2 * Dynamic DMA mapping support.
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17 * 08/12/11 beckyb Add highmem support
20 #include <linux/cache.h>
21 #include <linux/dma-mapping.h>
23 #include <linux/export.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/pfn.h>
28 #include <linux/types.h>
29 #include <linux/ctype.h>
30 #include <linux/highmem.h>
31 #include <linux/gfp.h>
35 #include <asm/scatterlist.h>
37 #include <linux/init.h>
38 #include <linux/bootmem.h>
39 #include <linux/iommu-helper.h>
41 #define OFFSET(val,align) ((unsigned long) \
42 ( (val) & ( (align) - 1)))
44 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
47 * Minimum IO TLB size to bother booting with. Systems with mainly
48 * 64bit capable cards will only lightly use the swiotlb. If we can't
49 * allocate a contiguous 1MB, we're probably in trouble anyway.
51 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
56 * Used to do a quick range check in swiotlb_tbl_unmap_single and
57 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
60 static phys_addr_t io_tlb_start
, io_tlb_end
;
63 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
64 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
66 static unsigned long io_tlb_nslabs
;
69 * When the IOMMU overflows we return a fallback buffer. This sets the size.
71 static unsigned long io_tlb_overflow
= 32*1024;
73 static phys_addr_t io_tlb_overflow_buffer
;
76 * This is a free list describing the number of free entries available from
79 static unsigned int *io_tlb_list
;
80 static unsigned int io_tlb_index
;
83 * We need to save away the original address corresponding to a mapped entry
84 * for the sync operations.
86 static phys_addr_t
*io_tlb_orig_addr
;
89 * Protect the above data structures in the map and unmap calls
91 static DEFINE_SPINLOCK(io_tlb_lock
);
93 static int late_alloc
;
96 setup_io_tlb_npages(char *str
)
99 io_tlb_nslabs
= simple_strtoul(str
, &str
, 0);
100 /* avoid tail segment of size < IO_TLB_SEGSIZE */
101 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
105 if (!strcmp(str
, "force"))
110 early_param("swiotlb", setup_io_tlb_npages
);
111 /* make io_tlb_overflow tunable too? */
113 unsigned long swiotlb_nr_tbl(void)
115 return io_tlb_nslabs
;
117 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl
);
119 /* default to 64MB */
120 #define IO_TLB_DEFAULT_SIZE (64UL<<20)
121 unsigned long swiotlb_size_or_default(void)
125 size
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
127 return size
? size
: (IO_TLB_DEFAULT_SIZE
);
130 /* Note that this doesn't work with highmem page */
131 static dma_addr_t
swiotlb_virt_to_bus(struct device
*hwdev
,
132 volatile void *address
)
134 return phys_to_dma(hwdev
, virt_to_phys(address
));
137 static bool no_iotlb_memory
;
139 void swiotlb_print_info(void)
141 unsigned long bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
142 unsigned char *vstart
, *vend
;
144 if (no_iotlb_memory
) {
145 pr_warn("software IO TLB: No low mem\n");
149 vstart
= phys_to_virt(io_tlb_start
);
150 vend
= phys_to_virt(io_tlb_end
);
152 printk(KERN_INFO
"software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
153 (unsigned long long)io_tlb_start
,
154 (unsigned long long)io_tlb_end
,
155 bytes
>> 20, vstart
, vend
- 1);
158 int __init
swiotlb_init_with_tbl(char *tlb
, unsigned long nslabs
, int verbose
)
160 void *v_overflow_buffer
;
161 unsigned long i
, bytes
;
163 bytes
= nslabs
<< IO_TLB_SHIFT
;
165 io_tlb_nslabs
= nslabs
;
166 io_tlb_start
= __pa(tlb
);
167 io_tlb_end
= io_tlb_start
+ bytes
;
170 * Get the overflow emergency buffer
172 v_overflow_buffer
= alloc_bootmem_low_pages_nopanic(
173 PAGE_ALIGN(io_tlb_overflow
));
174 if (!v_overflow_buffer
)
177 io_tlb_overflow_buffer
= __pa(v_overflow_buffer
);
180 * Allocate and initialize the free list array. This array is used
181 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
182 * between io_tlb_start and io_tlb_end.
