Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
[linux-2.6.git] / kernel / cgroup.c
blob0e0b20b8c5db172e8dc07fe4de10358c19939d60
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/init_task.h>
34 #include <linux/kernel.h>
35 #include <linux/list.h>
36 #include <linux/mm.h>
37 #include <linux/mutex.h>
38 #include <linux/mount.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/rcupdate.h>
42 #include <linux/sched.h>
43 #include <linux/backing-dev.h>
44 #include <linux/seq_file.h>
45 #include <linux/slab.h>
46 #include <linux/magic.h>
47 #include <linux/spinlock.h>
48 #include <linux/string.h>
49 #include <linux/sort.h>
50 #include <linux/kmod.h>
51 #include <linux/module.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/namei.h>
56 #include <linux/pid_namespace.h>
57 #include <linux/idr.h>
58 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
59 #include <linux/eventfd.h>
60 #include <linux/poll.h>
61 #include <linux/flex_array.h> /* used in cgroup_attach_task */
62 #include <linux/kthread.h>
64 #include <linux/atomic.h>
67 * cgroup_mutex is the master lock. Any modification to cgroup or its
68 * hierarchy must be performed while holding it.
70 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72 * release_agent_path and so on. Modifying requires both cgroup_mutex and
73 * cgroup_root_mutex. Readers can acquire either of the two. This is to
74 * break the following locking order cycle.
76 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77 * B. namespace_sem -> cgroup_mutex
79 * B happens only through cgroup_show_options() and using cgroup_root_mutex
80 * breaks it.
82 #ifdef CONFIG_PROVE_RCU
83 DEFINE_MUTEX(cgroup_mutex);
84 EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for task_subsys_state_check() */
85 #else
86 static DEFINE_MUTEX(cgroup_mutex);
87 #endif
89 static DEFINE_MUTEX(cgroup_root_mutex);
92 * Generate an array of cgroup subsystem pointers. At boot time, this is
93 * populated with the built in subsystems, and modular subsystems are
94 * registered after that. The mutable section of this array is protected by
95 * cgroup_mutex.
97 #define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
98 #define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
99 static struct cgroup_subsys *cgroup_subsys[CGROUP_SUBSYS_COUNT] = {
100 #include <linux/cgroup_subsys.h>
104 * The dummy hierarchy, reserved for the subsystems that are otherwise
105 * unattached - it never has more than a single cgroup, and all tasks are
106 * part of that cgroup.
108 static struct cgroupfs_root cgroup_dummy_root;
110 /* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
111 static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
114 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
116 struct cfent {
117 struct list_head node;
118 struct dentry *dentry;
119 struct cftype *type;
121 /* file xattrs */
122 struct simple_xattrs xattrs;
126 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
127 * cgroup_subsys->use_id != 0.
129 #define CSS_ID_MAX (65535)
130 struct css_id {
132 * The css to which this ID points. This pointer is set to valid value
133 * after cgroup is populated. If cgroup is removed, this will be NULL.
134 * This pointer is expected to be RCU-safe because destroy()
135 * is called after synchronize_rcu(). But for safe use, css_tryget()
136 * should be used for avoiding race.
138 struct cgroup_subsys_state __rcu *css;
140 * ID of this css.
142 unsigned short id;
144 * Depth in hierarchy which this ID belongs to.
146 unsigned short depth;
148 * ID is freed by RCU. (and lookup routine is RCU safe.)
150 struct rcu_head rcu_head;
152 * Hierarchy of CSS ID belongs to.
154 unsigned short stack[0]; /* Array of Length (depth+1) */
158 * cgroup_event represents events which userspace want to receive.
160 struct cgroup_event {
162 * Cgroup which the event belongs to.
164 struct cgroup *cgrp;
166 * Control file which the event associated.
168 struct cftype *cft;
170 * eventfd to signal userspace about the event.
172 struct eventfd_ctx *eventfd;
174 * Each of these stored in a list by the cgroup.
176 struct list_head list;
178 * All fields below needed to unregister event when
179 * userspace closes eventfd.
181 poll_table pt;
182 wait_queue_head_t *wqh;
183 wait_queue_t wait;
184 struct work_struct remove;
187 /* The list of hierarchy roots */
189 static LIST_HEAD(cgroup_roots);
190 static int cgroup_root_count;
193 * Hierarchy ID allocation and mapping. It follows the same exclusion
194 * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
195 * writes, either for reads.
197 static DEFINE_IDR(cgroup_hierarchy_idr);
199 static struct cgroup_name root_cgroup_name = { .name = "/" };
202 * Assign a monotonically increasing serial number to cgroups. It
203 * guarantees cgroups with bigger numbers are newer than those with smaller
204 * numbers. Also, as cgroups are always appended to the parent's
205 * ->children list, it guarantees that sibling cgroups are always sorted in
206 * the ascending serial number order on the list. Protected by
207 * cgroup_mutex.
209 static u64 cgroup_serial_nr_next = 1;
211 /* This flag indicates whether tasks in the fork and exit paths should
212 * check for fork/exit handlers to call. This avoids us having to do
213 * extra work in the fork/exit path if none of the subsystems need to
214 * be called.
216 static int need_forkexit_callback __read_mostly;
218 static void cgroup_offline_fn(struct work_struct *work);
219 static int cgroup_destroy_locked(struct cgroup *cgrp);
220 static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
221 struct cftype cfts[], bool is_add);
223 /* convenient tests for these bits */
224 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
226 return test_bit(CGRP_DEAD, &cgrp->flags);
230 * cgroup_is_descendant - test ancestry
231 * @cgrp: the cgroup to be tested
232 * @ancestor: possible ancestor of @cgrp
234 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
235 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
236 * and @ancestor are accessible.
238 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
240 while (cgrp) {
241 if (cgrp == ancestor)
242 return true;
243 cgrp = cgrp->parent;
245 return false;
247 EXPORT_SYMBOL_GPL(cgroup_is_descendant);
249 static int cgroup_is_releasable(const struct cgroup *cgrp)
251 const int bits =
252 (1 << CGRP_RELEASABLE) |
253 (1 << CGRP_NOTIFY_ON_RELEASE);
254 return (cgrp->flags & bits) == bits;
257 static int notify_on_release(const struct cgroup *cgrp)
259 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
263 * for_each_subsys - iterate all loaded cgroup subsystems
264 * @ss: the iteration cursor
265 * @i: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
267 * Should be called under cgroup_mutex.
269 #define for_each_subsys(ss, i) \
270 for ((i) = 0; (i) < CGROUP_SUBSYS_COUNT; (i)++) \
271 if (({ lockdep_assert_held(&cgroup_mutex); \
272 !((ss) = cgroup_subsys[i]); })) { } \
273 else
276 * for_each_builtin_subsys - iterate all built-in cgroup subsystems
277 * @ss: the iteration cursor
278 * @i: the index of @ss, CGROUP_BUILTIN_SUBSYS_COUNT after reaching the end
280 * Bulit-in subsystems are always present and iteration itself doesn't
281 * require any synchronization.
283 #define for_each_builtin_subsys(ss, i) \
284 for ((i) = 0; (i) < CGROUP_BUILTIN_SUBSYS_COUNT && \
285 (((ss) = cgroup_subsys[i]) || true); (i)++)
287 /* iterate each subsystem attached to a hierarchy */
288 #define for_each_root_subsys(root, ss) \
289 list_for_each_entry((ss), &(root)->subsys_list, sibling)
291 /* iterate across the active hierarchies */
292 #define for_each_active_root(root) \
293 list_for_each_entry((root), &cgroup_roots, root_list)
295 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
297 return dentry->d_fsdata;
300 static inline struct cfent *__d_cfe(struct dentry *dentry)
302 return dentry->d_fsdata;
305 static inline struct cftype *__d_cft(struct dentry *dentry)
307 return __d_cfe(dentry)->type;
311 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
312 * @cgrp: the cgroup to be checked for liveness
314 * On success, returns true; the mutex should be later unlocked. On
315 * failure returns false with no lock held.
317 static bool cgroup_lock_live_group(struct cgroup *cgrp)
319 mutex_lock(&cgroup_mutex);
320 if (cgroup_is_dead(cgrp)) {
321 mutex_unlock(&cgroup_mutex);
322 return false;
324 return true;
327 /* the list of cgroups eligible for automatic release. Protected by
328 * release_list_lock */
329 static LIST_HEAD(release_list);
330 static DEFINE_RAW_SPINLOCK(release_list_lock);
331 static void cgroup_release_agent(struct work_struct *work);
332 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
333 static void check_for_release(struct cgroup *cgrp);
336 * A cgroup can be associated with multiple css_sets as different tasks may
337 * belong to different cgroups on different hierarchies. In the other
338 * direction, a css_set is naturally associated with multiple cgroups.
339 * This M:N relationship is represented by the following link structure
340 * which exists for each association and allows traversing the associations
341 * from both sides.
343 struct cgrp_cset_link {
344 /* the cgroup and css_set this link associates */
345 struct cgroup *cgrp;
346 struct css_set *cset;
348 /* list of cgrp_cset_links anchored at cgrp->cset_links */
349 struct list_head cset_link;
351 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
352 struct list_head cgrp_link;
355 /* The default css_set - used by init and its children prior to any
356 * hierarchies being mounted. It contains a pointer to the root state
357 * for each subsystem. Also used to anchor the list of css_sets. Not
358 * reference-counted, to improve performance when child cgroups
359 * haven't been created.
362 static struct css_set init_css_set;
363 static struct cgrp_cset_link init_cgrp_cset_link;
365 static int cgroup_init_idr(struct cgroup_subsys *ss,
366 struct cgroup_subsys_state *css);
368 /* css_set_lock protects the list of css_set objects, and the
369 * chain of tasks off each css_set. Nests outside task->alloc_lock
370 * due to cgroup_iter_start() */
371 static DEFINE_RWLOCK(css_set_lock);
372 static int css_set_count;
375 * hash table for cgroup groups. This improves the performance to find
376 * an existing css_set. This hash doesn't (currently) take into
377 * account cgroups in empty hierarchies.
379 #define CSS_SET_HASH_BITS 7
380 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
382 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
384 unsigned long key = 0UL;
385 struct cgroup_subsys *ss;
386 int i;
388 for_each_subsys(ss, i)
389 key += (unsigned long)css[i];
390 key = (key >> 16) ^ key;
392 return key;
395 /* We don't maintain the lists running through each css_set to its
396 * task until after the first call to cgroup_iter_start(). This
397 * reduces the fork()/exit() overhead for people who have cgroups
398 * compiled into their kernel but not actually in use */
399 static int use_task_css_set_links __read_mostly;
401 static void __put_css_set(struct css_set *cset, int taskexit)
403 struct cgrp_cset_link *link, *tmp_link;
406 * Ensure that the refcount doesn't hit zero while any readers
407 * can see it. Similar to atomic_dec_and_lock(), but for an
408 * rwlock
410 if (atomic_add_unless(&cset->refcount, -1, 1))
411 return;
412 write_lock(&css_set_lock);
413 if (!atomic_dec_and_test(&cset->refcount)) {
414 write_unlock(&css_set_lock);
415 return;
418 /* This css_set is dead. unlink it and release cgroup refcounts */
419 hash_del(&cset->hlist);
420 css_set_count--;
422 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
423 struct cgroup *cgrp = link->cgrp;
425 list_del(&link->cset_link);
426 list_del(&link->cgrp_link);
428 /* @cgrp can't go away while we're holding css_set_lock */
429 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
430 if (taskexit)
431 set_bit(CGRP_RELEASABLE, &cgrp->flags);
432 check_for_release(cgrp);
435 kfree(link);
438 write_unlock(&css_set_lock);
439 kfree_rcu(cset, rcu_head);
443 * refcounted get/put for css_set objects
445 static inline void get_css_set(struct css_set *cset)
447 atomic_inc(&cset->refcount);
450 static inline void put_css_set(struct css_set *cset)
452 __put_css_set(cset, 0);
455 static inline void put_css_set_taskexit(struct css_set *cset)
457 __put_css_set(cset, 1);
461 * compare_css_sets - helper function for find_existing_css_set().
462 * @cset: candidate css_set being tested
463 * @old_cset: existing css_set for a task
464 * @new_cgrp: cgroup that's being entered by the task
465 * @template: desired set of css pointers in css_set (pre-calculated)
467 * Returns true if "cg" matches "old_cg" except for the hierarchy
468 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
470 static bool compare_css_sets(struct css_set *cset,
471 struct css_set *old_cset,
472 struct cgroup *new_cgrp,
473 struct cgroup_subsys_state *template[])
475 struct list_head *l1, *l2;
477 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
478 /* Not all subsystems matched */
479 return false;
483 * Compare cgroup pointers in order to distinguish between
484 * different cgroups in heirarchies with no subsystems. We
485 * could get by with just this check alone (and skip the
486 * memcmp above) but on most setups the memcmp check will
487 * avoid the need for this more expensive check on almost all
488 * candidates.
491 l1 = &cset->cgrp_links;
492 l2 = &old_cset->cgrp_links;
493 while (1) {
494 struct cgrp_cset_link *link1, *link2;
495 struct cgroup *cgrp1, *cgrp2;
497 l1 = l1->next;
498 l2 = l2->next;
499 /* See if we reached the end - both lists are equal length. */
500 if (l1 == &cset->cgrp_links) {
501 BUG_ON(l2 != &old_cset->cgrp_links);
502 break;
503 } else {
504 BUG_ON(l2 == &old_cset->cgrp_links);
506 /* Locate the cgroups associated with these links. */
507 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
508 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
509 cgrp1 = link1->cgrp;
510 cgrp2 = link2->cgrp;
511 /* Hierarchies should be linked in the same order. */
512 BUG_ON(cgrp1->root != cgrp2->root);
515 * If this hierarchy is the hierarchy of the cgroup
516 * that's changing, then we need to check that this
517 * css_set points to the new cgroup; if it's any other
518 * hierarchy, then this css_set should point to the
519 * same cgroup as the old css_set.
521 if (cgrp1->root == new_cgrp->root) {
522 if (cgrp1 != new_cgrp)
523 return false;
524 } else {
525 if (cgrp1 != cgrp2)
526 return false;
529 return true;
533 * find_existing_css_set - init css array and find the matching css_set
534 * @old_cset: the css_set that we're using before the cgroup transition
535 * @cgrp: the cgroup that we're moving into
536 * @template: out param for the new set of csses, should be clear on entry
538 static struct css_set *find_existing_css_set(struct css_set *old_cset,
539 struct cgroup *cgrp,
540 struct cgroup_subsys_state *template[])
542 struct cgroupfs_root *root = cgrp->root;
543 struct cgroup_subsys *ss;
544 struct css_set *cset;
545 unsigned long key;
546 int i;
549 * Build the set of subsystem state objects that we want to see in the
550 * new css_set. while subsystems can change globally, the entries here
551 * won't change, so no need for locking.
553 for_each_subsys(ss, i) {
554 if (root->subsys_mask & (1UL << i)) {
555 /* Subsystem is in this hierarchy. So we want
556 * the subsystem state from the new
557 * cgroup */
558 template[i] = cgrp->subsys[i];
559 } else {
560 /* Subsystem is not in this hierarchy, so we
561 * don't want to change the subsystem state */
562 template[i] = old_cset->subsys[i];
566 key = css_set_hash(template);
567 hash_for_each_possible(css_set_table, cset, hlist, key) {
568 if (!compare_css_sets(cset, old_cset, cgrp, template))
569 continue;
571 /* This css_set matches what we need */
572 return cset;
575 /* No existing cgroup group matched */
576 return NULL;
579 static void free_cgrp_cset_links(struct list_head *links_to_free)
581 struct cgrp_cset_link *link, *tmp_link;
583 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
584 list_del(&link->cset_link);
585 kfree(link);
590 * allocate_cgrp_cset_links - allocate cgrp_cset_links
591 * @count: the number of links to allocate
592 * @tmp_links: list_head the allocated links are put on
594 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
595 * through ->cset_link. Returns 0 on success or -errno.
597 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
599 struct cgrp_cset_link *link;
600 int i;
602 INIT_LIST_HEAD(tmp_links);
604 for (i = 0; i < count; i++) {
605 link = kzalloc(sizeof(*link), GFP_KERNEL);
606 if (!link) {
607 free_cgrp_cset_links(tmp_links);
608 return -ENOMEM;
610 list_add(&link->cset_link, tmp_links);
612 return 0;
616 * link_css_set - a helper function to link a css_set to a cgroup
617 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
618 * @cset: the css_set to be linked
619 * @cgrp: the destination cgroup
621 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
622 struct cgroup *cgrp)
624 struct cgrp_cset_link *link;
626 BUG_ON(list_empty(tmp_links));
627 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
628 link->cset = cset;
629 link->cgrp = cgrp;
630 list_move(&link->cset_link, &cgrp->cset_links);
632 * Always add links to the tail of the list so that the list
633 * is sorted by order of hierarchy creation
635 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
639 * find_css_set - return a new css_set with one cgroup updated
640 * @old_cset: the baseline css_set
641 * @cgrp: the cgroup to be updated
643 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
644 * substituted into the appropriate hierarchy.
646 static struct css_set *find_css_set(struct css_set *old_cset,
647 struct cgroup *cgrp)
649 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
650 struct css_set *cset;
651 struct list_head tmp_links;
652 struct cgrp_cset_link *link;
653 unsigned long key;
655 lockdep_assert_held(&cgroup_mutex);
657 /* First see if we already have a cgroup group that matches
658 * the desired set */
659 read_lock(&css_set_lock);
660 cset = find_existing_css_set(old_cset, cgrp, template);
661 if (cset)
662 get_css_set(cset);
663 read_unlock(&css_set_lock);
665 if (cset)
666 return cset;
668 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
669 if (!cset)
670 return NULL;
672 /* Allocate all the cgrp_cset_link objects that we'll need */
673 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
674 kfree(cset);
675 return NULL;
678 atomic_set(&cset->refcount, 1);
679 INIT_LIST_HEAD(&cset->cgrp_links);
680 INIT_LIST_HEAD(&cset->tasks);
681 INIT_HLIST_NODE(&cset->hlist);
683 /* Copy the set of subsystem state objects generated in
684 * find_existing_css_set() */
685 memcpy(cset->subsys, template, sizeof(cset->subsys));
687 write_lock(&css_set_lock);
688 /* Add reference counts and links from the new css_set. */
689 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
690 struct cgroup *c = link->cgrp;
692 if (c->root == cgrp->root)
693 c = cgrp;
694 link_css_set(&tmp_links, cset, c);
697 BUG_ON(!list_empty(&tmp_links));
699 css_set_count++;
701 /* Add this cgroup group to the hash table */
702 key = css_set_hash(cset->subsys);
703 hash_add(css_set_table, &cset->hlist, key);
705 write_unlock(&css_set_lock);
707 return cset;
711 * Return the cgroup for "task" from the given hierarchy. Must be
712 * called with cgroup_mutex held.
714 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
715 struct cgroupfs_root *root)
717 struct css_set *cset;
718 struct cgroup *res = NULL;
720 BUG_ON(!mutex_is_locked(&cgroup_mutex));
721 read_lock(&css_set_lock);
723 * No need to lock the task - since we hold cgroup_mutex the
724 * task can't change groups, so the only thing that can happen
725 * is that it exits and its css is set back to init_css_set.
727 cset = task_css_set(task);
728 if (cset == &init_css_set) {
729 res = &root->top_cgroup;
730 } else {
731 struct cgrp_cset_link *link;
733 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
734 struct cgroup *c = link->cgrp;
736 if (c->root == root) {
737 res = c;
738 break;
742 read_unlock(&css_set_lock);
743 BUG_ON(!res);
744 return res;
748 * There is one global cgroup mutex. We also require taking
749 * task_lock() when dereferencing a task's cgroup subsys pointers.
750 * See "The task_lock() exception", at the end of this comment.
752 * A task must hold cgroup_mutex to modify cgroups.
754 * Any task can increment and decrement the count field without lock.
