ieee1394: sbp2: fix probing of some DVD-ROM/RWs
[linux-2.6.git] / drivers / ieee1394 / sbp2.c
blob4325aac7733d090f4708e5a0adf947d537d1e531
1 /*
2 * sbp2.c - SBP-2 protocol driver for IEEE-1394
4 * Copyright (C) 2000 James Goodwin, Filanet Corporation (www.filanet.com)
5 * jamesg@filanet.com (JSG)
7 * Copyright (C) 2003 Ben Collins <bcollins@debian.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software Foundation,
21 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25 * Brief Description:
27 * This driver implements the Serial Bus Protocol 2 (SBP-2) over IEEE-1394
28 * under Linux. The SBP-2 driver is implemented as an IEEE-1394 high-level
29 * driver. It also registers as a SCSI lower-level driver in order to accept
30 * SCSI commands for transport using SBP-2.
32 * You may access any attached SBP-2 (usually storage devices) as regular
33 * SCSI devices. E.g. mount /dev/sda1, fdisk, mkfs, etc..
35 * See http://www.t10.org/drafts.htm#sbp2 for the final draft of the SBP-2
36 * specification and for where to purchase the official standard.
38 * TODO:
39 * - look into possible improvements of the SCSI error handlers
40 * - handle Unit_Characteristics.mgt_ORB_timeout and .ORB_size
41 * - handle Logical_Unit_Number.ordered
42 * - handle src == 1 in status blocks
43 * - reimplement the DMA mapping in absence of physical DMA so that
44 * bus_to_virt is no longer required
45 * - debug the handling of absent physical DMA
46 * - replace CONFIG_IEEE1394_SBP2_PHYS_DMA by automatic detection
47 * (this is easy but depends on the previous two TODO items)
48 * - make the parameter serialize_io configurable per device
49 * - move all requests to fetch agent registers into non-atomic context,
50 * replace all usages of sbp2util_node_write_no_wait by true transactions
51 * Grep for inline FIXME comments below.
54 #include <linux/blkdev.h>
55 #include <linux/compiler.h>
56 #include <linux/delay.h>
57 #include <linux/device.h>
58 #include <linux/dma-mapping.h>
59 #include <linux/gfp.h>
60 #include <linux/init.h>
61 #include <linux/kernel.h>
62 #include <linux/list.h>
63 #include <linux/module.h>
64 #include <linux/moduleparam.h>
65 #include <linux/slab.h>
66 #include <linux/spinlock.h>
67 #include <linux/stat.h>
68 #include <linux/string.h>
69 #include <linux/stringify.h>
70 #include <linux/types.h>
71 #include <linux/wait.h>
73 #include <asm/byteorder.h>
74 #include <asm/errno.h>
75 #include <asm/param.h>
76 #include <asm/scatterlist.h>
77 #include <asm/system.h>
78 #include <asm/types.h>
80 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
81 #include <asm/io.h> /* for bus_to_virt */
82 #endif
84 #include <scsi/scsi.h>
85 #include <scsi/scsi_cmnd.h>
86 #include <scsi/scsi_dbg.h>
87 #include <scsi/scsi_device.h>
88 #include <scsi/scsi_host.h>
90 #include "csr1212.h"
91 #include "highlevel.h"
92 #include "hosts.h"
93 #include "ieee1394.h"
94 #include "ieee1394_core.h"
95 #include "ieee1394_hotplug.h"
96 #include "ieee1394_transactions.h"
97 #include "ieee1394_types.h"
98 #include "nodemgr.h"
99 #include "sbp2.h"
102 * Module load parameter definitions
106 * Change max_speed on module load if you have a bad IEEE-1394
107 * controller that has trouble running 2KB packets at 400mb.
109 * NOTE: On certain OHCI parts I have seen short packets on async transmit
110 * (probably due to PCI latency/throughput issues with the part). You can
111 * bump down the speed if you are running into problems.
113 static int sbp2_max_speed = IEEE1394_SPEED_MAX;
114 module_param_named(max_speed, sbp2_max_speed, int, 0644);
115 MODULE_PARM_DESC(max_speed, "Force max speed "
116 "(3 = 800Mb/s, 2 = 400Mb/s, 1 = 200Mb/s, 0 = 100Mb/s)");
119 * Set serialize_io to 1 if you'd like only one scsi command sent
120 * down to us at a time (debugging). This might be necessary for very
121 * badly behaved sbp2 devices.
123 static int sbp2_serialize_io = 1;
124 module_param_named(serialize_io, sbp2_serialize_io, int, 0444);
125 MODULE_PARM_DESC(serialize_io, "Serialize I/O coming from scsi drivers "
126 "(default = 1, faster = 0)");
129 * Bump up max_sectors if you'd like to support very large sized
130 * transfers. Please note that some older sbp2 bridge chips are broken for
131 * transfers greater or equal to 128KB. Default is a value of 255
132 * sectors, or just under 128KB (at 512 byte sector size). I can note that
133 * the Oxsemi sbp2 chipsets have no problems supporting very large
134 * transfer sizes.
136 static int sbp2_max_sectors = SBP2_MAX_SECTORS;
137 module_param_named(max_sectors, sbp2_max_sectors, int, 0444);
138 MODULE_PARM_DESC(max_sectors, "Change max sectors per I/O supported "
139 "(default = " __stringify(SBP2_MAX_SECTORS) ")");
142 * Exclusive login to sbp2 device? In most cases, the sbp2 driver should
143 * do an exclusive login, as it's generally unsafe to have two hosts
144 * talking to a single sbp2 device at the same time (filesystem coherency,
145 * etc.). If you're running an sbp2 device that supports multiple logins,
146 * and you're either running read-only filesystems or some sort of special
147 * filesystem supporting multiple hosts, e.g. OpenGFS, Oracle Cluster
148 * File System, or Lustre, then set exclusive_login to zero.
150 * So far only bridges from Oxford Semiconductor are known to support
151 * concurrent logins. Depending on firmware, four or two concurrent logins
152 * are possible on OXFW911 and newer Oxsemi bridges.
154 static int sbp2_exclusive_login = 1;
155 module_param_named(exclusive_login, sbp2_exclusive_login, int, 0644);
156 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
157 "(default = 1)");
160 * If any of the following workarounds is required for your device to work,
161 * please submit the kernel messages logged by sbp2 to the linux1394-devel
162 * mailing list.
164 * - 128kB max transfer
165 * Limit transfer size. Necessary for some old bridges.
167 * - 36 byte inquiry
168 * When scsi_mod probes the device, let the inquiry command look like that
169 * from MS Windows.
171 * - skip mode page 8
172 * Suppress sending of mode_sense for mode page 8 if the device pretends to
173 * support the SCSI Primary Block commands instead of Reduced Block Commands.
175 * - fix capacity
176 * Tell sd_mod to correct the last sector number reported by read_capacity.
177 * Avoids access beyond actual disk limits on devices with an off-by-one bug.
178 * Don't use this with devices which don't have this bug.
180 * - override internal blacklist
181 * Instead of adding to the built-in blacklist, use only the workarounds
182 * specified in the module load parameter.
183 * Useful if a blacklist entry interfered with a non-broken device.
185 static int sbp2_default_workarounds;
186 module_param_named(workarounds, sbp2_default_workarounds, int, 0644);
187 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
188 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
189 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
190 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
191 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
192 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
193 ", or a combination)");
196 #define SBP2_INFO(fmt, args...) HPSB_INFO("sbp2: "fmt, ## args)
197 #define SBP2_ERR(fmt, args...) HPSB_ERR("sbp2: "fmt, ## args)
200 * Globals
202 static void sbp2scsi_complete_all_commands(struct sbp2_lu *, u32);
203 static void sbp2scsi_complete_command(struct sbp2_lu *, u32, struct scsi_cmnd *,
204 void (*)(struct scsi_cmnd *));
205 static struct sbp2_lu *sbp2_alloc_device(struct unit_directory *);
206 static int sbp2_start_device(struct sbp2_lu *);
207 static void sbp2_remove_device(struct sbp2_lu *);
208 static int sbp2_login_device(struct sbp2_lu *);
209 static int sbp2_reconnect_device(struct sbp2_lu *);
210 static int sbp2_logout_device(struct sbp2_lu *);
211 static void sbp2_host_reset(struct hpsb_host *);
212 static int sbp2_handle_status_write(struct hpsb_host *, int, int, quadlet_t *,
213 u64, size_t, u16);
214 static int sbp2_agent_reset(struct sbp2_lu *, int);
215 static void sbp2_parse_unit_directory(struct sbp2_lu *,
216 struct unit_directory *);
217 static int sbp2_set_busy_timeout(struct sbp2_lu *);
218 static int sbp2_max_speed_and_size(struct sbp2_lu *);
221 static const u8 sbp2_speedto_max_payload[] = { 0x7, 0x8, 0x9, 0xA, 0xB, 0xC };
223 static struct hpsb_highlevel sbp2_highlevel = {
224 .name = SBP2_DEVICE_NAME,
225 .host_reset = sbp2_host_reset,
228 static struct hpsb_address_ops sbp2_ops = {
229 .write = sbp2_handle_status_write
232 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
233 static int sbp2_handle_physdma_write(struct hpsb_host *, int, int, quadlet_t *,
234 u64, size_t, u16);
235 static int sbp2_handle_physdma_read(struct hpsb_host *, int, quadlet_t *, u64,
236 size_t, u16);
238 static struct hpsb_address_ops sbp2_physdma_ops = {
239 .read = sbp2_handle_physdma_read,
240 .write = sbp2_handle_physdma_write,
242 #endif
246 * Interface to driver core and IEEE 1394 core
248 static struct ieee1394_device_id sbp2_id_table[] = {
250 .match_flags = IEEE1394_MATCH_SPECIFIER_ID | IEEE1394_MATCH_VERSION,
251 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY & 0xffffff,
252 .version = SBP2_SW_VERSION_ENTRY & 0xffffff},
255 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
257 static int sbp2_probe(struct device *);
258 static int sbp2_remove(struct device *);
259 static int sbp2_update(struct unit_directory *);
261 static struct hpsb_protocol_driver sbp2_driver = {
262 .name = SBP2_DEVICE_NAME,
263 .id_table = sbp2_id_table,
264 .update = sbp2_update,
265 .driver = {
266 .probe = sbp2_probe,
267 .remove = sbp2_remove,
273 * Interface to SCSI core
275 static int sbp2scsi_queuecommand(struct scsi_cmnd *,
276 void (*)(struct scsi_cmnd *));
277 static int sbp2scsi_abort(struct scsi_cmnd *);
278 static int sbp2scsi_reset(struct scsi_cmnd *);
279 static int sbp2scsi_slave_alloc(struct scsi_device *);
280 static int sbp2scsi_slave_configure(struct scsi_device *);
281 static void sbp2scsi_slave_destroy(struct scsi_device *);
282 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *,
283 struct device_attribute *, char *);
285 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
287 static struct device_attribute *sbp2_sysfs_sdev_attrs[] = {
288 &dev_attr_ieee1394_id,
289 NULL
292 static struct scsi_host_template sbp2_shost_template = {
293 .module = THIS_MODULE,
294 .name = "SBP-2 IEEE-1394",
295 .proc_name = SBP2_DEVICE_NAME,
296 .queuecommand = sbp2scsi_queuecommand,
297 .eh_abort_handler = sbp2scsi_abort,
298 .eh_device_reset_handler = sbp2scsi_reset,
299 .slave_alloc = sbp2scsi_slave_alloc,
300 .slave_configure = sbp2scsi_slave_configure,
301 .slave_destroy = sbp2scsi_slave_destroy,
302 .this_id = -1,
303 .sg_tablesize = SG_ALL,
304 .use_clustering = ENABLE_CLUSTERING,
305 .cmd_per_lun = SBP2_MAX_CMDS,
306 .can_queue = SBP2_MAX_CMDS,
307 .emulated = 1,
308 .sdev_attrs = sbp2_sysfs_sdev_attrs,
313 * List of devices with known bugs.