184 io_tlb_list
= alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs
* sizeof(int)));
185 for (i
= 0; i
< io_tlb_nslabs
; i
++)
186 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
188 io_tlb_orig_addr
= alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs
* sizeof(phys_addr_t
)));
191 swiotlb_print_info();
197 * Statically reserve bounce buffer space and initialize bounce buffer data
198 * structures for the software IO TLB used to implement the DMA API.
201 swiotlb_init(int verbose
)
203 size_t default_size
= IO_TLB_DEFAULT_SIZE
;
204 unsigned char *vstart
;
207 if (!io_tlb_nslabs
) {
208 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
209 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
212 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
214 /* Get IO TLB memory from the low pages */
215 vstart
= alloc_bootmem_low_pages_nopanic(PAGE_ALIGN(bytes
));
216 if (vstart
&& !swiotlb_init_with_tbl(vstart
, io_tlb_nslabs
, verbose
))
220 free_bootmem(io_tlb_start
,
221 PAGE_ALIGN(io_tlb_nslabs
<< IO_TLB_SHIFT
));
222 pr_warn("Cannot allocate SWIOTLB buffer");
223 no_iotlb_memory
= true;
227 * Systems with larger DMA zones (those that don't support ISA) can
228 * initialize the swiotlb later using the slab allocator if needed.
229 * This should be just like above, but with some error catching.
232 swiotlb_late_init_with_default_size(size_t default_size
)
234 unsigned long bytes
, req_nslabs
= io_tlb_nslabs
;
235 unsigned char *vstart
= NULL
;
239 if (!io_tlb_nslabs
) {
240 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
241 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
245 * Get IO TLB memory from the low pages
247 order
= get_order(io_tlb_nslabs
<< IO_TLB_SHIFT
);
248 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
249 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
251 while ((SLABS_PER_PAGE
<< order
) > IO_TLB_MIN_SLABS
) {
252 vstart
= (void *)__get_free_pages(GFP_DMA
| __GFP_NOWARN
,
260 io_tlb_nslabs
= req_nslabs
;
263 if (order
!= get_order(bytes
)) {
264 printk(KERN_WARNING
"Warning: only able to allocate %ld MB "
265 "for software IO TLB\n", (PAGE_SIZE
<< order
) >> 20);
266 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
268 rc
= swiotlb_late_init_with_tbl(vstart
, io_tlb_nslabs
);
270 free_pages((unsigned long)vstart
, order
);
275 swiotlb_late_init_with_tbl(char *tlb
, unsigned long nslabs
)
277 unsigned long i
, bytes
;
278 unsigned char *v_overflow_buffer
;
280 bytes
= nslabs
<< IO_TLB_SHIFT
;
282 io_tlb_nslabs
= nslabs
;
283 io_tlb_start
= virt_to_phys(tlb
);
284 io_tlb_end
= io_tlb_start
+ bytes
;
286 memset(tlb
, 0, bytes
);
289 * Get the overflow emergency buffer
291 v_overflow_buffer
= (void *)__get_free_pages(GFP_DMA
,
292 get_order(io_tlb_overflow
));
293 if (!v_overflow_buffer
)
296 io_tlb_overflow_buffer
= virt_to_phys(v_overflow_buffer
);
299 * Allocate and initialize the free list array. This array is used
300 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
301 * between io_tlb_start and io_tlb_end.