755 * So in general, code holding cgroup_mutex can't rely on the count
756 * field not changing. However, if the count goes to zero, then only
757 * cgroup_attach_task() can increment it again. Because a count of zero
758 * means that no tasks are currently attached, therefore there is no
759 * way a task attached to that cgroup can fork (the other way to
760 * increment the count). So code holding cgroup_mutex can safely
761 * assume that if the count is zero, it will stay zero. Similarly, if
762 * a task holds cgroup_mutex on a cgroup with zero count, it
763 * knows that the cgroup won't be removed, as cgroup_rmdir()
764 * needs that mutex.
766 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
767 * (usually) take cgroup_mutex. These are the two most performance
768 * critical pieces of code here. The exception occurs on cgroup_exit(),
769 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
770 * is taken, and if the cgroup count is zero, a usermode call made
771 * to the release agent with the name of the cgroup (path relative to
772 * the root of cgroup file system) as the argument.
774 * A cgroup can only be deleted if both its 'count' of using tasks
775 * is zero, and its list of 'children' cgroups is empty. Since all
776 * tasks in the system use _some_ cgroup, and since there is always at
777 * least one task in the system (init, pid == 1), therefore, top_cgroup
778 * always has either children cgroups and/or using tasks. So we don't
779 * need a special hack to ensure that top_cgroup cannot be deleted.
781 * The task_lock() exception
783 * The need for this exception arises from the action of
784 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
785 * another. It does so using cgroup_mutex, however there are
786 * several performance critical places that need to reference
787 * task->cgroup without the expense of grabbing a system global
788 * mutex. Therefore except as noted below, when dereferencing or, as
789 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
790 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
791 * the task_struct routinely used for such matters.
793 * P.S. One more locking exception. RCU is used to guard the
794 * update of a tasks cgroup pointer by cgroup_attach_task()
798 * A couple of forward declarations required, due to cyclic reference loop:
799 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
800 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
801 * -> cgroup_mkdir.
804 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
805 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
806 static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
807 unsigned long subsys_mask);
808 static const struct inode_operations cgroup_dir_inode_operations;
809 static const struct file_operations proc_cgroupstats_operations;
811 static struct backing_dev_info cgroup_backing_dev_info = {
812 .name = "cgroup",
813 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
816 static int alloc_css_id(struct cgroup_subsys *ss,
817 struct cgroup *parent, struct cgroup *child);
819 static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
821 struct inode *inode = new_inode(sb);
823 if (inode) {
824 inode->i_ino = get_next_ino();
825 inode->i_mode = mode;
826 inode->i_uid = current_fsuid();
827 inode->i_gid = current_fsgid();
828 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
829 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
831 return inode;
834 static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
836 struct cgroup_name *name;
838 name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
839 if (!name)
840 return NULL;
841 strcpy(name->name, dentry->d_name.name);
842 return name;
845 static void cgroup_free_fn(struct work_struct *work)
847 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
848 struct cgroup_subsys *ss;
850 mutex_lock(&cgroup_mutex);
852 * Release the subsystem state objects.
854 for_each_root_subsys(cgrp->root, ss)
855 ss->css_free(cgrp);
857 cgrp->root->number_of_cgroups--;
858 mutex_unlock(&cgroup_mutex);
861 * We get a ref to the parent's dentry, and put the ref when
862 * this cgroup is being freed, so it's guaranteed that the
863 * parent won't be destroyed before its children.
865 dput(cgrp->parent->dentry);
867 ida_simple_remove(&cgrp->root->cgroup_ida, cgrp->id);
870 * Drop the active superblock reference that we took when we
871 * created the cgroup. This will free cgrp->root, if we are
872 * holding the last reference to @sb.
874 deactivate_super(cgrp->root->sb);
877 * if we're getting rid of the cgroup, refcount should ensure
878 * that there are no pidlists left.
880 BUG_ON(!list_empty(&cgrp->pidlists));
882 simple_xattrs_free(&cgrp->xattrs);
884 kfree(rcu_dereference_raw(cgrp->name));
885 kfree(cgrp);
888 static void cgroup_free_rcu(struct rcu_head *head)
890 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
892 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
893 schedule_work(&cgrp->destroy_work);
896 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
898 /* is dentry a directory ? if so, kfree() associated cgroup */
899 if (S_ISDIR(inode->i_mode)) {
900 struct cgroup *cgrp = dentry->d_fsdata;
902 BUG_ON(!(cgroup_is_dead(cgrp)));
903 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
904 } else {
905 struct cfent *cfe = __d_cfe(dentry);
906 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
908 WARN_ONCE(!list_empty(&cfe->node) &&
909 cgrp != &cgrp->root->top_cgroup,
910 "cfe still linked for %s\n", cfe->type->name);
911 simple_xattrs_free(&cfe->xattrs);
912 kfree(cfe);
914 iput(inode);
917 static int cgroup_delete(const struct dentry *d)
919 return 1;
922 static void remove_dir(struct dentry *d)
924 struct dentry *parent = dget(d->d_parent);
926 d_delete(d);
927 simple_rmdir(parent->d_inode, d);
928 dput(parent);
931 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
933 struct cfent *cfe;
935 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
936 lockdep_assert_held(&cgroup_mutex);
939 * If we're doing cleanup due to failure of cgroup_create(),
940 * the corresponding @cfe may not exist.
942 list_for_each_entry(cfe, &cgrp->files, node) {
943 struct dentry *d = cfe->dentry;
945 if (cft && cfe->type != cft)
946 continue;
948 dget(d);
949 d_delete(d);
950 simple_unlink(cgrp->dentry->d_inode, d);
951 list_del_init(&cfe->node);
952 dput(d);
954 break;
959 * cgroup_clear_directory - selective removal of base and subsystem files
960 * @dir: directory containing the files
961 * @base_files: true if the base files should be removed
962 * @subsys_mask: mask of the subsystem ids whose files should be removed
964 static void cgroup_clear_directory(struct dentry *dir, bool base_files,
965 unsigned long subsys_mask)
967 struct cgroup *cgrp = __d_cgrp(dir);
968 struct cgroup_subsys *ss;
970 for_each_root_subsys(cgrp->root, ss) {
971 struct cftype_set *set;
972 if (!test_bit(ss->subsys_id, &subsys_mask))
973 continue;
974 list_for_each_entry(set, &ss->cftsets, node)
975 cgroup_addrm_files(cgrp, NULL, set->cfts, false);
977 if (base_files) {
978 while (!list_empty(&cgrp->files))
979 cgroup_rm_file(cgrp, NULL);
984 * NOTE : the dentry must have been dget()'ed
986 static void cgroup_d_remove_dir(struct dentry *dentry)
988 struct dentry *parent;
989 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
991 cgroup_clear_directory(dentry, true, root->subsys_mask);
993 parent = dentry->d_parent;
994 spin_lock(&parent->d_lock);
995 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
996 list_del_init(&dentry->d_u.d_child);
997 spin_unlock(&dentry->d_lock);
998 spin_unlock(&parent->d_lock);
999 remove_dir(dentry);
1003 * Call with cgroup_mutex held. Drops reference counts on modules, including
1004 * any duplicate ones that parse_cgroupfs_options took. If this function
1005 * returns an error, no reference counts are touched.
1007 static int rebind_subsystems(struct cgroupfs_root *root,
1008 unsigned long added_mask, unsigned removed_mask)
1010 struct cgroup *cgrp = &root->top_cgroup;
1011 struct cgroup_subsys *ss;
1012 int i;
1014 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1015 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
1017 /* Check that any added subsystems are currently free */
1018 for_each_subsys(ss, i) {
1019 unsigned long bit = 1UL << i;
1021 if (!(bit & added_mask))
1022 continue;
1024 if (ss->root != &cgroup_dummy_root) {
1025 /* Subsystem isn't free */
1026 return -EBUSY;
1030 /* Currently we don't handle adding/removing subsystems when
1031 * any child cgroups exist. This is theoretically supportable
1032 * but involves complex error handling, so it's being left until
1033 * later */
1034 if (root->number_of_cgroups > 1)
1035 return -EBUSY;
1037 /* Process each subsystem */
1038 for_each_subsys(ss, i) {
1039 unsigned long bit = 1UL << i;
1041 if (bit & added_mask) {
1042 /* We're binding this subsystem to this hierarchy */
1043 BUG_ON(cgrp->subsys[i]);
1044 BUG_ON(!cgroup_dummy_top->subsys[i]);
1045 BUG_ON(cgroup_dummy_top->subsys[i]->cgroup != cgroup_dummy_top);
1047 cgrp->subsys[i] = cgroup_dummy_top->subsys[i];
1048 cgrp->subsys[i]->cgroup = cgrp;
1049 list_move(&ss->sibling, &root->subsys_list);
1050 ss->root = root;
1051 if (ss->bind)
1052 ss->bind(cgrp);
1054 /* refcount was already taken, and we're keeping it */
1055 root->subsys_mask |= bit;
1056 } else if (bit & removed_mask) {
1057 /* We're removing this subsystem */
1058 BUG_ON(cgrp->subsys[i] != cgroup_dummy_top->subsys[i]);
1059 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1061 if (ss->bind)
1062 ss->bind(cgroup_dummy_top);
1063 cgroup_dummy_top->subsys[i]->cgroup = cgroup_dummy_top;
1064 cgrp->subsys[i] = NULL;
1065 cgroup_subsys[i]->root = &cgroup_dummy_root;
1066 list_move(&ss->sibling, &cgroup_dummy_root.subsys_list);
1068 /* subsystem is now free - drop reference on module */
1069 module_put(ss->module);
1070 root->subsys_mask &= ~bit;
1071 } else if (bit & root->subsys_mask) {
1072 /* Subsystem state should already exist */
1073 BUG_ON(!cgrp->subsys[i]);
1075 * a refcount was taken, but we already had one, so
1076 * drop the extra reference.
1078 module_put(ss->module);
1079 #ifdef CONFIG_MODULE_UNLOAD
1080 BUG_ON(ss->module && !module_refcount(ss->module));
1081 #endif
1082 } else {
1083 /* Subsystem state shouldn't exist */
1084 BUG_ON(cgrp->subsys[i]);
1089 * Mark @root has finished binding subsystems. @root->subsys_mask
1090 * now matches the bound subsystems.
1092 root->flags |= CGRP_ROOT_SUBSYS_BOUND;
1094 return 0;
1097 static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1099 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1100 struct cgroup_subsys *ss;
1102 mutex_lock(&cgroup_root_mutex);
1103 for_each_root_subsys(root, ss)
1104 seq_printf(seq, ",%s", ss->name);
1105 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1106 seq_puts(seq, ",sane_behavior");
1107 if (root->flags & CGRP_ROOT_NOPREFIX)
1108 seq_puts(seq, ",noprefix");
1109 if (root->flags & CGRP_ROOT_XATTR)
1110 seq_puts(seq, ",xattr");
1111 if (strlen(root->release_agent_path))
1112 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1113 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
1114 seq_puts(seq, ",clone_children");
1115 if (strlen(root->name))
1116 seq_printf(seq, ",name=%s", root->name);
1117 mutex_unlock(&cgroup_root_mutex);
1118 return 0;
1121 struct cgroup_sb_opts {
1122 unsigned long subsys_mask;
1123 unsigned long flags;
1124 char *release_agent;
1125 bool cpuset_clone_children;
1126 char *name;
1127 /* User explicitly requested empty subsystem */
1128 bool none;
1130 struct cgroupfs_root *new_root;
1135 * Convert a hierarchy specifier into a bitmask of subsystems and
1136 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1137 * array. This function takes refcounts on subsystems to be used, unless it
1138 * returns error, in which case no refcounts are taken.
1140 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1142 char *token, *o = data;
1143 bool all_ss = false, one_ss = false;
1144 unsigned long mask = (unsigned long)-1;
1145 bool module_pin_failed = false;
1146 struct cgroup_subsys *ss;
1147 int i;
1149 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1151 #ifdef CONFIG_CPUSETS
1152 mask = ~(1UL << cpuset_subsys_id);
1153 #endif
1155 memset(opts, 0, sizeof(*opts));
1157 while ((token = strsep(&o, ",")) != NULL) {
1158 if (!*token)
1159 return -EINVAL;
1160 if (!strcmp(token, "none")) {
1161 /* Explicitly have no subsystems */
1162 opts->none = true;
1163 continue;
1165 if (!strcmp(token, "all")) {
1166 /* Mutually exclusive option 'all' + subsystem name */
1167 if (one_ss)
1168 return -EINVAL;
1169 all_ss = true;
1170 continue;
1172 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1173 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1174 continue;
1176 if (!strcmp(token, "noprefix")) {
1177 opts->flags |= CGRP_ROOT_NOPREFIX;
1178 continue;
1180 if (!strcmp(token, "clone_children")) {
1181 opts->cpuset_clone_children = true;
1182 continue;
1184 if (!strcmp(token, "xattr")) {
1185 opts->flags |= CGRP_ROOT_XATTR;
1186 continue;
1188 if (!strncmp(token, "release_agent=", 14)) {
1189 /* Specifying two release agents is forbidden */
1190 if (opts->release_agent)
1191 return -EINVAL;
1192 opts->release_agent =
1193 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1194 if (!opts->release_agent)
1195 return -ENOMEM;
1196 continue;
1198 if (!strncmp(token, "name=", 5)) {
1199 const char *name = token + 5;
1200 /* Can't specify an empty name */
1201 if (!strlen(name))
1202 return -EINVAL;
1203 /* Must match [\w.-]+ */
1204 for (i = 0; i < strlen(name); i++) {
1205 char c = name[i];
1206 if (isalnum(c))
1207 continue;
1208 if ((c == '.') || (c == '-') || (c == '_'))
1209 continue;
1210 return -EINVAL;
1212 /* Specifying two names is forbidden */
1213 if (opts->name)
1214 return -EINVAL;
1215 opts->name = kstrndup(name,
1216 MAX_CGROUP_ROOT_NAMELEN - 1,
1217 GFP_KERNEL);
1218 if (!opts->name)
1219 return -ENOMEM;
1221 continue;
1224 for_each_subsys(ss, i) {
1225 if (strcmp(token, ss->name))
1226 continue;
1227 if (ss->disabled)
1228 continue;
1230 /* Mutually exclusive option 'all' + subsystem name */
1231 if (all_ss)
1232 return -EINVAL;
1233 set_bit(i, &opts->subsys_mask);
1234 one_ss = true;
1236 break;
1238 if (i == CGROUP_SUBSYS_COUNT)
1239 return -ENOENT;
1243 * If the 'all' option was specified select all the subsystems,
1244 * otherwise if 'none', 'name=' and a subsystem name options
1245 * were not specified, let's default to 'all'
1247 if (all_ss || (!one_ss && !opts->none && !opts->name))
1248 for_each_subsys(ss, i)
1249 if (!ss->disabled)
1250 set_bit(i, &opts->subsys_mask);
1252 /* Consistency checks */
1254 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1255 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1257 if (opts->flags & CGRP_ROOT_NOPREFIX) {
1258 pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1259 return -EINVAL;
1262 if (opts->cpuset_clone_children) {
1263 pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1264 return -EINVAL;
1269 * Option noprefix was introduced just for backward compatibility
1270 * with the old cpuset, so we allow noprefix only if mounting just
1271 * the cpuset subsystem.
1273 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1274 return -EINVAL;
1277 /* Can't specify "none" and some subsystems */
1278 if (opts->subsys_mask && opts->none)
1279 return -EINVAL;
1282 * We either have to specify by name or by subsystems. (So all
1283 * empty hierarchies must have a name).
1285 if (!opts->subsys_mask && !opts->name)
1286 return -EINVAL;
1289 * Grab references on all the modules we'll need, so the subsystems
1290 * don't dance around before rebind_subsystems attaches them. This may
1291 * take duplicate reference counts on a subsystem that's already used,
1292 * but rebind_subsystems handles this case.
1294 for_each_subsys(ss, i) {
1295 if (!(opts->subsys_mask & (1UL << i)))
1296 continue;
1297 if (!try_module_get(cgroup_subsys[i]->module)) {
1298 module_pin_failed = true;
1299 break;
1302 if (module_pin_failed) {
1304 * oops, one of the modules was going away. this means that we
1305 * raced with a module_delete call, and to the user this is
1306 * essentially a "subsystem doesn't exist" case.
1308 for (i--; i >= 0; i--) {
1309 /* drop refcounts only on the ones we took */
1310 unsigned long bit = 1UL << i;
1312 if (!(bit & opts->subsys_mask))
1313 continue;
1314 module_put(cgroup_subsys[i]->module);
1316 return -ENOENT;
1319 return 0;
1322 static void drop_parsed_module_refcounts(unsigned long subsys_mask)
1324 struct cgroup_subsys *ss;
1325 int i;
1327 mutex_lock(&cgroup_mutex);
1328 for_each_subsys(ss, i)
1329 if (subsys_mask & (1UL << i))
1330 module_put(cgroup_subsys[i]->module);
1331 mutex_unlock(&cgroup_mutex);
1334 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1336 int ret = 0;
1337 struct cgroupfs_root *root = sb->s_fs_info;
1338 struct cgroup *cgrp = &root->top_cgroup;
1339 struct cgroup_sb_opts opts;
1340 unsigned long added_mask, removed_mask;
1342 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1343 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1344 return -EINVAL;
1347 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1348 mutex_lock(&cgroup_mutex);
1349 mutex_lock(&cgroup_root_mutex);
1351 /* See what subsystems are wanted */
1352 ret = parse_cgroupfs_options(data, &opts);
1353 if (ret)
1354 goto out_unlock;
1356 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1357 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1358 task_tgid_nr(current), current->comm);
1360 added_mask = opts.subsys_mask & ~root->subsys_mask;
1361 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1363 /* Don't allow flags or name to change at remount */
1364 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
1365 (opts.name && strcmp(opts.name, root->name))) {
1366 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1367 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1368 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
1369 ret = -EINVAL;
1370 goto out_unlock;
1374 * Clear out the files of subsystems that should be removed, do
1375 * this before rebind_subsystems, since rebind_subsystems may
1376 * change this hierarchy's subsys_list.
1378 cgroup_clear_directory(cgrp->dentry, false, removed_mask);
1380 ret = rebind_subsystems(root, added_mask, removed_mask);
1381 if (ret) {
1382 /* rebind_subsystems failed, re-populate the removed files */
1383 cgroup_populate_dir(cgrp, false, removed_mask);
1384 goto out_unlock;
1387 /* re-populate subsystem files */
1388 cgroup_populate_dir(cgrp, false, added_mask);
1390 if (opts.release_agent)
1391 strcpy(root->release_agent_path, opts.release_agent);
1392 out_unlock:
1393 kfree(opts.release_agent);
1394 kfree(opts.name);
1395 mutex_unlock(&cgroup_root_mutex);
1396 mutex_unlock(&cgroup_mutex);
1397 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1398 if (ret)
1399 drop_parsed_module_refcounts(opts.subsys_mask);
1400 return ret;
1403 static const struct super_operations cgroup_ops = {
1404 .statfs = simple_statfs,
1405 .drop_inode = generic_delete_inode,
1406 .show_options = cgroup_show_options,
1407 .remount_fs = cgroup_remount,
1410 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1412 INIT_LIST_HEAD(&cgrp->sibling);
1413 INIT_LIST_HEAD(&cgrp->children);
1414 INIT_LIST_HEAD(&cgrp->files);
1415 INIT_LIST_HEAD(&cgrp->cset_links);
1416 INIT_LIST_HEAD(&cgrp->release_list);
1417 INIT_LIST_HEAD(&cgrp->pidlists);
1418 mutex_init(&cgrp->pidlist_mutex);
1419 INIT_LIST_HEAD(&cgrp->event_list);
1420 spin_lock_init(&cgrp->event_list_lock);
1421 simple_xattrs_init(&cgrp->xattrs);
1424 static void init_cgroup_root(struct cgroupfs_root *root)
1426 struct cgroup *cgrp = &root->top_cgroup;
1428 INIT_LIST_HEAD(&root->subsys_list);
1429 INIT_LIST_HEAD(&root->root_list);
1430 root->number_of_cgroups = 1;
1431 cgrp->root = root;
1432 RCU_INIT_POINTER(cgrp->name, &root_cgroup_name);
1433 init_cgroup_housekeeping(cgrp);
1436 static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
1438 int id;
1440 lockdep_assert_held(&cgroup_mutex);
1441 lockdep_assert_held(&cgroup_root_mutex);
1443 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
1444 GFP_KERNEL);
1445 if (id < 0)
1446 return id;
1448 root->hierarchy_id = id;
1449 return 0;
1452 static void cgroup_exit_root_id(struct cgroupfs_root *root)
1454 lockdep_assert_held(&cgroup_mutex);
1455 lockdep_assert_held(&cgroup_root_mutex);
1457 if (root->hierarchy_id) {
1458 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1459 root->hierarchy_id = 0;
1463 static int cgroup_test_super(struct super_block *sb, void *data)
1465 struct cgroup_sb_opts *opts = data;
1466 struct cgroupfs_root *root = sb->s_fs_info;
1468 /* If we asked for a name then it must match */
1469 if (opts->name && strcmp(opts->name, root->name))
1470 return 0;
1473 * If we asked for subsystems (or explicitly for no
1474 * subsystems) then they must match
1476 if ((opts->subsys_mask || opts->none)
1477 && (opts->subsys_mask != root->subsys_mask))
1478 return 0;
1480 return 1;
1483 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1485 struct cgroupfs_root *root;
1487 if (!opts->subsys_mask && !opts->none)
1488 return NULL;
1490 root = kzalloc(sizeof(*root), GFP_KERNEL);
1491 if (!root)
1492 return ERR_PTR(-ENOMEM);
1494 init_cgroup_root(root);
1497 * We need to set @root->subsys_mask now so that @root can be
1498 * matched by cgroup_test_super() before it finishes
1499 * initialization; otherwise, competing mounts with the same
1500 * options may try to bind the same subsystems instead of waiting
1501 * for the first one leading to unexpected mount errors.
