ipc/sem: separate wait-for-zero and alter tasks into seperate queues
[linux-2.6.git] / ipc / sem.c
blob4d7f88cefada0c9c3edbe1265133adbfc1ef34dd
1 /*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8 * SMP-threaded, sysctl's added
9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10 * Enforced range limit on SEM_UNDO
11 * (c) 2001 Red Hat Inc
12 * Lockless wakeup
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14 * Further wakeup optimizations, documentation
15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
17 * support for audit of ipc object properties and permission changes
18 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
20 * namespaces support
21 * OpenVZ, SWsoft Inc.
22 * Pavel Emelianov <xemul@openvz.org>
24 * Implementation notes: (May 2010)
25 * This file implements System V semaphores.
27 * User space visible behavior:
28 * - FIFO ordering for semop() operations (just FIFO, not starvation
29 * protection)
30 * - multiple semaphore operations that alter the same semaphore in
31 * one semop() are handled.
32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33 * SETALL calls.
34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35 * - undo adjustments at process exit are limited to 0..SEMVMX.
36 * - namespace are supported.
37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38 * to /proc/sys/kernel/sem.
39 * - statistics about the usage are reported in /proc/sysvipc/sem.
41 * Internals:
42 * - scalability:
43 * - all global variables are read-mostly.
44 * - semop() calls and semctl(RMID) are synchronized by RCU.
45 * - most operations do write operations (actually: spin_lock calls) to
46 * the per-semaphore array structure.
47 * Thus: Perfect SMP scaling between independent semaphore arrays.
48 * If multiple semaphores in one array are used, then cache line
49 * trashing on the semaphore array spinlock will limit the scaling.
50 * - semncnt and semzcnt are calculated on demand in count_semncnt() and
51 * count_semzcnt()
52 * - the task that performs a successful semop() scans the list of all
53 * sleeping tasks and completes any pending operations that can be fulfilled.
54 * Semaphores are actively given to waiting tasks (necessary for FIFO).
55 * (see update_queue())
56 * - To improve the scalability, the actual wake-up calls are performed after
57 * dropping all locks. (see wake_up_sem_queue_prepare(),
58 * wake_up_sem_queue_do())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - The synchronizations between wake-ups due to a timeout/signal and a
64 * wake-up due to a completed semaphore operation is achieved by using an
65 * intermediate state (IN_WAKEUP).
66 * - UNDO values are stored in an array (one per process and per
67 * semaphore array, lazily allocated). For backwards compatibility, multiple
68 * modes for the UNDO variables are supported (per process, per thread)
69 * (see copy_semundo, CLONE_SYSVSEM)
70 * - There are two lists of the pending operations: a per-array list
71 * and per-semaphore list (stored in the array). This allows to achieve FIFO
72 * ordering without always scanning all pending operations.
73 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
76 #include <linux/slab.h>
77 #include <linux/spinlock.h>
78 #include <linux/init.h>
79 #include <linux/proc_fs.h>
80 #include <linux/time.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/audit.h>
84 #include <linux/capability.h>
85 #include <linux/seq_file.h>
86 #include <linux/rwsem.h>
87 #include <linux/nsproxy.h>
88 #include <linux/ipc_namespace.h>
90 #include <asm/uaccess.h>
91 #include "util.h"
93 /* One semaphore structure for each semaphore in the system. */
94 struct sem {
95 int semval; /* current value */
96 int sempid; /* pid of last operation */
97 spinlock_t lock; /* spinlock for fine-grained semtimedop */
98 struct list_head pending_alter; /* pending single-sop operations */
99 /* that alter the semaphore */
100 struct list_head pending_const; /* pending single-sop operations */
101 /* that do not alter the semaphore*/
102 } ____cacheline_aligned_in_smp;
104 /* One queue for each sleeping process in the system. */
105 struct sem_queue {
106 struct list_head list; /* queue of pending operations */
107 struct task_struct *sleeper; /* this process */
108 struct sem_undo *undo; /* undo structure */
109 int pid; /* process id of requesting process */
110 int status; /* completion status of operation */
111 struct sembuf *sops; /* array of pending operations */
112 int nsops; /* number of operations */
113 int alter; /* does *sops alter the array? */
116 /* Each task has a list of undo requests. They are executed automatically
117 * when the process exits.
119 struct sem_undo {
120 struct list_head list_proc; /* per-process list: *
121 * all undos from one process
122 * rcu protected */
123 struct rcu_head rcu; /* rcu struct for sem_undo */
124 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
125 struct list_head list_id; /* per semaphore array list:
126 * all undos for one array */
127 int semid; /* semaphore set identifier */
128 short *semadj; /* array of adjustments */
129 /* one per semaphore */
132 /* sem_undo_list controls shared access to the list of sem_undo structures
133 * that may be shared among all a CLONE_SYSVSEM task group.
135 struct sem_undo_list {
136 atomic_t refcnt;
137 spinlock_t lock;
138 struct list_head list_proc;
142 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
144 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
146 static int newary(struct ipc_namespace *, struct ipc_params *);
147 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
148 #ifdef CONFIG_PROC_FS
149 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
150 #endif
152 #define SEMMSL_FAST 256 /* 512 bytes on stack */
153 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
156 * linked list protection:
157 * sem_undo.id_next,
158 * sem_array.pending{_alter,_cont},
159 * sem_array.sem_undo: sem_lock() for read/write
160 * sem_undo.proc_next: only "current" is allowed to read/write that field.
164 #define sc_semmsl sem_ctls[0]
165 #define sc_semmns sem_ctls[1]
166 #define sc_semopm sem_ctls[2]
167 #define sc_semmni sem_ctls[3]
169 void sem_init_ns(struct ipc_namespace *ns)
171 ns->sc_semmsl = SEMMSL;
172 ns->sc_semmns = SEMMNS;
173 ns->sc_semopm = SEMOPM;
174 ns->sc_semmni = SEMMNI;
175 ns->used_sems = 0;
176 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
179 #ifdef CONFIG_IPC_NS
180 void sem_exit_ns(struct ipc_namespace *ns)
182 free_ipcs(ns, &sem_ids(ns), freeary);
183 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
185 #endif
187 void __init sem_init (void)
189 sem_init_ns(&init_ipc_ns);
190 ipc_init_proc_interface("sysvipc/sem",
191 " key semid perms nsems uid gid cuid cgid otime ctime\n",
192 IPC_SEM_IDS, sysvipc_sem_proc_show);
196 * If the request contains only one semaphore operation, and there are
197 * no complex transactions pending, lock only the semaphore involved.
198 * Otherwise, lock the entire semaphore array, since we either have
199 * multiple semaphores in our own semops, or we need to look at
200 * semaphores from other pending complex operations.
202 * Carefully guard against sma->complex_count changing between zero
203 * and non-zero while we are spinning for the lock. The value of
204 * sma->complex_count cannot change while we are holding the lock,
205 * so sem_unlock should be fine.
207 * The global lock path checks that all the local locks have been released,
208 * checking each local lock once. This means that the local lock paths
209 * cannot start their critical sections while the global lock is held.