303 io_tlb_list
= (unsigned int *)__get_free_pages(GFP_KERNEL
,
304 get_order(io_tlb_nslabs
* sizeof(int)));
308 for (i
= 0; i
< io_tlb_nslabs
; i
++)
309 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
312 io_tlb_orig_addr
= (phys_addr_t
*)
313 __get_free_pages(GFP_KERNEL
,
314 get_order(io_tlb_nslabs
*
315 sizeof(phys_addr_t
)));
316 if (!io_tlb_orig_addr
)
319 memset(io_tlb_orig_addr
, 0, io_tlb_nslabs
* sizeof(phys_addr_t
));
321 swiotlb_print_info();
328 free_pages((unsigned long)io_tlb_list
, get_order(io_tlb_nslabs
*
332 free_pages((unsigned long)v_overflow_buffer
,
333 get_order(io_tlb_overflow
));
334 io_tlb_overflow_buffer
= 0;
342 void __init
swiotlb_free(void)
344 if (!io_tlb_orig_addr
)
348 free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer
),
349 get_order(io_tlb_overflow
));
350 free_pages((unsigned long)io_tlb_orig_addr
,
351 get_order(io_tlb_nslabs
* sizeof(phys_addr_t
)));
352 free_pages((unsigned long)io_tlb_list
, get_order(io_tlb_nslabs
*
354 free_pages((unsigned long)phys_to_virt(io_tlb_start
),
355 get_order(io_tlb_nslabs
<< IO_TLB_SHIFT
));
357 free_bootmem_late(io_tlb_overflow_buffer
,
358 PAGE_ALIGN(io_tlb_overflow
));
359 free_bootmem_late(__pa(io_tlb_orig_addr
),
360 PAGE_ALIGN(io_tlb_nslabs
* sizeof(phys_addr_t
)));
361 free_bootmem_late(__pa(io_tlb_list
),
362 PAGE_ALIGN(io_tlb_nslabs
* sizeof(int)));
363 free_bootmem_late(io_tlb_start
,
364 PAGE_ALIGN(io_tlb_nslabs
<< IO_TLB_SHIFT
));
369 static int is_swiotlb_buffer(phys_addr_t paddr
)
371 return paddr
>= io_tlb_start
&& paddr
< io_tlb_end
;
375 * Bounce: copy the swiotlb buffer back to the original dma location
377 static void swiotlb_bounce(phys_addr_t orig_addr
, phys_addr_t tlb_addr
,
378 size_t size
, enum dma_data_direction dir
)
380 unsigned long pfn
= PFN_DOWN(orig_addr
);
381 unsigned char *vaddr
= phys_to_virt(tlb_addr
);
383 if (PageHighMem(pfn_to_page(pfn
))) {
384 /* The buffer does not have a mapping. Map it in and copy */
385 unsigned int offset
= orig_addr
& ~PAGE_MASK
;
391 sz
= min_t(size_t, PAGE_SIZE
- offset
, size
);
393 local_irq_save(flags
);
394 buffer
= kmap_atomic(pfn_to_page(pfn
));
395 if (dir
== DMA_TO_DEVICE
)
396 memcpy(vaddr
, buffer
+ offset
, sz
);
398 memcpy(buffer
+ offset
, vaddr
, sz
);
399 kunmap_atomic(buffer
);
400 local_irq_restore(flags
);
407 } else if (dir
== DMA_TO_DEVICE
) {
408 memcpy(vaddr
, phys_to_virt(orig_addr
), size
);
410 memcpy(phys_to_virt(orig_addr
), vaddr
, size
);
414 phys_addr_t
swiotlb_tbl_map_single(struct device
*hwdev
,
415 dma_addr_t tbl_dma_addr
,
416 phys_addr_t orig_addr
, size_t size
,
417 enum dma_data_direction dir
)
420 phys_addr_t tlb_addr
;
421 unsigned int nslots
, stride
, index
, wrap
;
424 unsigned long offset_slots
;
425 unsigned long max_slots
;
428 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
430 mask
= dma_get_seg_boundary(hwdev
);
432 tbl_dma_addr
&= mask
;
434 offset_slots
= ALIGN(tbl_dma_addr
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
437 * Carefully handle integer overflow which can occur when mask == ~0UL.
440 ? ALIGN(mask
+ 1, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
441 : 1UL << (BITS_PER_LONG
- IO_TLB_SHIFT
);
444 * For mappings greater than a page, we limit the stride (and
445 * hence alignment) to a page size.
447 nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
448 if (size
> PAGE_SIZE
)
449 stride
= (1 << (PAGE_SHIFT
- IO_TLB_SHIFT
));
456 * Find suitable number of IO TLB entries size that will fit this
457 * request and allocate a buffer from that IO TLB pool.