1502 * SUBSYS_BOUND will be set once actual binding is complete.
1504 root->subsys_mask = opts->subsys_mask;
1505 root->flags = opts->flags;
1506 ida_init(&root->cgroup_ida);
1507 if (opts->release_agent)
1508 strcpy(root->release_agent_path, opts->release_agent);
1509 if (opts->name)
1510 strcpy(root->name, opts->name);
1511 if (opts->cpuset_clone_children)
1512 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
1513 return root;
1516 static void cgroup_free_root(struct cgroupfs_root *root)
1518 if (root) {
1519 /* hierarhcy ID shoulid already have been released */
1520 WARN_ON_ONCE(root->hierarchy_id);
1522 ida_destroy(&root->cgroup_ida);
1523 kfree(root);
1527 static int cgroup_set_super(struct super_block *sb, void *data)
1529 int ret;
1530 struct cgroup_sb_opts *opts = data;
1532 /* If we don't have a new root, we can't set up a new sb */
1533 if (!opts->new_root)
1534 return -EINVAL;
1536 BUG_ON(!opts->subsys_mask && !opts->none);
1538 ret = set_anon_super(sb, NULL);
1539 if (ret)
1540 return ret;
1542 sb->s_fs_info = opts->new_root;
1543 opts->new_root->sb = sb;
1545 sb->s_blocksize = PAGE_CACHE_SIZE;
1546 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1547 sb->s_magic = CGROUP_SUPER_MAGIC;
1548 sb->s_op = &cgroup_ops;
1550 return 0;
1553 static int cgroup_get_rootdir(struct super_block *sb)
1555 static const struct dentry_operations cgroup_dops = {
1556 .d_iput = cgroup_diput,
1557 .d_delete = cgroup_delete,
1560 struct inode *inode =
1561 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1563 if (!inode)
1564 return -ENOMEM;
1566 inode->i_fop = &simple_dir_operations;
1567 inode->i_op = &cgroup_dir_inode_operations;
1568 /* directories start off with i_nlink == 2 (for "." entry) */
1569 inc_nlink(inode);
1570 sb->s_root = d_make_root(inode);
1571 if (!sb->s_root)
1572 return -ENOMEM;
1573 /* for everything else we want ->d_op set */
1574 sb->s_d_op = &cgroup_dops;
1575 return 0;
1578 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1579 int flags, const char *unused_dev_name,
1580 void *data)
1582 struct cgroup_sb_opts opts;
1583 struct cgroupfs_root *root;
1584 int ret = 0;
1585 struct super_block *sb;
1586 struct cgroupfs_root *new_root;
1587 struct inode *inode;
1589 /* First find the desired set of subsystems */
1590 mutex_lock(&cgroup_mutex);
1591 ret = parse_cgroupfs_options(data, &opts);
1592 mutex_unlock(&cgroup_mutex);
1593 if (ret)
1594 goto out_err;
1597 * Allocate a new cgroup root. We may not need it if we're
1598 * reusing an existing hierarchy.
1600 new_root = cgroup_root_from_opts(&opts);
1601 if (IS_ERR(new_root)) {
1602 ret = PTR_ERR(new_root);
1603 goto drop_modules;
1605 opts.new_root = new_root;
1607 /* Locate an existing or new sb for this hierarchy */
1608 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
1609 if (IS_ERR(sb)) {
1610 ret = PTR_ERR(sb);
1611 cgroup_free_root(opts.new_root);
1612 goto drop_modules;
1615 root = sb->s_fs_info;
1616 BUG_ON(!root);
1617 if (root == opts.new_root) {
1618 /* We used the new root structure, so this is a new hierarchy */
1619 struct list_head tmp_links;
1620 struct cgroup *root_cgrp = &root->top_cgroup;
1621 struct cgroupfs_root *existing_root;
1622 const struct cred *cred;
1623 int i;
1624 struct css_set *cset;
1626 BUG_ON(sb->s_root != NULL);
1628 ret = cgroup_get_rootdir(sb);
1629 if (ret)
1630 goto drop_new_super;
1631 inode = sb->s_root->d_inode;
1633 mutex_lock(&inode->i_mutex);
1634 mutex_lock(&cgroup_mutex);
1635 mutex_lock(&cgroup_root_mutex);
1637 /* Check for name clashes with existing mounts */
1638 ret = -EBUSY;
1639 if (strlen(root->name))
1640 for_each_active_root(existing_root)
1641 if (!strcmp(existing_root->name, root->name))
1642 goto unlock_drop;
1645 * We're accessing css_set_count without locking
1646 * css_set_lock here, but that's OK - it can only be
1647 * increased by someone holding cgroup_lock, and
1648 * that's us. The worst that can happen is that we
1649 * have some link structures left over
1651 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1652 if (ret)
1653 goto unlock_drop;
1655 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1656 ret = cgroup_init_root_id(root, 2, 0);
1657 if (ret)
1658 goto unlock_drop;
1660 ret = rebind_subsystems(root, root->subsys_mask, 0);
1661 if (ret == -EBUSY) {
1662 free_cgrp_cset_links(&tmp_links);
1663 goto unlock_drop;
1666 * There must be no failure case after here, since rebinding
1667 * takes care of subsystems' refcounts, which are explicitly
1668 * dropped in the failure exit path.
1671 /* EBUSY should be the only error here */
1672 BUG_ON(ret);
1674 list_add(&root->root_list, &cgroup_roots);
1675 cgroup_root_count++;
1677 sb->s_root->d_fsdata = root_cgrp;
1678 root->top_cgroup.dentry = sb->s_root;
1680 /* Link the top cgroup in this hierarchy into all
1681 * the css_set objects */
1682 write_lock(&css_set_lock);
1683 hash_for_each(css_set_table, i, cset, hlist)
1684 link_css_set(&tmp_links, cset, root_cgrp);
1685 write_unlock(&css_set_lock);
1687 free_cgrp_cset_links(&tmp_links);
1689 BUG_ON(!list_empty(&root_cgrp->children));
1690 BUG_ON(root->number_of_cgroups != 1);
1692 cred = override_creds(&init_cred);
1693 cgroup_populate_dir(root_cgrp, true, root->subsys_mask);
1694 revert_creds(cred);
1695 mutex_unlock(&cgroup_root_mutex);
1696 mutex_unlock(&cgroup_mutex);
1697 mutex_unlock(&inode->i_mutex);
1698 } else {
1700 * We re-used an existing hierarchy - the new root (if
1701 * any) is not needed
1703 cgroup_free_root(opts.new_root);
1705 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
1706 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1707 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1708 ret = -EINVAL;
1709 goto drop_new_super;
1710 } else {
1711 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1715 /* no subsys rebinding, so refcounts don't change */
1716 drop_parsed_module_refcounts(opts.subsys_mask);
1719 kfree(opts.release_agent);
1720 kfree(opts.name);
1721 return dget(sb->s_root);
1723 unlock_drop:
1724 cgroup_exit_root_id(root);
1725 mutex_unlock(&cgroup_root_mutex);
1726 mutex_unlock(&cgroup_mutex);
1727 mutex_unlock(&inode->i_mutex);
1728 drop_new_super:
1729 deactivate_locked_super(sb);
1730 drop_modules:
1731 drop_parsed_module_refcounts(opts.subsys_mask);
1732 out_err:
1733 kfree(opts.release_agent);
1734 kfree(opts.name);
1735 return ERR_PTR(ret);
1738 static void cgroup_kill_sb(struct super_block *sb) {
1739 struct cgroupfs_root *root = sb->s_fs_info;
1740 struct cgroup *cgrp = &root->top_cgroup;
1741 struct cgrp_cset_link *link, *tmp_link;
1742 int ret;
1744 BUG_ON(!root);
1746 BUG_ON(root->number_of_cgroups != 1);
1747 BUG_ON(!list_empty(&cgrp->children));
1749 mutex_lock(&cgroup_mutex);
1750 mutex_lock(&cgroup_root_mutex);
1752 /* Rebind all subsystems back to the default hierarchy */
1753 if (root->flags & CGRP_ROOT_SUBSYS_BOUND) {
1754 ret = rebind_subsystems(root, 0, root->subsys_mask);
1755 /* Shouldn't be able to fail ... */
1756 BUG_ON(ret);
1760 * Release all the links from cset_links to this hierarchy's
1761 * root cgroup
1763 write_lock(&css_set_lock);
1765 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1766 list_del(&link->cset_link);
1767 list_del(&link->cgrp_link);
1768 kfree(link);
1770 write_unlock(&css_set_lock);
1772 if (!list_empty(&root->root_list)) {
1773 list_del(&root->root_list);
1774 cgroup_root_count--;
1777 cgroup_exit_root_id(root);
1779 mutex_unlock(&cgroup_root_mutex);
1780 mutex_unlock(&cgroup_mutex);
1782 simple_xattrs_free(&cgrp->xattrs);
1784 kill_litter_super(sb);
1785 cgroup_free_root(root);
1788 static struct file_system_type cgroup_fs_type = {
1789 .name = "cgroup",
1790 .mount = cgroup_mount,
1791 .kill_sb = cgroup_kill_sb,
1794 static struct kobject *cgroup_kobj;
1797 * cgroup_path - generate the path of a cgroup
1798 * @cgrp: the cgroup in question
1799 * @buf: the buffer to write the path into
1800 * @buflen: the length of the buffer
1802 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1804 * We can't generate cgroup path using dentry->d_name, as accessing
1805 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1806 * inode's i_mutex, while on the other hand cgroup_path() can be called
1807 * with some irq-safe spinlocks held.
1809 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1811 int ret = -ENAMETOOLONG;
1812 char *start;
1814 if (!cgrp->parent) {
1815 if (strlcpy(buf, "/", buflen) >= buflen)
1816 return -ENAMETOOLONG;
1817 return 0;
1820 start = buf + buflen - 1;
1821 *start = '\0';
1823 rcu_read_lock();
1824 do {
1825 const char *name = cgroup_name(cgrp);
1826 int len;
1828 len = strlen(name);
1829 if ((start -= len) < buf)
1830 goto out;
1831 memcpy(start, name, len);
1833 if (--start < buf)
1834 goto out;
1835 *start = '/';
1837 cgrp = cgrp->parent;
1838 } while (cgrp->parent);
1839 ret = 0;
1840 memmove(buf, start, buf + buflen - start);
1841 out:
1842 rcu_read_unlock();
1843 return ret;
1845 EXPORT_SYMBOL_GPL(cgroup_path);
1848 * task_cgroup_path_from_hierarchy - cgroup path of a task on a hierarchy
1849 * @task: target task
1850 * @hierarchy_id: the hierarchy to look up @task's cgroup from
1851 * @buf: the buffer to write the path into
1852 * @buflen: the length of the buffer
1854 * Determine @task's cgroup on the hierarchy specified by @hierarchy_id and
1855 * copy its path into @buf. This function grabs cgroup_mutex and shouldn't
1856 * be used inside locks used by cgroup controller callbacks.
1858 int task_cgroup_path_from_hierarchy(struct task_struct *task, int hierarchy_id,
1859 char *buf, size_t buflen)
1861 struct cgroupfs_root *root;
1862 struct cgroup *cgrp = NULL;
1863 int ret = -ENOENT;
1865 mutex_lock(&cgroup_mutex);
1867 root = idr_find(&cgroup_hierarchy_idr, hierarchy_id);
1868 if (root) {
1869 cgrp = task_cgroup_from_root(task, root);
1870 ret = cgroup_path(cgrp, buf, buflen);
1873 mutex_unlock(&cgroup_mutex);
1875 return ret;
1877 EXPORT_SYMBOL_GPL(task_cgroup_path_from_hierarchy);
1880 * Control Group taskset
1882 struct task_and_cgroup {
1883 struct task_struct *task;
1884 struct cgroup *cgrp;
1885 struct css_set *cg;
1888 struct cgroup_taskset {
1889 struct task_and_cgroup single;
1890 struct flex_array *tc_array;
1891 int tc_array_len;
1892 int idx;
1893 struct cgroup *cur_cgrp;
1897 * cgroup_taskset_first - reset taskset and return the first task
1898 * @tset: taskset of interest
1900 * @tset iteration is initialized and the first task is returned.
1902 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1904 if (tset->tc_array) {
1905 tset->idx = 0;
1906 return cgroup_taskset_next(tset);
1907 } else {
1908 tset->cur_cgrp = tset->single.cgrp;
1909 return tset->single.task;
1912 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1915 * cgroup_taskset_next - iterate to the next task in taskset
1916 * @tset: taskset of interest
1918 * Return the next task in @tset. Iteration must have been initialized
1919 * with cgroup_taskset_first().
1921 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1923 struct task_and_cgroup *tc;
1925 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1926 return NULL;
1928 tc = flex_array_get(tset->tc_array, tset->idx++);
1929 tset->cur_cgrp = tc->cgrp;
1930 return tc->task;
1932 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1935 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1936 * @tset: taskset of interest
1938 * Return the cgroup for the current (last returned) task of @tset. This
1939 * function must be preceded by either cgroup_taskset_first() or
1940 * cgroup_taskset_next().
1942 struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1944 return tset->cur_cgrp;
1946 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1949 * cgroup_taskset_size - return the number of tasks in taskset
1950 * @tset: taskset of interest
1952 int cgroup_taskset_size(struct cgroup_taskset *tset)
1954 return tset->tc_array ? tset->tc_array_len : 1;
1956 EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1960 * cgroup_task_migrate - move a task from one cgroup to another.
1962 * Must be called with cgroup_mutex and threadgroup locked.
1964 static void cgroup_task_migrate(struct cgroup *old_cgrp,
1965 struct task_struct *tsk,
1966 struct css_set *new_cset)
1968 struct css_set *old_cset;
1971 * We are synchronized through threadgroup_lock() against PF_EXITING
1972 * setting such that we can't race against cgroup_exit() changing the
1973 * css_set to init_css_set and dropping the old one.
1975 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1976 old_cset = task_css_set(tsk);
1978 task_lock(tsk);
1979 rcu_assign_pointer(tsk->cgroups, new_cset);
1980 task_unlock(tsk);
1982 /* Update the css_set linked lists if we're using them */
1983 write_lock(&css_set_lock);
1984 if (!list_empty(&tsk->cg_list))
1985 list_move(&tsk->cg_list, &new_cset->tasks);
1986 write_unlock(&css_set_lock);
1989 * We just gained a reference on old_cset by taking it from the
1990 * task. As trading it for new_cset is protected by cgroup_mutex,
1991 * we're safe to drop it here; it will be freed under RCU.
1993 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
1994 put_css_set(old_cset);
1998 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
1999 * @cgrp: the cgroup to attach to
2000 * @tsk: the task or the leader of the threadgroup to be attached
2001 * @threadgroup: attach the whole threadgroup?
2003 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
2004 * task_lock of @tsk or each thread in the threadgroup individually in turn.
2006 static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
2007 bool threadgroup)
2009 int retval, i, group_size;
2010 struct cgroup_subsys *ss, *failed_ss = NULL;
2011 struct cgroupfs_root *root = cgrp->root;
2012 /* threadgroup list cursor and array */
2013 struct task_struct *leader = tsk;
2014 struct task_and_cgroup *tc;
2015 struct flex_array *group;
2016 struct cgroup_taskset tset = { };
2019 * step 0: in order to do expensive, possibly blocking operations for
2020 * every thread, we cannot iterate the thread group list, since it needs
2021 * rcu or tasklist locked. instead, build an array of all threads in the
2022 * group - group_rwsem prevents new threads from appearing, and if
2023 * threads exit, this will just be an over-estimate.
2025 if (threadgroup)
2026 group_size = get_nr_threads(tsk);
2027 else
2028 group_size = 1;
2029 /* flex_array supports very large thread-groups better than kmalloc. */
2030 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
2031 if (!group)
2032 return -ENOMEM;
2033 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2034 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
2035 if (retval)
2036 goto out_free_group_list;
2038 i = 0;
2040 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2041 * already PF_EXITING could be freed from underneath us unless we
2042 * take an rcu_read_lock.
2044 rcu_read_lock();
2045 do {
2046 struct task_and_cgroup ent;
2048 /* @tsk either already exited or can't exit until the end */
2049 if (tsk->flags & PF_EXITING)
2050 continue;
2052 /* as per above, nr_threads may decrease, but not increase. */
2053 BUG_ON(i >= group_size);
2054 ent.task = tsk;
2055 ent.cgrp = task_cgroup_from_root(tsk, root);
2056 /* nothing to do if this task is already in the cgroup */
2057 if (ent.cgrp == cgrp)
2058 continue;
2060 * saying GFP_ATOMIC has no effect here because we did prealloc
2061 * earlier, but it's good form to communicate our expectations.
2063 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2064 BUG_ON(retval != 0);
2065 i++;
2067 if (!threadgroup)
2068 break;
2069 } while_each_thread(leader, tsk);
2070 rcu_read_unlock();
2071 /* remember the number of threads in the array for later. */
2072 group_size = i;
2073 tset.tc_array = group;
2074 tset.tc_array_len = group_size;
2076 /* methods shouldn't be called if no task is actually migrating */
2077 retval = 0;
2078 if (!group_size)
2079 goto out_free_group_list;
2082 * step 1: check that we can legitimately attach to the cgroup.
2084 for_each_root_subsys(root, ss) {
2085 if (ss->can_attach) {
2086 retval = ss->can_attach(cgrp, &tset);
2087 if (retval) {
2088 failed_ss = ss;
2089 goto out_cancel_attach;
2095 * step 2: make sure css_sets exist for all threads to be migrated.
2096 * we use find_css_set, which allocates a new one if necessary.
2098 for (i = 0; i < group_size; i++) {
2099 struct css_set *old_cset;
2101 tc = flex_array_get(group, i);
2102 old_cset = task_css_set(tc->task);
2103 tc->cg = find_css_set(old_cset, cgrp);
2104 if (!tc->cg) {
2105 retval = -ENOMEM;
2106 goto out_put_css_set_refs;
2111 * step 3: now that we're guaranteed success wrt the css_sets,
2112 * proceed to move all tasks to the new cgroup. There are no
2113 * failure cases after here, so this is the commit point.
2115 for (i = 0; i < group_size; i++) {
2116 tc = flex_array_get(group, i);
2117 cgroup_task_migrate(tc->cgrp, tc->task, tc->cg);
2119 /* nothing is sensitive to fork() after this point. */
2122 * step 4: do subsystem attach callbacks.