211 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
212 int nsops)
214 int locknum;
215 again:
216 if (nsops == 1 && !sma->complex_count) {
217 struct sem *sem = sma->sem_base + sops->sem_num;
219 /* Lock just the semaphore we are interested in. */
220 spin_lock(&sem->lock);
223 * If sma->complex_count was set while we were spinning,
224 * we may need to look at things we did not lock here.
226 if (unlikely(sma->complex_count)) {
227 spin_unlock(&sem->lock);
228 goto lock_array;
232 * Another process is holding the global lock on the
233 * sem_array; we cannot enter our critical section,
234 * but have to wait for the global lock to be released.
236 if (unlikely(spin_is_locked(&sma->sem_perm.lock))) {
237 spin_unlock(&sem->lock);
238 spin_unlock_wait(&sma->sem_perm.lock);
239 goto again;
242 locknum = sops->sem_num;
243 } else {
244 int i;
246 * Lock the semaphore array, and wait for all of the
247 * individual semaphore locks to go away. The code
248 * above ensures no new single-lock holders will enter
249 * their critical section while the array lock is held.
251 lock_array:
252 ipc_lock_object(&sma->sem_perm);
253 for (i = 0; i < sma->sem_nsems; i++) {
254 struct sem *sem = sma->sem_base + i;
255 spin_unlock_wait(&sem->lock);
257 locknum = -1;
259 return locknum;
262 static inline void sem_unlock(struct sem_array *sma, int locknum)
264 if (locknum == -1) {
265 ipc_unlock_object(&sma->sem_perm);
266 } else {
267 struct sem *sem = sma->sem_base + locknum;
268 spin_unlock(&sem->lock);
273 * sem_lock_(check_) routines are called in the paths where the rw_mutex
274 * is not held.
276 * The caller holds the RCU read lock.
278 static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
279 int id, struct sembuf *sops, int nsops, int *locknum)
281 struct kern_ipc_perm *ipcp;
282 struct sem_array *sma;
284 ipcp = ipc_obtain_object(&sem_ids(ns), id);
285 if (IS_ERR(ipcp))
286 return ERR_CAST(ipcp);
288 sma = container_of(ipcp, struct sem_array, sem_perm);
289 *locknum = sem_lock(sma, sops, nsops);
291 /* ipc_rmid() may have already freed the ID while sem_lock
292 * was spinning: verify that the structure is still valid
294 if (!ipcp->deleted)
295 return container_of(ipcp, struct sem_array, sem_perm);
297 sem_unlock(sma, *locknum);
298 return ERR_PTR(-EINVAL);
301 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
303 struct kern_ipc_perm *ipcp = ipc_obtain_object(&sem_ids(ns), id);
305 if (IS_ERR(ipcp))
306 return ERR_CAST(ipcp);
308 return container_of(ipcp, struct sem_array, sem_perm);
311 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
312 int id)
314 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
316 if (IS_ERR(ipcp))
317 return ERR_CAST(ipcp);
319 return container_of(ipcp, struct sem_array, sem_perm);
322 static inline void sem_lock_and_putref(struct sem_array *sma)
324 sem_lock(sma, NULL, -1);
325 ipc_rcu_putref(sma);
328 static inline void sem_putref(struct sem_array *sma)
330 ipc_rcu_putref(sma);
333 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
335 ipc_rmid(&sem_ids(ns), &s->sem_perm);
339 * Lockless wakeup algorithm:
340 * Without the check/retry algorithm a lockless wakeup is possible:
341 * - queue.status is initialized to -EINTR before blocking.
342 * - wakeup is performed by
343 * * unlinking the queue entry from the pending list
344 * * setting queue.status to IN_WAKEUP
345 * This is the notification for the blocked thread that a
346 * result value is imminent.
347 * * call wake_up_process
348 * * set queue.status to the final value.
349 * - the previously blocked thread checks queue.status:
350 * * if it's IN_WAKEUP, then it must wait until the value changes
351 * * if it's not -EINTR, then the operation was completed by
352 * update_queue. semtimedop can return queue.status without
353 * performing any operation on the sem array.
354 * * otherwise it must acquire the spinlock and check what's up.
356 * The two-stage algorithm is necessary to protect against the following
357 * races:
358 * - if queue.status is set after wake_up_process, then the woken up idle
359 * thread could race forward and try (and fail) to acquire sma->lock
360 * before update_queue had a chance to set queue.status
361 * - if queue.status is written before wake_up_process and if the
362 * blocked process is woken up by a signal between writing
363 * queue.status and the wake_up_process, then the woken up
364 * process could return from semtimedop and die by calling
365 * sys_exit before wake_up_process is called. Then wake_up_process
366 * will oops, because the task structure is already invalid.
367 * (yes, this happened on s390 with sysv msg).
370 #define IN_WAKEUP 1
373 * newary - Create a new semaphore set
374 * @ns: namespace
375 * @params: ptr to the structure that contains key, semflg and nsems
377 * Called with sem_ids.rw_mutex held (as a writer)
380 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
382 int id;
383 int retval;
384 struct sem_array *sma;
385 int size;
386 key_t key = params->key;
387 int nsems = params->u.nsems;
388 int semflg = params->flg;
389 int i;
391 if (!nsems)
392 return -EINVAL;
393 if (ns->used_sems + nsems > ns->sc_semmns)
394 return -ENOSPC;
396 size = sizeof (*sma) + nsems * sizeof (struct sem);
397 sma = ipc_rcu_alloc(size);
398 if (!sma) {
399 return -ENOMEM;
401 memset (sma, 0, size);
403 sma->sem_perm.mode = (semflg & S_IRWXUGO);
404 sma->sem_perm.key = key;
406 sma->sem_perm.security = NULL;
407 retval = security_sem_alloc(sma);
408 if (retval) {
409 ipc_rcu_putref(sma);
410 return retval;
413 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
414 if (id < 0) {
415 security_sem_free(sma);
416 ipc_rcu_putref(sma);
417 return id;
419 ns->used_sems += nsems;
421 sma->sem_base = (struct sem *) &sma[1];
423 for (i = 0; i < nsems; i++) {
424 INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
425 INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
426 spin_lock_init(&sma->sem_base[i].lock);
429 sma->complex_count = 0;
430 INIT_LIST_HEAD(&sma->pending_alter);
431 INIT_LIST_HEAD(&sma->pending_const);
432 INIT_LIST_HEAD(&sma->list_id);
433 sma->sem_nsems = nsems;
434 sma->sem_ctime = get_seconds();
435 sem_unlock(sma, -1);
436 rcu_read_unlock();
438 return sma->sem_perm.id;
443 * Called with sem_ids.rw_mutex and ipcp locked.
445 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
447 struct sem_array *sma;
449 sma = container_of(ipcp, struct sem_array, sem_perm);
450 return security_sem_associate(sma, semflg);
454 * Called with sem_ids.rw_mutex and ipcp locked.