459 spin_lock_irqsave(&io_tlb_lock
, flags
);
460 index
= ALIGN(io_tlb_index
, stride
);
461 if (index
>= io_tlb_nslabs
)
466 while (iommu_is_span_boundary(index
, nslots
, offset_slots
,
469 if (index
>= io_tlb_nslabs
)
476 * If we find a slot that indicates we have 'nslots' number of
477 * contiguous buffers, we allocate the buffers from that slot
478 * and mark the entries as '0' indicating unavailable.
480 if (io_tlb_list
[index
] >= nslots
) {
483 for (i
= index
; i
< (int) (index
+ nslots
); i
++)
485 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
- 1) && io_tlb_list
[i
]; i
--)
486 io_tlb_list
[i
] = ++count
;
487 tlb_addr
= io_tlb_start
+ (index
<< IO_TLB_SHIFT
);
490 * Update the indices to avoid searching in the next
493 io_tlb_index
= ((index
+ nslots
) < io_tlb_nslabs
494 ? (index
+ nslots
) : 0);
499 if (index
>= io_tlb_nslabs
)
501 } while (index
!= wrap
);
504 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
505 return SWIOTLB_MAP_ERROR
;
507 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
510 * Save away the mapping from the original address to the DMA address.
511 * This is needed when we sync the memory. Then we sync the buffer if
514 for (i
= 0; i
< nslots
; i
++)
515 io_tlb_orig_addr
[index
+i
] = orig_addr
+ (i
<< IO_TLB_SHIFT
);
516 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
517 swiotlb_bounce(orig_addr
, tlb_addr
, size
, DMA_TO_DEVICE
);
521 EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single
);
524 * Allocates bounce buffer and returns its kernel virtual address.
527 phys_addr_t
map_single(struct device
*hwdev
, phys_addr_t phys
, size_t size
,
528 enum dma_data_direction dir
)
530 dma_addr_t start_dma_addr
= phys_to_dma(hwdev
, io_tlb_start
);
532 return swiotlb_tbl_map_single(hwdev
, start_dma_addr
, phys
, size
, dir
);
536 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
538 void swiotlb_tbl_unmap_single(struct device
*hwdev
, phys_addr_t tlb_addr
,
539 size_t size
, enum dma_data_direction dir
)
542 int i
, count
, nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
543 int index
= (tlb_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
544 phys_addr_t orig_addr
= io_tlb_orig_addr
[index
];
547 * First, sync the memory before unmapping the entry
549 if (orig_addr
&& ((dir
== DMA_FROM_DEVICE
) || (dir
== DMA_BIDIRECTIONAL
)))
550 swiotlb_bounce(orig_addr
, tlb_addr
, size
, DMA_FROM_DEVICE
);
553 * Return the buffer to the free list by setting the corresponding
554 * entries to indicate the number of contiguous entries available.
555 * While returning the entries to the free list, we merge the entries
556 * with slots below and above the pool being returned.
558 spin_lock_irqsave(&io_tlb_lock
, flags
);
560 count
= ((index
+ nslots
) < ALIGN(index
+ 1, IO_TLB_SEGSIZE
) ?
561 io_tlb_list
[index
+ nslots
] : 0);
563 * Step 1: return the slots to the free list, merging the
564 * slots with superceeding slots
566 for (i
= index
+ nslots
- 1; i
>= index
; i
--)
567 io_tlb_list
[i
] = ++count
;
569 * Step 2: merge the returned slots with the preceding slots,
570 * if available (non zero)
572 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
-1) && io_tlb_list
[i
]; i
--)
573 io_tlb_list
[i
] = ++count
;
575 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
577 EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single
);
579 void swiotlb_tbl_sync_single(struct device
*hwdev
, phys_addr_t tlb_addr
,
580 size_t size
, enum dma_data_direction dir
,
581 enum dma_sync_target target
)
583 int index
= (tlb_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
584 phys_addr_t orig_addr
= io_tlb_orig_addr
[index
];
586 orig_addr
+= (unsigned long)tlb_addr
& ((1 << IO_TLB_SHIFT
) - 1);
590 if (likely(dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
591 swiotlb_bounce(orig_addr
, tlb_addr
,
592 size
, DMA_FROM_DEVICE
);
594 BUG_ON(dir
!= DMA_TO_DEVICE
);
596 case SYNC_FOR_DEVICE
:
597 if (likely(dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
598 swiotlb_bounce(orig_addr
, tlb_addr
,
599 size
, DMA_TO_DEVICE
);
601 BUG_ON(dir
!= DMA_FROM_DEVICE
);
607 EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single
);
610 swiotlb_alloc_coherent(struct device
*hwdev
, size_t size
,
611 dma_addr_t
*dma_handle
, gfp_t flags
)
615 int order
= get_order(size
);
616 u64 dma_mask
= DMA_BIT_MASK(32);
618 if (hwdev
&& hwdev
->coherent_dma_mask
)
619 dma_mask
= hwdev
->coherent_dma_mask
;
621 ret
= (void *)__get_free_pages(flags
, order
);
623 dev_addr
= swiotlb_virt_to_bus(hwdev
, ret
);
624 if (dev_addr
+ size
- 1 > dma_mask
) {
626 * The allocated memory isn't reachable by the device.