315 * The firmware_revision field, masked with 0xffff00, is the best indicator
316 * for the type of bridge chip of a device. It yields a few false positives
317 * but this did not break correctly behaving devices so far.
319 static const struct {
320 u32 firmware_revision;
321 u32 model_id;
322 unsigned workarounds;
323 } sbp2_workarounds_table[] = {
324 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
325 .firmware_revision = 0x002800,
326 .model_id = 0x001010,
327 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
328 SBP2_WORKAROUND_MODE_SENSE_8,
330 /* Initio bridges, actually only needed for some older ones */ {
331 .firmware_revision = 0x000200,
332 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
334 /* Symbios bridge */ {
335 .firmware_revision = 0xa0b800,
336 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
339 * Note about the following Apple iPod blacklist entries:
341 * There are iPods (2nd gen, 3rd gen) with model_id==0. Since our
342 * matching logic treats 0 as a wildcard, we cannot match this ID
343 * without rewriting the matching routine. Fortunately these iPods
344 * do not feature the read_capacity bug according to one report.
345 * Read_capacity behaviour as well as model_id could change due to
346 * Apple-supplied firmware updates though.
348 /* iPod 4th generation */ {
349 .firmware_revision = 0x0a2700,
350 .model_id = 0x000021,
351 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
353 /* iPod mini */ {
354 .firmware_revision = 0x0a2700,
355 .model_id = 0x000023,
356 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
358 /* iPod Photo */ {
359 .firmware_revision = 0x0a2700,
360 .model_id = 0x00007e,
361 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
365 /**************************************
366 * General utility functions
367 **************************************/
369 #ifndef __BIG_ENDIAN
371 * Converts a buffer from be32 to cpu byte ordering. Length is in bytes.
373 static inline void sbp2util_be32_to_cpu_buffer(void *buffer, int length)
375 u32 *temp = buffer;
377 for (length = (length >> 2); length--; )
378 temp[length] = be32_to_cpu(temp[length]);
382 * Converts a buffer from cpu to be32 byte ordering. Length is in bytes.
384 static inline void sbp2util_cpu_to_be32_buffer(void *buffer, int length)
386 u32 *temp = buffer;
388 for (length = (length >> 2); length--; )
389 temp[length] = cpu_to_be32(temp[length]);
391 #else /* BIG_ENDIAN */
392 /* Why waste the cpu cycles? */
393 #define sbp2util_be32_to_cpu_buffer(x,y) do {} while (0)
394 #define sbp2util_cpu_to_be32_buffer(x,y) do {} while (0)
395 #endif
397 static DECLARE_WAIT_QUEUE_HEAD(sbp2_access_wq);
400 * Waits for completion of an SBP-2 access request.
401 * Returns nonzero if timed out or prematurely interrupted.
403 static int sbp2util_access_timeout(struct sbp2_lu *lu, int timeout)
405 long leftover;
407 leftover = wait_event_interruptible_timeout(
408 sbp2_access_wq, lu->access_complete, timeout);
409 lu->access_complete = 0;
410 return leftover <= 0;
413 static void sbp2_free_packet(void *packet)
415 hpsb_free_tlabel(packet);
416 hpsb_free_packet(packet);
420 * This is much like hpsb_node_write(), except it ignores the response
421 * subaction and returns immediately. Can be used from atomic context.
423 static int sbp2util_node_write_no_wait(struct node_entry *ne, u64 addr,
424 quadlet_t *buf, size_t len)
426 struct hpsb_packet *packet;
428 packet = hpsb_make_writepacket(ne->host, ne->nodeid, addr, buf, len);
429 if (!packet)
430 return -ENOMEM;
432 hpsb_set_packet_complete_task(packet, sbp2_free_packet, packet);
433 hpsb_node_fill_packet(ne, packet);
434 if (hpsb_send_packet(packet) < 0) {
435 sbp2_free_packet(packet);
436 return -EIO;
438 return 0;
441 static void sbp2util_notify_fetch_agent(struct sbp2_lu *lu, u64 offset,
442 quadlet_t *data, size_t len)
444 /* There is a small window after a bus reset within which the node
445 * entry's generation is current but the reconnect wasn't completed. */
446 if (unlikely(atomic_read(&lu->state) == SBP2LU_STATE_IN_RESET))
447 return;
449 if (hpsb_node_write(lu->ne, lu->command_block_agent_addr + offset,
450 data, len))
451 SBP2_ERR("sbp2util_notify_fetch_agent failed.");
453 /* Now accept new SCSI commands, unless a bus reset happended during
454 * hpsb_node_write. */
455 if (likely(atomic_read(&lu->state) != SBP2LU_STATE_IN_RESET))
456 scsi_unblock_requests(lu->shost);
459 static void sbp2util_write_orb_pointer(struct work_struct *work)
461 struct sbp2_lu *lu = container_of(work, struct sbp2_lu, protocol_work);
462 quadlet_t data[2];
464 data[0] = ORB_SET_NODE_ID(lu->hi->host->node_id);
465 data[1] = lu->last_orb_dma;
466 sbp2util_cpu_to_be32_buffer(data, 8);
467 sbp2util_notify_fetch_agent(lu, SBP2_ORB_POINTER_OFFSET, data, 8);
470 static void sbp2util_write_doorbell(struct work_struct *work)
472 struct sbp2_lu *lu = container_of(work, struct sbp2_lu, protocol_work);
474 sbp2util_notify_fetch_agent(lu, SBP2_DOORBELL_OFFSET, NULL, 4);
477 static int sbp2util_create_command_orb_pool(struct sbp2_lu *lu)
479 struct sbp2_fwhost_info *hi = lu->hi;
480 int i;
481 unsigned long flags, orbs;
482 struct sbp2_command_info *cmd;
484 orbs = sbp2_serialize_io ? 2 : SBP2_MAX_CMDS;
486 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
487 for (i = 0; i < orbs; i++) {
488 cmd = kzalloc(sizeof(*cmd), GFP_ATOMIC);
489 if (!cmd) {
490 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
491 return -ENOMEM;
493 cmd->command_orb_dma = dma_map_single(hi->host->device.parent,
494 &cmd->command_orb,
495 sizeof(struct sbp2_command_orb),
496 DMA_TO_DEVICE);
497 cmd->sge_dma = dma_map_single(hi->host->device.parent,
498 &cmd->scatter_gather_element,
499 sizeof(cmd->scatter_gather_element),
500 DMA_BIDIRECTIONAL);
501 INIT_LIST_HEAD(&cmd->list);
502 list_add_tail(&cmd->list, &lu->cmd_orb_completed);
504 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
505 return 0;
508 static void sbp2util_remove_command_orb_pool(struct sbp2_lu *lu)
510 struct hpsb_host *host = lu->hi->host;
511 struct list_head *lh, *next;
512 struct sbp2_command_info *cmd;
513 unsigned long flags;
515 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
516 if (!list_empty(&lu->cmd_orb_completed))
517 list_for_each_safe(lh, next, &lu->cmd_orb_completed) {
518 cmd = list_entry(lh, struct sbp2_command_info, list);
519 dma_unmap_single(host->device.parent,
520 cmd->command_orb_dma,
521 sizeof(struct sbp2_command_orb),
522 DMA_TO_DEVICE);
523 dma_unmap_single(host->device.parent, cmd->sge_dma,
524 sizeof(cmd->scatter_gather_element),
525 DMA_BIDIRECTIONAL);
526 kfree(cmd);
528 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
529 return;
533 * Finds the sbp2_command for a given outstanding command ORB.
534 * Only looks at the in-use list.
536 static struct sbp2_command_info *sbp2util_find_command_for_orb(
537 struct sbp2_lu *lu, dma_addr_t orb)
539 struct sbp2_command_info *cmd;
540 unsigned long flags;
542 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
543 if (!list_empty(&lu->cmd_orb_inuse))
544 list_for_each_entry(cmd, &lu->cmd_orb_inuse, list)
545 if (cmd->command_orb_dma == orb) {
546 spin_unlock_irqrestore(
547 &lu->cmd_orb_lock, flags);
548 return cmd;
550 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
551 return NULL;
555 * Finds the sbp2_command for a given outstanding SCpnt.
556 * Only looks at the in-use list.
557 * Must be called with lu->cmd_orb_lock held.