456 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
457 struct ipc_params *params)
459 struct sem_array *sma;
461 sma = container_of(ipcp, struct sem_array, sem_perm);
462 if (params->u.nsems > sma->sem_nsems)
463 return -EINVAL;
465 return 0;
468 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
470 struct ipc_namespace *ns;
471 struct ipc_ops sem_ops;
472 struct ipc_params sem_params;
474 ns = current->nsproxy->ipc_ns;
476 if (nsems < 0 || nsems > ns->sc_semmsl)
477 return -EINVAL;
479 sem_ops.getnew = newary;
480 sem_ops.associate = sem_security;
481 sem_ops.more_checks = sem_more_checks;
483 sem_params.key = key;
484 sem_params.flg = semflg;
485 sem_params.u.nsems = nsems;
487 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
491 * Determine whether a sequence of semaphore operations would succeed
492 * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
495 static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops,
496 int nsops, struct sem_undo *un, int pid)
498 int result, sem_op;
499 struct sembuf *sop;
500 struct sem * curr;
502 for (sop = sops; sop < sops + nsops; sop++) {
503 curr = sma->sem_base + sop->sem_num;
504 sem_op = sop->sem_op;
505 result = curr->semval;
507 if (!sem_op && result)
508 goto would_block;
510 result += sem_op;
511 if (result < 0)
512 goto would_block;
513 if (result > SEMVMX)
514 goto out_of_range;
515 if (sop->sem_flg & SEM_UNDO) {
516 int undo = un->semadj[sop->sem_num] - sem_op;
518 * Exceeding the undo range is an error.
520 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
521 goto out_of_range;
523 curr->semval = result;
526 sop--;
527 while (sop >= sops) {
528 sma->sem_base[sop->sem_num].sempid = pid;
529 if (sop->sem_flg & SEM_UNDO)
530 un->semadj[sop->sem_num] -= sop->sem_op;
531 sop--;
534 return 0;
536 out_of_range:
537 result = -ERANGE;
538 goto undo;
540 would_block:
541 if (sop->sem_flg & IPC_NOWAIT)
542 result = -EAGAIN;
543 else
544 result = 1;
546 undo:
547 sop--;
548 while (sop >= sops) {
549 sma->sem_base[sop->sem_num].semval -= sop->sem_op;
550 sop--;
553 return result;
556 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up
557 * @q: queue entry that must be signaled
558 * @error: Error value for the signal
560 * Prepare the wake-up of the queue entry q.
562 static void wake_up_sem_queue_prepare(struct list_head *pt,
563 struct sem_queue *q, int error)
565 if (list_empty(pt)) {
567 * Hold preempt off so that we don't get preempted and have the
568 * wakee busy-wait until we're scheduled back on.
570 preempt_disable();
572 q->status = IN_WAKEUP;
573 q->pid = error;
575 list_add_tail(&q->list, pt);
579 * wake_up_sem_queue_do(pt) - do the actual wake-up
580 * @pt: list of tasks to be woken up
582 * Do the actual wake-up.
583 * The function is called without any locks held, thus the semaphore array
584 * could be destroyed already and the tasks can disappear as soon as the
585 * status is set to the actual return code.
587 static void wake_up_sem_queue_do(struct list_head *pt)
589 struct sem_queue *q, *t;
590 int did_something;
592 did_something = !list_empty(pt);
593 list_for_each_entry_safe(q, t, pt, list) {
594 wake_up_process(q->sleeper);
595 /* q can disappear immediately after writing q->status. */
596 smp_wmb();
597 q->status = q->pid;
599 if (did_something)
600 preempt_enable();
603 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
605 list_del(&q->list);
606 if (q->nsops > 1)
607 sma->complex_count--;
610 /** check_restart(sma, q)
611 * @sma: semaphore array
612 * @q: the operation that just completed
614 * update_queue is O(N^2) when it restarts scanning the whole queue of
615 * waiting operations. Therefore this function checks if the restart is
616 * really necessary. It is called after a previously waiting operation
617 * modified the array.
618 * Note that wait-for-zero operations are handled without restart.
620 static int check_restart(struct sem_array *sma, struct sem_queue *q)
622 /* pending complex alter operations are too difficult to analyse */
623 if (!list_empty(&sma->pending_alter))
624 return 1;
626 /* we were a sleeping complex operation. Too difficult */
627 if (q->nsops > 1)
628 return 1;
630 /* It is impossible that someone waits for the new value:
631 * - complex operations always restart.
632 * - wait-for-zero are handled seperately.
633 * - q is a previously sleeping simple operation that
634 * altered the array. It must be a decrement, because
635 * simple increments never sleep.
636 * - If there are older (higher priority) decrements
637 * in the queue, then they have observed the original
638 * semval value and couldn't proceed. The operation
639 * decremented to value - thus they won't proceed either.
641 return 0;
645 * wake_const_ops(sma, semnum, pt) - Wake up non-alter tasks
646 * @sma: semaphore array.
647 * @semnum: semaphore that was modified.
648 * @pt: list head for the tasks that must be woken up.
650 * wake_const_ops must be called after a semaphore in a semaphore array
651 * was set to 0. If complex const operations are pending, wake_const_ops must
652 * be called with semnum = -1, as well as with the number of each modified
653 * semaphore.
654 * The tasks that must be woken up are added to @pt. The return code
655 * is stored in q->pid.
656 * The function returns 1 if at least one operation was completed successfully.
658 static int wake_const_ops(struct sem_array *sma, int semnum,
659 struct list_head *pt)
661 struct sem_queue *q;
662 struct list_head *walk;
663 struct list_head *pending_list;
664 int semop_completed = 0;
666 if (semnum == -1)
667 pending_list = &sma->pending_const;
668 else
669 pending_list = &sma->sem_base[semnum].pending_const;
671 walk = pending_list->next;
672 while (walk != pending_list) {
673 int error;
675 q = container_of(walk, struct sem_queue, list);
676 walk = walk->next;
678 error = try_atomic_semop(sma, q->sops, q->nsops,
679 q->undo, q->pid);
681 if (error <= 0) {
682 /* operation completed, remove from queue & wakeup */
684 unlink_queue(sma, q);
686 wake_up_sem_queue_prepare(pt, q, error);
687 if (error == 0)
688 semop_completed = 1;
691 return semop_completed;
695 * do_smart_wakeup_zero(sma, sops, nsops, pt) - wakeup all wait for zero tasks
696 * @sma: semaphore array
697 * @sops: operations that were performed
698 * @nsops: number of operations
699 * @pt: list head of the tasks that must be woken up.
701 * do_smart_wakeup_zero() checks all required queue for wait-for-zero
702 * operations, based on the actual changes that were performed on the
703 * semaphore array.
704 * The function returns 1 if at least one operation was completed successfully.
706 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
707 int nsops, struct list_head *pt)
709 int i;
710 int semop_completed = 0;
711 int got_zero = 0;
713 /* first: the per-semaphore queues, if known */
714 if (sops) {
715 for (i = 0; i < nsops; i++) {
716 int num = sops[i].sem_num;
718 if (sma->sem_base[num].semval == 0) {
719 got_zero = 1;
720 semop_completed |= wake_const_ops(sma, num, pt);
723 } else {
725 * No sops means modified semaphores not known.
726 * Assume all were changed.
728 for (i = 0; i < sma->sem_nsems; i++) {
729 if (sma->sem_base[i].semval == 0) {
730 got_zero = 1;
731 semop_completed |= wake_const_ops(sma, i, pt);
736 * If one of the modified semaphores got 0,
737 * then check the global queue, too.