628 free_pages((unsigned long) ret
, order
);
634 * We are either out of memory or the device can't DMA to
635 * GFP_DMA memory; fall back on map_single(), which
636 * will grab memory from the lowest available address range.
638 phys_addr_t paddr
= map_single(hwdev
, 0, size
, DMA_FROM_DEVICE
);
639 if (paddr
== SWIOTLB_MAP_ERROR
)
642 ret
= phys_to_virt(paddr
);
643 dev_addr
= phys_to_dma(hwdev
, paddr
);
645 /* Confirm address can be DMA'd by device */
646 if (dev_addr
+ size
- 1 > dma_mask
) {
647 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
648 (unsigned long long)dma_mask
,
649 (unsigned long long)dev_addr
);
651 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
652 swiotlb_tbl_unmap_single(hwdev
, paddr
,
653 size
, DMA_TO_DEVICE
);
658 *dma_handle
= dev_addr
;
659 memset(ret
, 0, size
);
663 EXPORT_SYMBOL(swiotlb_alloc_coherent
);
666 swiotlb_free_coherent(struct device
*hwdev
, size_t size
, void *vaddr
,
669 phys_addr_t paddr
= dma_to_phys(hwdev
, dev_addr
);
671 WARN_ON(irqs_disabled());
672 if (!is_swiotlb_buffer(paddr
))
673 free_pages((unsigned long)vaddr
, get_order(size
));
675 /* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
676 swiotlb_tbl_unmap_single(hwdev
, paddr
, size
, DMA_TO_DEVICE
);
678 EXPORT_SYMBOL(swiotlb_free_coherent
);
681 swiotlb_full(struct device
*dev
, size_t size
, enum dma_data_direction dir
,
685 * Ran out of IOMMU space for this operation. This is very bad.
686 * Unfortunately the drivers cannot handle this operation properly.
687 * unless they check for dma_mapping_error (most don't)
688 * When the mapping is small enough return a static buffer to limit
689 * the damage, or panic when the transfer is too big.
691 printk(KERN_ERR
"DMA: Out of SW-IOMMU space for %zu bytes at "
692 "device %s\n", size
, dev
? dev_name(dev
) : "?");
694 if (size
<= io_tlb_overflow
|| !do_panic
)
697 if (dir
== DMA_BIDIRECTIONAL
)
698 panic("DMA: Random memory could be DMA accessed\n");
699 if (dir
== DMA_FROM_DEVICE
)
700 panic("DMA: Random memory could be DMA written\n");
701 if (dir
== DMA_TO_DEVICE
)
702 panic("DMA: Random memory could be DMA read\n");
706 * Map a single buffer of the indicated size for DMA in streaming mode. The
707 * physical address to use is returned.