559 static struct sbp2_command_info *sbp2util_find_command_for_SCpnt(
560 struct sbp2_lu *lu, void *SCpnt)
562 struct sbp2_command_info *cmd;
564 if (!list_empty(&lu->cmd_orb_inuse))
565 list_for_each_entry(cmd, &lu->cmd_orb_inuse, list)
566 if (cmd->Current_SCpnt == SCpnt)
567 return cmd;
568 return NULL;
571 static struct sbp2_command_info *sbp2util_allocate_command_orb(
572 struct sbp2_lu *lu,
573 struct scsi_cmnd *Current_SCpnt,
574 void (*Current_done)(struct scsi_cmnd *))
576 struct list_head *lh;
577 struct sbp2_command_info *cmd = NULL;
578 unsigned long flags;
580 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
581 if (!list_empty(&lu->cmd_orb_completed)) {
582 lh = lu->cmd_orb_completed.next;
583 list_del(lh);
584 cmd = list_entry(lh, struct sbp2_command_info, list);
585 cmd->Current_done = Current_done;
586 cmd->Current_SCpnt = Current_SCpnt;
587 list_add_tail(&cmd->list, &lu->cmd_orb_inuse);
588 } else
589 SBP2_ERR("%s: no orbs available", __FUNCTION__);
590 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
591 return cmd;
595 * Unmaps the DMAs of a command and moves the command to the completed ORB list.
596 * Must be called with lu->cmd_orb_lock held.
598 static void sbp2util_mark_command_completed(struct sbp2_lu *lu,
599 struct sbp2_command_info *cmd)
601 struct hpsb_host *host = lu->ud->ne->host;
603 if (cmd->cmd_dma) {
604 if (cmd->dma_type == CMD_DMA_SINGLE)
605 dma_unmap_single(host->device.parent, cmd->cmd_dma,
606 cmd->dma_size, cmd->dma_dir);
607 else if (cmd->dma_type == CMD_DMA_PAGE)
608 dma_unmap_page(host->device.parent, cmd->cmd_dma,
609 cmd->dma_size, cmd->dma_dir);
610 /* XXX: Check for CMD_DMA_NONE bug */
611 cmd->dma_type = CMD_DMA_NONE;
612 cmd->cmd_dma = 0;
614 if (cmd->sge_buffer) {
615 dma_unmap_sg(host->device.parent, cmd->sge_buffer,
616 cmd->dma_size, cmd->dma_dir);
617 cmd->sge_buffer = NULL;
619 list_move_tail(&cmd->list, &lu->cmd_orb_completed);
623 * Is lu valid? Is the 1394 node still present?
625 static inline int sbp2util_node_is_available(struct sbp2_lu *lu)
627 return lu && lu->ne && !lu->ne->in_limbo;
630 /*********************************************
631 * IEEE-1394 core driver stack related section
632 *********************************************/
634 static int sbp2_probe(struct device *dev)
636 struct unit_directory *ud;
637 struct sbp2_lu *lu;
639 ud = container_of(dev, struct unit_directory, device);
641 /* Don't probe UD's that have the LUN flag. We'll probe the LUN(s)
642 * instead. */
643 if (ud->flags & UNIT_DIRECTORY_HAS_LUN_DIRECTORY)
644 return -ENODEV;
646 lu = sbp2_alloc_device(ud);
647 if (!lu)
648 return -ENOMEM;
650 sbp2_parse_unit_directory(lu, ud);
651 return sbp2_start_device(lu);
654 static int sbp2_remove(struct device *dev)
656 struct unit_directory *ud;
657 struct sbp2_lu *lu;
658 struct scsi_device *sdev;
660 ud = container_of(dev, struct unit_directory, device);
661 lu = ud->device.driver_data;
662 if (!lu)
663 return 0;
665 if (lu->shost) {
666 /* Get rid of enqueued commands if there is no chance to
667 * send them. */
668 if (!sbp2util_node_is_available(lu))
669 sbp2scsi_complete_all_commands(lu, DID_NO_CONNECT);
670 /* scsi_remove_device() may trigger shutdown functions of SCSI
671 * highlevel drivers which would deadlock if blocked. */
672 atomic_set(&lu->state, SBP2LU_STATE_IN_SHUTDOWN);
673 scsi_unblock_requests(lu->shost);
675 sdev = lu->sdev;
676 if (sdev) {
677 lu->sdev = NULL;
678 scsi_remove_device(sdev);
681 sbp2_logout_device(lu);
682 sbp2_remove_device(lu);
684 return 0;
687 static int sbp2_update(struct unit_directory *ud)
689 struct sbp2_lu *lu = ud->device.driver_data;
691 if (sbp2_reconnect_device(lu)) {
692 /* Reconnect has failed. Perhaps we didn't reconnect fast
693 * enough. Try a regular login, but first log out just in
694 * case of any weirdness. */
695 sbp2_logout_device(lu);
697 if (sbp2_login_device(lu)) {
698 /* Login failed too, just fail, and the backend
699 * will call our sbp2_remove for us */
700 SBP2_ERR("Failed to reconnect to sbp2 device!");
701 return -EBUSY;
705 sbp2_set_busy_timeout(lu);
706 sbp2_agent_reset(lu, 1);
707 sbp2_max_speed_and_size(lu);
709 /* Complete any pending commands with busy (so they get retried)
710 * and remove them from our queue. */
711 sbp2scsi_complete_all_commands(lu, DID_BUS_BUSY);
713 /* Accept new commands unless there was another bus reset in the
714 * meantime. */
715 if (hpsb_node_entry_valid(lu->ne)) {
716 atomic_set(&lu->state, SBP2LU_STATE_RUNNING);
717 scsi_unblock_requests(lu->shost);
719 return 0;
722 static struct sbp2_lu *sbp2_alloc_device(struct unit_directory *ud)
724 struct sbp2_fwhost_info *hi;
725 struct Scsi_Host *shost = NULL;
726 struct sbp2_lu *lu = NULL;
728 lu = kzalloc(sizeof(*lu), GFP_KERNEL);
729 if (!lu) {
730 SBP2_ERR("failed to create lu");
731 goto failed_alloc;
734 lu->ne = ud->ne;
735 lu->ud = ud;
736 lu->speed_code = IEEE1394_SPEED_100;
737 lu->max_payload_size = sbp2_speedto_max_payload[IEEE1394_SPEED_100];
738 lu->status_fifo_addr = CSR1212_INVALID_ADDR_SPACE;
739 INIT_LIST_HEAD(&lu->cmd_orb_inuse);
740 INIT_LIST_HEAD(&lu->cmd_orb_completed);
741 INIT_LIST_HEAD(&lu->lu_list);
742 spin_lock_init(&lu->cmd_orb_lock);
743 atomic_set(&lu->state, SBP2LU_STATE_RUNNING);
744 INIT_WORK(&lu->protocol_work, NULL);
746 ud->device.driver_data = lu;
748 hi = hpsb_get_hostinfo(&sbp2_highlevel, ud->ne->host);
749 if (!hi) {
750 hi = hpsb_create_hostinfo(&sbp2_highlevel, ud->ne->host,
751 sizeof(*hi));
752 if (!hi) {
753 SBP2_ERR("failed to allocate hostinfo");
754 goto failed_alloc;
756 hi->host = ud->ne->host;
757 INIT_LIST_HEAD(&hi->logical_units);
759 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
760 /* Handle data movement if physical dma is not
761 * enabled or not supported on host controller */
762 if (!hpsb_register_addrspace(&sbp2_highlevel, ud->ne->host,
763 &sbp2_physdma_ops,
764 0x0ULL, 0xfffffffcULL)) {
765 SBP2_ERR("failed to register lower 4GB address range");
766 goto failed_alloc;
768 #endif
771 /* Prevent unloading of the 1394 host */
772 if (!try_module_get(hi->host->driver->owner)) {
773 SBP2_ERR("failed to get a reference on 1394 host driver");
774 goto failed_alloc;
777 lu->hi = hi;
779 list_add_tail(&lu->lu_list, &hi->logical_units);
781 /* Register the status FIFO address range. We could use the same FIFO
782 * for targets at different nodes. However we need different FIFOs per
783 * target in order to support multi-unit devices.
784 * The FIFO is located out of the local host controller's physical range
785 * but, if possible, within the posted write area. Status writes will
786 * then be performed as unified transactions. This slightly reduces
787 * bandwidth usage, and some Prolific based devices seem to require it.