739 if (got_zero)
740 semop_completed |= wake_const_ops(sma, -1, pt);
742 return semop_completed;
747 * update_queue(sma, semnum): Look for tasks that can be completed.
748 * @sma: semaphore array.
749 * @semnum: semaphore that was modified.
750 * @pt: list head for the tasks that must be woken up.
752 * update_queue must be called after a semaphore in a semaphore array
753 * was modified. If multiple semaphores were modified, update_queue must
754 * be called with semnum = -1, as well as with the number of each modified
755 * semaphore.
756 * The tasks that must be woken up are added to @pt. The return code
757 * is stored in q->pid.
758 * The function internally checks if const operations can now succeed.
760 * The function return 1 if at least one semop was completed successfully.
762 static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
764 struct sem_queue *q;
765 struct list_head *walk;
766 struct list_head *pending_list;
767 int semop_completed = 0;
769 if (semnum == -1)
770 pending_list = &sma->pending_alter;
771 else
772 pending_list = &sma->sem_base[semnum].pending_alter;
774 again:
775 walk = pending_list->next;
776 while (walk != pending_list) {
777 int error, restart;
779 q = container_of(walk, struct sem_queue, list);
780 walk = walk->next;
782 /* If we are scanning the single sop, per-semaphore list of
783 * one semaphore and that semaphore is 0, then it is not
784 * necessary to scan further: simple increments
785 * that affect only one entry succeed immediately and cannot
786 * be in the per semaphore pending queue, and decrements
787 * cannot be successful if the value is already 0.
789 if (semnum != -1 && sma->sem_base[semnum].semval == 0)
790 break;
792 error = try_atomic_semop(sma, q->sops, q->nsops,
793 q->undo, q->pid);
795 /* Does q->sleeper still need to sleep? */
796 if (error > 0)
797 continue;
799 unlink_queue(sma, q);
801 if (error) {
802 restart = 0;
803 } else {
804 semop_completed = 1;
805 do_smart_wakeup_zero(sma, q->sops, q->nsops, pt);
806 restart = check_restart(sma, q);
809 wake_up_sem_queue_prepare(pt, q, error);
810 if (restart)
811 goto again;
813 return semop_completed;
817 * do_smart_update(sma, sops, nsops, otime, pt) - optimized update_queue
818 * @sma: semaphore array
819 * @sops: operations that were performed
820 * @nsops: number of operations
821 * @otime: force setting otime
822 * @pt: list head of the tasks that must be woken up.
824 * do_smart_update() does the required calls to update_queue and wakeup_zero,
825 * based on the actual changes that were performed on the semaphore array.
826 * Note that the function does not do the actual wake-up: the caller is
827 * responsible for calling wake_up_sem_queue_do(@pt).
828 * It is safe to perform this call after dropping all locks.
830 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
831 int otime, struct list_head *pt)
833 int i;
834 int progress;
836 otime |= do_smart_wakeup_zero(sma, sops, nsops, pt);
838 progress = 1;
839 retry_global:
840 if (sma->complex_count) {
841 if (update_queue(sma, -1, pt)) {
842 progress = 1;
843 otime = 1;
844 sops = NULL;
847 if (!progress)
848 goto done;
850 if (!sops) {
851 /* No semops; something special is going on. */
852 for (i = 0; i < sma->sem_nsems; i++) {
853 if (update_queue(sma, i, pt)) {
854 otime = 1;
855 progress = 1;
858 goto done_checkretry;
861 /* Check the semaphores that were modified. */
862 for (i = 0; i < nsops; i++) {
863 if (sops[i].sem_op > 0 ||
864 (sops[i].sem_op < 0 &&
865 sma->sem_base[sops[i].sem_num].semval == 0))
866 if (update_queue(sma, sops[i].sem_num, pt)) {
867 otime = 1;
868 progress = 1;
871 done_checkretry:
872 if (progress) {
873 progress = 0;
874 goto retry_global;
876 done:
877 if (otime)
878 sma->sem_otime = get_seconds();
882 /* The following counts are associated to each semaphore:
883 * semncnt number of tasks waiting on semval being nonzero
884 * semzcnt number of tasks waiting on semval being zero
885 * This model assumes that a task waits on exactly one semaphore.
886 * Since semaphore operations are to be performed atomically, tasks actually
887 * wait on a whole sequence of semaphores simultaneously.
888 * The counts we return here are a rough approximation, but still
889 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
891 static int count_semncnt (struct sem_array * sma, ushort semnum)
893 int semncnt;
894 struct sem_queue * q;
896 semncnt = 0;
897 list_for_each_entry(q, &sma->sem_base[semnum].pending_alter, list) {
898 struct sembuf * sops = q->sops;
899 BUG_ON(sops->sem_num != semnum);
900 if ((sops->sem_op < 0) && !(sops->sem_flg & IPC_NOWAIT))
901 semncnt++;
904 list_for_each_entry(q, &sma->pending_alter, list) {
905 struct sembuf * sops = q->sops;
906 int nsops = q->nsops;
907 int i;
908 for (i = 0; i < nsops; i++)
909 if (sops[i].sem_num == semnum
910 && (sops[i].sem_op < 0)
911 && !(sops[i].sem_flg & IPC_NOWAIT))
912 semncnt++;
914 return semncnt;
917 static int count_semzcnt (struct sem_array * sma, ushort semnum)
919 int semzcnt;
920 struct sem_queue * q;
922 semzcnt = 0;
923 list_for_each_entry(q, &sma->sem_base[semnum].pending_const, list) {
924 struct sembuf * sops = q->sops;
925 BUG_ON(sops->sem_num != semnum);
926 if ((sops->sem_op == 0) && !(sops->sem_flg & IPC_NOWAIT))
927 semzcnt++;
930 list_for_each_entry(q, &sma->pending_const, list) {
931 struct sembuf * sops = q->sops;
932 int nsops = q->nsops;
933 int i;
934 for (i = 0; i < nsops; i++)
935 if (sops[i].sem_num == semnum
936 && (sops[i].sem_op == 0)
937 && !(sops[i].sem_flg & IPC_NOWAIT))
938 semzcnt++;
940 return semzcnt;
943 /* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked
944 * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex
945 * remains locked on exit.