709 * Once the device is given the dma address, the device owns this memory until
710 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
712 dma_addr_t
swiotlb_map_page(struct device
*dev
, struct page
*page
,
713 unsigned long offset
, size_t size
,
714 enum dma_data_direction dir
,
715 struct dma_attrs
*attrs
)
717 phys_addr_t map
, phys
= page_to_phys(page
) + offset
;
718 dma_addr_t dev_addr
= phys_to_dma(dev
, phys
);
720 BUG_ON(dir
== DMA_NONE
);
722 * If the address happens to be in the device's DMA window,
723 * we can safely return the device addr and not worry about bounce
726 if (dma_capable(dev
, dev_addr
, size
) && !swiotlb_force
)
729 /* Oh well, have to allocate and map a bounce buffer. */
730 map
= map_single(dev
, phys
, size
, dir
);
731 if (map
== SWIOTLB_MAP_ERROR
) {
732 swiotlb_full(dev
, size
, dir
, 1);
733 return phys_to_dma(dev
, io_tlb_overflow_buffer
);
736 dev_addr
= phys_to_dma(dev
, map
);
738 /* Ensure that the address returned is DMA'ble */
739 if (!dma_capable(dev
, dev_addr
, size
)) {
740 swiotlb_tbl_unmap_single(dev
, map
, size
, dir
);
741 return phys_to_dma(dev
, io_tlb_overflow_buffer
);
746 EXPORT_SYMBOL_GPL(swiotlb_map_page
);
749 * Unmap a single streaming mode DMA translation. The dma_addr and size must
750 * match what was provided for in a previous swiotlb_map_page call. All
751 * other usages are undefined.
753 * After this call, reads by the cpu to the buffer are guaranteed to see
754 * whatever the device wrote there.
756 static void unmap_single(struct device
*hwdev
, dma_addr_t dev_addr
,
757 size_t size
, enum dma_data_direction dir
)
759 phys_addr_t paddr
= dma_to_phys(hwdev
, dev_addr
);
761 BUG_ON(dir
== DMA_NONE
);
763 if (is_swiotlb_buffer(paddr
)) {
764 swiotlb_tbl_unmap_single(hwdev
, paddr
, size
, dir
);
768 if (dir
!= DMA_FROM_DEVICE
)
772 * phys_to_virt doesn't work with hihgmem page but we could
773 * call dma_mark_clean() with hihgmem page here. However, we
774 * are fine since dma_mark_clean() is null on POWERPC. We can
775 * make dma_mark_clean() take a physical address if necessary.
777 dma_mark_clean(phys_to_virt(paddr
), size
);
780 void swiotlb_unmap_page(struct device
*hwdev
, dma_addr_t dev_addr
,
781 size_t size
, enum dma_data_direction dir
,
782 struct dma_attrs
*attrs
)
784 unmap_single(hwdev
, dev_addr
, size
, dir
);
786 EXPORT_SYMBOL_GPL(swiotlb_unmap_page
);
789 * Make physical memory consistent for a single streaming mode DMA translation
792 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
793 * using the cpu, yet do not wish to teardown the dma mapping, you must
794 * call this function before doing so. At the next point you give the dma
795 * address back to the card, you must first perform a
796 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
799 swiotlb_sync_single(struct device
*hwdev
, dma_addr_t dev_addr
,
800 size_t size
, enum dma_data_direction dir
,
801 enum dma_sync_target target
)
803 phys_addr_t paddr
= dma_to_phys(hwdev
, dev_addr
);
805 BUG_ON(dir
== DMA_NONE
);
807 if (is_swiotlb_buffer(paddr
)) {
808 swiotlb_tbl_sync_single(hwdev
, paddr
, size
, dir
, target
);
812 if (dir
!= DMA_FROM_DEVICE
)
815 dma_mark_clean(phys_to_virt(paddr
), size
);
819 swiotlb_sync_single_for_cpu(struct device
*hwdev
, dma_addr_t dev_addr
,
820 size_t size
, enum dma_data_direction dir
)
822 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_CPU
);
824 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu
);
827 swiotlb_sync_single_for_device(struct device
*hwdev
, dma_addr_t dev_addr
,
828 size_t size
, enum dma_data_direction dir
)
830 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_DEVICE
);
832 EXPORT_SYMBOL(swiotlb_sync_single_for_device
);
835 * Map a set of buffers described by scatterlist in streaming mode for DMA.
836 * This is the scatter-gather version of the above swiotlb_map_page
837 * interface. Here the scatter gather list elements are each tagged with the
838 * appropriate dma address and length. They are obtained via
839 * sg_dma_{address,length}(SG).
841 * NOTE: An implementation may be able to use a smaller number of
842 * DMA address/length pairs than there are SG table elements.
