3 (C) 1999 Andrea Arcangeli <andrea@suse.de>
4 (C) 2002 David Woodhouse <dwmw2@infradead.org>
5 (C) 2012 Michel Lespinasse <walken@google.com>
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/rbtree_augmented.h>
25 #include <linux/export.h>
28 * red-black trees properties: http://en.wikipedia.org/wiki/Rbtree
30 * 1) A node is either red or black
31 * 2) The root is black
32 * 3) All leaves (NULL) are black
33 * 4) Both children of every red node are black
34 * 5) Every simple path from root to leaves contains the same number
37 * 4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
38 * consecutive red nodes in a path and every red node is therefore followed by
39 * a black. So if B is the number of black nodes on every simple path (as per
40 * 5), then the longest possible path due to 4 is 2B.
42 * We shall indicate color with case, where black nodes are uppercase and red
43 * nodes will be lowercase. Unknown color nodes shall be drawn as red within
44 * parentheses and have some accompanying text comment.
47 static inline void rb_set_black(struct rb_node
*rb
)
49 rb
->__rb_parent_color
|= RB_BLACK
;
52 static inline struct rb_node
*rb_red_parent(struct rb_node
*red
)
54 return (struct rb_node
*)red
->__rb_parent_color
;
58 * Helper function for rotations:
59 * - old's parent and color get assigned to new
60 * - old gets assigned new as a parent and 'color' as a color.
63 __rb_rotate_set_parents(struct rb_node
*old
, struct rb_node
*new,
64 struct rb_root
*root
, int color
)
66 struct rb_node
*parent
= rb_parent(old
);
67 new->__rb_parent_color
= old
->__rb_parent_color
;
68 rb_set_parent_color(old
, new, color
);
69 __rb_change_child(old
, new, parent
, root
);
72 static __always_inline
void
73 __rb_insert(struct rb_node
*node
, struct rb_root
*root
,
74 void (*augment_rotate
)(struct rb_node
*old
, struct rb_node
*new))
76 struct rb_node
*parent
= rb_red_parent(node
), *gparent
, *tmp
;
80 * Loop invariant: node is red
82 * If there is a black parent, we are done.
83 * Otherwise, take some corrective action as we don't
84 * want a red root or two consecutive red nodes.
87 rb_set_parent_color(node
, NULL
, RB_BLACK
);
89 } else if (rb_is_black(parent
))
92 gparent
= rb_red_parent(parent
);
94 tmp
= gparent
->rb_right
;
95 if (parent
!= tmp
) { /* parent == gparent->rb_left */
96 if (tmp
&& rb_is_red(tmp
)) {
98 * Case 1 - color flips
106 * However, since g's parent might be red, and
107 * 4) does not allow this, we need to recurse
110 rb_set_parent_color(tmp
, gparent
, RB_BLACK
);
111 rb_set_parent_color(parent
, gparent
, RB_BLACK
);
113 parent
= rb_parent(node
);
114 rb_set_parent_color(node
, parent
, RB_RED
);
118 tmp
= parent
->rb_right
;
121 * Case 2 - left rotate at parent
129 * This still leaves us in violation of 4), the
130 * continuation into Case 3 will fix that.
132 parent
->rb_right
= tmp
= node
->rb_left
;
133 node
->rb_left
= parent
;
135 rb_set_parent_color(tmp
, parent
,
137 rb_set_parent_color(parent
, node
, RB_RED
);
138 augment_rotate(parent
, node
);
140 tmp
= node
->rb_right
;
144 * Case 3 - right rotate at gparent
152 gparent
->rb_left
= tmp
; /* == parent->rb_right */
153 parent
->rb_right
= gparent
;
155 rb_set_parent_color(tmp
, gparent
, RB_BLACK
);
156 __rb_rotate_set_parents(gparent
, parent
, root
, RB_RED
);
157 augment_rotate(gparent
, parent
);
160 tmp
= gparent
->rb_left
;
161 if (tmp
&& rb_is_red(tmp
)) {
162 /* Case 1 - color flips */
163 rb_set_parent_color(tmp
, gparent
, RB_BLACK
);
164 rb_set_parent_color(parent
, gparent
, RB_BLACK
);
166 parent
= rb_parent(node
);
167 rb_set_parent_color(node
, parent
, RB_RED
);
171 tmp
= parent
->rb_left
;
173 /* Case 2 - right rotate at parent */
174 parent
->rb_left
= tmp
= node
->rb_right
;
175 node
->rb_right
= parent
;
177 rb_set_parent_color(tmp
, parent
,
179 rb_set_parent_color(parent
, node
, RB_RED
);
180 augment_rotate(parent
, node
);
185 /* Case 3 - left rotate at gparent */
186 gparent
->rb_right
= tmp
; /* == parent->rb_left */
187 parent
->rb_left
= gparent
;
189 rb_set_parent_color(tmp
, gparent
, RB_BLACK
);
190 __rb_rotate_set_parents(gparent
, parent
, root
, RB_RED
);
191 augment_rotate(gparent
, parent
);
198 * Inline version for rb_erase() use - we want to be able to inline
199 * and eliminate the dummy_rotate callback there
201 static __always_inline
void
202 ____rb_erase_color(struct rb_node
*parent
, struct rb_root
*root
,
203 void (*augment_rotate
)(struct rb_node
*old
, struct rb_node
*new))
205 struct rb_node
*node
= NULL
, *sibling
, *tmp1
, *tmp2
;
210 * - node is black (or NULL on first iteration)
211 * - node is not the root (parent is not NULL)
212 * - All leaf paths going through parent and node have a
213 * black node count that is 1 lower than other leaf paths.