2124 for_each_root_subsys(root, ss) {
2125 if (ss->attach)
2126 ss->attach(cgrp, &tset);
2130 * step 5: success! and cleanup
2132 retval = 0;
2133 out_put_css_set_refs:
2134 if (retval) {
2135 for (i = 0; i < group_size; i++) {
2136 tc = flex_array_get(group, i);
2137 if (!tc->cg)
2138 break;
2139 put_css_set(tc->cg);
2142 out_cancel_attach:
2143 if (retval) {
2144 for_each_root_subsys(root, ss) {
2145 if (ss == failed_ss)
2146 break;
2147 if (ss->cancel_attach)
2148 ss->cancel_attach(cgrp, &tset);
2151 out_free_group_list:
2152 flex_array_free(group);
2153 return retval;
2157 * Find the task_struct of the task to attach by vpid and pass it along to the
2158 * function to attach either it or all tasks in its threadgroup. Will lock
2159 * cgroup_mutex and threadgroup; may take task_lock of task.
2161 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2163 struct task_struct *tsk;
2164 const struct cred *cred = current_cred(), *tcred;
2165 int ret;
2167 if (!cgroup_lock_live_group(cgrp))
2168 return -ENODEV;
2170 retry_find_task:
2171 rcu_read_lock();
2172 if (pid) {
2173 tsk = find_task_by_vpid(pid);
2174 if (!tsk) {
2175 rcu_read_unlock();
2176 ret= -ESRCH;
2177 goto out_unlock_cgroup;
2180 * even if we're attaching all tasks in the thread group, we
2181 * only need to check permissions on one of them.
2183 tcred = __task_cred(tsk);
2184 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2185 !uid_eq(cred->euid, tcred->uid) &&
2186 !uid_eq(cred->euid, tcred->suid)) {
2187 rcu_read_unlock();
2188 ret = -EACCES;
2189 goto out_unlock_cgroup;
2191 } else
2192 tsk = current;
2194 if (threadgroup)
2195 tsk = tsk->group_leader;
2198 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2199 * trapped in a cpuset, or RT worker may be born in a cgroup
2200 * with no rt_runtime allocated. Just say no.
2202 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2203 ret = -EINVAL;
2204 rcu_read_unlock();
2205 goto out_unlock_cgroup;
2208 get_task_struct(tsk);
2209 rcu_read_unlock();
2211 threadgroup_lock(tsk);
2212 if (threadgroup) {
2213 if (!thread_group_leader(tsk)) {
2215 * a race with de_thread from another thread's exec()
2216 * may strip us of our leadership, if this happens,
2217 * there is no choice but to throw this task away and
2218 * try again; this is
2219 * "double-double-toil-and-trouble-check locking".
2221 threadgroup_unlock(tsk);
2222 put_task_struct(tsk);
2223 goto retry_find_task;
2227 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2229 threadgroup_unlock(tsk);
2231 put_task_struct(tsk);
2232 out_unlock_cgroup:
2233 mutex_unlock(&cgroup_mutex);
2234 return ret;
2238 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2239 * @from: attach to all cgroups of a given task
2240 * @tsk: the task to be attached
2242 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2244 struct cgroupfs_root *root;
2245 int retval = 0;
2247 mutex_lock(&cgroup_mutex);
2248 for_each_active_root(root) {
2249 struct cgroup *from_cg = task_cgroup_from_root(from, root);
2251 retval = cgroup_attach_task(from_cg, tsk, false);
2252 if (retval)
2253 break;
2255 mutex_unlock(&cgroup_mutex);
2257 return retval;
2259 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2261 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2263 return attach_task_by_pid(cgrp, pid, false);
2266 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2268 return attach_task_by_pid(cgrp, tgid, true);
2271 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2272 const char *buffer)
2274 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2275 if (strlen(buffer) >= PATH_MAX)
2276 return -EINVAL;
2277 if (!cgroup_lock_live_group(cgrp))
2278 return -ENODEV;
2279 mutex_lock(&cgroup_root_mutex);
2280 strcpy(cgrp->root->release_agent_path, buffer);
2281 mutex_unlock(&cgroup_root_mutex);
2282 mutex_unlock(&cgroup_mutex);
2283 return 0;
2286 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2287 struct seq_file *seq)
2289 if (!cgroup_lock_live_group(cgrp))
2290 return -ENODEV;
2291 seq_puts(seq, cgrp->root->release_agent_path);
2292 seq_putc(seq, '\n');
2293 mutex_unlock(&cgroup_mutex);
2294 return 0;
2297 static int cgroup_sane_behavior_show(struct cgroup *cgrp, struct cftype *cft,
2298 struct seq_file *seq)
2300 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
2301 return 0;
2304 /* A buffer size big enough for numbers or short strings */
2305 #define CGROUP_LOCAL_BUFFER_SIZE 64
2307 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2308 struct file *file,
2309 const char __user *userbuf,
2310 size_t nbytes, loff_t *unused_ppos)
2312 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2313 int retval = 0;
2314 char *end;
2316 if (!nbytes)
2317 return -EINVAL;
2318 if (nbytes >= sizeof(buffer))
2319 return -E2BIG;
2320 if (copy_from_user(buffer, userbuf, nbytes))
2321 return -EFAULT;
2323 buffer[nbytes] = 0; /* nul-terminate */
2324 if (cft->write_u64) {
2325 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2326 if (*end)
2327 return -EINVAL;
2328 retval = cft->write_u64(cgrp, cft, val);
2329 } else {
2330 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2331 if (*end)
2332 return -EINVAL;
2333 retval = cft->write_s64(cgrp, cft, val);
2335 if (!retval)
2336 retval = nbytes;
2337 return retval;
2340 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2341 struct file *file,
2342 const char __user *userbuf,
2343 size_t nbytes, loff_t *unused_ppos)
2345 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2346 int retval = 0;
2347 size_t max_bytes = cft->max_write_len;
2348 char *buffer = local_buffer;
2350 if (!max_bytes)
2351 max_bytes = sizeof(local_buffer) - 1;
2352 if (nbytes >= max_bytes)
2353 return -E2BIG;
2354 /* Allocate a dynamic buffer if we need one */
2355 if (nbytes >= sizeof(local_buffer)) {
2356 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2357 if (buffer == NULL)
2358 return -ENOMEM;
2360 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2361 retval = -EFAULT;
2362 goto out;
2365 buffer[nbytes] = 0; /* nul-terminate */
2366 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2367 if (!retval)
2368 retval = nbytes;
2369 out:
2370 if (buffer != local_buffer)
2371 kfree(buffer);
2372 return retval;
2375 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2376 size_t nbytes, loff_t *ppos)
2378 struct cftype *cft = __d_cft(file->f_dentry);
2379 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2381 if (cgroup_is_dead(cgrp))
2382 return -ENODEV;
2383 if (cft->write)
2384 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2385 if (cft->write_u64 || cft->write_s64)
2386 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2387 if (cft->write_string)
2388 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2389 if (cft->trigger) {
2390 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2391 return ret ? ret : nbytes;
2393 return -EINVAL;
2396 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2397 struct file *file,
2398 char __user *buf, size_t nbytes,
2399 loff_t *ppos)
2401 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2402 u64 val = cft->read_u64(cgrp, cft);
2403 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2405 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2408 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2409 struct file *file,
2410 char __user *buf, size_t nbytes,
2411 loff_t *ppos)
2413 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2414 s64 val = cft->read_s64(cgrp, cft);
2415 int len = sprintf(tmp, "%lld\n", (long long) val);
2417 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2420 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2421 size_t nbytes, loff_t *ppos)
2423 struct cftype *cft = __d_cft(file->f_dentry);
2424 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2426 if (cgroup_is_dead(cgrp))
2427 return -ENODEV;
2429 if (cft->read)
2430 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2431 if (cft->read_u64)
2432 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2433 if (cft->read_s64)
2434 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2435 return -EINVAL;
2439 * seqfile ops/methods for returning structured data. Currently just
2440 * supports string->u64 maps, but can be extended in future.
2443 struct cgroup_seqfile_state {
2444 struct cftype *cft;
2445 struct cgroup *cgroup;
2448 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2450 struct seq_file *sf = cb->state;
2451 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2454 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2456 struct cgroup_seqfile_state *state = m->private;
2457 struct cftype *cft = state->cft;
2458 if (cft->read_map) {
2459 struct cgroup_map_cb cb = {
2460 .fill = cgroup_map_add,
2461 .state = m,
2463 return cft->read_map(state->cgroup, cft, &cb);
2465 return cft->read_seq_string(state->cgroup, cft, m);
2468 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2470 struct seq_file *seq = file->private_data;
2471 kfree(seq->private);
2472 return single_release(inode, file);
2475 static const struct file_operations cgroup_seqfile_operations = {
2476 .read = seq_read,
2477 .write = cgroup_file_write,
2478 .llseek = seq_lseek,
2479 .release = cgroup_seqfile_release,
2482 static int cgroup_file_open(struct inode *inode, struct file *file)
2484 int err;
2485 struct cftype *cft;
2487 err = generic_file_open(inode, file);
2488 if (err)
2489 return err;
2490 cft = __d_cft(file->f_dentry);
2492 if (cft->read_map || cft->read_seq_string) {
2493 struct cgroup_seqfile_state *state;
2495 state = kzalloc(sizeof(*state), GFP_USER);
2496 if (!state)
2497 return -ENOMEM;
2499 state->cft = cft;
2500 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2501 file->f_op = &cgroup_seqfile_operations;
2502 err = single_open(file, cgroup_seqfile_show, state);
2503 if (err < 0)
2504 kfree(state);
2505 } else if (cft->open)
2506 err = cft->open(inode, file);
2507 else
2508 err = 0;
2510 return err;
2513 static int cgroup_file_release(struct inode *inode, struct file *file)
2515 struct cftype *cft = __d_cft(file->f_dentry);
2516 if (cft->release)
2517 return cft->release(inode, file);
2518 return 0;
2522 * cgroup_rename - Only allow simple rename of directories in place.
2524 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2525 struct inode *new_dir, struct dentry *new_dentry)
2527 int ret;
2528 struct cgroup_name *name, *old_name;
2529 struct cgroup *cgrp;
2532 * It's convinient to use parent dir's i_mutex to protected
2533 * cgrp->name.
2535 lockdep_assert_held(&old_dir->i_mutex);
2537 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2538 return -ENOTDIR;
2539 if (new_dentry->d_inode)
2540 return -EEXIST;
2541 if (old_dir != new_dir)
2542 return -EIO;
2544 cgrp = __d_cgrp(old_dentry);
2547 * This isn't a proper migration and its usefulness is very
2548 * limited. Disallow if sane_behavior.
2550 if (cgroup_sane_behavior(cgrp))
2551 return -EPERM;
2553 name = cgroup_alloc_name(new_dentry);
2554 if (!name)
2555 return -ENOMEM;
2557 ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2558 if (ret) {
2559 kfree(name);
2560 return ret;
2563 old_name = rcu_dereference_protected(cgrp->name, true);
2564 rcu_assign_pointer(cgrp->name, name);
2566 kfree_rcu(old_name, rcu_head);
2567 return 0;
2570 static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2572 if (S_ISDIR(dentry->d_inode->i_mode))
2573 return &__d_cgrp(dentry)->xattrs;
2574 else
2575 return &__d_cfe(dentry)->xattrs;
2578 static inline int xattr_enabled(struct dentry *dentry)
2580 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2581 return root->flags & CGRP_ROOT_XATTR;
2584 static bool is_valid_xattr(const char *name)
2586 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2587 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2588 return true;
2589 return false;
2592 static int cgroup_setxattr(struct dentry *dentry, const char *name,
2593 const void *val, size_t size, int flags)
2595 if (!xattr_enabled(dentry))
2596 return -EOPNOTSUPP;
2597 if (!is_valid_xattr(name))
2598 return -EINVAL;
2599 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2602 static int cgroup_removexattr(struct dentry *dentry, const char *name)
2604 if (!xattr_enabled(dentry))
2605 return -EOPNOTSUPP;
2606 if (!is_valid_xattr(name))
2607 return -EINVAL;
2608 return simple_xattr_remove(__d_xattrs(dentry), name);
2611 static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2612 void *buf, size_t size)
2614 if (!xattr_enabled(dentry))
2615 return -EOPNOTSUPP;
2616 if (!is_valid_xattr(name))
2617 return -EINVAL;
2618 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2621 static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2623 if (!xattr_enabled(dentry))
2624 return -EOPNOTSUPP;
2625 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2628 static const struct file_operations cgroup_file_operations = {
2629 .read = cgroup_file_read,
2630 .write = cgroup_file_write,
2631 .llseek = generic_file_llseek,
2632 .open = cgroup_file_open,
2633 .release = cgroup_file_release,
2636 static const struct inode_operations cgroup_file_inode_operations = {
2637 .setxattr = cgroup_setxattr,
2638 .getxattr = cgroup_getxattr,
2639 .listxattr = cgroup_listxattr,
2640 .removexattr = cgroup_removexattr,
2643 static const struct inode_operations cgroup_dir_inode_operations = {
2644 .lookup = simple_lookup,
2645 .mkdir = cgroup_mkdir,
2646 .rmdir = cgroup_rmdir,
2647 .rename = cgroup_rename,
2648 .setxattr = cgroup_setxattr,
2649 .getxattr = cgroup_getxattr,
2650 .listxattr = cgroup_listxattr,
2651 .removexattr = cgroup_removexattr,
2655 * Check if a file is a control file
2657 static inline struct cftype *__file_cft(struct file *file)
2659 if (file_inode(file)->i_fop != &cgroup_file_operations)
2660 return ERR_PTR(-EINVAL);
2661 return __d_cft(file->f_dentry);
2664 static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2665 struct super_block *sb)
2667 struct inode *inode;
2669 if (!dentry)
2670 return -ENOENT;
2671 if (dentry->d_inode)
2672 return -EEXIST;
2674 inode = cgroup_new_inode(mode, sb);
2675 if (!inode)
2676 return -ENOMEM;
2678 if (S_ISDIR(mode)) {
2679 inode->i_op = &cgroup_dir_inode_operations;
2680 inode->i_fop = &simple_dir_operations;
2682 /* start off with i_nlink == 2 (for "." entry) */
2683 inc_nlink(inode);
2684 inc_nlink(dentry->d_parent->d_inode);
2687 * Control reaches here with cgroup_mutex held.
2688 * @inode->i_mutex should nest outside cgroup_mutex but we
2689 * want to populate it immediately without releasing
2690 * cgroup_mutex. As @inode isn't visible to anyone else
2691 * yet, trylock will always succeed without affecting
2692 * lockdep checks.
2694 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
2695 } else if (S_ISREG(mode)) {
2696 inode->i_size = 0;
2697 inode->i_fop = &cgroup_file_operations;
2698 inode->i_op = &cgroup_file_inode_operations;
2700 d_instantiate(dentry, inode);
2701 dget(dentry); /* Extra count - pin the dentry in core */
2702 return 0;
2706 * cgroup_file_mode - deduce file mode of a control file
2707 * @cft: the control file in question
2709 * returns cft->mode if ->mode is not 0
2710 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2711 * returns S_IRUGO if it has only a read handler
2712 * returns S_IWUSR if it has only a write hander
2714 static umode_t cgroup_file_mode(const struct cftype *cft)
2716 umode_t mode = 0;
2718 if (cft->mode)
2719 return cft->mode;
2721 if (cft->read || cft->read_u64 || cft->read_s64 ||
2722 cft->read_map || cft->read_seq_string)
2723 mode |= S_IRUGO;
2725 if (cft->write || cft->write_u64 || cft->write_s64 ||
2726 cft->write_string || cft->trigger)
2727 mode |= S_IWUSR;
2729 return mode;
2732 static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2733 struct cftype *cft)
2735 struct dentry *dir = cgrp->dentry;
2736 struct cgroup *parent = __d_cgrp(dir);
2737 struct dentry *dentry;
2738 struct cfent *cfe;
2739 int error;
2740 umode_t mode;
2741 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2743 if (subsys && !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
2744 strcpy(name, subsys->name);
2745 strcat(name, ".");
2747 strcat(name, cft->name);
2749 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2751 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2752 if (!cfe)
2753 return -ENOMEM;
2755 dentry = lookup_one_len(name, dir, strlen(name));
2756 if (IS_ERR(dentry)) {
2757 error = PTR_ERR(dentry);
2758 goto out;
2761 cfe->type = (void *)cft;
2762 cfe->dentry = dentry;
2763 dentry->d_fsdata = cfe;
2764 simple_xattrs_init(&cfe->xattrs);
2766 mode = cgroup_file_mode(cft);
2767 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2768 if (!error) {
2769 list_add_tail(&cfe->node, &parent->files);
2770 cfe = NULL;
2772 dput(dentry);
2773 out:
2774 kfree(cfe);
2775 return error;
2778 static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2779 struct cftype cfts[], bool is_add)
2781 struct cftype *cft;
2782 int err, ret = 0;
2784 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2785 /* does cft->flags tell us to skip this file on @cgrp? */
2786 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2787 continue;
2788 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2789 continue;
2790 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2791 continue;
2793 if (is_add) {
2794 err = cgroup_add_file(cgrp, subsys, cft);
2795 if (err)
2796 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2797 cft->name, err);
2798 ret = err;
2799 } else {
2800 cgroup_rm_file(cgrp, cft);
2803 return ret;
2806 static void cgroup_cfts_prepare(void)
2807 __acquires(&cgroup_mutex)
2810 * Thanks to the entanglement with vfs inode locking, we can't walk
2811 * the existing cgroups under cgroup_mutex and create files.
2812 * Instead, we use cgroup_for_each_descendant_pre() and drop RCU
2813 * read lock before calling cgroup_addrm_files().
2815 mutex_lock(&cgroup_mutex);
2818 static void cgroup_cfts_commit(struct cgroup_subsys *ss,
2819 struct cftype *cfts, bool is_add)
2820 __releases(&cgroup_mutex)
2822 LIST_HEAD(pending);
2823 struct cgroup *cgrp, *root = &ss->root->top_cgroup;
2824 struct super_block *sb = ss->root->sb;
2825 struct dentry *prev = NULL;
2826 struct inode *inode;
2827 u64 update_before;
2829 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2830 if (!cfts || ss->root == &cgroup_dummy_root ||
2831 !atomic_inc_not_zero(&sb->s_active)) {
2832 mutex_unlock(&cgroup_mutex);
2833 return;
2837 * All cgroups which are created after we drop cgroup_mutex will
2838 * have the updated set of files, so we only need to update the
2839 * cgroups created before the current @cgroup_serial_nr_next.
2841 update_before = cgroup_serial_nr_next;
2843 mutex_unlock(&cgroup_mutex);
2845 /* @root always needs to be updated */
2846 inode = root->dentry->d_inode;
2847 mutex_lock(&inode->i_mutex);
2848 mutex_lock(&cgroup_mutex);
2849 cgroup_addrm_files(root, ss, cfts, is_add);
2850 mutex_unlock(&cgroup_mutex);
2851 mutex_unlock(&inode->i_mutex);
2853 /* add/rm files for all cgroups created before */
2854 rcu_read_lock();
2855 cgroup_for_each_descendant_pre(cgrp, root) {
2856 if (cgroup_is_dead(cgrp))
2857 continue;
2859 inode = cgrp->dentry->d_inode;
2860 dget(cgrp->dentry);
2861 rcu_read_unlock();
2863 dput(prev);
2864 prev = cgrp->dentry;
2866 mutex_lock(&inode->i_mutex);
2867 mutex_lock(&cgroup_mutex);
2868 if (cgrp->serial_nr < update_before && !cgroup_is_dead(cgrp))
2869 cgroup_addrm_files(cgrp, ss, cfts, is_add);
2870 mutex_unlock(&cgroup_mutex);
2871 mutex_unlock(&inode->i_mutex);
2873 rcu_read_lock();
2875 rcu_read_unlock();
2876 dput(prev);
2877 deactivate_super(sb);
2881 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2882 * @ss: target cgroup subsystem
2883 * @cfts: zero-length name terminated array of cftypes
2885 * Register @cfts to @ss. Files described by @cfts are created for all
2886 * existing cgroups to which @ss is attached and all future cgroups will
2887 * have them too. This function can be called anytime whether @ss is
2888 * attached or not.
2890 * Returns 0 on successful registration, -errno on failure. Note that this
2891 * function currently returns 0 as long as @cfts registration is successful
2892 * even if some file creation attempts on existing cgroups fail.