789 lu->status_fifo_addr = hpsb_allocate_and_register_addrspace(
790 &sbp2_highlevel, ud->ne->host, &sbp2_ops,
791 sizeof(struct sbp2_status_block), sizeof(quadlet_t),
792 ud->ne->host->low_addr_space, CSR1212_ALL_SPACE_END);
793 if (lu->status_fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
794 SBP2_ERR("failed to allocate status FIFO address range");
795 goto failed_alloc;
798 shost = scsi_host_alloc(&sbp2_shost_template, sizeof(unsigned long));
799 if (!shost) {
800 SBP2_ERR("failed to register scsi host");
801 goto failed_alloc;
804 shost->hostdata[0] = (unsigned long)lu;
806 if (!scsi_add_host(shost, &ud->device)) {
807 lu->shost = shost;
808 return lu;
811 SBP2_ERR("failed to add scsi host");
812 scsi_host_put(shost);
814 failed_alloc:
815 sbp2_remove_device(lu);
816 return NULL;
819 static void sbp2_host_reset(struct hpsb_host *host)
821 struct sbp2_fwhost_info *hi;
822 struct sbp2_lu *lu;
824 hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
825 if (!hi)
826 return;
827 list_for_each_entry(lu, &hi->logical_units, lu_list)
828 if (likely(atomic_read(&lu->state) !=
829 SBP2LU_STATE_IN_SHUTDOWN)) {
830 atomic_set(&lu->state, SBP2LU_STATE_IN_RESET);
831 scsi_block_requests(lu->shost);
835 static int sbp2_start_device(struct sbp2_lu *lu)
837 struct sbp2_fwhost_info *hi = lu->hi;
838 int error;
840 lu->login_response = dma_alloc_coherent(hi->host->device.parent,
841 sizeof(struct sbp2_login_response),
842 &lu->login_response_dma, GFP_KERNEL);
843 if (!lu->login_response)
844 goto alloc_fail;
846 lu->query_logins_orb = dma_alloc_coherent(hi->host->device.parent,
847 sizeof(struct sbp2_query_logins_orb),
848 &lu->query_logins_orb_dma, GFP_KERNEL);
849 if (!lu->query_logins_orb)
850 goto alloc_fail;
852 lu->query_logins_response = dma_alloc_coherent(hi->host->device.parent,
853 sizeof(struct sbp2_query_logins_response),
854 &lu->query_logins_response_dma, GFP_KERNEL);
855 if (!lu->query_logins_response)
856 goto alloc_fail;
858 lu->reconnect_orb = dma_alloc_coherent(hi->host->device.parent,
859 sizeof(struct sbp2_reconnect_orb),
860 &lu->reconnect_orb_dma, GFP_KERNEL);
861 if (!lu->reconnect_orb)
862 goto alloc_fail;
864 lu->logout_orb = dma_alloc_coherent(hi->host->device.parent,
865 sizeof(struct sbp2_logout_orb),
866 &lu->logout_orb_dma, GFP_KERNEL);
867 if (!lu->logout_orb)
868 goto alloc_fail;
870 lu->login_orb = dma_alloc_coherent(hi->host->device.parent,
871 sizeof(struct sbp2_login_orb),
872 &lu->login_orb_dma, GFP_KERNEL);
873 if (!lu->login_orb)
874 goto alloc_fail;
876 if (sbp2util_create_command_orb_pool(lu)) {
877 SBP2_ERR("sbp2util_create_command_orb_pool failed!");
878 sbp2_remove_device(lu);
879 return -ENOMEM;
882 /* Wait a second before trying to log in. Previously logged in
883 * initiators need a chance to reconnect. */
884 if (msleep_interruptible(1000)) {
885 sbp2_remove_device(lu);
886 return -EINTR;
889 if (sbp2_login_device(lu)) {
890 sbp2_remove_device(lu);
891 return -EBUSY;
894 sbp2_set_busy_timeout(lu);
895 sbp2_agent_reset(lu, 1);
896 sbp2_max_speed_and_size(lu);
898 error = scsi_add_device(lu->shost, 0, lu->ud->id, 0);
899 if (error) {
900 SBP2_ERR("scsi_add_device failed");
901 sbp2_logout_device(lu);
902 sbp2_remove_device(lu);
903 return error;
906 return 0;
908 alloc_fail:
909 SBP2_ERR("Could not allocate memory for lu");
910 sbp2_remove_device(lu);
911 return -ENOMEM;
914 static void sbp2_remove_device(struct sbp2_lu *lu)
916 struct sbp2_fwhost_info *hi;
918 if (!lu)
919 return;
921 hi = lu->hi;
923 if (lu->shost) {
924 scsi_remove_host(lu->shost);
925 scsi_host_put(lu->shost);
927 flush_scheduled_work();
928 sbp2util_remove_command_orb_pool(lu);
930 list_del(&lu->lu_list);
932 if (lu->login_response)
933 dma_free_coherent(hi->host->device.parent,
934 sizeof(struct sbp2_login_response),
935 lu->login_response,
936 lu->login_response_dma);
937 if (lu->login_orb)
938 dma_free_coherent(hi->host->device.parent,
939 sizeof(struct sbp2_login_orb),
940 lu->login_orb,
941 lu->login_orb_dma);
942 if (lu->reconnect_orb)
943 dma_free_coherent(hi->host->device.parent,
944 sizeof(struct sbp2_reconnect_orb),
945 lu->reconnect_orb,
946 lu->reconnect_orb_dma);
947 if (lu->logout_orb)
948 dma_free_coherent(hi->host->device.parent,
949 sizeof(struct sbp2_logout_orb),
950 lu->logout_orb,
951 lu->logout_orb_dma);
952 if (lu->query_logins_orb)
953 dma_free_coherent(hi->host->device.parent,
954 sizeof(struct sbp2_query_logins_orb),
955 lu->query_logins_orb,
956 lu->query_logins_orb_dma);
957 if (lu->query_logins_response)
958 dma_free_coherent(hi->host->device.parent,
959 sizeof(struct sbp2_query_logins_response),
960 lu->query_logins_response,
961 lu->query_logins_response_dma);
963 if (lu->status_fifo_addr != CSR1212_INVALID_ADDR_SPACE)
964 hpsb_unregister_addrspace(&sbp2_highlevel, hi->host,
965 lu->status_fifo_addr);
967 lu->ud->device.driver_data = NULL;
969 if (hi)
970 module_put(hi->host->driver->owner);
972 kfree(lu);
975 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
977 * Deal with write requests on adapters which do not support physical DMA or
978 * have it switched off.
980 static int sbp2_handle_physdma_write(struct hpsb_host *host, int nodeid,
981 int destid, quadlet_t *data, u64 addr,
982 size_t length, u16 flags)
984 memcpy(bus_to_virt((u32) addr), data, length);
985 return RCODE_COMPLETE;
989 * Deal with read requests on adapters which do not support physical DMA or
990 * have it switched off.
992 static int sbp2_handle_physdma_read(struct hpsb_host *host, int nodeid,
993 quadlet_t *data, u64 addr, size_t length,
994 u16 flags)
996 memcpy(data, bus_to_virt((u32) addr), length);
997 return RCODE_COMPLETE;
999 #endif
1001 /**************************************
1002 * SBP-2 protocol related section
1003 **************************************/
1005 static int sbp2_query_logins(struct sbp2_lu *lu)
1007 struct sbp2_fwhost_info *hi = lu->hi;
1008 quadlet_t data[2];
1009 int max_logins;
1010 int active_logins;
1012 lu->query_logins_orb->reserved1 = 0x0;
1013 lu->query_logins_orb->reserved2 = 0x0;
1015 lu->query_logins_orb->query_response_lo = lu->query_logins_response_dma;
1016 lu->query_logins_orb->query_response_hi =
1017 ORB_SET_NODE_ID(hi->host->node_id);
1018 lu->query_logins_orb->lun_misc =
1019 ORB_SET_FUNCTION(SBP2_QUERY_LOGINS_REQUEST);
1020 lu->query_logins_orb->lun_misc |= ORB_SET_NOTIFY(1);
1021 lu->query_logins_orb->lun_misc |= ORB_SET_LUN(lu->lun);
1023 lu->query_logins_orb->reserved_resp_length =
1024 ORB_SET_QUERY_LOGINS_RESP_LENGTH(
1025 sizeof(struct sbp2_query_logins_response));
1027 lu->query_logins_orb->status_fifo_hi =
1028 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1029 lu->query_logins_orb->status_fifo_lo =
1030 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1032 sbp2util_cpu_to_be32_buffer(lu->query_logins_orb,
1033 sizeof(struct sbp2_query_logins_orb));
1035 memset(lu->query_logins_response, 0,
1036 sizeof(struct sbp2_query_logins_response));
1038 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1039 data[1] = lu->query_logins_orb_dma;
1040 sbp2util_cpu_to_be32_buffer(data, 8);
1042 hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1044 if (sbp2util_access_timeout(lu, 2*HZ)) {
1045 SBP2_INFO("Error querying logins to SBP-2 device - timed out");
1046 return -EIO;
1049 if (lu->status_block.ORB_offset_lo != lu->query_logins_orb_dma) {
1050 SBP2_INFO("Error querying logins to SBP-2 device - timed out");
1051 return -EIO;
1054 if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1055 SBP2_INFO("Error querying logins to SBP-2 device - failed");
1056 return -EIO;
1059 sbp2util_cpu_to_be32_buffer(lu->query_logins_response,
1060 sizeof(struct sbp2_query_logins_response));
1062 max_logins = RESPONSE_GET_MAX_LOGINS(
1063 lu->query_logins_response->length_max_logins);
1064 SBP2_INFO("Maximum concurrent logins supported: %d", max_logins);
1066 active_logins = RESPONSE_GET_ACTIVE_LOGINS(
1067 lu->query_logins_response->length_max_logins);
1068 SBP2_INFO("Number of active logins: %d", active_logins);
1070 if (active_logins >= max_logins) {
1071 return -EIO;
1074 return 0;
1077 static int sbp2_login_device(struct sbp2_lu *lu)
1079 struct sbp2_fwhost_info *hi = lu->hi;
1080 quadlet_t data[2];
1082 if (!lu->login_orb)
1083 return -EIO;
1085 if (!sbp2_exclusive_login && sbp2_query_logins(lu)) {
1086 SBP2_INFO("Device does not support any more concurrent logins");
1087 return -EIO;
1090 /* assume no password */
1091 lu->login_orb->password_hi = 0;
1092 lu->login_orb->password_lo = 0;
1094 lu->login_orb->login_response_lo = lu->login_response_dma;
1095 lu->login_orb->login_response_hi = ORB_SET_NODE_ID(hi->host->node_id);
1096 lu->login_orb->lun_misc = ORB_SET_FUNCTION(SBP2_LOGIN_REQUEST);
1098 /* one second reconnect time */
1099 lu->login_orb->lun_misc |= ORB_SET_RECONNECT(0);