215 sibling
= parent
->rb_right
;
216 if (node
!= sibling
) { /* node == parent->rb_left */
217 if (rb_is_red(sibling
)) {
219 * Case 1 - left rotate at parent
227 parent
->rb_right
= tmp1
= sibling
->rb_left
;
228 sibling
->rb_left
= parent
;
229 rb_set_parent_color(tmp1
, parent
, RB_BLACK
);
230 __rb_rotate_set_parents(parent
, sibling
, root
,
232 augment_rotate(parent
, sibling
);
235 tmp1
= sibling
->rb_right
;
236 if (!tmp1
|| rb_is_black(tmp1
)) {
237 tmp2
= sibling
->rb_left
;
238 if (!tmp2
|| rb_is_black(tmp2
)) {
240 * Case 2 - sibling color flip
241 * (p could be either color here)
249 * This leaves us violating 5) which
250 * can be fixed by flipping p to black
251 * if it was red, or by recursing at p.
252 * p is red when coming from Case 1.
254 rb_set_parent_color(sibling
, parent
,
256 if (rb_is_red(parent
))
257 rb_set_black(parent
);
260 parent
= rb_parent(node
);
267 * Case 3 - right rotate at sibling
268 * (p could be either color here)
278 sibling
->rb_left
= tmp1
= tmp2
->rb_right
;
279 tmp2
->rb_right
= sibling
;
280 parent
->rb_right
= tmp2
;
282 rb_set_parent_color(tmp1
, sibling
,
284 augment_rotate(sibling
, tmp2
);
289 * Case 4 - left rotate at parent + color flips
290 * (p and sl could be either color here.
291 * After rotation, p becomes black, s acquires
292 * p's color, and sl keeps its color)
300 parent
->rb_right
= tmp2
= sibling
->rb_left
;
301 sibling
->rb_left
= parent
;
302 rb_set_parent_color(tmp1
, sibling
, RB_BLACK
);
304 rb_set_parent(tmp2
, parent
);
305 __rb_rotate_set_parents(parent
, sibling
, root
,
307 augment_rotate(parent
, sibling
);
310 sibling
= parent
->rb_left
;
311 if (rb_is_red(sibling
)) {
312 /* Case 1 - right rotate at parent */
313 parent
->rb_left
= tmp1
= sibling
->rb_right
;
314 sibling
->rb_right
= parent
;
315 rb_set_parent_color(tmp1
, parent
, RB_BLACK
);
316 __rb_rotate_set_parents(parent
, sibling
, root
,
318 augment_rotate(parent
, sibling
);
321 tmp1
= sibling
->rb_left
;
322 if (!tmp1
|| rb_is_black(tmp1
)) {
323 tmp2
= sibling
->rb_right
;
324 if (!tmp2
|| rb_is_black(tmp2
)) {
325 /* Case 2 - sibling color flip */
326 rb_set_parent_color(sibling
, parent
,
328 if (rb_is_red(parent
))
329 rb_set_black(parent
);
332 parent
= rb_parent(node
);
338 /* Case 3 - right rotate at sibling */
339 sibling
->rb_right
= tmp1
= tmp2
->rb_left
;
340 tmp2
->rb_left
= sibling
;
341 parent
->rb_left
= tmp2
;
343 rb_set_parent_color(tmp1
, sibling
,
345 augment_rotate(sibling
, tmp2
);
349 /* Case 4 - left rotate at parent + color flips */
350 parent
->rb_left
= tmp2
= sibling
->rb_right
;
351 sibling
->rb_right
= parent
;
352 rb_set_parent_color(tmp1
, sibling
, RB_BLACK
);
354 rb_set_parent(tmp2
, parent
);
355 __rb_rotate_set_parents(parent
, sibling
, root
,
357 augment_rotate(parent
, sibling
);
363 /* Non-inline version for rb_erase_augmented() use */
364 void __rb_erase_color(struct rb_node
*parent
, struct rb_root
*root
,
365 void (*augment_rotate
)(struct rb_node
*old
, struct rb_node
*new))
367 ____rb_erase_color(parent
, root
, augment_rotate
);
369 EXPORT_SYMBOL(__rb_erase_color
);
372 * Non-augmented rbtree manipulation functions.