2894 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2896 struct cftype_set *set;
2898 set = kzalloc(sizeof(*set), GFP_KERNEL);
2899 if (!set)
2900 return -ENOMEM;
2902 cgroup_cfts_prepare();
2903 set->cfts = cfts;
2904 list_add_tail(&set->node, &ss->cftsets);
2905 cgroup_cfts_commit(ss, cfts, true);
2907 return 0;
2909 EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2912 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2913 * @ss: target cgroup subsystem
2914 * @cfts: zero-length name terminated array of cftypes
2916 * Unregister @cfts from @ss. Files described by @cfts are removed from
2917 * all existing cgroups to which @ss is attached and all future cgroups
2918 * won't have them either. This function can be called anytime whether @ss
2919 * is attached or not.
2921 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2922 * registered with @ss.
2924 int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2926 struct cftype_set *set;
2928 cgroup_cfts_prepare();
2930 list_for_each_entry(set, &ss->cftsets, node) {
2931 if (set->cfts == cfts) {
2932 list_del(&set->node);
2933 kfree(set);
2934 cgroup_cfts_commit(ss, cfts, false);
2935 return 0;
2939 cgroup_cfts_commit(ss, NULL, false);
2940 return -ENOENT;
2944 * cgroup_task_count - count the number of tasks in a cgroup.
2945 * @cgrp: the cgroup in question
2947 * Return the number of tasks in the cgroup.
2949 int cgroup_task_count(const struct cgroup *cgrp)
2951 int count = 0;
2952 struct cgrp_cset_link *link;
2954 read_lock(&css_set_lock);
2955 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2956 count += atomic_read(&link->cset->refcount);
2957 read_unlock(&css_set_lock);
2958 return count;
2962 * Advance a list_head iterator. The iterator should be positioned at
2963 * the start of a css_set
2965 static void cgroup_advance_iter(struct cgroup *cgrp, struct cgroup_iter *it)
2967 struct list_head *l = it->cset_link;
2968 struct cgrp_cset_link *link;
2969 struct css_set *cset;
2971 /* Advance to the next non-empty css_set */
2972 do {
2973 l = l->next;
2974 if (l == &cgrp->cset_links) {
2975 it->cset_link = NULL;
2976 return;
2978 link = list_entry(l, struct cgrp_cset_link, cset_link);
2979 cset = link->cset;
2980 } while (list_empty(&cset->tasks));
2981 it->cset_link = l;
2982 it->task = cset->tasks.next;
2986 * To reduce the fork() overhead for systems that are not actually
2987 * using their cgroups capability, we don't maintain the lists running
2988 * through each css_set to its tasks until we see the list actually
2989 * used - in other words after the first call to cgroup_iter_start().
2991 static void cgroup_enable_task_cg_lists(void)
2993 struct task_struct *p, *g;
2994 write_lock(&css_set_lock);
2995 use_task_css_set_links = 1;
2997 * We need tasklist_lock because RCU is not safe against
2998 * while_each_thread(). Besides, a forking task that has passed
2999 * cgroup_post_fork() without seeing use_task_css_set_links = 1
3000 * is not guaranteed to have its child immediately visible in the
3001 * tasklist if we walk through it with RCU.
3003 read_lock(&tasklist_lock);
3004 do_each_thread(g, p) {
3005 task_lock(p);
3007 * We should check if the process is exiting, otherwise
3008 * it will race with cgroup_exit() in that the list
3009 * entry won't be deleted though the process has exited.
3011 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
3012 list_add(&p->cg_list, &task_css_set(p)->tasks);
3013 task_unlock(p);
3014 } while_each_thread(g, p);
3015 read_unlock(&tasklist_lock);
3016 write_unlock(&css_set_lock);
3020 * cgroup_next_sibling - find the next sibling of a given cgroup
3021 * @pos: the current cgroup
3023 * This function returns the next sibling of @pos and should be called
3024 * under RCU read lock. The only requirement is that @pos is accessible.
3025 * The next sibling is guaranteed to be returned regardless of @pos's
3026 * state.
3028 struct cgroup *cgroup_next_sibling(struct cgroup *pos)
3030 struct cgroup *next;
3032 WARN_ON_ONCE(!rcu_read_lock_held());
3035 * @pos could already have been removed. Once a cgroup is removed,
3036 * its ->sibling.next is no longer updated when its next sibling
3037 * changes. As CGRP_DEAD assertion is serialized and happens
3038 * before the cgroup is taken off the ->sibling list, if we see it
3039 * unasserted, it's guaranteed that the next sibling hasn't
3040 * finished its grace period even if it's already removed, and thus
3041 * safe to dereference from this RCU critical section. If
3042 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
3043 * to be visible as %true here.
3045 if (likely(!cgroup_is_dead(pos))) {
3046 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3047 if (&next->sibling != &pos->parent->children)
3048 return next;
3049 return NULL;
3053 * Can't dereference the next pointer. Each cgroup is given a
3054 * monotonically increasing unique serial number and always
3055 * appended to the sibling list, so the next one can be found by
3056 * walking the parent's children until we see a cgroup with higher
3057 * serial number than @pos's.
3059 * While this path can be slow, it's taken only when either the
3060 * current cgroup is removed or iteration and removal race.
3062 list_for_each_entry_rcu(next, &pos->parent->children, sibling)
3063 if (next->serial_nr > pos->serial_nr)
3064 return next;
3065 return NULL;
3067 EXPORT_SYMBOL_GPL(cgroup_next_sibling);
3070 * cgroup_next_descendant_pre - find the next descendant for pre-order walk
3071 * @pos: the current position (%NULL to initiate traversal)
3072 * @cgroup: cgroup whose descendants to walk
3074 * To be used by cgroup_for_each_descendant_pre(). Find the next
3075 * descendant to visit for pre-order traversal of @cgroup's descendants.
3077 * While this function requires RCU read locking, it doesn't require the
3078 * whole traversal to be contained in a single RCU critical section. This
3079 * function will return the correct next descendant as long as both @pos
3080 * and @cgroup are accessible and @pos is a descendant of @cgroup.
3082 struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos,
3083 struct cgroup *cgroup)
3085 struct cgroup *next;
3087 WARN_ON_ONCE(!rcu_read_lock_held());
3089 /* if first iteration, pretend we just visited @cgroup */
3090 if (!pos)
3091 pos = cgroup;
3093 /* visit the first child if exists */
3094 next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling);
3095 if (next)
3096 return next;
3098 /* no child, visit my or the closest ancestor's next sibling */
3099 while (pos != cgroup) {
3100 next = cgroup_next_sibling(pos);
3101 if (next)
3102 return next;
3103 pos = pos->parent;
3106 return NULL;
3108 EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre);
3111 * cgroup_rightmost_descendant - return the rightmost descendant of a cgroup
3112 * @pos: cgroup of interest
3114 * Return the rightmost descendant of @pos. If there's no descendant,
3115 * @pos is returned. This can be used during pre-order traversal to skip
3116 * subtree of @pos.
3118 * While this function requires RCU read locking, it doesn't require the
3119 * whole traversal to be contained in a single RCU critical section. This
3120 * function will return the correct rightmost descendant as long as @pos is
3121 * accessible.
3123 struct cgroup *cgroup_rightmost_descendant(struct cgroup *pos)
3125 struct cgroup *last, *tmp;
3127 WARN_ON_ONCE(!rcu_read_lock_held());
3129 do {
3130 last = pos;
3131 /* ->prev isn't RCU safe, walk ->next till the end */
3132 pos = NULL;
3133 list_for_each_entry_rcu(tmp, &last->children, sibling)
3134 pos = tmp;
3135 } while (pos);
3137 return last;
3139 EXPORT_SYMBOL_GPL(cgroup_rightmost_descendant);
3141 static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos)
3143 struct cgroup *last;
3145 do {
3146 last = pos;
3147 pos = list_first_or_null_rcu(&pos->children, struct cgroup,
3148 sibling);
3149 } while (pos);
3151 return last;
3155 * cgroup_next_descendant_post - find the next descendant for post-order walk
3156 * @pos: the current position (%NULL to initiate traversal)
3157 * @cgroup: cgroup whose descendants to walk
3159 * To be used by cgroup_for_each_descendant_post(). Find the next
3160 * descendant to visit for post-order traversal of @cgroup's descendants.
3162 * While this function requires RCU read locking, it doesn't require the
3163 * whole traversal to be contained in a single RCU critical section. This
3164 * function will return the correct next descendant as long as both @pos
3165 * and @cgroup are accessible and @pos is a descendant of @cgroup.
3167 struct cgroup *cgroup_next_descendant_post(struct cgroup *pos,
3168 struct cgroup *cgroup)
3170 struct cgroup *next;
3172 WARN_ON_ONCE(!rcu_read_lock_held());
3174 /* if first iteration, visit the leftmost descendant */
3175 if (!pos) {
3176 next = cgroup_leftmost_descendant(cgroup);
3177 return next != cgroup ? next : NULL;
3180 /* if there's an unvisited sibling, visit its leftmost descendant */
3181 next = cgroup_next_sibling(pos);
3182 if (next)
3183 return cgroup_leftmost_descendant(next);
3185 /* no sibling left, visit parent */
3186 next = pos->parent;
3187 return next != cgroup ? next : NULL;
3189 EXPORT_SYMBOL_GPL(cgroup_next_descendant_post);
3191 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
3192 __acquires(css_set_lock)
3195 * The first time anyone tries to iterate across a cgroup,
3196 * we need to enable the list linking each css_set to its
3197 * tasks, and fix up all existing tasks.
3199 if (!use_task_css_set_links)
3200 cgroup_enable_task_cg_lists();
3202 read_lock(&css_set_lock);
3203 it->cset_link = &cgrp->cset_links;
3204 cgroup_advance_iter(cgrp, it);
3207 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
3208 struct cgroup_iter *it)
3210 struct task_struct *res;
3211 struct list_head *l = it->task;
3212 struct cgrp_cset_link *link;
3214 /* If the iterator cg is NULL, we have no tasks */
3215 if (!it->cset_link)
3216 return NULL;
3217 res = list_entry(l, struct task_struct, cg_list);
3218 /* Advance iterator to find next entry */
3219 l = l->next;
3220 link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
3221 if (l == &link->cset->tasks) {
3222 /* We reached the end of this task list - move on to
3223 * the next cg_cgroup_link */
3224 cgroup_advance_iter(cgrp, it);
3225 } else {
3226 it->task = l;
3228 return res;
3231 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
3232 __releases(css_set_lock)
3234 read_unlock(&css_set_lock);
3237 static inline int started_after_time(struct task_struct *t1,
3238 struct timespec *time,
3239 struct task_struct *t2)
3241 int start_diff = timespec_compare(&t1->start_time, time);
3242 if (start_diff > 0) {
3243 return 1;
3244 } else if (start_diff < 0) {
3245 return 0;
3246 } else {
3248 * Arbitrarily, if two processes started at the same
3249 * time, we'll say that the lower pointer value
3250 * started first. Note that t2 may have exited by now
3251 * so this may not be a valid pointer any longer, but
3252 * that's fine - it still serves to distinguish
3253 * between two tasks started (effectively) simultaneously.
3255 return t1 > t2;
3260 * This function is a callback from heap_insert() and is used to order
3261 * the heap.
3262 * In this case we order the heap in descending task start time.
3264 static inline int started_after(void *p1, void *p2)
3266 struct task_struct *t1 = p1;
3267 struct task_struct *t2 = p2;
3268 return started_after_time(t1, &t2->start_time, t2);
3272 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3273 * @scan: struct cgroup_scanner containing arguments for the scan
3275 * Arguments include pointers to callback functions test_task() and
3276 * process_task().
3277 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3278 * and if it returns true, call process_task() for it also.
3279 * The test_task pointer may be NULL, meaning always true (select all tasks).
3280 * Effectively duplicates cgroup_iter_{start,next,end}()
3281 * but does not lock css_set_lock for the call to process_task().
3282 * The struct cgroup_scanner may be embedded in any structure of the caller's
3283 * creation.
3284 * It is guaranteed that process_task() will act on every task that
3285 * is a member of the cgroup for the duration of this call. This
3286 * function may or may not call process_task() for tasks that exit
3287 * or move to a different cgroup during the call, or are forked or
3288 * move into the cgroup during the call.
3290 * Note that test_task() may be called with locks held, and may in some
3291 * situations be called multiple times for the same task, so it should
3292 * be cheap.
3293 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3294 * pre-allocated and will be used for heap operations (and its "gt" member will
3295 * be overwritten), else a temporary heap will be used (allocation of which
3296 * may cause this function to fail).
3298 int cgroup_scan_tasks(struct cgroup_scanner *scan)
3300 int retval, i;
3301 struct cgroup_iter it;
3302 struct task_struct *p, *dropped;
3303 /* Never dereference latest_task, since it's not refcounted */
3304 struct task_struct *latest_task = NULL;
3305 struct ptr_heap tmp_heap;
3306 struct ptr_heap *heap;
3307 struct timespec latest_time = { 0, 0 };
3309 if (scan->heap) {
3310 /* The caller supplied our heap and pre-allocated its memory */
3311 heap = scan->heap;
3312 heap->gt = &started_after;
3313 } else {
3314 /* We need to allocate our own heap memory */
3315 heap = &tmp_heap;
3316 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3317 if (retval)
3318 /* cannot allocate the heap */
3319 return retval;
3322 again:
3324 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3325 * to determine which are of interest, and using the scanner's
3326 * "process_task" callback to process any of them that need an update.
3327 * Since we don't want to hold any locks during the task updates,
3328 * gather tasks to be processed in a heap structure.
3329 * The heap is sorted by descending task start time.
3330 * If the statically-sized heap fills up, we overflow tasks that
3331 * started later, and in future iterations only consider tasks that
3332 * started after the latest task in the previous pass. This
3333 * guarantees forward progress and that we don't miss any tasks.
3335 heap->size = 0;
3336 cgroup_iter_start(scan->cg, &it);
3337 while ((p = cgroup_iter_next(scan->cg, &it))) {
3339 * Only affect tasks that qualify per the caller's callback,
3340 * if he provided one
3342 if (scan->test_task && !scan->test_task(p, scan))
3343 continue;
3345 * Only process tasks that started after the last task
3346 * we processed
3348 if (!started_after_time(p, &latest_time, latest_task))
3349 continue;
3350 dropped = heap_insert(heap, p);
3351 if (dropped == NULL) {
3353 * The new task was inserted; the heap wasn't
3354 * previously full
3356 get_task_struct(p);
3357 } else if (dropped != p) {
3359 * The new task was inserted, and pushed out a
3360 * different task
3362 get_task_struct(p);
3363 put_task_struct(dropped);
3366 * Else the new task was newer than anything already in
3367 * the heap and wasn't inserted
3370 cgroup_iter_end(scan->cg, &it);
3372 if (heap->size) {
3373 for (i = 0; i < heap->size; i++) {
3374 struct task_struct *q = heap->ptrs[i];
3375 if (i == 0) {
3376 latest_time = q->start_time;
3377 latest_task = q;
3379 /* Process the task per the caller's callback */
3380 scan->process_task(q, scan);
3381 put_task_struct(q);
3384 * If we had to process any tasks at all, scan again
3385 * in case some of them were in the middle of forking
3386 * children that didn't get processed.
3387 * Not the most efficient way to do it, but it avoids
3388 * having to take callback_mutex in the fork path
3390 goto again;
3392 if (heap == &tmp_heap)
3393 heap_free(&tmp_heap);
3394 return 0;
3397 static void cgroup_transfer_one_task(struct task_struct *task,
3398 struct cgroup_scanner *scan)
3400 struct cgroup *new_cgroup = scan->data;
3402 mutex_lock(&cgroup_mutex);
3403 cgroup_attach_task(new_cgroup, task, false);
3404 mutex_unlock(&cgroup_mutex);
3408 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3409 * @to: cgroup to which the tasks will be moved
3410 * @from: cgroup in which the tasks currently reside
3412 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3414 struct cgroup_scanner scan;
3416 scan.cg = from;
3417 scan.test_task = NULL; /* select all tasks in cgroup */
3418 scan.process_task = cgroup_transfer_one_task;
3419 scan.heap = NULL;
3420 scan.data = to;
3422 return cgroup_scan_tasks(&scan);
3426 * Stuff for reading the 'tasks'/'procs' files.
3428 * Reading this file can return large amounts of data if a cgroup has
3429 * *lots* of attached tasks. So it may need several calls to read(),
3430 * but we cannot guarantee that the information we produce is correct
3431 * unless we produce it entirely atomically.
3435 /* which pidlist file are we talking about? */
3436 enum cgroup_filetype {
3437 CGROUP_FILE_PROCS,
3438 CGROUP_FILE_TASKS,
3442 * A pidlist is a list of pids that virtually represents the contents of one
3443 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3444 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3445 * to the cgroup.
3447 struct cgroup_pidlist {
3449 * used to find which pidlist is wanted. doesn't change as long as
3450 * this particular list stays in the list.
3452 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3453 /* array of xids */
3454 pid_t *list;
3455 /* how many elements the above list has */
3456 int length;
3457 /* how many files are using the current array */
3458 int use_count;
3459 /* each of these stored in a list by its cgroup */
3460 struct list_head links;
3461 /* pointer to the cgroup we belong to, for list removal purposes */
3462 struct cgroup *owner;
3463 /* protects the other fields */
3464 struct rw_semaphore mutex;
3468 * The following two functions "fix" the issue where there are more pids
3469 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3470 * TODO: replace with a kernel-wide solution to this problem
3472 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3473 static void *pidlist_allocate(int count)
3475 if (PIDLIST_TOO_LARGE(count))
3476 return vmalloc(count * sizeof(pid_t));
3477 else
3478 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3480 static void pidlist_free(void *p)
3482 if (is_vmalloc_addr(p))
3483 vfree(p);
3484 else
3485 kfree(p);
3489 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3490 * Returns the number of unique elements.
3492 static int pidlist_uniq(pid_t *list, int length)
3494 int src, dest = 1;
3497 * we presume the 0th element is unique, so i starts at 1. trivial
3498 * edge cases first; no work needs to be done for either
3500 if (length == 0 || length == 1)
3501 return length;
3502 /* src and dest walk down the list; dest counts unique elements */
3503 for (src = 1; src < length; src++) {
3504 /* find next unique element */
3505 while (list[src] == list[src-1]) {
3506 src++;
3507 if (src == length)
3508 goto after;
3510 /* dest always points to where the next unique element goes */
3511 list[dest] = list[src];
3512 dest++;
3514 after:
3515 return dest;
3518 static int cmppid(const void *a, const void *b)
3520 return *(pid_t *)a - *(pid_t *)b;
3524 * find the appropriate pidlist for our purpose (given procs vs tasks)
3525 * returns with the lock on that pidlist already held, and takes care
3526 * of the use count, or returns NULL with no locks held if we're out of
3527 * memory.
3529 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3530 enum cgroup_filetype type)
3532 struct cgroup_pidlist *l;
3533 /* don't need task_nsproxy() if we're looking at ourself */
3534 struct pid_namespace *ns = task_active_pid_ns(current);
3537 * We can't drop the pidlist_mutex before taking the l->mutex in case
3538 * the last ref-holder is trying to remove l from the list at the same
3539 * time. Holding the pidlist_mutex precludes somebody taking whichever
3540 * list we find out from under us - compare release_pid_array().
3542 mutex_lock(&cgrp->pidlist_mutex);
3543 list_for_each_entry(l, &cgrp->pidlists, links) {
3544 if (l->key.type == type && l->key.ns == ns) {
3545 /* make sure l doesn't vanish out from under us */
3546 down_write(&l->mutex);
3547 mutex_unlock(&cgrp->pidlist_mutex);
3548 return l;
3551 /* entry not found; create a new one */
3552 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3553 if (!l) {
3554 mutex_unlock(&cgrp->pidlist_mutex);
3555 return l;
3557 init_rwsem(&l->mutex);
3558 down_write(&l->mutex);
3559 l->key.type = type;
3560 l->key.ns = get_pid_ns(ns);
3561 l->owner = cgrp;
3562 list_add(&l->links, &cgrp->pidlists);
3563 mutex_unlock(&cgrp->pidlist_mutex);
3564 return l;
3568 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3570 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3571 struct cgroup_pidlist **lp)
3573 pid_t *array;
3574 int length;
3575 int pid, n = 0; /* used for populating the array */
3576 struct cgroup_iter it;
3577 struct task_struct *tsk;
3578 struct cgroup_pidlist *l;
3581 * If cgroup gets more users after we read count, we won't have
3582 * enough space - tough. This race is indistinguishable to the
3583 * caller from the case that the additional cgroup users didn't
3584 * show up until sometime later on.