1100 lu->login_orb->lun_misc |= ORB_SET_EXCLUSIVE(sbp2_exclusive_login);
1101 lu->login_orb->lun_misc |= ORB_SET_NOTIFY(1);
1102 lu->login_orb->lun_misc |= ORB_SET_LUN(lu->lun);
1104 lu->login_orb->passwd_resp_lengths =
1105 ORB_SET_LOGIN_RESP_LENGTH(sizeof(struct sbp2_login_response));
1107 lu->login_orb->status_fifo_hi =
1108 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1109 lu->login_orb->status_fifo_lo =
1110 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1112 sbp2util_cpu_to_be32_buffer(lu->login_orb,
1113 sizeof(struct sbp2_login_orb));
1115 memset(lu->login_response, 0, sizeof(struct sbp2_login_response));
1117 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1118 data[1] = lu->login_orb_dma;
1119 sbp2util_cpu_to_be32_buffer(data, 8);
1121 hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1123 /* wait up to 20 seconds for login status */
1124 if (sbp2util_access_timeout(lu, 20*HZ)) {
1125 SBP2_ERR("Error logging into SBP-2 device - timed out");
1126 return -EIO;
1129 /* make sure that the returned status matches the login ORB */
1130 if (lu->status_block.ORB_offset_lo != lu->login_orb_dma) {
1131 SBP2_ERR("Error logging into SBP-2 device - timed out");
1132 return -EIO;
1135 if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1136 SBP2_ERR("Error logging into SBP-2 device - failed");
1137 return -EIO;
1140 sbp2util_cpu_to_be32_buffer(lu->login_response,
1141 sizeof(struct sbp2_login_response));
1142 lu->command_block_agent_addr =
1143 ((u64)lu->login_response->command_block_agent_hi) << 32;
1144 lu->command_block_agent_addr |=
1145 ((u64)lu->login_response->command_block_agent_lo);
1146 lu->command_block_agent_addr &= 0x0000ffffffffffffULL;
1148 SBP2_INFO("Logged into SBP-2 device");
1149 return 0;
1152 static int sbp2_logout_device(struct sbp2_lu *lu)
1154 struct sbp2_fwhost_info *hi = lu->hi;
1155 quadlet_t data[2];
1156 int error;
1158 lu->logout_orb->reserved1 = 0x0;
1159 lu->logout_orb->reserved2 = 0x0;
1160 lu->logout_orb->reserved3 = 0x0;
1161 lu->logout_orb->reserved4 = 0x0;
1163 lu->logout_orb->login_ID_misc = ORB_SET_FUNCTION(SBP2_LOGOUT_REQUEST);
1164 lu->logout_orb->login_ID_misc |=
1165 ORB_SET_LOGIN_ID(lu->login_response->length_login_ID);
1166 lu->logout_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
1168 lu->logout_orb->reserved5 = 0x0;
1169 lu->logout_orb->status_fifo_hi =
1170 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1171 lu->logout_orb->status_fifo_lo =
1172 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1174 sbp2util_cpu_to_be32_buffer(lu->logout_orb,
1175 sizeof(struct sbp2_logout_orb));
1177 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1178 data[1] = lu->logout_orb_dma;
1179 sbp2util_cpu_to_be32_buffer(data, 8);
1181 error = hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1182 if (error)
1183 return error;
1185 /* wait up to 1 second for the device to complete logout */
1186 if (sbp2util_access_timeout(lu, HZ))
1187 return -EIO;
1189 SBP2_INFO("Logged out of SBP-2 device");
1190 return 0;
1193 static int sbp2_reconnect_device(struct sbp2_lu *lu)
1195 struct sbp2_fwhost_info *hi = lu->hi;
1196 quadlet_t data[2];
1197 int error;
1199 lu->reconnect_orb->reserved1 = 0x0;
1200 lu->reconnect_orb->reserved2 = 0x0;
1201 lu->reconnect_orb->reserved3 = 0x0;
1202 lu->reconnect_orb->reserved4 = 0x0;
1204 lu->reconnect_orb->login_ID_misc =
1205 ORB_SET_FUNCTION(SBP2_RECONNECT_REQUEST);
1206 lu->reconnect_orb->login_ID_misc |=
1207 ORB_SET_LOGIN_ID(lu->login_response->length_login_ID);
1208 lu->reconnect_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
1210 lu->reconnect_orb->reserved5 = 0x0;
1211 lu->reconnect_orb->status_fifo_hi =
1212 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1213 lu->reconnect_orb->status_fifo_lo =
1214 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1216 sbp2util_cpu_to_be32_buffer(lu->reconnect_orb,
1217 sizeof(struct sbp2_reconnect_orb));
1219 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1220 data[1] = lu->reconnect_orb_dma;
1221 sbp2util_cpu_to_be32_buffer(data, 8);
1223 error = hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1224 if (error)
1225 return error;
1227 /* wait up to 1 second for reconnect status */
1228 if (sbp2util_access_timeout(lu, HZ)) {
1229 SBP2_ERR("Error reconnecting to SBP-2 device - timed out");
1230 return -EIO;
1233 /* make sure that the returned status matches the reconnect ORB */
1234 if (lu->status_block.ORB_offset_lo != lu->reconnect_orb_dma) {
1235 SBP2_ERR("Error reconnecting to SBP-2 device - timed out");
1236 return -EIO;
1239 if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1240 SBP2_ERR("Error reconnecting to SBP-2 device - failed");
1241 return -EIO;
1244 SBP2_INFO("Reconnected to SBP-2 device");
1245 return 0;
1249 * Set the target node's Single Phase Retry limit. Affects the target's retry
1250 * behaviour if our node is too busy to accept requests.
1252 static int sbp2_set_busy_timeout(struct sbp2_lu *lu)
1254 quadlet_t data;
1256 data = cpu_to_be32(SBP2_BUSY_TIMEOUT_VALUE);
1257 if (hpsb_node_write(lu->ne, SBP2_BUSY_TIMEOUT_ADDRESS, &data, 4))
1258 SBP2_ERR("%s error", __FUNCTION__);
1259 return 0;
1262 static void sbp2_parse_unit_directory(struct sbp2_lu *lu,
1263 struct unit_directory *ud)
1265 struct csr1212_keyval *kv;
1266 struct csr1212_dentry *dentry;
1267 u64 management_agent_addr;
1268 u32 unit_characteristics, firmware_revision;
1269 unsigned workarounds;
1270 int i;
1272 management_agent_addr = 0;
1273 unit_characteristics = 0;
1274 firmware_revision = 0;
1276 csr1212_for_each_dir_entry(ud->ne->csr, kv, ud->ud_kv, dentry) {
1277 switch (kv->key.id) {
1278 case CSR1212_KV_ID_DEPENDENT_INFO:
1279 if (kv->key.type == CSR1212_KV_TYPE_CSR_OFFSET)
1280 management_agent_addr =
1281 CSR1212_REGISTER_SPACE_BASE +
1282 (kv->value.csr_offset << 2);
1284 else if (kv->key.type == CSR1212_KV_TYPE_IMMEDIATE)
1285 lu->lun = ORB_SET_LUN(kv->value.immediate);
1286 break;
1288 case SBP2_UNIT_CHARACTERISTICS_KEY:
1289 /* FIXME: This is ignored so far.
1290 * See SBP-2 clause 7.4.8. */
1291 unit_characteristics = kv->value.immediate;
1292 break;
1294 case SBP2_FIRMWARE_REVISION_KEY:
1295 firmware_revision = kv->value.immediate;
1296 break;
1298 default:
1299 /* FIXME: Check for SBP2_DEVICE_TYPE_AND_LUN_KEY.
1300 * Its "ordered" bit has consequences for command ORB
1301 * list handling. See SBP-2 clauses 4.6, 7.4.11, 10.2 */
1302 break;
1306 workarounds = sbp2_default_workarounds;
1308 if (!(workarounds & SBP2_WORKAROUND_OVERRIDE))
1309 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1310 if (sbp2_workarounds_table[i].firmware_revision &&
1311 sbp2_workarounds_table[i].firmware_revision !=
1312 (firmware_revision & 0xffff00))
1313 continue;
1314 if (sbp2_workarounds_table[i].model_id &&
1315 sbp2_workarounds_table[i].model_id != ud->model_id)
1316 continue;
1317 workarounds |= sbp2_workarounds_table[i].workarounds;
1318 break;
1321 if (workarounds)
1322 SBP2_INFO("Workarounds for node " NODE_BUS_FMT ": 0x%x "
1323 "(firmware_revision 0x%06x, vendor_id 0x%06x,"
1324 " model_id 0x%06x)",
1325 NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid),
1326 workarounds, firmware_revision,
1327 ud->vendor_id ? ud->vendor_id : ud->ne->vendor_id,
1328 ud->model_id);
1330 /* We would need one SCSI host template for each target to adjust
1331 * max_sectors on the fly, therefore warn only. */
1332 if (workarounds & SBP2_WORKAROUND_128K_MAX_TRANS &&
1333 (sbp2_max_sectors * 512) > (128 * 1024))
1334 SBP2_INFO("Node " NODE_BUS_FMT ": Bridge only supports 128KB "
1335 "max transfer size. WARNING: Current max_sectors "
1336 "setting is larger than 128KB (%d sectors)",
1337 NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid),
1338 sbp2_max_sectors);
1340 /* If this is a logical unit directory entry, process the parent
1341 * to get the values. */
1342 if (ud->flags & UNIT_DIRECTORY_LUN_DIRECTORY) {
1343 struct unit_directory *parent_ud = container_of(
1344 ud->device.parent, struct unit_directory, device);
1345 sbp2_parse_unit_directory(lu, parent_ud);
1346 } else {
1347 lu->management_agent_addr = management_agent_addr;
1348 lu->workarounds = workarounds;
1349 if (ud->flags & UNIT_DIRECTORY_HAS_LUN)
1350 lu->lun = ORB_SET_LUN(ud->lun);
1354 #define SBP2_PAYLOAD_TO_BYTES(p) (1 << ((p) + 2))
1357 * This function is called in order to determine the max speed and packet
1358 * size we can use in our ORBs. Note, that we (the driver and host) only
1359 * initiate the transaction. The SBP-2 device actually transfers the data
1360 * (by reading from the DMA area we tell it). This means that the SBP-2
1361 * device decides the actual maximum data it can transfer. We just tell it
1362 * the speed that it needs to use, and the max_rec the host supports, and
1363 * it takes care of the rest.