947 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
949 struct sem_undo *un, *tu;
950 struct sem_queue *q, *tq;
951 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
952 struct list_head tasks;
953 int i;
955 /* Free the existing undo structures for this semaphore set. */
956 ipc_assert_locked_object(&sma->sem_perm);
957 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
958 list_del(&un->list_id);
959 spin_lock(&un->ulp->lock);
960 un->semid = -1;
961 list_del_rcu(&un->list_proc);
962 spin_unlock(&un->ulp->lock);
963 kfree_rcu(un, rcu);
966 /* Wake up all pending processes and let them fail with EIDRM. */
967 INIT_LIST_HEAD(&tasks);
968 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
969 unlink_queue(sma, q);
970 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
973 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
974 unlink_queue(sma, q);
975 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
977 for (i = 0; i < sma->sem_nsems; i++) {
978 struct sem *sem = sma->sem_base + i;
979 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
980 unlink_queue(sma, q);
981 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
983 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
984 unlink_queue(sma, q);
985 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
989 /* Remove the semaphore set from the IDR */
990 sem_rmid(ns, sma);
991 sem_unlock(sma, -1);
992 rcu_read_unlock();
994 wake_up_sem_queue_do(&tasks);
995 ns->used_sems -= sma->sem_nsems;
996 security_sem_free(sma);
997 ipc_rcu_putref(sma);
1000 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1002 switch(version) {
1003 case IPC_64:
1004 return copy_to_user(buf, in, sizeof(*in));
1005 case IPC_OLD:
1007 struct semid_ds out;
1009 memset(&out, 0, sizeof(out));
1011 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1013 out.sem_otime = in->sem_otime;
1014 out.sem_ctime = in->sem_ctime;
1015 out.sem_nsems = in->sem_nsems;
1017 return copy_to_user(buf, &out, sizeof(out));
1019 default:
1020 return -EINVAL;
1024 static int semctl_nolock(struct ipc_namespace *ns, int semid,
1025 int cmd, int version, void __user *p)
1027 int err;
1028 struct sem_array *sma;
1030 switch(cmd) {
1031 case IPC_INFO:
1032 case SEM_INFO:
1034 struct seminfo seminfo;
1035 int max_id;
1037 err = security_sem_semctl(NULL, cmd);
1038 if (err)
1039 return err;
1041 memset(&seminfo,0,sizeof(seminfo));
1042 seminfo.semmni = ns->sc_semmni;
1043 seminfo.semmns = ns->sc_semmns;
1044 seminfo.semmsl = ns->sc_semmsl;
1045 seminfo.semopm = ns->sc_semopm;
1046 seminfo.semvmx = SEMVMX;
1047 seminfo.semmnu = SEMMNU;
1048 seminfo.semmap = SEMMAP;
1049 seminfo.semume = SEMUME;
1050 down_read(&sem_ids(ns).rw_mutex);
1051 if (cmd == SEM_INFO) {
1052 seminfo.semusz = sem_ids(ns).in_use;
1053 seminfo.semaem = ns->used_sems;
1054 } else {
1055 seminfo.semusz = SEMUSZ;
1056 seminfo.semaem = SEMAEM;
1058 max_id = ipc_get_maxid(&sem_ids(ns));
1059 up_read(&sem_ids(ns).rw_mutex);
1060 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1061 return -EFAULT;
1062 return (max_id < 0) ? 0: max_id;
1064 case IPC_STAT:
1065 case SEM_STAT:
1067 struct semid64_ds tbuf;
1068 int id = 0;
1070 memset(&tbuf, 0, sizeof(tbuf));
1072 rcu_read_lock();
1073 if (cmd == SEM_STAT) {
1074 sma = sem_obtain_object(ns, semid);
1075 if (IS_ERR(sma)) {
1076 err = PTR_ERR(sma);
1077 goto out_unlock;
1079 id = sma->sem_perm.id;
1080 } else {
1081 sma = sem_obtain_object_check(ns, semid);
1082 if (IS_ERR(sma)) {
1083 err = PTR_ERR(sma);
1084 goto out_unlock;
1088 err = -EACCES;
1089 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1090 goto out_unlock;
1092 err = security_sem_semctl(sma, cmd);
1093 if (err)
1094 goto out_unlock;
1096 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
1097 tbuf.sem_otime = sma->sem_otime;
1098 tbuf.sem_ctime = sma->sem_ctime;
1099 tbuf.sem_nsems = sma->sem_nsems;
1100 rcu_read_unlock();
1101 if (copy_semid_to_user(p, &tbuf, version))
1102 return -EFAULT;
1103 return id;
1105 default:
1106 return -EINVAL;
1108 out_unlock:
1109 rcu_read_unlock();
1110 return err;
1113 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1114 unsigned long arg)
1116 struct sem_undo *un;
1117 struct sem_array *sma;
1118 struct sem* curr;
1119 int err;
1120 struct list_head tasks;
1121 int val;
1122 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1123 /* big-endian 64bit */
1124 val = arg >> 32;
1125 #else
1126 /* 32bit or little-endian 64bit */
1127 val = arg;
1128 #endif
1130 if (val > SEMVMX || val < 0)
1131 return -ERANGE;
1133 INIT_LIST_HEAD(&tasks);
1135 rcu_read_lock();
1136 sma = sem_obtain_object_check(ns, semid);
1137 if (IS_ERR(sma)) {
1138 rcu_read_unlock();
1139 return PTR_ERR(sma);
1142 if (semnum < 0 || semnum >= sma->sem_nsems) {
1143 rcu_read_unlock();
1144 return -EINVAL;
1148 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1149 rcu_read_unlock();
1150 return -EACCES;
1153 err = security_sem_semctl(sma, SETVAL);
1154 if (err) {
1155 rcu_read_unlock();
1156 return -EACCES;
1159 sem_lock(sma, NULL, -1);
1161 curr = &sma->sem_base[semnum];
1163 ipc_assert_locked_object(&sma->sem_perm);
1164 list_for_each_entry(un, &sma->list_id, list_id)
1165 un->semadj[semnum] = 0;
1167 curr->semval = val;
1168 curr->sempid = task_tgid_vnr(current);
1169 sma->sem_ctime = get_seconds();
1170 /* maybe some queued-up processes were waiting for this */
1171 do_smart_update(sma, NULL, 0, 0, &tasks);
1172 sem_unlock(sma, -1);
1173 rcu_read_unlock();
1174 wake_up_sem_queue_do(&tasks);
1175 return 0;
1178 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1179 int cmd, void __user *p)
1181 struct sem_array *sma;
1182 struct sem* curr;
1183 int err, nsems;
1184 ushort fast_sem_io[SEMMSL_FAST];
1185 ushort* sem_io = fast_sem_io;
1186 struct list_head tasks;
1188 INIT_LIST_HEAD(&tasks);
1190 rcu_read_lock();
1191 sma = sem_obtain_object_check(ns, semid);
1192 if (IS_ERR(sma)) {
1193 rcu_read_unlock();
1194 return PTR_ERR(sma);
1197 nsems = sma->sem_nsems;
1199 err = -EACCES;
1200 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1201 goto out_rcu_wakeup;
1203 err = security_sem_semctl(sma, cmd);
1204 if (err)
1205 goto out_rcu_wakeup;
1207 err = -EACCES;
1208 switch (cmd) {
1209 case GETALL:
1211 ushort __user *array = p;
1212 int i;
1214 sem_lock(sma, NULL, -1);
1215 if(nsems > SEMMSL_FAST) {
1216 if (!ipc_rcu_getref(sma)) {
1217 sem_unlock(sma, -1);
1218 rcu_read_unlock();
1219 err = -EIDRM;
1220 goto out_free;
1222 sem_unlock(sma, -1);
1223 rcu_read_unlock();
1224 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1225 if(sem_io == NULL) {
1226 sem_putref(sma);
1227 return -ENOMEM;
1230 rcu_read_lock();
1231 sem_lock_and_putref(sma);