3586 length = cgroup_task_count(cgrp);
3587 array = pidlist_allocate(length);
3588 if (!array)
3589 return -ENOMEM;
3590 /* now, populate the array */
3591 cgroup_iter_start(cgrp, &it);
3592 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3593 if (unlikely(n == length))
3594 break;
3595 /* get tgid or pid for procs or tasks file respectively */
3596 if (type == CGROUP_FILE_PROCS)
3597 pid = task_tgid_vnr(tsk);
3598 else
3599 pid = task_pid_vnr(tsk);
3600 if (pid > 0) /* make sure to only use valid results */
3601 array[n++] = pid;
3603 cgroup_iter_end(cgrp, &it);
3604 length = n;
3605 /* now sort & (if procs) strip out duplicates */
3606 sort(array, length, sizeof(pid_t), cmppid, NULL);
3607 if (type == CGROUP_FILE_PROCS)
3608 length = pidlist_uniq(array, length);
3609 l = cgroup_pidlist_find(cgrp, type);
3610 if (!l) {
3611 pidlist_free(array);
3612 return -ENOMEM;
3614 /* store array, freeing old if necessary - lock already held */
3615 pidlist_free(l->list);
3616 l->list = array;
3617 l->length = length;
3618 l->use_count++;
3619 up_write(&l->mutex);
3620 *lp = l;
3621 return 0;
3625 * cgroupstats_build - build and fill cgroupstats
3626 * @stats: cgroupstats to fill information into
3627 * @dentry: A dentry entry belonging to the cgroup for which stats have
3628 * been requested.
3630 * Build and fill cgroupstats so that taskstats can export it to user
3631 * space.
3633 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3635 int ret = -EINVAL;
3636 struct cgroup *cgrp;
3637 struct cgroup_iter it;
3638 struct task_struct *tsk;
3641 * Validate dentry by checking the superblock operations,
3642 * and make sure it's a directory.
3644 if (dentry->d_sb->s_op != &cgroup_ops ||
3645 !S_ISDIR(dentry->d_inode->i_mode))
3646 goto err;
3648 ret = 0;
3649 cgrp = dentry->d_fsdata;
3651 cgroup_iter_start(cgrp, &it);
3652 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3653 switch (tsk->state) {
3654 case TASK_RUNNING:
3655 stats->nr_running++;
3656 break;
3657 case TASK_INTERRUPTIBLE:
3658 stats->nr_sleeping++;
3659 break;
3660 case TASK_UNINTERRUPTIBLE:
3661 stats->nr_uninterruptible++;
3662 break;
3663 case TASK_STOPPED:
3664 stats->nr_stopped++;
3665 break;
3666 default:
3667 if (delayacct_is_task_waiting_on_io(tsk))
3668 stats->nr_io_wait++;
3669 break;
3672 cgroup_iter_end(cgrp, &it);
3674 err:
3675 return ret;
3680 * seq_file methods for the tasks/procs files. The seq_file position is the
3681 * next pid to display; the seq_file iterator is a pointer to the pid
3682 * in the cgroup->l->list array.
3685 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3688 * Initially we receive a position value that corresponds to
3689 * one more than the last pid shown (or 0 on the first call or
3690 * after a seek to the start). Use a binary-search to find the
3691 * next pid to display, if any
3693 struct cgroup_pidlist *l = s->private;
3694 int index = 0, pid = *pos;
3695 int *iter;
3697 down_read(&l->mutex);
3698 if (pid) {
3699 int end = l->length;
3701 while (index < end) {
3702 int mid = (index + end) / 2;
3703 if (l->list[mid] == pid) {
3704 index = mid;
3705 break;
3706 } else if (l->list[mid] <= pid)
3707 index = mid + 1;
3708 else
3709 end = mid;
3712 /* If we're off the end of the array, we're done */
3713 if (index >= l->length)
3714 return NULL;
3715 /* Update the abstract position to be the actual pid that we found */
3716 iter = l->list + index;
3717 *pos = *iter;
3718 return iter;
3721 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3723 struct cgroup_pidlist *l = s->private;
3724 up_read(&l->mutex);
3727 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3729 struct cgroup_pidlist *l = s->private;
3730 pid_t *p = v;
3731 pid_t *end = l->list + l->length;
3733 * Advance to the next pid in the array. If this goes off the
3734 * end, we're done
3736 p++;
3737 if (p >= end) {
3738 return NULL;
3739 } else {
3740 *pos = *p;
3741 return p;
3745 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3747 return seq_printf(s, "%d\n", *(int *)v);
3751 * seq_operations functions for iterating on pidlists through seq_file -
3752 * independent of whether it's tasks or procs
3754 static const struct seq_operations cgroup_pidlist_seq_operations = {
3755 .start = cgroup_pidlist_start,
3756 .stop = cgroup_pidlist_stop,
3757 .next = cgroup_pidlist_next,
3758 .show = cgroup_pidlist_show,
3761 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3764 * the case where we're the last user of this particular pidlist will
3765 * have us remove it from the cgroup's list, which entails taking the
3766 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3767 * pidlist_mutex, we have to take pidlist_mutex first.
3769 mutex_lock(&l->owner->pidlist_mutex);
3770 down_write(&l->mutex);
3771 BUG_ON(!l->use_count);
3772 if (!--l->use_count) {
3773 /* we're the last user if refcount is 0; remove and free */
3774 list_del(&l->links);
3775 mutex_unlock(&l->owner->pidlist_mutex);
3776 pidlist_free(l->list);
3777 put_pid_ns(l->key.ns);
3778 up_write(&l->mutex);
3779 kfree(l);
3780 return;
3782 mutex_unlock(&l->owner->pidlist_mutex);
3783 up_write(&l->mutex);
3786 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3788 struct cgroup_pidlist *l;
3789 if (!(file->f_mode & FMODE_READ))
3790 return 0;
3792 * the seq_file will only be initialized if the file was opened for
3793 * reading; hence we check if it's not null only in that case.
3795 l = ((struct seq_file *)file->private_data)->private;
3796 cgroup_release_pid_array(l);
3797 return seq_release(inode, file);
3800 static const struct file_operations cgroup_pidlist_operations = {
3801 .read = seq_read,
3802 .llseek = seq_lseek,
3803 .write = cgroup_file_write,
3804 .release = cgroup_pidlist_release,
3808 * The following functions handle opens on a file that displays a pidlist
3809 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3810 * in the cgroup.
3812 /* helper function for the two below it */
3813 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3815 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3816 struct cgroup_pidlist *l;
3817 int retval;
3819 /* Nothing to do for write-only files */
3820 if (!(file->f_mode & FMODE_READ))
3821 return 0;
3823 /* have the array populated */
3824 retval = pidlist_array_load(cgrp, type, &l);
3825 if (retval)
3826 return retval;
3827 /* configure file information */
3828 file->f_op = &cgroup_pidlist_operations;
3830 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3831 if (retval) {
3832 cgroup_release_pid_array(l);
3833 return retval;
3835 ((struct seq_file *)file->private_data)->private = l;
3836 return 0;
3838 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3840 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3842 static int cgroup_procs_open(struct inode *unused, struct file *file)
3844 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3847 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3848 struct cftype *cft)
3850 return notify_on_release(cgrp);
3853 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3854 struct cftype *cft,
3855 u64 val)
3857 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3858 if (val)
3859 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3860 else
3861 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3862 return 0;
3866 * When dput() is called asynchronously, if umount has been done and
3867 * then deactivate_super() in cgroup_free_fn() kills the superblock,
3868 * there's a small window that vfs will see the root dentry with non-zero
3869 * refcnt and trigger BUG().
3871 * That's why we hold a reference before dput() and drop it right after.
3873 static void cgroup_dput(struct cgroup *cgrp)
3875 struct super_block *sb = cgrp->root->sb;
3877 atomic_inc(&sb->s_active);
3878 dput(cgrp->dentry);
3879 deactivate_super(sb);
3883 * Unregister event and free resources.
3885 * Gets called from workqueue.
3887 static void cgroup_event_remove(struct work_struct *work)
3889 struct cgroup_event *event = container_of(work, struct cgroup_event,
3890 remove);
3891 struct cgroup *cgrp = event->cgrp;
3893 remove_wait_queue(event->wqh, &event->wait);
3895 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3897 /* Notify userspace the event is going away. */
3898 eventfd_signal(event->eventfd, 1);
3900 eventfd_ctx_put(event->eventfd);
3901 kfree(event);
3902 cgroup_dput(cgrp);
3906 * Gets called on POLLHUP on eventfd when user closes it.
3908 * Called with wqh->lock held and interrupts disabled.
3910 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3911 int sync, void *key)
3913 struct cgroup_event *event = container_of(wait,
3914 struct cgroup_event, wait);
3915 struct cgroup *cgrp = event->cgrp;
3916 unsigned long flags = (unsigned long)key;
3918 if (flags & POLLHUP) {
3920 * If the event has been detached at cgroup removal, we
3921 * can simply return knowing the other side will cleanup
3922 * for us.
3924 * We can't race against event freeing since the other
3925 * side will require wqh->lock via remove_wait_queue(),
3926 * which we hold.
3928 spin_lock(&cgrp->event_list_lock);
3929 if (!list_empty(&event->list)) {
3930 list_del_init(&event->list);
3932 * We are in atomic context, but cgroup_event_remove()
3933 * may sleep, so we have to call it in workqueue.
3935 schedule_work(&event->remove);
3937 spin_unlock(&cgrp->event_list_lock);
3940 return 0;
3943 static void cgroup_event_ptable_queue_proc(struct file *file,
3944 wait_queue_head_t *wqh, poll_table *pt)
3946 struct cgroup_event *event = container_of(pt,
3947 struct cgroup_event, pt);
3949 event->wqh = wqh;
3950 add_wait_queue(wqh, &event->wait);
3954 * Parse input and register new cgroup event handler.
3956 * Input must be in format '<event_fd> <control_fd> <args>'.
3957 * Interpretation of args is defined by control file implementation.
3959 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3960 const char *buffer)
3962 struct cgroup_event *event = NULL;
3963 struct cgroup *cgrp_cfile;
3964 unsigned int efd, cfd;
3965 struct file *efile = NULL;
3966 struct file *cfile = NULL;
3967 char *endp;
3968 int ret;
3970 efd = simple_strtoul(buffer, &endp, 10);
3971 if (*endp != ' ')
3972 return -EINVAL;
3973 buffer = endp + 1;
3975 cfd = simple_strtoul(buffer, &endp, 10);
3976 if ((*endp != ' ') && (*endp != '\0'))
3977 return -EINVAL;
3978 buffer = endp + 1;
3980 event = kzalloc(sizeof(*event), GFP_KERNEL);
3981 if (!event)
3982 return -ENOMEM;
3983 event->cgrp = cgrp;
3984 INIT_LIST_HEAD(&event->list);
3985 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3986 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3987 INIT_WORK(&event->remove, cgroup_event_remove);
3989 efile = eventfd_fget(efd);
3990 if (IS_ERR(efile)) {
3991 ret = PTR_ERR(efile);
3992 goto fail;
3995 event->eventfd = eventfd_ctx_fileget(efile);
3996 if (IS_ERR(event->eventfd)) {
3997 ret = PTR_ERR(event->eventfd);
3998 goto fail;
4001 cfile = fget(cfd);
4002 if (!cfile) {
4003 ret = -EBADF;
4004 goto fail;
4007 /* the process need read permission on control file */
4008 /* AV: shouldn't we check that it's been opened for read instead? */
4009 ret = inode_permission(file_inode(cfile), MAY_READ);
4010 if (ret < 0)
4011 goto fail;
4013 event->cft = __file_cft(cfile);
4014 if (IS_ERR(event->cft)) {
4015 ret = PTR_ERR(event->cft);
4016 goto fail;
4020 * The file to be monitored must be in the same cgroup as
4021 * cgroup.event_control is.
4023 cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
4024 if (cgrp_cfile != cgrp) {
4025 ret = -EINVAL;
4026 goto fail;
4029 if (!event->cft->register_event || !event->cft->unregister_event) {
4030 ret = -EINVAL;
4031 goto fail;
4034 ret = event->cft->register_event(cgrp, event->cft,
4035 event->eventfd, buffer);
4036 if (ret)
4037 goto fail;
4039 efile->f_op->poll(efile, &event->pt);
4042 * Events should be removed after rmdir of cgroup directory, but before
4043 * destroying subsystem state objects. Let's take reference to cgroup
4044 * directory dentry to do that.
4046 dget(cgrp->dentry);
4048 spin_lock(&cgrp->event_list_lock);
4049 list_add(&event->list, &cgrp->event_list);
4050 spin_unlock(&cgrp->event_list_lock);
4052 fput(cfile);
4053 fput(efile);
4055 return 0;
4057 fail:
4058 if (cfile)
4059 fput(cfile);
4061 if (event && event->eventfd && !IS_ERR(event->eventfd))
4062 eventfd_ctx_put(event->eventfd);
4064 if (!IS_ERR_OR_NULL(efile))
4065 fput(efile);
4067 kfree(event);
4069 return ret;
4072 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
4073 struct cftype *cft)
4075 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4078 static int cgroup_clone_children_write(struct cgroup *cgrp,
4079 struct cftype *cft,
4080 u64 val)
4082 if (val)
4083 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4084 else
4085 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4086 return 0;
4089 static struct cftype cgroup_base_files[] = {
4091 .name = "cgroup.procs",
4092 .open = cgroup_procs_open,
4093 .write_u64 = cgroup_procs_write,
4094 .release = cgroup_pidlist_release,
4095 .mode = S_IRUGO | S_IWUSR,
4098 .name = "cgroup.event_control",
4099 .write_string = cgroup_write_event_control,
4100 .mode = S_IWUGO,
4103 .name = "cgroup.clone_children",
4104 .flags = CFTYPE_INSANE,
4105 .read_u64 = cgroup_clone_children_read,
4106 .write_u64 = cgroup_clone_children_write,
4109 .name = "cgroup.sane_behavior",
4110 .flags = CFTYPE_ONLY_ON_ROOT,
4111 .read_seq_string = cgroup_sane_behavior_show,
4115 * Historical crazy stuff. These don't have "cgroup." prefix and
4116 * don't exist if sane_behavior. If you're depending on these, be
4117 * prepared to be burned.
4120 .name = "tasks",
4121 .flags = CFTYPE_INSANE, /* use "procs" instead */
4122 .open = cgroup_tasks_open,
4123 .write_u64 = cgroup_tasks_write,
4124 .release = cgroup_pidlist_release,
4125 .mode = S_IRUGO | S_IWUSR,
4128 .name = "notify_on_release",
4129 .flags = CFTYPE_INSANE,
4130 .read_u64 = cgroup_read_notify_on_release,
4131 .write_u64 = cgroup_write_notify_on_release,
4134 .name = "release_agent",
4135 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
4136 .read_seq_string = cgroup_release_agent_show,
4137 .write_string = cgroup_release_agent_write,
4138 .max_write_len = PATH_MAX,
4140 { } /* terminate */
4144 * cgroup_populate_dir - selectively creation of files in a directory
4145 * @cgrp: target cgroup
4146 * @base_files: true if the base files should be added
4147 * @subsys_mask: mask of the subsystem ids whose files should be added
4149 static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
4150 unsigned long subsys_mask)
4152 int err;
4153 struct cgroup_subsys *ss;
4155 if (base_files) {
4156 err = cgroup_addrm_files(cgrp, NULL, cgroup_base_files, true);
4157 if (err < 0)
4158 return err;
4161 /* process cftsets of each subsystem */
4162 for_each_root_subsys(cgrp->root, ss) {
4163 struct cftype_set *set;
4164 if (!test_bit(ss->subsys_id, &subsys_mask))
4165 continue;
4167 list_for_each_entry(set, &ss->cftsets, node)
4168 cgroup_addrm_files(cgrp, ss, set->cfts, true);
4171 /* This cgroup is ready now */
4172 for_each_root_subsys(cgrp->root, ss) {
4173 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4174 struct css_id *id = rcu_dereference_protected(css->id, true);
4177 * Update id->css pointer and make this css visible from
4178 * CSS ID functions. This pointer will be dereferened
4179 * from RCU-read-side without locks.
4181 if (id)
4182 rcu_assign_pointer(id->css, css);
4185 return 0;
4188 static void css_dput_fn(struct work_struct *work)
4190 struct cgroup_subsys_state *css =
4191 container_of(work, struct cgroup_subsys_state, dput_work);
4193 cgroup_dput(css->cgroup);
4196 static void css_release(struct percpu_ref *ref)
4198 struct cgroup_subsys_state *css =
4199 container_of(ref, struct cgroup_subsys_state, refcnt);
4201 schedule_work(&css->dput_work);
4204 static void init_cgroup_css(struct cgroup_subsys_state *css,
4205 struct cgroup_subsys *ss,
4206 struct cgroup *cgrp)
4208 css->cgroup = cgrp;
4209 css->flags = 0;
4210 css->id = NULL;
4211 if (cgrp == cgroup_dummy_top)
4212 css->flags |= CSS_ROOT;
4213 BUG_ON(cgrp->subsys[ss->subsys_id]);
4214 cgrp->subsys[ss->subsys_id] = css;
4217 * css holds an extra ref to @cgrp->dentry which is put on the last
4218 * css_put(). dput() requires process context, which css_put() may
4219 * be called without. @css->dput_work will be used to invoke
4220 * dput() asynchronously from css_put().
4222 INIT_WORK(&css->dput_work, css_dput_fn);
4225 /* invoke ->post_create() on a new CSS and mark it online if successful */
4226 static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4228 int ret = 0;
4230 lockdep_assert_held(&cgroup_mutex);
4232 if (ss->css_online)
4233 ret = ss->css_online(cgrp);
4234 if (!ret)
4235 cgrp->subsys[ss->subsys_id]->flags |= CSS_ONLINE;
4236 return ret;
4239 /* if the CSS is online, invoke ->pre_destory() on it and mark it offline */
4240 static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4241 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4243 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4245 lockdep_assert_held(&cgroup_mutex);
4247 if (!(css->flags & CSS_ONLINE))
4248 return;
4250 if (ss->css_offline)
4251 ss->css_offline(cgrp);
4253 cgrp->subsys[ss->subsys_id]->flags &= ~CSS_ONLINE;
4257 * cgroup_create - create a cgroup
4258 * @parent: cgroup that will be parent of the new cgroup
4259 * @dentry: dentry of the new cgroup
4260 * @mode: mode to set on new inode
4262 * Must be called with the mutex on the parent inode held
4264 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
4265 umode_t mode)
4267 struct cgroup *cgrp;
4268 struct cgroup_name *name;
4269 struct cgroupfs_root *root = parent->root;
4270 int err = 0;
4271 struct cgroup_subsys *ss;
4272 struct super_block *sb = root->sb;
4274 /* allocate the cgroup and its ID, 0 is reserved for the root */
4275 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4276 if (!cgrp)
4277 return -ENOMEM;
4279 name = cgroup_alloc_name(dentry);
4280 if (!name)
4281 goto err_free_cgrp;
4282 rcu_assign_pointer(cgrp->name, name);
4284 cgrp->id = ida_simple_get(&root->cgroup_ida, 1, 0, GFP_KERNEL);
4285 if (cgrp->id < 0)
4286 goto err_free_name;
4289 * Only live parents can have children. Note that the liveliness
4290 * check isn't strictly necessary because cgroup_mkdir() and
4291 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4292 * anyway so that locking is contained inside cgroup proper and we
4293 * don't get nasty surprises if we ever grow another caller.