1365 static int sbp2_max_speed_and_size(struct sbp2_lu *lu)
1367 struct sbp2_fwhost_info *hi = lu->hi;
1368 u8 payload;
1370 lu->speed_code = hi->host->speed[NODEID_TO_NODE(lu->ne->nodeid)];
1372 if (lu->speed_code > sbp2_max_speed) {
1373 lu->speed_code = sbp2_max_speed;
1374 SBP2_INFO("Reducing speed to %s",
1375 hpsb_speedto_str[sbp2_max_speed]);
1378 /* Payload size is the lesser of what our speed supports and what
1379 * our host supports. */
1380 payload = min(sbp2_speedto_max_payload[lu->speed_code],
1381 (u8) (hi->host->csr.max_rec - 1));
1383 /* If physical DMA is off, work around limitation in ohci1394:
1384 * packet size must not exceed PAGE_SIZE */
1385 if (lu->ne->host->low_addr_space < (1ULL << 32))
1386 while (SBP2_PAYLOAD_TO_BYTES(payload) + 24 > PAGE_SIZE &&
1387 payload)
1388 payload--;
1390 SBP2_INFO("Node " NODE_BUS_FMT ": Max speed [%s] - Max payload [%u]",
1391 NODE_BUS_ARGS(hi->host, lu->ne->nodeid),
1392 hpsb_speedto_str[lu->speed_code],
1393 SBP2_PAYLOAD_TO_BYTES(payload));
1395 lu->max_payload_size = payload;
1396 return 0;
1399 static int sbp2_agent_reset(struct sbp2_lu *lu, int wait)
1401 quadlet_t data;
1402 u64 addr;
1403 int retval;
1404 unsigned long flags;
1406 /* flush lu->protocol_work */
1407 if (wait)
1408 flush_scheduled_work();
1410 data = ntohl(SBP2_AGENT_RESET_DATA);
1411 addr = lu->command_block_agent_addr + SBP2_AGENT_RESET_OFFSET;
1413 if (wait)
1414 retval = hpsb_node_write(lu->ne, addr, &data, 4);
1415 else
1416 retval = sbp2util_node_write_no_wait(lu->ne, addr, &data, 4);
1418 if (retval < 0) {
1419 SBP2_ERR("hpsb_node_write failed.\n");
1420 return -EIO;
1423 /* make sure that the ORB_POINTER is written on next command */
1424 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1425 lu->last_orb = NULL;
1426 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1428 return 0;
1431 static void sbp2_prep_command_orb_sg(struct sbp2_command_orb *orb,
1432 struct sbp2_fwhost_info *hi,
1433 struct sbp2_command_info *cmd,
1434 unsigned int scsi_use_sg,
1435 struct scatterlist *sgpnt,
1436 u32 orb_direction,
1437 enum dma_data_direction dma_dir)
1439 cmd->dma_dir = dma_dir;
1440 orb->data_descriptor_hi = ORB_SET_NODE_ID(hi->host->node_id);
1441 orb->misc |= ORB_SET_DIRECTION(orb_direction);
1443 /* special case if only one element (and less than 64KB in size) */
1444 if ((scsi_use_sg == 1) &&
1445 (sgpnt[0].length <= SBP2_MAX_SG_ELEMENT_LENGTH)) {
1447 cmd->dma_size = sgpnt[0].length;
1448 cmd->dma_type = CMD_DMA_PAGE;
1449 cmd->cmd_dma = dma_map_page(hi->host->device.parent,
1450 sgpnt[0].page, sgpnt[0].offset,
1451 cmd->dma_size, cmd->dma_dir);
1453 orb->data_descriptor_lo = cmd->cmd_dma;
1454 orb->misc |= ORB_SET_DATA_SIZE(cmd->dma_size);
1456 } else {
1457 struct sbp2_unrestricted_page_table *sg_element =
1458 &cmd->scatter_gather_element[0];
1459 u32 sg_count, sg_len;
1460 dma_addr_t sg_addr;
1461 int i, count = dma_map_sg(hi->host->device.parent, sgpnt,
1462 scsi_use_sg, dma_dir);
1464 cmd->dma_size = scsi_use_sg;
1465 cmd->sge_buffer = sgpnt;
1467 /* use page tables (s/g) */
1468 orb->misc |= ORB_SET_PAGE_TABLE_PRESENT(0x1);
1469 orb->data_descriptor_lo = cmd->sge_dma;
1471 /* loop through and fill out our SBP-2 page tables
1472 * (and split up anything too large) */
1473 for (i = 0, sg_count = 0 ; i < count; i++, sgpnt++) {
1474 sg_len = sg_dma_len(sgpnt);
1475 sg_addr = sg_dma_address(sgpnt);
1476 while (sg_len) {
1477 sg_element[sg_count].segment_base_lo = sg_addr;
1478 if (sg_len > SBP2_MAX_SG_ELEMENT_LENGTH) {
1479 sg_element[sg_count].length_segment_base_hi =
1480 PAGE_TABLE_SET_SEGMENT_LENGTH(SBP2_MAX_SG_ELEMENT_LENGTH);
1481 sg_addr += SBP2_MAX_SG_ELEMENT_LENGTH;
1482 sg_len -= SBP2_MAX_SG_ELEMENT_LENGTH;
1483 } else {
1484 sg_element[sg_count].length_segment_base_hi =
1485 PAGE_TABLE_SET_SEGMENT_LENGTH(sg_len);
1486 sg_len = 0;
1488 sg_count++;
1492 orb->misc |= ORB_SET_DATA_SIZE(sg_count);
1494 sbp2util_cpu_to_be32_buffer(sg_element,
1495 (sizeof(struct sbp2_unrestricted_page_table)) *
1496 sg_count);
1500 static void sbp2_prep_command_orb_no_sg(struct sbp2_command_orb *orb,
1501 struct sbp2_fwhost_info *hi,
1502 struct sbp2_command_info *cmd,
1503 struct scatterlist *sgpnt,
1504 u32 orb_direction,
1505 unsigned int scsi_request_bufflen,
1506 void *scsi_request_buffer,
1507 enum dma_data_direction dma_dir)
1509 cmd->dma_dir = dma_dir;
1510 cmd->dma_size = scsi_request_bufflen;
1511 cmd->dma_type = CMD_DMA_SINGLE;
1512 cmd->cmd_dma = dma_map_single(hi->host->device.parent,
1513 scsi_request_buffer,
1514 cmd->dma_size, cmd->dma_dir);
1515 orb->data_descriptor_hi = ORB_SET_NODE_ID(hi->host->node_id);
1516 orb->misc |= ORB_SET_DIRECTION(orb_direction);
1518 /* handle case where we get a command w/o s/g enabled
1519 * (but check for transfers larger than 64K) */
1520 if (scsi_request_bufflen <= SBP2_MAX_SG_ELEMENT_LENGTH) {
1522 orb->data_descriptor_lo = cmd->cmd_dma;
1523 orb->misc |= ORB_SET_DATA_SIZE(scsi_request_bufflen);
1525 } else {
1526 /* The buffer is too large. Turn this into page tables. */
1528 struct sbp2_unrestricted_page_table *sg_element =
1529 &cmd->scatter_gather_element[0];
1530 u32 sg_count, sg_len;
1531 dma_addr_t sg_addr;
1533 orb->data_descriptor_lo = cmd->sge_dma;
1534 orb->misc |= ORB_SET_PAGE_TABLE_PRESENT(0x1);
1536 /* fill out our SBP-2 page tables; split up the large buffer */
1537 sg_count = 0;
1538 sg_len = scsi_request_bufflen;
1539 sg_addr = cmd->cmd_dma;
1540 while (sg_len) {
1541 sg_element[sg_count].segment_base_lo = sg_addr;
1542 if (sg_len > SBP2_MAX_SG_ELEMENT_LENGTH) {
1543 sg_element[sg_count].length_segment_base_hi =
1544 PAGE_TABLE_SET_SEGMENT_LENGTH(SBP2_MAX_SG_ELEMENT_LENGTH);
1545 sg_addr += SBP2_MAX_SG_ELEMENT_LENGTH;
1546 sg_len -= SBP2_MAX_SG_ELEMENT_LENGTH;
1547 } else {
1548 sg_element[sg_count].length_segment_base_hi =
1549 PAGE_TABLE_SET_SEGMENT_LENGTH(sg_len);
1550 sg_len = 0;
1552 sg_count++;
1555 orb->misc |= ORB_SET_DATA_SIZE(sg_count);
1557 sbp2util_cpu_to_be32_buffer(sg_element,
1558 (sizeof(struct sbp2_unrestricted_page_table)) *
1559 sg_count);
1563 static void sbp2_create_command_orb(struct sbp2_lu *lu,
1564 struct sbp2_command_info *cmd,
1565 unchar *scsi_cmd,
1566 unsigned int scsi_use_sg,
1567 unsigned int scsi_request_bufflen,
1568 void *scsi_request_buffer,
1569 enum dma_data_direction dma_dir)
1571 struct sbp2_fwhost_info *hi = lu->hi;
1572 struct scatterlist *sgpnt = (struct scatterlist *)scsi_request_buffer;
1573 struct sbp2_command_orb *orb = &cmd->command_orb;
1574 u32 orb_direction;
1577 * Set-up our command ORB.
1579 * NOTE: We're doing unrestricted page tables (s/g), as this is
1580 * best performance (at least with the devices I have). This means
1581 * that data_size becomes the number of s/g elements, and
1582 * page_size should be zero (for unrestricted).
1584 orb->next_ORB_hi = ORB_SET_NULL_PTR(1);
1585 orb->next_ORB_lo = 0x0;
1586 orb->misc = ORB_SET_MAX_PAYLOAD(lu->max_payload_size);
1587 orb->misc |= ORB_SET_SPEED(lu->speed_code);
1588 orb->misc |= ORB_SET_NOTIFY(1);
1590 if (dma_dir == DMA_NONE)
1591 orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER;
1592 else if (dma_dir == DMA_TO_DEVICE && scsi_request_bufflen)
1593 orb_direction = ORB_DIRECTION_WRITE_TO_MEDIA;
1594 else if (dma_dir == DMA_FROM_DEVICE && scsi_request_bufflen)
1595 orb_direction = ORB_DIRECTION_READ_FROM_MEDIA;
1596 else {
1597 SBP2_INFO("Falling back to DMA_NONE");
1598 orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER;
1601 /* set up our page table stuff */
1602 if (orb_direction == ORB_DIRECTION_NO_DATA_TRANSFER) {
1603 orb->data_descriptor_hi = 0x0;
1604 orb->data_descriptor_lo = 0x0;
1605 orb->misc |= ORB_SET_DIRECTION(1);
1606 } else if (scsi_use_sg)
1607 sbp2_prep_command_orb_sg(orb, hi, cmd, scsi_use_sg, sgpnt,
1608 orb_direction, dma_dir);
1609 else
1610 sbp2_prep_command_orb_no_sg(orb, hi, cmd, sgpnt, orb_direction,
1611 scsi_request_bufflen,
1612 scsi_request_buffer, dma_dir);
1614 sbp2util_cpu_to_be32_buffer(orb, sizeof(*orb));
1616 memset(orb->cdb, 0, 12);
1617 memcpy(orb->cdb, scsi_cmd, COMMAND_SIZE(*scsi_cmd));
1620 static void sbp2_link_orb_command(struct sbp2_lu *lu,
1621 struct sbp2_command_info *cmd)
1623 struct sbp2_fwhost_info *hi = lu->hi;
1624 struct sbp2_command_orb *last_orb;
1625 dma_addr_t last_orb_dma;
1626 u64 addr = lu->command_block_agent_addr;
1627 quadlet_t data[2];
1628 size_t length;
1629 unsigned long flags;
1631 dma_sync_single_for_device(hi->host->device.parent,
1632 cmd->command_orb_dma,
1633 sizeof(struct sbp2_command_orb),
1634 DMA_TO_DEVICE);
1635 dma_sync_single_for_device(hi->host->device.parent, cmd->sge_dma,
1636 sizeof(cmd->scatter_gather_element),
1637 DMA_BIDIRECTIONAL);
1639 /* check to see if there are any previous orbs to use */
1640 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1641 last_orb = lu->last_orb;
1642 last_orb_dma = lu->last_orb_dma;
1643 if (!last_orb) {
1645 * last_orb == NULL means: We know that the target's fetch agent
1646 * is not active right now.