1232 if (sma->sem_perm.deleted) {
1233 sem_unlock(sma, -1);
1234 rcu_read_unlock();
1235 err = -EIDRM;
1236 goto out_free;
1239 for (i = 0; i < sma->sem_nsems; i++)
1240 sem_io[i] = sma->sem_base[i].semval;
1241 sem_unlock(sma, -1);
1242 rcu_read_unlock();
1243 err = 0;
1244 if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1245 err = -EFAULT;
1246 goto out_free;
1248 case SETALL:
1250 int i;
1251 struct sem_undo *un;
1253 if (!ipc_rcu_getref(sma)) {
1254 rcu_read_unlock();
1255 return -EIDRM;
1257 rcu_read_unlock();
1259 if(nsems > SEMMSL_FAST) {
1260 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1261 if(sem_io == NULL) {
1262 sem_putref(sma);
1263 return -ENOMEM;
1267 if (copy_from_user (sem_io, p, nsems*sizeof(ushort))) {
1268 sem_putref(sma);
1269 err = -EFAULT;
1270 goto out_free;
1273 for (i = 0; i < nsems; i++) {
1274 if (sem_io[i] > SEMVMX) {
1275 sem_putref(sma);
1276 err = -ERANGE;
1277 goto out_free;
1280 rcu_read_lock();
1281 sem_lock_and_putref(sma);
1282 if (sma->sem_perm.deleted) {
1283 sem_unlock(sma, -1);
1284 rcu_read_unlock();
1285 err = -EIDRM;
1286 goto out_free;
1289 for (i = 0; i < nsems; i++)
1290 sma->sem_base[i].semval = sem_io[i];
1292 ipc_assert_locked_object(&sma->sem_perm);
1293 list_for_each_entry(un, &sma->list_id, list_id) {
1294 for (i = 0; i < nsems; i++)
1295 un->semadj[i] = 0;
1297 sma->sem_ctime = get_seconds();
1298 /* maybe some queued-up processes were waiting for this */
1299 do_smart_update(sma, NULL, 0, 0, &tasks);
1300 err = 0;
1301 goto out_unlock;
1303 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1305 err = -EINVAL;
1306 if (semnum < 0 || semnum >= nsems)
1307 goto out_rcu_wakeup;
1309 sem_lock(sma, NULL, -1);
1310 curr = &sma->sem_base[semnum];
1312 switch (cmd) {
1313 case GETVAL:
1314 err = curr->semval;
1315 goto out_unlock;
1316 case GETPID:
1317 err = curr->sempid;
1318 goto out_unlock;
1319 case GETNCNT:
1320 err = count_semncnt(sma,semnum);
1321 goto out_unlock;
1322 case GETZCNT:
1323 err = count_semzcnt(sma,semnum);
1324 goto out_unlock;
1327 out_unlock:
1328 sem_unlock(sma, -1);
1329 out_rcu_wakeup:
1330 rcu_read_unlock();
1331 wake_up_sem_queue_do(&tasks);
1332 out_free:
1333 if(sem_io != fast_sem_io)
1334 ipc_free(sem_io, sizeof(ushort)*nsems);
1335 return err;
1338 static inline unsigned long
1339 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1341 switch(version) {
1342 case IPC_64:
1343 if (copy_from_user(out, buf, sizeof(*out)))
1344 return -EFAULT;
1345 return 0;
1346 case IPC_OLD:
1348 struct semid_ds tbuf_old;
1350 if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1351 return -EFAULT;
1353 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1354 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1355 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1357 return 0;
1359 default:
1360 return -EINVAL;
1365 * This function handles some semctl commands which require the rw_mutex
1366 * to be held in write mode.
1367 * NOTE: no locks must be held, the rw_mutex is taken inside this function.
1369 static int semctl_down(struct ipc_namespace *ns, int semid,
1370 int cmd, int version, void __user *p)
1372 struct sem_array *sma;
1373 int err;
1374 struct semid64_ds semid64;
1375 struct kern_ipc_perm *ipcp;
1377 if(cmd == IPC_SET) {
1378 if (copy_semid_from_user(&semid64, p, version))
1379 return -EFAULT;
1382 down_write(&sem_ids(ns).rw_mutex);
1383 rcu_read_lock();
1385 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1386 &semid64.sem_perm, 0);
1387 if (IS_ERR(ipcp)) {
1388 err = PTR_ERR(ipcp);
1389 goto out_unlock1;
1392 sma = container_of(ipcp, struct sem_array, sem_perm);
1394 err = security_sem_semctl(sma, cmd);
1395 if (err)
1396 goto out_unlock1;
1398 switch (cmd) {
1399 case IPC_RMID:
1400 sem_lock(sma, NULL, -1);
1401 /* freeary unlocks the ipc object and rcu */
1402 freeary(ns, ipcp);
1403 goto out_up;
1404 case IPC_SET:
1405 sem_lock(sma, NULL, -1);
1406 err = ipc_update_perm(&semid64.sem_perm, ipcp);
1407 if (err)
1408 goto out_unlock0;
1409 sma->sem_ctime = get_seconds();
1410 break;
1411 default:
1412 err = -EINVAL;
1413 goto out_unlock1;
1416 out_unlock0:
1417 sem_unlock(sma, -1);
1418 out_unlock1:
1419 rcu_read_unlock();
1420 out_up:
1421 up_write(&sem_ids(ns).rw_mutex);
1422 return err;
1425 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1427 int version;
1428 struct ipc_namespace *ns;
1429 void __user *p = (void __user *)arg;
1431 if (semid < 0)
1432 return -EINVAL;
1434 version = ipc_parse_version(&cmd);
1435 ns = current->nsproxy->ipc_ns;
1437 switch(cmd) {
1438 case IPC_INFO:
1439 case SEM_INFO:
1440 case IPC_STAT:
1441 case SEM_STAT:
1442 return semctl_nolock(ns, semid, cmd, version, p);
1443 case GETALL:
1444 case GETVAL:
1445 case GETPID:
1446 case GETNCNT:
1447 case GETZCNT:
1448 case SETALL:
1449 return semctl_main(ns, semid, semnum, cmd, p);
1450 case SETVAL:
1451 return semctl_setval(ns, semid, semnum, arg);
1452 case IPC_RMID:
1453 case IPC_SET:
1454 return semctl_down(ns, semid, cmd, version, p);
1455 default:
1456 return -EINVAL;
1460 /* If the task doesn't already have a undo_list, then allocate one
1461 * here. We guarantee there is only one thread using this undo list,
1462 * and current is THE ONE
1464 * If this allocation and assignment succeeds, but later
1465 * portions of this code fail, there is no need to free the sem_undo_list.
1466 * Just let it stay associated with the task, and it'll be freed later
1467 * at exit time.
1469 * This can block, so callers must hold no locks.
1471 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1473 struct sem_undo_list *undo_list;
1475 undo_list = current->sysvsem.undo_list;
1476 if (!undo_list) {
1477 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1478 if (undo_list == NULL)
1479 return -ENOMEM;
1480 spin_lock_init(&undo_list->lock);
1481 atomic_set(&undo_list->refcnt, 1);
1482 INIT_LIST_HEAD(&undo_list->list_proc);
1484 current->sysvsem.undo_list = undo_list;
1486 *undo_listp = undo_list;
1487 return 0;
1490 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1492 struct sem_undo *un;
1494 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1495 if (un->semid == semid)
1496 return un;
1498 return NULL;
1501 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1503 struct sem_undo *un;
1505 assert_spin_locked(&ulp->lock);
1507 un = __lookup_undo(ulp, semid);
1508 if (un) {
1509 list_del_rcu(&un->list_proc);
1510 list_add_rcu(&un->list_proc, &ulp->list_proc);
1512 return un;
1516 * find_alloc_undo - Lookup (and if not present create) undo array
1517 * @ns: namespace
1518 * @semid: semaphore array id
1520 * The function looks up (and if not present creates) the undo structure.