843 * (for example via virtual mapping capabilities)
844 * The routine returns the number of addr/length pairs actually
845 * used, at most nents.
847 * Device ownership issues as mentioned above for swiotlb_map_page are the
851 swiotlb_map_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
852 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
854 struct scatterlist
*sg
;
857 BUG_ON(dir
== DMA_NONE
);
859 for_each_sg(sgl
, sg
, nelems
, i
) {
860 phys_addr_t paddr
= sg_phys(sg
);
861 dma_addr_t dev_addr
= phys_to_dma(hwdev
, paddr
);
864 !dma_capable(hwdev
, dev_addr
, sg
->length
)) {
865 phys_addr_t map
= map_single(hwdev
, sg_phys(sg
),
867 if (map
== SWIOTLB_MAP_ERROR
) {
868 /* Don't panic here, we expect map_sg users
869 to do proper error handling. */
870 swiotlb_full(hwdev
, sg
->length
, dir
, 0);
871 swiotlb_unmap_sg_attrs(hwdev
, sgl
, i
, dir
,
876 sg
->dma_address
= phys_to_dma(hwdev
, map
);
878 sg
->dma_address
= dev_addr
;
879 sg_dma_len(sg
) = sg
->length
;
883 EXPORT_SYMBOL(swiotlb_map_sg_attrs
);
886 swiotlb_map_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
887 enum dma_data_direction dir
)
889 return swiotlb_map_sg_attrs(hwdev
, sgl
, nelems
, dir
, NULL
);
891 EXPORT_SYMBOL(swiotlb_map_sg
);
894 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
895 * concerning calls here are the same as for swiotlb_unmap_page() above.
898 swiotlb_unmap_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
,
899 int nelems
, enum dma_data_direction dir
, struct dma_attrs
*attrs
)
901 struct scatterlist
*sg
;
904 BUG_ON(dir
== DMA_NONE
);
906 for_each_sg(sgl
, sg
, nelems
, i
)
907 unmap_single(hwdev
, sg
->dma_address
, sg_dma_len(sg
), dir
);
910 EXPORT_SYMBOL(swiotlb_unmap_sg_attrs
);
913 swiotlb_unmap_sg(struct device
*hwdev
, struct scatterlist
*sgl
, int nelems
,
914 enum dma_data_direction dir
)
916 return swiotlb_unmap_sg_attrs(hwdev
, sgl
, nelems
, dir
, NULL
);
918 EXPORT_SYMBOL(swiotlb_unmap_sg
);
921 * Make physical memory consistent for a set of streaming mode DMA translations
924 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
928 swiotlb_sync_sg(struct device
*hwdev
, struct scatterlist
*sgl
,
929 int nelems
, enum dma_data_direction dir
,
930 enum dma_sync_target target
)
932 struct scatterlist
*sg
;
935 for_each_sg(sgl
, sg
, nelems
, i
)
936 swiotlb_sync_single(hwdev
, sg
->dma_address
,
937 sg_dma_len(sg
), dir
, target
);
941 swiotlb_sync_sg_for_cpu(struct device
*hwdev
, struct scatterlist
*sg
,
942 int nelems
, enum dma_data_direction dir
)
944 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_CPU
);
946 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu
);
949 swiotlb_sync_sg_for_device(struct device
*hwdev
, struct scatterlist
*sg
,
950 int nelems
, enum dma_data_direction dir
)
952 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_DEVICE
);
954 EXPORT_SYMBOL(swiotlb_sync_sg_for_device
);
957 swiotlb_dma_mapping_error(struct device
*hwdev
, dma_addr_t dma_addr
)
959 return (dma_addr
== phys_to_dma(hwdev
, io_tlb_overflow_buffer
));
961 EXPORT_SYMBOL(swiotlb_dma_mapping_error
);
964 * Return whether the given device DMA address mask can be supported
965 * properly. For example, if your device can only drive the low 24-bits
966 * during bus mastering, then you would pass 0x00ffffff as the mask to
970 swiotlb_dma_supported(struct device
*hwdev
, u64 mask
)
972 return phys_to_dma(hwdev
, io_tlb_end
- 1) <= mask
;
974 EXPORT_SYMBOL(swiotlb_dma_supported
);