4295 if (!cgroup_lock_live_group(parent)) {
4296 err = -ENODEV;
4297 goto err_free_id;
4300 /* Grab a reference on the superblock so the hierarchy doesn't
4301 * get deleted on unmount if there are child cgroups. This
4302 * can be done outside cgroup_mutex, since the sb can't
4303 * disappear while someone has an open control file on the
4304 * fs */
4305 atomic_inc(&sb->s_active);
4307 init_cgroup_housekeeping(cgrp);
4309 dentry->d_fsdata = cgrp;
4310 cgrp->dentry = dentry;
4312 cgrp->parent = parent;
4313 cgrp->root = parent->root;
4315 if (notify_on_release(parent))
4316 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4318 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4319 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4321 for_each_root_subsys(root, ss) {
4322 struct cgroup_subsys_state *css;
4324 css = ss->css_alloc(cgrp);
4325 if (IS_ERR(css)) {
4326 err = PTR_ERR(css);
4327 goto err_free_all;
4330 err = percpu_ref_init(&css->refcnt, css_release);
4331 if (err)
4332 goto err_free_all;
4334 init_cgroup_css(css, ss, cgrp);
4336 if (ss->use_id) {
4337 err = alloc_css_id(ss, parent, cgrp);
4338 if (err)
4339 goto err_free_all;
4344 * Create directory. cgroup_create_file() returns with the new
4345 * directory locked on success so that it can be populated without
4346 * dropping cgroup_mutex.
4348 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
4349 if (err < 0)
4350 goto err_free_all;
4351 lockdep_assert_held(&dentry->d_inode->i_mutex);
4353 cgrp->serial_nr = cgroup_serial_nr_next++;
4355 /* allocation complete, commit to creation */
4356 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4357 root->number_of_cgroups++;
4359 /* each css holds a ref to the cgroup's dentry */
4360 for_each_root_subsys(root, ss)
4361 dget(dentry);
4363 /* hold a ref to the parent's dentry */
4364 dget(parent->dentry);
4366 /* creation succeeded, notify subsystems */
4367 for_each_root_subsys(root, ss) {
4368 err = online_css(ss, cgrp);
4369 if (err)
4370 goto err_destroy;
4372 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4373 parent->parent) {
4374 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4375 current->comm, current->pid, ss->name);
4376 if (!strcmp(ss->name, "memory"))
4377 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4378 ss->warned_broken_hierarchy = true;
4382 err = cgroup_populate_dir(cgrp, true, root->subsys_mask);
4383 if (err)
4384 goto err_destroy;
4386 mutex_unlock(&cgroup_mutex);
4387 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
4389 return 0;
4391 err_free_all:
4392 for_each_root_subsys(root, ss) {
4393 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4395 if (css) {
4396 percpu_ref_cancel_init(&css->refcnt);
4397 ss->css_free(cgrp);
4400 mutex_unlock(&cgroup_mutex);
4401 /* Release the reference count that we took on the superblock */
4402 deactivate_super(sb);
4403 err_free_id:
4404 ida_simple_remove(&root->cgroup_ida, cgrp->id);
4405 err_free_name:
4406 kfree(rcu_dereference_raw(cgrp->name));
4407 err_free_cgrp:
4408 kfree(cgrp);
4409 return err;
4411 err_destroy:
4412 cgroup_destroy_locked(cgrp);
4413 mutex_unlock(&cgroup_mutex);
4414 mutex_unlock(&dentry->d_inode->i_mutex);
4415 return err;
4418 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4420 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4422 /* the vfs holds inode->i_mutex already */
4423 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4426 static void cgroup_css_killed(struct cgroup *cgrp)
4428 if (!atomic_dec_and_test(&cgrp->css_kill_cnt))
4429 return;
4431 /* percpu ref's of all css's are killed, kick off the next step */
4432 INIT_WORK(&cgrp->destroy_work, cgroup_offline_fn);
4433 schedule_work(&cgrp->destroy_work);
4436 static void css_ref_killed_fn(struct percpu_ref *ref)
4438 struct cgroup_subsys_state *css =
4439 container_of(ref, struct cgroup_subsys_state, refcnt);
4441 cgroup_css_killed(css->cgroup);
4445 * cgroup_destroy_locked - the first stage of cgroup destruction
4446 * @cgrp: cgroup to be destroyed
4448 * css's make use of percpu refcnts whose killing latency shouldn't be
4449 * exposed to userland and are RCU protected. Also, cgroup core needs to
4450 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
4451 * invoked. To satisfy all the requirements, destruction is implemented in
4452 * the following two steps.
4454 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4455 * userland visible parts and start killing the percpu refcnts of
4456 * css's. Set up so that the next stage will be kicked off once all
4457 * the percpu refcnts are confirmed to be killed.
4459 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4460 * rest of destruction. Once all cgroup references are gone, the
4461 * cgroup is RCU-freed.
4463 * This function implements s1. After this step, @cgrp is gone as far as
4464 * the userland is concerned and a new cgroup with the same name may be
4465 * created. As cgroup doesn't care about the names internally, this
4466 * doesn't cause any problem.
4468 static int cgroup_destroy_locked(struct cgroup *cgrp)
4469 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4471 struct dentry *d = cgrp->dentry;
4472 struct cgroup_event *event, *tmp;
4473 struct cgroup_subsys *ss;
4474 bool empty;
4476 lockdep_assert_held(&d->d_inode->i_mutex);
4477 lockdep_assert_held(&cgroup_mutex);
4480 * css_set_lock synchronizes access to ->cset_links and prevents
4481 * @cgrp from being removed while __put_css_set() is in progress.
4483 read_lock(&css_set_lock);
4484 empty = list_empty(&cgrp->cset_links) && list_empty(&cgrp->children);
4485 read_unlock(&css_set_lock);
4486 if (!empty)
4487 return -EBUSY;
4490 * Block new css_tryget() by killing css refcnts. cgroup core
4491 * guarantees that, by the time ->css_offline() is invoked, no new
4492 * css reference will be given out via css_tryget(). We can't
4493 * simply call percpu_ref_kill() and proceed to offlining css's
4494 * because percpu_ref_kill() doesn't guarantee that the ref is seen
4495 * as killed on all CPUs on return.
4497 * Use percpu_ref_kill_and_confirm() to get notifications as each
4498 * css is confirmed to be seen as killed on all CPUs. The
4499 * notification callback keeps track of the number of css's to be
4500 * killed and schedules cgroup_offline_fn() to perform the rest of
4501 * destruction once the percpu refs of all css's are confirmed to
4502 * be killed.
4504 atomic_set(&cgrp->css_kill_cnt, 1);
4505 for_each_root_subsys(cgrp->root, ss) {
4506 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4509 * Killing would put the base ref, but we need to keep it
4510 * alive until after ->css_offline.
4512 percpu_ref_get(&css->refcnt);
4514 atomic_inc(&cgrp->css_kill_cnt);
4515 percpu_ref_kill_and_confirm(&css->refcnt, css_ref_killed_fn);
4517 cgroup_css_killed(cgrp);
4520 * Mark @cgrp dead. This prevents further task migration and child
4521 * creation by disabling cgroup_lock_live_group(). Note that
4522 * CGRP_DEAD assertion is depended upon by cgroup_next_sibling() to
4523 * resume iteration after dropping RCU read lock. See
4524 * cgroup_next_sibling() for details.
4526 set_bit(CGRP_DEAD, &cgrp->flags);
4528 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4529 raw_spin_lock(&release_list_lock);
4530 if (!list_empty(&cgrp->release_list))
4531 list_del_init(&cgrp->release_list);
4532 raw_spin_unlock(&release_list_lock);
4535 * Remove @cgrp directory. The removal puts the base ref but we
4536 * aren't quite done with @cgrp yet, so hold onto it.
4538 dget(d);
4539 cgroup_d_remove_dir(d);
4542 * Unregister events and notify userspace.
4543 * Notify userspace about cgroup removing only after rmdir of cgroup
4544 * directory to avoid race between userspace and kernelspace.
4546 spin_lock(&cgrp->event_list_lock);
4547 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4548 list_del_init(&event->list);
4549 schedule_work(&event->remove);
4551 spin_unlock(&cgrp->event_list_lock);
4553 return 0;
4557 * cgroup_offline_fn - the second step of cgroup destruction
4558 * @work: cgroup->destroy_free_work
4560 * This function is invoked from a work item for a cgroup which is being
4561 * destroyed after the percpu refcnts of all css's are guaranteed to be
4562 * seen as killed on all CPUs, and performs the rest of destruction. This
4563 * is the second step of destruction described in the comment above
4564 * cgroup_destroy_locked().
4566 static void cgroup_offline_fn(struct work_struct *work)
4568 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
4569 struct cgroup *parent = cgrp->parent;
4570 struct dentry *d = cgrp->dentry;
4571 struct cgroup_subsys *ss;
4573 mutex_lock(&cgroup_mutex);
4576 * css_tryget() is guaranteed to fail now. Tell subsystems to
4577 * initate destruction.
4579 for_each_root_subsys(cgrp->root, ss)
4580 offline_css(ss, cgrp);
4583 * Put the css refs from cgroup_destroy_locked(). Each css holds
4584 * an extra reference to the cgroup's dentry and cgroup removal
4585 * proceeds regardless of css refs. On the last put of each css,
4586 * whenever that may be, the extra dentry ref is put so that dentry
4587 * destruction happens only after all css's are released.
4589 for_each_root_subsys(cgrp->root, ss)
4590 css_put(cgrp->subsys[ss->subsys_id]);
4592 /* delete this cgroup from parent->children */
4593 list_del_rcu(&cgrp->sibling);
4595 dput(d);
4597 set_bit(CGRP_RELEASABLE, &parent->flags);
4598 check_for_release(parent);
4600 mutex_unlock(&cgroup_mutex);
4603 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4605 int ret;
4607 mutex_lock(&cgroup_mutex);
4608 ret = cgroup_destroy_locked(dentry->d_fsdata);
4609 mutex_unlock(&cgroup_mutex);
4611 return ret;
4614 static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4616 INIT_LIST_HEAD(&ss->cftsets);
4619 * base_cftset is embedded in subsys itself, no need to worry about
4620 * deregistration.
4622 if (ss->base_cftypes) {
4623 ss->base_cftset.cfts = ss->base_cftypes;
4624 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4628 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4630 struct cgroup_subsys_state *css;
4632 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4634 mutex_lock(&cgroup_mutex);
4636 /* init base cftset */
4637 cgroup_init_cftsets(ss);
4639 /* Create the top cgroup state for this subsystem */
4640 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4641 ss->root = &cgroup_dummy_root;
4642 css = ss->css_alloc(cgroup_dummy_top);
4643 /* We don't handle early failures gracefully */
4644 BUG_ON(IS_ERR(css));
4645 init_cgroup_css(css, ss, cgroup_dummy_top);
4647 /* Update the init_css_set to contain a subsys
4648 * pointer to this state - since the subsystem is
4649 * newly registered, all tasks and hence the
4650 * init_css_set is in the subsystem's top cgroup. */
4651 init_css_set.subsys[ss->subsys_id] = css;
4653 need_forkexit_callback |= ss->fork || ss->exit;
4655 /* At system boot, before all subsystems have been
4656 * registered, no tasks have been forked, so we don't
4657 * need to invoke fork callbacks here. */
4658 BUG_ON(!list_empty(&init_task.tasks));
4660 BUG_ON(online_css(ss, cgroup_dummy_top));
4662 mutex_unlock(&cgroup_mutex);
4664 /* this function shouldn't be used with modular subsystems, since they
4665 * need to register a subsys_id, among other things */
4666 BUG_ON(ss->module);
4670 * cgroup_load_subsys: load and register a modular subsystem at runtime
4671 * @ss: the subsystem to load
4673 * This function should be called in a modular subsystem's initcall. If the
4674 * subsystem is built as a module, it will be assigned a new subsys_id and set
4675 * up for use. If the subsystem is built-in anyway, work is delegated to the
4676 * simpler cgroup_init_subsys.
4678 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4680 struct cgroup_subsys_state *css;
4681 int i, ret;
4682 struct hlist_node *tmp;
4683 struct css_set *cset;
4684 unsigned long key;
4686 /* check name and function validity */
4687 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4688 ss->css_alloc == NULL || ss->css_free == NULL)
4689 return -EINVAL;
4692 * we don't support callbacks in modular subsystems. this check is
4693 * before the ss->module check for consistency; a subsystem that could
4694 * be a module should still have no callbacks even if the user isn't
4695 * compiling it as one.
4697 if (ss->fork || ss->exit)
4698 return -EINVAL;
4701 * an optionally modular subsystem is built-in: we want to do nothing,
4702 * since cgroup_init_subsys will have already taken care of it.
4704 if (ss->module == NULL) {
4705 /* a sanity check */
4706 BUG_ON(cgroup_subsys[ss->subsys_id] != ss);
4707 return 0;
4710 /* init base cftset */
4711 cgroup_init_cftsets(ss);
4713 mutex_lock(&cgroup_mutex);
4714 cgroup_subsys[ss->subsys_id] = ss;
4717 * no ss->css_alloc seems to need anything important in the ss
4718 * struct, so this can happen first (i.e. before the dummy root
4719 * attachment).
4721 css = ss->css_alloc(cgroup_dummy_top);
4722 if (IS_ERR(css)) {
4723 /* failure case - need to deassign the cgroup_subsys[] slot. */
4724 cgroup_subsys[ss->subsys_id] = NULL;
4725 mutex_unlock(&cgroup_mutex);
4726 return PTR_ERR(css);
4729 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4730 ss->root = &cgroup_dummy_root;
4732 /* our new subsystem will be attached to the dummy hierarchy. */
4733 init_cgroup_css(css, ss, cgroup_dummy_top);
4734 /* init_idr must be after init_cgroup_css because it sets css->id. */
4735 if (ss->use_id) {
4736 ret = cgroup_init_idr(ss, css);
4737 if (ret)
4738 goto err_unload;
4742 * Now we need to entangle the css into the existing css_sets. unlike
4743 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4744 * will need a new pointer to it; done by iterating the css_set_table.
4745 * furthermore, modifying the existing css_sets will corrupt the hash
4746 * table state, so each changed css_set will need its hash recomputed.
4747 * this is all done under the css_set_lock.
4749 write_lock(&css_set_lock);
4750 hash_for_each_safe(css_set_table, i, tmp, cset, hlist) {
4751 /* skip entries that we already rehashed */
4752 if (cset->subsys[ss->subsys_id])
4753 continue;
4754 /* remove existing entry */
4755 hash_del(&cset->hlist);
4756 /* set new value */
4757 cset->subsys[ss->subsys_id] = css;
4758 /* recompute hash and restore entry */
4759 key = css_set_hash(cset->subsys);
4760 hash_add(css_set_table, &cset->hlist, key);
4762 write_unlock(&css_set_lock);
4764 ret = online_css(ss, cgroup_dummy_top);
4765 if (ret)
4766 goto err_unload;
4768 /* success! */
4769 mutex_unlock(&cgroup_mutex);
4770 return 0;
4772 err_unload:
4773 mutex_unlock(&cgroup_mutex);
4774 /* @ss can't be mounted here as try_module_get() would fail */
4775 cgroup_unload_subsys(ss);
4776 return ret;
4778 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4781 * cgroup_unload_subsys: unload a modular subsystem
4782 * @ss: the subsystem to unload
4784 * This function should be called in a modular subsystem's exitcall. When this
4785 * function is invoked, the refcount on the subsystem's module will be 0, so
4786 * the subsystem will not be attached to any hierarchy.
4788 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4790 struct cgrp_cset_link *link;
4792 BUG_ON(ss->module == NULL);
4795 * we shouldn't be called if the subsystem is in use, and the use of
4796 * try_module_get in parse_cgroupfs_options should ensure that it
4797 * doesn't start being used while we're killing it off.
4799 BUG_ON(ss->root != &cgroup_dummy_root);
4801 mutex_lock(&cgroup_mutex);
4803 offline_css(ss, cgroup_dummy_top);
4805 if (ss->use_id)
4806 idr_destroy(&ss->idr);
4808 /* deassign the subsys_id */
4809 cgroup_subsys[ss->subsys_id] = NULL;
4811 /* remove subsystem from the dummy root's list of subsystems */
4812 list_del_init(&ss->sibling);
4815 * disentangle the css from all css_sets attached to the dummy
4816 * top. as in loading, we need to pay our respects to the hashtable
4817 * gods.
4819 write_lock(&css_set_lock);
4820 list_for_each_entry(link, &cgroup_dummy_top->cset_links, cset_link) {
4821 struct css_set *cset = link->cset;
4822 unsigned long key;
4824 hash_del(&cset->hlist);
4825 cset->subsys[ss->subsys_id] = NULL;
4826 key = css_set_hash(cset->subsys);
4827 hash_add(css_set_table, &cset->hlist, key);
4829 write_unlock(&css_set_lock);
4832 * remove subsystem's css from the cgroup_dummy_top and free it -
4833 * need to free before marking as null because ss->css_free needs
4834 * the cgrp->subsys pointer to find their state. note that this
4835 * also takes care of freeing the css_id.
4837 ss->css_free(cgroup_dummy_top);
4838 cgroup_dummy_top->subsys[ss->subsys_id] = NULL;
4840 mutex_unlock(&cgroup_mutex);
4842 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4845 * cgroup_init_early - cgroup initialization at system boot
4847 * Initialize cgroups at system boot, and initialize any
4848 * subsystems that request early init.
4850 int __init cgroup_init_early(void)
4852 struct cgroup_subsys *ss;
4853 int i;
4855 atomic_set(&init_css_set.refcount, 1);
4856 INIT_LIST_HEAD(&init_css_set.cgrp_links);
4857 INIT_LIST_HEAD(&init_css_set.tasks);
4858 INIT_HLIST_NODE(&init_css_set.hlist);
4859 css_set_count = 1;
4860 init_cgroup_root(&cgroup_dummy_root);
4861 cgroup_root_count = 1;
4862 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
4864 init_cgrp_cset_link.cset = &init_css_set;
4865 init_cgrp_cset_link.cgrp = cgroup_dummy_top;
4866 list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
4867 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
4869 /* at bootup time, we don't worry about modular subsystems */
4870 for_each_builtin_subsys(ss, i) {
4871 BUG_ON(!ss->name);
4872 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4873 BUG_ON(!ss->css_alloc);
4874 BUG_ON(!ss->css_free);
4875 if (ss->subsys_id != i) {
4876 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4877 ss->name, ss->subsys_id);
4878 BUG();
4881 if (ss->early_init)
4882 cgroup_init_subsys(ss);
4884 return 0;
4888 * cgroup_init - cgroup initialization
4890 * Register cgroup filesystem and /proc file, and initialize
4891 * any subsystems that didn't request early init.
4893 int __init cgroup_init(void)
4895 struct cgroup_subsys *ss;
4896 unsigned long key;
4897 int i, err;
4899 err = bdi_init(&cgroup_backing_dev_info);
4900 if (err)
4901 return err;
4903 for_each_builtin_subsys(ss, i) {
4904 if (!ss->early_init)
4905 cgroup_init_subsys(ss);
4906 if (ss->use_id)
4907 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4910 /* allocate id for the dummy hierarchy */
4911 mutex_lock(&cgroup_mutex);
4912 mutex_lock(&cgroup_root_mutex);
4914 /* Add init_css_set to the hash table */
4915 key = css_set_hash(init_css_set.subsys);
4916 hash_add(css_set_table, &init_css_set.hlist, key);
4918 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
4920 mutex_unlock(&cgroup_root_mutex);
4921 mutex_unlock(&cgroup_mutex);
4923 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4924 if (!cgroup_kobj) {
4925 err = -ENOMEM;
4926 goto out;
4929 err = register_filesystem(&cgroup_fs_type);
4930 if (err < 0) {
4931 kobject_put(cgroup_kobj);
4932 goto out;
4935 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4937 out:
4938 if (err)
4939 bdi_destroy(&cgroup_backing_dev_info);
4941 return err;
4945 * proc_cgroup_show()
4946 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4947 * - Used for /proc/<pid>/cgroup.
4948 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4949 * doesn't really matter if tsk->cgroup changes after we read it,
4950 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4951 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4952 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4953 * cgroup to top_cgroup.
