|
2485 _PAGE_CP_4V
| _PAGE_CV_4V
| _PAGE_P_4V
|
2486 _PAGE_EXEC_4V
| _PAGE_W_4V
);
2491 /* If not locked, zap it. */
2492 void __flush_tlb_all(void)
2494 unsigned long pstate
;
2497 __asm__
__volatile__("flushw\n\t"
2498 "rdpr %%pstate, %0\n\t"
2499 "wrpr %0, %1, %%pstate"
2502 if (tlb_type
== hypervisor
) {
2503 sun4v_mmu_demap_all();
2504 } else if (tlb_type
== spitfire
) {
2505 for (i
= 0; i
< 64; i
++) {
2506 /* Spitfire Errata #32 workaround */
2507 /* NOTE: Always runs on spitfire, so no
2508 * cheetah+ page size encodings.
2510 __asm__
__volatile__("stxa %0, [%1] %2\n\t"
2514 "r" (PRIMARY_CONTEXT
), "i" (ASI_DMMU
));
2516 if (!(spitfire_get_dtlb_data(i
) & _PAGE_L_4U
)) {
2517 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
2520 : "r" (TLB_TAG_ACCESS
), "i" (ASI_DMMU
));
2521 spitfire_put_dtlb_data(i
, 0x0UL
);
2524 /* Spitfire Errata #32 workaround */
2525 /* NOTE: Always runs on spitfire, so no
2526 * cheetah+ page size encodings.
2528 __asm__
__volatile__("stxa %0, [%1] %2\n\t"
2532 "r" (PRIMARY_CONTEXT
), "i" (ASI_DMMU
));
2534 if (!(spitfire_get_itlb_data(i
) & _PAGE_L_4U
)) {
2535 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
2538 : "r" (TLB_TAG_ACCESS
), "i" (ASI_IMMU
));
2539 spitfire_put_itlb_data(i
, 0x0UL
);
2542 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
2543 cheetah_flush_dtlb_all();
2544 cheetah_flush_itlb_all();
2546 __asm__
__volatile__("wrpr %0, 0, %%pstate"
2550 pte_t
*pte_alloc_one_kernel(struct mm_struct
*mm
,
2551 unsigned long address
)
2553 struct page
*page
= alloc_page(GFP_KERNEL
| __GFP_NOTRACK
|
2554 __GFP_REPEAT
| __GFP_ZERO
);
2558 pte
= (pte_t
*) page_address(page
);
2563 pgtable_t
pte_alloc_one(struct mm_struct
*mm
,
2564 unsigned long address
)
2566 struct page
*page
= alloc_page(GFP_KERNEL
| __GFP_NOTRACK
|
2567 __GFP_REPEAT
| __GFP_ZERO
);
2572 if (!pgtable_page_ctor(page
)) {
2573 free_hot_cold_page(page
, 0);
2576 return (pte_t
*) page_address(page
);
2579 void pte_free_kernel(struct mm_struct
*mm
, pte_t
*pte
)
2581 free_page((unsigned long)pte
);
2584 static void __pte_free(pgtable_t pte
)
2586 struct page
*page
= virt_to_page(pte
);
2588 pgtable_page_dtor(page
);
2592 void pte_free(struct mm_struct
*mm
, pgtable_t pte
)
2597 void pgtable_free(void *table
, bool is_page
)
2602 kmem_cache_free(pgtable_cache
, table
);
2605 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2606 void update_mmu_cache_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
2609 unsigned long pte
, flags
;
2610 struct mm_struct
*mm
;
2613 if (!pmd_large(entry
) || !pmd_young(entry
))
2616 pte
= pmd_val(entry
);
2618 /* We are fabricating 8MB pages using 4MB real hw pages. */
2619 pte
|= (addr
& (1UL << REAL_HPAGE_SHIFT
));
2623 spin_lock_irqsave(&mm
->context
.lock
, flags
);
2625 if (mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb
!= NULL
)
2626 __update_mmu_tsb_insert(mm
, MM_TSB_HUGE
, REAL_HPAGE_SHIFT
,
2629 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
2631 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2633 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2634 static void context_reload(void *__data
)
2636 struct mm_struct
*mm
= __data
;
2638 if (mm
== current
->mm
)
2639 load_secondary_context(mm
);
2642 void hugetlb_setup(struct pt_regs
*regs
)
2644 struct mm_struct
*mm
= current
->mm
;
2645 struct tsb_config
*tp
;
2647 if (in_atomic() || !mm
) {
2648 const struct exception_table_entry
*entry
;
2650 entry
= search_exception_tables(regs
->tpc
);
2652 regs
->tpc
= entry
->fixup
;
2653 regs
->tnpc
= regs
->tpc
+ 4;
2656 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2657 die_if_kernel("HugeTSB in atomic", regs
);
2660 tp
= &mm
->context
.tsb_block
[MM_TSB_HUGE
];
2661 if (likely(tp
->tsb
== NULL
))
2662 tsb_grow(mm
, MM_TSB_HUGE
, 0);
2664 tsb_context_switch(mm
);
2667 /* On UltraSPARC-III+ and later, configure the second half of
2668 * the Data-TLB for huge pages.
2670 if (tlb_type
== cheetah_plus
) {
2673 spin_lock(&ctx_alloc_lock
);
2674 ctx
= mm
->context
.sparc64_ctx_val
;
2675 ctx
&= ~CTX_PGSZ_MASK
;
2676 ctx
|= CTX_PGSZ_BASE
<< CTX_PGSZ0_SHIFT
;
2677 ctx
|= CTX_PGSZ_HUGE
<< CTX_PGSZ1_SHIFT
;
2679 if (ctx
!= mm
->context
.sparc64_ctx_val
) {
2680 /* When changing the page size fields, we
2681 * must perform a context flush so that no
2682 * stale entries match. This flush must
2683 * occur with the original context register
2686 do_flush_tlb_mm(mm
);
2688 /* Reload the context register of all processors
2689 * also executing in this address space.
2691 mm
->context
.sparc64_ctx_val
= ctx
;
2692 on_each_cpu(context_reload
, mm
, 0);
2694 spin_unlock(&ctx_alloc_lock
);