1521 * The size of the undo structure depends on the size of the semaphore
1522 * array, thus the alloc path is not that straightforward.
1523 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1524 * performs a rcu_read_lock().
1526 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1528 struct sem_array *sma;
1529 struct sem_undo_list *ulp;
1530 struct sem_undo *un, *new;
1531 int nsems, error;
1533 error = get_undo_list(&ulp);
1534 if (error)
1535 return ERR_PTR(error);
1537 rcu_read_lock();
1538 spin_lock(&ulp->lock);
1539 un = lookup_undo(ulp, semid);
1540 spin_unlock(&ulp->lock);
1541 if (likely(un!=NULL))
1542 goto out;
1544 /* no undo structure around - allocate one. */
1545 /* step 1: figure out the size of the semaphore array */
1546 sma = sem_obtain_object_check(ns, semid);
1547 if (IS_ERR(sma)) {
1548 rcu_read_unlock();
1549 return ERR_CAST(sma);
1552 nsems = sma->sem_nsems;
1553 if (!ipc_rcu_getref(sma)) {
1554 rcu_read_unlock();
1555 un = ERR_PTR(-EIDRM);
1556 goto out;
1558 rcu_read_unlock();
1560 /* step 2: allocate new undo structure */
1561 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1562 if (!new) {
1563 sem_putref(sma);
1564 return ERR_PTR(-ENOMEM);
1567 /* step 3: Acquire the lock on semaphore array */
1568 rcu_read_lock();
1569 sem_lock_and_putref(sma);
1570 if (sma->sem_perm.deleted) {
1571 sem_unlock(sma, -1);
1572 rcu_read_unlock();
1573 kfree(new);
1574 un = ERR_PTR(-EIDRM);
1575 goto out;
1577 spin_lock(&ulp->lock);
1580 * step 4: check for races: did someone else allocate the undo struct?
1582 un = lookup_undo(ulp, semid);
1583 if (un) {
1584 kfree(new);
1585 goto success;
1587 /* step 5: initialize & link new undo structure */
1588 new->semadj = (short *) &new[1];
1589 new->ulp = ulp;
1590 new->semid = semid;
1591 assert_spin_locked(&ulp->lock);
1592 list_add_rcu(&new->list_proc, &ulp->list_proc);
1593 ipc_assert_locked_object(&sma->sem_perm);
1594 list_add(&new->list_id, &sma->list_id);
1595 un = new;
1597 success:
1598 spin_unlock(&ulp->lock);
1599 sem_unlock(sma, -1);
1600 out:
1601 return un;
1606 * get_queue_result - Retrieve the result code from sem_queue
1607 * @q: Pointer to queue structure
1609 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1610 * q->status, then we must loop until the value is replaced with the final
1611 * value: This may happen if a task is woken up by an unrelated event (e.g.
1612 * signal) and in parallel the task is woken up by another task because it got
1613 * the requested semaphores.
1615 * The function can be called with or without holding the semaphore spinlock.
1617 static int get_queue_result(struct sem_queue *q)
1619 int error;
1621 error = q->status;
1622 while (unlikely(error == IN_WAKEUP)) {
1623 cpu_relax();
1624 error = q->status;
1627 return error;
1631 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1632 unsigned, nsops, const struct timespec __user *, timeout)
1634 int error = -EINVAL;
1635 struct sem_array *sma;
1636 struct sembuf fast_sops[SEMOPM_FAST];
1637 struct sembuf* sops = fast_sops, *sop;
1638 struct sem_undo *un;
1639 int undos = 0, alter = 0, max, locknum;
1640 struct sem_queue queue;
1641 unsigned long jiffies_left = 0;
1642 struct ipc_namespace *ns;
1643 struct list_head tasks;
1645 ns = current->nsproxy->ipc_ns;
1647 if (nsops < 1 || semid < 0)
1648 return -EINVAL;
1649 if (nsops > ns->sc_semopm)
1650 return -E2BIG;
1651 if(nsops > SEMOPM_FAST) {
1652 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1653 if(sops==NULL)
1654 return -ENOMEM;
1656 if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1657 error=-EFAULT;
1658 goto out_free;
1660 if (timeout) {
1661 struct timespec _timeout;
1662 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1663 error = -EFAULT;
1664 goto out_free;
1666 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1667 _timeout.tv_nsec >= 1000000000L) {
1668 error = -EINVAL;
1669 goto out_free;
1671 jiffies_left = timespec_to_jiffies(&_timeout);
1673 max = 0;
1674 for (sop = sops; sop < sops + nsops; sop++) {
1675 if (sop->sem_num >= max)
1676 max = sop->sem_num;
1677 if (sop->sem_flg & SEM_UNDO)
1678 undos = 1;
1679 if (sop->sem_op != 0)
1680 alter = 1;
1683 INIT_LIST_HEAD(&tasks);
1685 if (undos) {
1686 /* On success, find_alloc_undo takes the rcu_read_lock */
1687 un = find_alloc_undo(ns, semid);
1688 if (IS_ERR(un)) {
1689 error = PTR_ERR(un);
1690 goto out_free;
1692 } else {
1693 un = NULL;
1694 rcu_read_lock();
1697 sma = sem_obtain_object_check(ns, semid);
1698 if (IS_ERR(sma)) {
1699 rcu_read_unlock();
1700 error = PTR_ERR(sma);
1701 goto out_free;
1704 error = -EFBIG;
1705 if (max >= sma->sem_nsems)
1706 goto out_rcu_wakeup;
1708 error = -EACCES;
1709 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1710 goto out_rcu_wakeup;
1712 error = security_sem_semop(sma, sops, nsops, alter);
1713 if (error)
1714 goto out_rcu_wakeup;
1717 * semid identifiers are not unique - find_alloc_undo may have
1718 * allocated an undo structure, it was invalidated by an RMID
1719 * and now a new array with received the same id. Check and fail.
1720 * This case can be detected checking un->semid. The existence of
1721 * "un" itself is guaranteed by rcu.
1723 error = -EIDRM;
1724 locknum = sem_lock(sma, sops, nsops);
1725 if (un && un->semid == -1)
1726 goto out_unlock_free;
1728 error = try_atomic_semop (sma, sops, nsops, un, task_tgid_vnr(current));
1729 if (error <= 0) {
1730 if (alter && error == 0)
1731 do_smart_update(sma, sops, nsops, 1, &tasks);
1733 goto out_unlock_free;
1736 /* We need to sleep on this operation, so we put the current
1737 * task into the pending queue and go to sleep.