1648 addr += SBP2_ORB_POINTER_OFFSET;
1649 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1650 data[1] = cmd->command_orb_dma;
1651 sbp2util_cpu_to_be32_buffer(data, 8);
1652 length = 8;
1653 } else {
1655 * last_orb != NULL means: We know that the target's fetch agent
1656 * is (very probably) not dead or in reset state right now.
1657 * We have an ORB already sent that we can append a new one to.
1658 * The target's fetch agent may or may not have read this
1659 * previous ORB yet.
1661 dma_sync_single_for_cpu(hi->host->device.parent, last_orb_dma,
1662 sizeof(struct sbp2_command_orb),
1663 DMA_TO_DEVICE);
1664 last_orb->next_ORB_lo = cpu_to_be32(cmd->command_orb_dma);
1665 wmb();
1666 /* Tells hardware that this pointer is valid */
1667 last_orb->next_ORB_hi = 0;
1668 dma_sync_single_for_device(hi->host->device.parent,
1669 last_orb_dma,
1670 sizeof(struct sbp2_command_orb),
1671 DMA_TO_DEVICE);
1672 addr += SBP2_DOORBELL_OFFSET;
1673 data[0] = 0;
1674 length = 4;
1676 lu->last_orb = &cmd->command_orb;
1677 lu->last_orb_dma = cmd->command_orb_dma;
1678 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1680 if (sbp2util_node_write_no_wait(lu->ne, addr, data, length)) {
1682 * sbp2util_node_write_no_wait failed. We certainly ran out
1683 * of transaction labels, perhaps just because there were no
1684 * context switches which gave khpsbpkt a chance to collect
1685 * free tlabels. Try again in non-atomic context. If necessary,
1686 * the workqueue job will sleep to guaranteedly get a tlabel.
1687 * We do not accept new commands until the job is over.
1689 scsi_block_requests(lu->shost);
1690 PREPARE_WORK(&lu->protocol_work,
1691 last_orb ? sbp2util_write_doorbell:
1692 sbp2util_write_orb_pointer);
1693 schedule_work(&lu->protocol_work);
1697 static int sbp2_send_command(struct sbp2_lu *lu, struct scsi_cmnd *SCpnt,
1698 void (*done)(struct scsi_cmnd *))
1700 unchar *scsi_cmd = (unchar *)SCpnt->cmnd;
1701 unsigned int request_bufflen = SCpnt->request_bufflen;
1702 struct sbp2_command_info *cmd;
1704 cmd = sbp2util_allocate_command_orb(lu, SCpnt, done);
1705 if (!cmd)
1706 return -EIO;
1708 sbp2_create_command_orb(lu, cmd, scsi_cmd, SCpnt->use_sg,
1709 request_bufflen, SCpnt->request_buffer,
1710 SCpnt->sc_data_direction);
1711 sbp2_link_orb_command(lu, cmd);
1713 return 0;
1717 * Translates SBP-2 status into SCSI sense data for check conditions
1719 static unsigned int sbp2_status_to_sense_data(unchar *sbp2_status,
1720 unchar *sense_data)
1722 /* OK, it's pretty ugly... ;-) */
1723 sense_data[0] = 0x70;
1724 sense_data[1] = 0x0;
1725 sense_data[2] = sbp2_status[9];
1726 sense_data[3] = sbp2_status[12];
1727 sense_data[4] = sbp2_status[13];
1728 sense_data[5] = sbp2_status[14];
1729 sense_data[6] = sbp2_status[15];
1730 sense_data[7] = 10;
1731 sense_data[8] = sbp2_status[16];
1732 sense_data[9] = sbp2_status[17];
1733 sense_data[10] = sbp2_status[18];
1734 sense_data[11] = sbp2_status[19];
1735 sense_data[12] = sbp2_status[10];
1736 sense_data[13] = sbp2_status[11];
1737 sense_data[14] = sbp2_status[20];
1738 sense_data[15] = sbp2_status[21];
1740 return sbp2_status[8] & 0x3f;
1743 static int sbp2_handle_status_write(struct hpsb_host *host, int nodeid,
1744 int destid, quadlet_t *data, u64 addr,
1745 size_t length, u16 fl)
1747 struct sbp2_fwhost_info *hi;
1748 struct sbp2_lu *lu = NULL, *lu_tmp;
1749 struct scsi_cmnd *SCpnt = NULL;
1750 struct sbp2_status_block *sb;
1751 u32 scsi_status = SBP2_SCSI_STATUS_GOOD;
1752 struct sbp2_command_info *cmd;
1753 unsigned long flags;
1755 if (unlikely(length < 8 || length > sizeof(struct sbp2_status_block))) {
1756 SBP2_ERR("Wrong size of status block");
1757 return RCODE_ADDRESS_ERROR;
1759 if (unlikely(!host)) {
1760 SBP2_ERR("host is NULL - this is bad!");
1761 return RCODE_ADDRESS_ERROR;
1763 hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
1764 if (unlikely(!hi)) {
1765 SBP2_ERR("host info is NULL - this is bad!");
1766 return RCODE_ADDRESS_ERROR;
1769 /* Find the unit which wrote the status. */
1770 list_for_each_entry(lu_tmp, &hi->logical_units, lu_list) {
1771 if (lu_tmp->ne->nodeid == nodeid &&
1772 lu_tmp->status_fifo_addr == addr) {
1773 lu = lu_tmp;
1774 break;
1777 if (unlikely(!lu)) {
1778 SBP2_ERR("lu is NULL - device is gone?");
1779 return RCODE_ADDRESS_ERROR;
1782 /* Put response into lu status fifo buffer. The first two bytes
1783 * come in big endian bit order. Often the target writes only a
1784 * truncated status block, minimally the first two quadlets. The rest
1785 * is implied to be zeros. */
1786 sb = &lu->status_block;
1787 memset(sb->command_set_dependent, 0, sizeof(sb->command_set_dependent));
1788 memcpy(sb, data, length);
1789 sbp2util_be32_to_cpu_buffer(sb, 8);
1791 /* Ignore unsolicited status. Handle command ORB status. */
1792 if (unlikely(STATUS_GET_SRC(sb->ORB_offset_hi_misc) == 2))
1793 cmd = NULL;
1794 else
1795 cmd = sbp2util_find_command_for_orb(lu, sb->ORB_offset_lo);
1796 if (cmd) {
1797 dma_sync_single_for_cpu(hi->host->device.parent,
1798 cmd->command_orb_dma,
1799 sizeof(struct sbp2_command_orb),
1800 DMA_TO_DEVICE);
1801 dma_sync_single_for_cpu(hi->host->device.parent, cmd->sge_dma,
1802 sizeof(cmd->scatter_gather_element),
1803 DMA_BIDIRECTIONAL);
1804 /* Grab SCSI command pointers and check status. */
1806 * FIXME: If the src field in the status is 1, the ORB DMA must
1807 * not be reused until status for a subsequent ORB is received.
1809 SCpnt = cmd->Current_SCpnt;
1810 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1811 sbp2util_mark_command_completed(lu, cmd);
1812 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1814 if (SCpnt) {
1815 u32 h = sb->ORB_offset_hi_misc;
1816 u32 r = STATUS_GET_RESP(h);
1818 if (r != RESP_STATUS_REQUEST_COMPLETE) {
1819 SBP2_INFO("resp 0x%x, sbp_status 0x%x",
1820 r, STATUS_GET_SBP_STATUS(h));
1821 scsi_status =
1822 r == RESP_STATUS_TRANSPORT_FAILURE ?