374 * We use dummy augmented callbacks here, and have the compiler optimize them
375 * out of the rb_insert_color() and rb_erase() function definitions.
378 static inline void dummy_propagate(struct rb_node
*node
, struct rb_node
*stop
) {}
379 static inline void dummy_copy(struct rb_node
*old
, struct rb_node
*new) {}
380 static inline void dummy_rotate(struct rb_node
*old
, struct rb_node
*new) {}
382 static const struct rb_augment_callbacks dummy_callbacks
= {
383 dummy_propagate
, dummy_copy
, dummy_rotate
386 void rb_insert_color(struct rb_node
*node
, struct rb_root
*root
)
388 __rb_insert(node
, root
, dummy_rotate
);
390 EXPORT_SYMBOL(rb_insert_color
);
392 void rb_erase(struct rb_node
*node
, struct rb_root
*root
)
394 struct rb_node
*rebalance
;
395 rebalance
= __rb_erase_augmented(node
, root
, &dummy_callbacks
);
397 ____rb_erase_color(rebalance
, root
, dummy_rotate
);
399 EXPORT_SYMBOL(rb_erase
);
402 * Augmented rbtree manipulation functions.
404 * This instantiates the same __always_inline functions as in the non-augmented
405 * case, but this time with user-defined callbacks.
408 void __rb_insert_augmented(struct rb_node
*node
, struct rb_root
*root
,
409 void (*augment_rotate
)(struct rb_node
*old
, struct rb_node
*new))
411 __rb_insert(node
, root
, augment_rotate
);
413 EXPORT_SYMBOL(__rb_insert_augmented
);
416 * This function returns the first node (in sort order) of the tree.
418 struct rb_node
*rb_first(const struct rb_root
*root
)
429 EXPORT_SYMBOL(rb_first
);
431 struct rb_node
*rb_last(const struct rb_root
*root
)
442 EXPORT_SYMBOL(rb_last
);
444 struct rb_node
*rb_next(const struct rb_node
*node
)
446 struct rb_node
*parent
;
448 if (RB_EMPTY_NODE(node
))
452 * If we have a right-hand child, go down and then left as far
455 if (node
->rb_right
) {
456 node
= node
->rb_right
;
457 while (node
->rb_left
)
459 return (struct rb_node
*)node
;
463 * No right-hand children. Everything down and left is smaller than us,
464 * so any 'next' node must be in the general direction of our parent.
465 * Go up the tree; any time the ancestor is a right-hand child of its
466 * parent, keep going up. First time it's a left-hand child of its
467 * parent, said parent is our 'next' node.
469 while ((parent
= rb_parent(node
)) && node
== parent
->rb_right
)
474 EXPORT_SYMBOL(rb_next
);
476 struct rb_node
*rb_prev(const struct rb_node
*node
)
478 struct rb_node
*parent
;
480 if (RB_EMPTY_NODE(node
))
484 * If we have a left-hand child, go down and then right as far
488 node
= node
->rb_left
;
489 while (node
->rb_right
)
491 return (struct rb_node
*)node
;
495 * No left-hand children. Go up till we find an ancestor which
496 * is a right-hand child of its parent.
498 while ((parent
= rb_parent(node
)) && node
== parent
->rb_left
)
503 EXPORT_SYMBOL(rb_prev
);
505 void rb_replace_node(struct rb_node
*victim
, struct rb_node
*new,
506 struct rb_root
*root
)
508 struct rb_node
*parent
= rb_parent(victim
);
510 /* Set the surrounding nodes to point to the replacement */
511 __rb_change_child(victim
, new, parent
, root
);
513 rb_set_parent(victim
->rb_left
, new);
514 if (victim
->rb_right
)
515 rb_set_parent(victim
->rb_right
, new);
517 /* Copy the pointers/colour from the victim to the replacement */
520 EXPORT_SYMBOL(rb_replace_node
);