1740 queue.sops = sops;
1741 queue.nsops = nsops;
1742 queue.undo = un;
1743 queue.pid = task_tgid_vnr(current);
1744 queue.alter = alter;
1746 if (nsops == 1) {
1747 struct sem *curr;
1748 curr = &sma->sem_base[sops->sem_num];
1750 if (alter)
1751 list_add_tail(&queue.list, &curr->pending_alter);
1752 else
1753 list_add_tail(&queue.list, &curr->pending_const);
1754 } else {
1755 if (alter)
1756 list_add_tail(&queue.list, &sma->pending_alter);
1757 else
1758 list_add_tail(&queue.list, &sma->pending_const);
1760 sma->complex_count++;
1763 queue.status = -EINTR;
1764 queue.sleeper = current;
1766 sleep_again:
1767 current->state = TASK_INTERRUPTIBLE;
1768 sem_unlock(sma, locknum);
1769 rcu_read_unlock();
1771 if (timeout)
1772 jiffies_left = schedule_timeout(jiffies_left);
1773 else
1774 schedule();
1776 error = get_queue_result(&queue);
1778 if (error != -EINTR) {
1779 /* fast path: update_queue already obtained all requested
1780 * resources.
1781 * Perform a smp_mb(): User space could assume that semop()
1782 * is a memory barrier: Without the mb(), the cpu could
1783 * speculatively read in user space stale data that was
1784 * overwritten by the previous owner of the semaphore.
1786 smp_mb();
1788 goto out_free;
1791 rcu_read_lock();
1792 sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
1795 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1797 error = get_queue_result(&queue);
1800 * Array removed? If yes, leave without sem_unlock().
1802 if (IS_ERR(sma)) {
1803 rcu_read_unlock();
1804 goto out_free;
1809 * If queue.status != -EINTR we are woken up by another process.
1810 * Leave without unlink_queue(), but with sem_unlock().
1813 if (error != -EINTR) {
1814 goto out_unlock_free;
1818 * If an interrupt occurred we have to clean up the queue
1820 if (timeout && jiffies_left == 0)
1821 error = -EAGAIN;
1824 * If the wakeup was spurious, just retry
1826 if (error == -EINTR && !signal_pending(current))
1827 goto sleep_again;
1829 unlink_queue(sma, &queue);
1831 out_unlock_free:
1832 sem_unlock(sma, locknum);
1833 out_rcu_wakeup:
1834 rcu_read_unlock();
1835 wake_up_sem_queue_do(&tasks);
1836 out_free:
1837 if(sops != fast_sops)
1838 kfree(sops);
1839 return error;
1842 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
1843 unsigned, nsops)
1845 return sys_semtimedop(semid, tsops, nsops, NULL);
1848 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1849 * parent and child tasks.
1852 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1854 struct sem_undo_list *undo_list;
1855 int error;
1857 if (clone_flags & CLONE_SYSVSEM) {
1858 error = get_undo_list(&undo_list);
1859 if (error)
1860 return error;
1861 atomic_inc(&undo_list->refcnt);
1862 tsk->sysvsem.undo_list = undo_list;
1863 } else
1864 tsk->sysvsem.undo_list = NULL;
1866 return 0;
1870 * add semadj values to semaphores, free undo structures.
1871 * undo structures are not freed when semaphore arrays are destroyed
1872 * so some of them may be out of date.
1873 * IMPLEMENTATION NOTE: There is some confusion over whether the
1874 * set of adjustments that needs to be done should be done in an atomic
1875 * manner or not. That is, if we are attempting to decrement the semval
1876 * should we queue up and wait until we can do so legally?
1877 * The original implementation attempted to do this (queue and wait).
1878 * The current implementation does not do so. The POSIX standard
1879 * and SVID should be consulted to determine what behavior is mandated.
1881 void exit_sem(struct task_struct *tsk)
1883 struct sem_undo_list *ulp;
1885 ulp = tsk->sysvsem.undo_list;
1886 if (!ulp)
1887 return;
1888 tsk->sysvsem.undo_list = NULL;
1890 if (!atomic_dec_and_test(&ulp->refcnt))
1891 return;
1893 for (;;) {
1894 struct sem_array *sma;
1895 struct sem_undo *un;
1896 struct list_head tasks;
1897 int semid, i;
1899 rcu_read_lock();
1900 un = list_entry_rcu(ulp->list_proc.next,
1901 struct sem_undo, list_proc);
1902 if (&un->list_proc == &ulp->list_proc)
1903 semid = -1;
1904 else
1905 semid = un->semid;
1907 if (semid == -1) {
1908 rcu_read_unlock();
1909 break;
1912 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, un->semid);
1913 /* exit_sem raced with IPC_RMID, nothing to do */
1914 if (IS_ERR(sma)) {
1915 rcu_read_unlock();
1916 continue;
1919 sem_lock(sma, NULL, -1);
1920 un = __lookup_undo(ulp, semid);
1921 if (un == NULL) {
1922 /* exit_sem raced with IPC_RMID+semget() that created
1923 * exactly the same semid. Nothing to do.
1925 sem_unlock(sma, -1);
1926 rcu_read_unlock();
1927 continue;
1930 /* remove un from the linked lists */
1931 ipc_assert_locked_object(&sma->sem_perm);
1932 list_del(&un->list_id);
1934 spin_lock(&ulp->lock);
1935 list_del_rcu(&un->list_proc);
1936 spin_unlock(&ulp->lock);
1938 /* perform adjustments registered in un */
1939 for (i = 0; i < sma->sem_nsems; i++) {
1940 struct sem * semaphore = &sma->sem_base[i];
1941 if (un->semadj[i]) {
1942 semaphore->semval += un->semadj[i];
1944 * Range checks of the new semaphore value,
1945 * not defined by sus:
1946 * - Some unices ignore the undo entirely
1947 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
1948 * - some cap the value (e.g. FreeBSD caps
1949 * at 0, but doesn't enforce SEMVMX)
1951 * Linux caps the semaphore value, both at 0
1952 * and at SEMVMX.
1954 * Manfred <manfred@colorfullife.com>
1956 if (semaphore->semval < 0)
1957 semaphore->semval = 0;
1958 if (semaphore->semval > SEMVMX)
1959 semaphore->semval = SEMVMX;
1960 semaphore->sempid = task_tgid_vnr(current);
1963 /* maybe some queued-up processes were waiting for this */
1964 INIT_LIST_HEAD(&tasks);
1965 do_smart_update(sma, NULL, 0, 1, &tasks);
1966 sem_unlock(sma, -1);
1967 rcu_read_unlock();
1968 wake_up_sem_queue_do(&tasks);
1970 kfree_rcu(un, rcu);
1972 kfree(ulp);
1975 #ifdef CONFIG_PROC_FS
1976 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1978 struct user_namespace *user_ns = seq_user_ns(s);
1979 struct sem_array *sma = it;
1981 return seq_printf(s,
1982 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
1983 sma->sem_perm.key,
1984 sma->sem_perm.id,
1985 sma->sem_perm.mode,
1986 sma->sem_nsems,
1987 from_kuid_munged(user_ns, sma->sem_perm.uid),
1988 from_kgid_munged(user_ns, sma->sem_perm.gid),
1989 from_kuid_munged(user_ns, sma->sem_perm.cuid),
1990 from_kgid_munged(user_ns, sma->sem_perm.cgid),
1991 sma->sem_otime,
1992 sma->sem_ctime);
1994 #endif