4956 /* TODO: Use a proper seq_file iterator */
4957 int proc_cgroup_show(struct seq_file *m, void *v)
4959 struct pid *pid;
4960 struct task_struct *tsk;
4961 char *buf;
4962 int retval;
4963 struct cgroupfs_root *root;
4965 retval = -ENOMEM;
4966 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4967 if (!buf)
4968 goto out;
4970 retval = -ESRCH;
4971 pid = m->private;
4972 tsk = get_pid_task(pid, PIDTYPE_PID);
4973 if (!tsk)
4974 goto out_free;
4976 retval = 0;
4978 mutex_lock(&cgroup_mutex);
4980 for_each_active_root(root) {
4981 struct cgroup_subsys *ss;
4982 struct cgroup *cgrp;
4983 int count = 0;
4985 seq_printf(m, "%d:", root->hierarchy_id);
4986 for_each_root_subsys(root, ss)
4987 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4988 if (strlen(root->name))
4989 seq_printf(m, "%sname=%s", count ? "," : "",
4990 root->name);
4991 seq_putc(m, ':');
4992 cgrp = task_cgroup_from_root(tsk, root);
4993 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4994 if (retval < 0)
4995 goto out_unlock;
4996 seq_puts(m, buf);
4997 seq_putc(m, '\n');
5000 out_unlock:
5001 mutex_unlock(&cgroup_mutex);
5002 put_task_struct(tsk);
5003 out_free:
5004 kfree(buf);
5005 out:
5006 return retval;
5009 /* Display information about each subsystem and each hierarchy */
5010 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5012 struct cgroup_subsys *ss;
5013 int i;
5015 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5017 * ideally we don't want subsystems moving around while we do this.
5018 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5019 * subsys/hierarchy state.
5021 mutex_lock(&cgroup_mutex);
5023 for_each_subsys(ss, i)
5024 seq_printf(m, "%s\t%d\t%d\t%d\n",
5025 ss->name, ss->root->hierarchy_id,
5026 ss->root->number_of_cgroups, !ss->disabled);
5028 mutex_unlock(&cgroup_mutex);
5029 return 0;
5032 static int cgroupstats_open(struct inode *inode, struct file *file)
5034 return single_open(file, proc_cgroupstats_show, NULL);
5037 static const struct file_operations proc_cgroupstats_operations = {
5038 .open = cgroupstats_open,
5039 .read = seq_read,
5040 .llseek = seq_lseek,
5041 .release = single_release,
5045 * cgroup_fork - attach newly forked task to its parents cgroup.
5046 * @child: pointer to task_struct of forking parent process.
5048 * Description: A task inherits its parent's cgroup at fork().
5050 * A pointer to the shared css_set was automatically copied in
5051 * fork.c by dup_task_struct(). However, we ignore that copy, since
5052 * it was not made under the protection of RCU or cgroup_mutex, so
5053 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
5054 * have already changed current->cgroups, allowing the previously
5055 * referenced cgroup group to be removed and freed.
5057 * At the point that cgroup_fork() is called, 'current' is the parent
5058 * task, and the passed argument 'child' points to the child task.
5060 void cgroup_fork(struct task_struct *child)
5062 task_lock(current);
5063 get_css_set(task_css_set(current));
5064 child->cgroups = current->cgroups;
5065 task_unlock(current);
5066 INIT_LIST_HEAD(&child->cg_list);
5070 * cgroup_post_fork - called on a new task after adding it to the task list
5071 * @child: the task in question
5073 * Adds the task to the list running through its css_set if necessary and
5074 * call the subsystem fork() callbacks. Has to be after the task is
5075 * visible on the task list in case we race with the first call to
5076 * cgroup_iter_start() - to guarantee that the new task ends up on its
5077 * list.
5079 void cgroup_post_fork(struct task_struct *child)
5081 struct cgroup_subsys *ss;
5082 int i;
5085 * use_task_css_set_links is set to 1 before we walk the tasklist
5086 * under the tasklist_lock and we read it here after we added the child
5087 * to the tasklist under the tasklist_lock as well. If the child wasn't
5088 * yet in the tasklist when we walked through it from
5089 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
5090 * should be visible now due to the paired locking and barriers implied
5091 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
5092 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
5093 * lock on fork.
5095 if (use_task_css_set_links) {
5096 write_lock(&css_set_lock);
5097 task_lock(child);
5098 if (list_empty(&child->cg_list))
5099 list_add(&child->cg_list, &task_css_set(child)->tasks);
5100 task_unlock(child);
5101 write_unlock(&css_set_lock);
5105 * Call ss->fork(). This must happen after @child is linked on
5106 * css_set; otherwise, @child might change state between ->fork()
5107 * and addition to css_set.
5109 if (need_forkexit_callback) {
5111 * fork/exit callbacks are supported only for builtin
5112 * subsystems, and the builtin section of the subsys
5113 * array is immutable, so we don't need to lock the
5114 * subsys array here. On the other hand, modular section
5115 * of the array can be freed at module unload, so we
5116 * can't touch that.
5118 for_each_builtin_subsys(ss, i)
5119 if (ss->fork)
5120 ss->fork(child);
5125 * cgroup_exit - detach cgroup from exiting task
5126 * @tsk: pointer to task_struct of exiting process
5127 * @run_callback: run exit callbacks?
5129 * Description: Detach cgroup from @tsk and release it.
5131 * Note that cgroups marked notify_on_release force every task in
5132 * them to take the global cgroup_mutex mutex when exiting.
5133 * This could impact scaling on very large systems. Be reluctant to
5134 * use notify_on_release cgroups where very high task exit scaling
5135 * is required on large systems.
5137 * the_top_cgroup_hack:
5139 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
5141 * We call cgroup_exit() while the task is still competent to
5142 * handle notify_on_release(), then leave the task attached to the
5143 * root cgroup in each hierarchy for the remainder of its exit.
5145 * To do this properly, we would increment the reference count on
5146 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
5147 * code we would add a second cgroup function call, to drop that
5148 * reference. This would just create an unnecessary hot spot on
5149 * the top_cgroup reference count, to no avail.
5151 * Normally, holding a reference to a cgroup without bumping its
5152 * count is unsafe. The cgroup could go away, or someone could
5153 * attach us to a different cgroup, decrementing the count on
5154 * the first cgroup that we never incremented. But in this case,
5155 * top_cgroup isn't going away, and either task has PF_EXITING set,
5156 * which wards off any cgroup_attach_task() attempts, or task is a failed
5157 * fork, never visible to cgroup_attach_task.
5159 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
5161 struct cgroup_subsys *ss;
5162 struct css_set *cset;
5163 int i;
5166 * Unlink from the css_set task list if necessary.
5167 * Optimistically check cg_list before taking
5168 * css_set_lock
5170 if (!list_empty(&tsk->cg_list)) {
5171 write_lock(&css_set_lock);
5172 if (!list_empty(&tsk->cg_list))
5173 list_del_init(&tsk->cg_list);
5174 write_unlock(&css_set_lock);
5177 /* Reassign the task to the init_css_set. */
5178 task_lock(tsk);
5179 cset = task_css_set(tsk);
5180 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
5182 if (run_callbacks && need_forkexit_callback) {
5184 * fork/exit callbacks are supported only for builtin
5185 * subsystems, see cgroup_post_fork() for details.
5187 for_each_builtin_subsys(ss, i) {
5188 if (ss->exit) {
5189 struct cgroup *old_cgrp = cset->subsys[i]->cgroup;
5190 struct cgroup *cgrp = task_cgroup(tsk, i);
5192 ss->exit(cgrp, old_cgrp, tsk);
5196 task_unlock(tsk);
5198 put_css_set_taskexit(cset);
5201 static void check_for_release(struct cgroup *cgrp)
5203 if (cgroup_is_releasable(cgrp) &&
5204 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
5206 * Control Group is currently removeable. If it's not
5207 * already queued for a userspace notification, queue
5208 * it now
5210 int need_schedule_work = 0;
5212 raw_spin_lock(&release_list_lock);
5213 if (!cgroup_is_dead(cgrp) &&
5214 list_empty(&cgrp->release_list)) {
5215 list_add(&cgrp->release_list, &release_list);
5216 need_schedule_work = 1;
5218 raw_spin_unlock(&release_list_lock);
5219 if (need_schedule_work)
5220 schedule_work(&release_agent_work);
5225 * Notify userspace when a cgroup is released, by running the
5226 * configured release agent with the name of the cgroup (path
5227 * relative to the root of cgroup file system) as the argument.
5229 * Most likely, this user command will try to rmdir this cgroup.
5231 * This races with the possibility that some other task will be
5232 * attached to this cgroup before it is removed, or that some other
5233 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5234 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5235 * unused, and this cgroup will be reprieved from its death sentence,
5236 * to continue to serve a useful existence. Next time it's released,
5237 * we will get notified again, if it still has 'notify_on_release' set.
5239 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5240 * means only wait until the task is successfully execve()'d. The
5241 * separate release agent task is forked by call_usermodehelper(),
5242 * then control in this thread returns here, without waiting for the
5243 * release agent task. We don't bother to wait because the caller of
5244 * this routine has no use for the exit status of the release agent
5245 * task, so no sense holding our caller up for that.
5247 static void cgroup_release_agent(struct work_struct *work)
5249 BUG_ON(work != &release_agent_work);
5250 mutex_lock(&cgroup_mutex);
5251 raw_spin_lock(&release_list_lock);
5252 while (!list_empty(&release_list)) {
5253 char *argv[3], *envp[3];
5254 int i;
5255 char *pathbuf = NULL, *agentbuf = NULL;
5256 struct cgroup *cgrp = list_entry(release_list.next,
5257 struct cgroup,
5258 release_list);
5259 list_del_init(&cgrp->release_list);
5260 raw_spin_unlock(&release_list_lock);
5261 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5262 if (!pathbuf)
5263 goto continue_free;
5264 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5265 goto continue_free;
5266 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5267 if (!agentbuf)
5268 goto continue_free;
5270 i = 0;
5271 argv[i++] = agentbuf;
5272 argv[i++] = pathbuf;
5273 argv[i] = NULL;
5275 i = 0;
5276 /* minimal command environment */
5277 envp[i++] = "HOME=/";
5278 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5279 envp[i] = NULL;
5281 /* Drop the lock while we invoke the usermode helper,
5282 * since the exec could involve hitting disk and hence
5283 * be a slow process */
5284 mutex_unlock(&cgroup_mutex);
5285 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5286 mutex_lock(&cgroup_mutex);
5287 continue_free:
5288 kfree(pathbuf);
5289 kfree(agentbuf);
5290 raw_spin_lock(&release_list_lock);
5292 raw_spin_unlock(&release_list_lock);
5293 mutex_unlock(&cgroup_mutex);
5296 static int __init cgroup_disable(char *str)
5298 struct cgroup_subsys *ss;
5299 char *token;
5300 int i;
5302 while ((token = strsep(&str, ",")) != NULL) {
5303 if (!*token)
5304 continue;
5307 * cgroup_disable, being at boot time, can't know about
5308 * module subsystems, so we don't worry about them.
5310 for_each_builtin_subsys(ss, i) {
5311 if (!strcmp(token, ss->name)) {
5312 ss->disabled = 1;
5313 printk(KERN_INFO "Disabling %s control group"
5314 " subsystem\n", ss->name);
5315 break;
5319 return 1;
5321 __setup("cgroup_disable=", cgroup_disable);
5324 * Functons for CSS ID.
5327 /* to get ID other than 0, this should be called when !cgroup_is_dead() */
5328 unsigned short css_id(struct cgroup_subsys_state *css)
5330 struct css_id *cssid;
5333 * This css_id() can return correct value when somone has refcnt
5334 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5335 * it's unchanged until freed.
5337 cssid = rcu_dereference_raw(css->id);
5339 if (cssid)
5340 return cssid->id;
5341 return 0;
5343 EXPORT_SYMBOL_GPL(css_id);
5346 * css_is_ancestor - test "root" css is an ancestor of "child"
5347 * @child: the css to be tested.
5348 * @root: the css supporsed to be an ancestor of the child.
5350 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
5351 * this function reads css->id, the caller must hold rcu_read_lock().
5352 * But, considering usual usage, the csses should be valid objects after test.
5353 * Assuming that the caller will do some action to the child if this returns
5354 * returns true, the caller must take "child";s reference count.
5355 * If "child" is valid object and this returns true, "root" is valid, too.
5358 bool css_is_ancestor(struct cgroup_subsys_state *child,
5359 const struct cgroup_subsys_state *root)
5361 struct css_id *child_id;
5362 struct css_id *root_id;
5364 child_id = rcu_dereference(child->id);
5365 if (!child_id)
5366 return false;
5367 root_id = rcu_dereference(root->id);
5368 if (!root_id)
5369 return false;
5370 if (child_id->depth < root_id->depth)
5371 return false;
5372 if (child_id->stack[root_id->depth] != root_id->id)
5373 return false;
5374 return true;
5377 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5379 struct css_id *id = rcu_dereference_protected(css->id, true);
5381 /* When this is called before css_id initialization, id can be NULL */
5382 if (!id)
5383 return;
5385 BUG_ON(!ss->use_id);
5387 rcu_assign_pointer(id->css, NULL);
5388 rcu_assign_pointer(css->id, NULL);
5389 spin_lock(&ss->id_lock);
5390 idr_remove(&ss->idr, id->id);
5391 spin_unlock(&ss->id_lock);
5392 kfree_rcu(id, rcu_head);
5394 EXPORT_SYMBOL_GPL(free_css_id);
5397 * This is called by init or create(). Then, calls to this function are
5398 * always serialized (By cgroup_mutex() at create()).
5401 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5403 struct css_id *newid;
5404 int ret, size;
5406 BUG_ON(!ss->use_id);
5408 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5409 newid = kzalloc(size, GFP_KERNEL);
5410 if (!newid)
5411 return ERR_PTR(-ENOMEM);
5413 idr_preload(GFP_KERNEL);
5414 spin_lock(&ss->id_lock);
5415 /* Don't use 0. allocates an ID of 1-65535 */
5416 ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT);
5417 spin_unlock(&ss->id_lock);
5418 idr_preload_end();
5420 /* Returns error when there are no free spaces for new ID.*/
5421 if (ret < 0)
5422 goto err_out;
5424 newid->id = ret;
5425 newid->depth = depth;
5426 return newid;
5427 err_out:
5428 kfree(newid);
5429 return ERR_PTR(ret);
5433 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5434 struct cgroup_subsys_state *rootcss)
5436 struct css_id *newid;
5438 spin_lock_init(&ss->id_lock);
5439 idr_init(&ss->idr);
5441 newid = get_new_cssid(ss, 0);
5442 if (IS_ERR(newid))
5443 return PTR_ERR(newid);
5445 newid->stack[0] = newid->id;
5446 RCU_INIT_POINTER(newid->css, rootcss);
5447 RCU_INIT_POINTER(rootcss->id, newid);
5448 return 0;
5451 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5452 struct cgroup *child)
5454 int subsys_id, i, depth = 0;
5455 struct cgroup_subsys_state *parent_css, *child_css;
5456 struct css_id *child_id, *parent_id;
5458 subsys_id = ss->subsys_id;
5459 parent_css = parent->subsys[subsys_id];
5460 child_css = child->subsys[subsys_id];
5461 parent_id = rcu_dereference_protected(parent_css->id, true);
5462 depth = parent_id->depth + 1;
5464 child_id = get_new_cssid(ss, depth);
5465 if (IS_ERR(child_id))
5466 return PTR_ERR(child_id);
5468 for (i = 0; i < depth; i++)
5469 child_id->stack[i] = parent_id->stack[i];
5470 child_id->stack[depth] = child_id->id;
5472 * child_id->css pointer will be set after this cgroup is available
5473 * see cgroup_populate_dir()
5475 rcu_assign_pointer(child_css->id, child_id);
5477 return 0;
5481 * css_lookup - lookup css by id
5482 * @ss: cgroup subsys to be looked into.
5483 * @id: the id
5485 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5486 * NULL if not. Should be called under rcu_read_lock()
5488 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5490 struct css_id *cssid = NULL;
5492 BUG_ON(!ss->use_id);
5493 cssid = idr_find(&ss->idr, id);
5495 if (unlikely(!cssid))
5496 return NULL;
5498 return rcu_dereference(cssid->css);
5500 EXPORT_SYMBOL_GPL(css_lookup);
5503 * get corresponding css from file open on cgroupfs directory
5505 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5507 struct cgroup *cgrp;
5508 struct inode *inode;
5509 struct cgroup_subsys_state *css;
5511 inode = file_inode(f);
5512 /* check in cgroup filesystem dir */
5513 if (inode->i_op != &cgroup_dir_inode_operations)
5514 return ERR_PTR(-EBADF);
5516 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5517 return ERR_PTR(-EINVAL);
5519 /* get cgroup */
5520 cgrp = __d_cgrp(f->f_dentry);
5521 css = cgrp->subsys[id];
5522 return css ? css : ERR_PTR(-ENOENT);
5525 #ifdef CONFIG_CGROUP_DEBUG
5526 static struct cgroup_subsys_state *debug_css_alloc(struct cgroup *cgrp)
5528 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5530 if (!css)
5531 return ERR_PTR(-ENOMEM);
5533 return css;
5536 static void debug_css_free(struct cgroup *cgrp)
5538 kfree(cgrp->subsys[debug_subsys_id]);
5541 static u64 debug_taskcount_read(struct cgroup *cgrp, struct cftype *cft)
5543 return cgroup_task_count(cgrp);
5546 static u64 current_css_set_read(struct cgroup *cgrp, struct cftype *cft)
5548 return (u64)(unsigned long)current->cgroups;
5551 static u64 current_css_set_refcount_read(struct cgroup *cgrp,
5552 struct cftype *cft)
5554 u64 count;
5556 rcu_read_lock();
5557 count = atomic_read(&task_css_set(current)->refcount);
5558 rcu_read_unlock();
5559 return count;
5562 static int current_css_set_cg_links_read(struct cgroup *cgrp,
5563 struct cftype *cft,
5564 struct seq_file *seq)
5566 struct cgrp_cset_link *link;
5567 struct css_set *cset;
5569 read_lock(&css_set_lock);
5570 rcu_read_lock();
5571 cset = rcu_dereference(current->cgroups);
5572 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5573 struct cgroup *c = link->cgrp;
5574 const char *name;
5576 if (c->dentry)
5577 name = c->dentry->d_name.name;
5578 else
5579 name = "?";
5580 seq_printf(seq, "Root %d group %s\n",
5581 c->root->hierarchy_id, name);
5583 rcu_read_unlock();
5584 read_unlock(&css_set_lock);
5585 return 0;
5588 #define MAX_TASKS_SHOWN_PER_CSS 25
5589 static int cgroup_css_links_read(struct cgroup *cgrp,
5590 struct cftype *cft,
5591 struct seq_file *seq)
5593 struct cgrp_cset_link *link;
5595 read_lock(&css_set_lock);
5596 list_for_each_entry(link, &cgrp->cset_links, cset_link) {
5597 struct css_set *cset = link->cset;
5598 struct task_struct *task;
5599 int count = 0;
5600 seq_printf(seq, "css_set %p\n", cset);
5601 list_for_each_entry(task, &cset->tasks, cg_list) {
5602 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5603 seq_puts(seq, " ...\n");
5604 break;
5605 } else {
5606 seq_printf(seq, " task %d\n",
5607 task_pid_vnr(task));
5611 read_unlock(&css_set_lock);
5612 return 0;
5615 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5617 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5620 static struct cftype debug_files[] = {
5622 .name = "taskcount",
5623 .read_u64 = debug_taskcount_read,
5627 .name = "current_css_set",
5628 .read_u64 = current_css_set_read,
5632 .name = "current_css_set_refcount",
5633 .read_u64 = current_css_set_refcount_read,
5637 .name = "current_css_set_cg_links",
5638 .read_seq_string = current_css_set_cg_links_read,
5642 .name = "cgroup_css_links",
5643 .read_seq_string = cgroup_css_links_read,
5647 .name = "releasable",
5648 .read_u64 = releasable_read,
5651 { } /* terminate */
5654 struct cgroup_subsys debug_subsys = {
5655 .name = "debug",
5656 .css_alloc = debug_css_alloc,
5657 .css_free = debug_css_free,
5658 .subsys_id = debug_subsys_id,
5659 .base_cftypes = debug_files,
5661 #endif /* CONFIG_CGROUP_DEBUG */