1823 SBP2_SCSI_STATUS_BUSY :
1824 SBP2_SCSI_STATUS_COMMAND_TERMINATED;
1827 if (STATUS_GET_LEN(h) > 1)
1828 scsi_status = sbp2_status_to_sense_data(
1829 (unchar *)sb, SCpnt->sense_buffer);
1831 if (STATUS_TEST_DEAD(h))
1832 sbp2_agent_reset(lu, 0);
1835 /* Check here to see if there are no commands in-use. If there
1836 * are none, we know that the fetch agent left the active state
1837 * _and_ that we did not reactivate it yet. Therefore clear
1838 * last_orb so that next time we write directly to the
1839 * ORB_POINTER register. That way the fetch agent does not need
1840 * to refetch the next_ORB. */
1841 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1842 if (list_empty(&lu->cmd_orb_inuse))
1843 lu->last_orb = NULL;
1844 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1846 } else {
1847 /* It's probably status after a management request. */
1848 if ((sb->ORB_offset_lo == lu->reconnect_orb_dma) ||
1849 (sb->ORB_offset_lo == lu->login_orb_dma) ||
1850 (sb->ORB_offset_lo == lu->query_logins_orb_dma) ||
1851 (sb->ORB_offset_lo == lu->logout_orb_dma)) {
1852 lu->access_complete = 1;
1853 wake_up_interruptible(&sbp2_access_wq);
1857 if (SCpnt)
1858 sbp2scsi_complete_command(lu, scsi_status, SCpnt,
1859 cmd->Current_done);
1860 return RCODE_COMPLETE;
1863 /**************************************
1864 * SCSI interface related section
1865 **************************************/
1867 static int sbp2scsi_queuecommand(struct scsi_cmnd *SCpnt,
1868 void (*done)(struct scsi_cmnd *))
1870 struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
1871 struct sbp2_fwhost_info *hi;
1872 int result = DID_NO_CONNECT << 16;
1874 if (unlikely(!sbp2util_node_is_available(lu)))
1875 goto done;
1877 hi = lu->hi;
1879 if (unlikely(!hi)) {
1880 SBP2_ERR("sbp2_fwhost_info is NULL - this is bad!");
1881 goto done;
1884 /* Multiple units are currently represented to the SCSI core as separate
1885 * targets, not as one target with multiple LUs. Therefore return
1886 * selection time-out to any IO directed at non-zero LUNs. */
1887 if (unlikely(SCpnt->device->lun))
1888 goto done;
1890 if (unlikely(!hpsb_node_entry_valid(lu->ne))) {
1891 SBP2_ERR("Bus reset in progress - rejecting command");
1892 result = DID_BUS_BUSY << 16;
1893 goto done;
1896 /* Bidirectional commands are not yet implemented,
1897 * and unknown transfer direction not handled. */
1898 if (unlikely(SCpnt->sc_data_direction == DMA_BIDIRECTIONAL)) {
1899 SBP2_ERR("Cannot handle DMA_BIDIRECTIONAL - rejecting command");
1900 result = DID_ERROR << 16;
1901 goto done;
1904 if (sbp2_send_command(lu, SCpnt, done)) {
1905 SBP2_ERR("Error sending SCSI command");
1906 sbp2scsi_complete_command(lu,
1907 SBP2_SCSI_STATUS_SELECTION_TIMEOUT,
1908 SCpnt, done);
1910 return 0;
1912 done:
1913 SCpnt->result = result;
1914 done(SCpnt);
1915 return 0;
1918 static void sbp2scsi_complete_all_commands(struct sbp2_lu *lu, u32 status)
1920 struct sbp2_fwhost_info *hi = lu->hi;
1921 struct list_head *lh;
1922 struct sbp2_command_info *cmd;
1923 unsigned long flags;
1925 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1926 while (!list_empty(&lu->cmd_orb_inuse)) {
1927 lh = lu->cmd_orb_inuse.next;
1928 cmd = list_entry(lh, struct sbp2_command_info, list);
1929 dma_sync_single_for_cpu(hi->host->device.parent,
1930 cmd->command_orb_dma,
1931 sizeof(struct sbp2_command_orb),
1932 DMA_TO_DEVICE);
1933 dma_sync_single_for_cpu(hi->host->device.parent, cmd->sge_dma,
1934 sizeof(cmd->scatter_gather_element),
1935 DMA_BIDIRECTIONAL);
1936 sbp2util_mark_command_completed(lu, cmd);
1937 if (cmd->Current_SCpnt) {
1938 cmd->Current_SCpnt->result = status << 16;
1939 cmd->Current_done(cmd->Current_SCpnt);
1942 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1944 return;
1948 * Complete a regular SCSI command. Can be called in atomic context.
1950 static void sbp2scsi_complete_command(struct sbp2_lu *lu, u32 scsi_status,
1951 struct scsi_cmnd *SCpnt,
1952 void (*done)(struct scsi_cmnd *))
1954 if (!SCpnt) {
1955 SBP2_ERR("SCpnt is NULL");
1956 return;
1959 switch (scsi_status) {
1960 case SBP2_SCSI_STATUS_GOOD:
1961 SCpnt->result = DID_OK << 16;
1962 break;
1964 case SBP2_SCSI_STATUS_BUSY:
1965 SBP2_ERR("SBP2_SCSI_STATUS_BUSY");
1966 SCpnt->result = DID_BUS_BUSY << 16;
1967 break;
1969 case SBP2_SCSI_STATUS_CHECK_CONDITION:
1970 SCpnt->result = CHECK_CONDITION << 1 | DID_OK << 16;
1971 break;
1973 case SBP2_SCSI_STATUS_SELECTION_TIMEOUT:
1974 SBP2_ERR("SBP2_SCSI_STATUS_SELECTION_TIMEOUT");
1975 SCpnt->result = DID_NO_CONNECT << 16;
1976 scsi_print_command(SCpnt);
1977 break;
1979 case SBP2_SCSI_STATUS_CONDITION_MET:
1980 case SBP2_SCSI_STATUS_RESERVATION_CONFLICT:
1981 case SBP2_SCSI_STATUS_COMMAND_TERMINATED:
1982 SBP2_ERR("Bad SCSI status = %x", scsi_status);
1983 SCpnt->result = DID_ERROR << 16;
1984 scsi_print_command(SCpnt);
1985 break;
1987 default:
1988 SBP2_ERR("Unsupported SCSI status = %x", scsi_status);
1989 SCpnt->result = DID_ERROR << 16;
1992 /* If a bus reset is in progress and there was an error, complete
1993 * the command as busy so that it will get retried. */
1994 if (!hpsb_node_entry_valid(lu->ne)
1995 && (scsi_status != SBP2_SCSI_STATUS_GOOD)) {
1996 SBP2_ERR("Completing command with busy (bus reset)");
1997 SCpnt->result = DID_BUS_BUSY << 16;
2000 /* Tell the SCSI stack that we're done with this command. */
2001 done(SCpnt);
2004 static int sbp2scsi_slave_alloc(struct scsi_device *sdev)
2006 struct sbp2_lu *lu = (struct sbp2_lu *)sdev->host->hostdata[0];
2008 lu->sdev = sdev;
2009 sdev->allow_restart = 1;
2011 if (lu->workarounds & SBP2_WORKAROUND_INQUIRY_36)
2012 sdev->inquiry_len = 36;
2013 return 0;
2016 static int sbp2scsi_slave_configure(struct scsi_device *sdev)
2018 struct sbp2_lu *lu = (struct sbp2_lu *)sdev->host->hostdata[0];
2020 blk_queue_dma_alignment(sdev->request_queue, (512 - 1));
2021 sdev->use_10_for_rw = 1;
2023 if (sdev->type == TYPE_ROM)
2024 sdev->use_10_for_ms = 1;
2025 if (sdev->type == TYPE_DISK &&
2026 lu->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
2027 sdev->skip_ms_page_8 = 1;
2028 if (lu->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
2029 sdev->fix_capacity = 1;
2030 return 0;
2033 static void sbp2scsi_slave_destroy(struct scsi_device *sdev)
2035 ((struct sbp2_lu *)sdev->host->hostdata[0])->sdev = NULL;
2036 return;
2040 * Called by scsi stack when something has really gone wrong.
2041 * Usually called when a command has timed-out for some reason.
2043 static int sbp2scsi_abort(struct scsi_cmnd *SCpnt)
2045 struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
2046 struct sbp2_fwhost_info *hi = lu->hi;
2047 struct sbp2_command_info *cmd;
2048 unsigned long flags;
2050 SBP2_INFO("aborting sbp2 command");
2051 scsi_print_command(SCpnt);
2053 if (sbp2util_node_is_available(lu)) {
2054 sbp2_agent_reset(lu, 1);
2056 /* Return a matching command structure to the free pool. */
2057 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
2058 cmd = sbp2util_find_command_for_SCpnt(lu, SCpnt);
2059 if (cmd) {
2060 dma_sync_single_for_cpu(hi->host->device.parent,
2061 cmd->command_orb_dma,
2062 sizeof(struct sbp2_command_orb),
2063 DMA_TO_DEVICE);
2064 dma_sync_single_for_cpu(hi->host->device.parent,
2065 cmd->sge_dma,
2066 sizeof(cmd->scatter_gather_element),
2067 DMA_BIDIRECTIONAL);
2068 sbp2util_mark_command_completed(lu, cmd);
2069 if (cmd->Current_SCpnt) {
2070 cmd->Current_SCpnt->result = DID_ABORT << 16;
2071 cmd->Current_done(cmd->Current_SCpnt);
2074 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
2076 sbp2scsi_complete_all_commands(lu, DID_BUS_BUSY);
2079 return SUCCESS;
2083 * Called by scsi stack when something has really gone wrong.
2085 static int sbp2scsi_reset(struct scsi_cmnd *SCpnt)
2087 struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
2089 SBP2_INFO("reset requested");
2091 if (sbp2util_node_is_available(lu)) {
2092 SBP2_INFO("generating sbp2 fetch agent reset");
2093 sbp2_agent_reset(lu, 1);
2096 return SUCCESS;
2099 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
2100 struct device_attribute *attr,
2101 char *buf)
2103 struct scsi_device *sdev;
2104 struct sbp2_lu *lu;
2106 if (!(sdev = to_scsi_device(dev)))
2107 return 0;
2109 if (!(lu = (struct sbp2_lu *)sdev->host->hostdata[0]))
2110 return 0;
2112 return sprintf(buf, "%016Lx:%d:%d\n", (unsigned long long)lu->ne->guid,
2113 lu->ud->id, ORB_SET_LUN(lu->lun));
2116 MODULE_AUTHOR("Ben Collins <bcollins@debian.org>");
2117 MODULE_DESCRIPTION("IEEE-1394 SBP-2 protocol driver");
2118 MODULE_SUPPORTED_DEVICE(SBP2_DEVICE_NAME);
2119 MODULE_LICENSE("GPL");
2121 static int sbp2_module_init(void)
2123 int ret;
2125 if (sbp2_serialize_io) {
2126 sbp2_shost_template.can_queue = 1;
2127 sbp2_shost_template.cmd_per_lun = 1;
2130 if (sbp2_default_workarounds & SBP2_WORKAROUND_128K_MAX_TRANS &&
2131 (sbp2_max_sectors * 512) > (128 * 1024))
2132 sbp2_max_sectors = 128 * 1024 / 512;
2133 sbp2_shost_template.max_sectors = sbp2_max_sectors;
2135 hpsb_register_highlevel(&sbp2_highlevel);
2136 ret = hpsb_register_protocol(&sbp2_driver);
2137 if (ret) {
2138 SBP2_ERR("Failed to register protocol");
2139 hpsb_unregister_highlevel(&sbp2_highlevel);
2140 return ret;
2142 return 0;
2145 static void __exit sbp2_module_exit(void)
2147 hpsb_unregister_protocol(&sbp2_driver);
2148 hpsb_unregister_highlevel(&sbp2_highlevel);
2151 module_init(sbp2_module_init);
2152 module_exit(sbp2_module_exit);