ACPI x86: Make aperf/mperf MSR access in acpi_cpufreq read_only
[linux-2.6.git] / arch / x86 / kernel / cpu / cpufreq / acpi-cpufreq.c
blob9d3af380c6bdfc41a847578ae8eb78a0a151bc38
1 /*
2 * acpi-cpufreq.c - ACPI Processor P-States Driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or (at
14 * your option) any later version.
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/dmi.h>
36 #include <trace/power.h>
38 #include <linux/acpi.h>
39 #include <linux/io.h>
40 #include <linux/delay.h>
41 #include <linux/uaccess.h>
43 #include <acpi/processor.h>
45 #include <asm/msr.h>
46 #include <asm/processor.h>
47 #include <asm/cpufeature.h>
49 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, \
50 "acpi-cpufreq", msg)
52 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
53 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
54 MODULE_LICENSE("GPL");
56 enum {
57 UNDEFINED_CAPABLE = 0,
58 SYSTEM_INTEL_MSR_CAPABLE,
59 SYSTEM_IO_CAPABLE,
62 #define INTEL_MSR_RANGE (0xffff)
63 #define CPUID_6_ECX_APERFMPERF_CAPABILITY (0x1)
65 struct acpi_cpufreq_data {
66 struct acpi_processor_performance *acpi_data;
67 struct cpufreq_frequency_table *freq_table;
68 unsigned int max_freq;
69 unsigned int resume;
70 unsigned int cpu_feature;
71 u64 saved_aperf, saved_mperf;
74 static DEFINE_PER_CPU(struct acpi_cpufreq_data *, drv_data);
76 DEFINE_TRACE(power_mark);
78 /* acpi_perf_data is a pointer to percpu data. */
79 static struct acpi_processor_performance *acpi_perf_data;
81 static struct cpufreq_driver acpi_cpufreq_driver;
83 static unsigned int acpi_pstate_strict;
85 static int check_est_cpu(unsigned int cpuid)
87 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
89 if (cpu->x86_vendor != X86_VENDOR_INTEL ||
90 !cpu_has(cpu, X86_FEATURE_EST))
91 return 0;
93 return 1;
96 static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
98 struct acpi_processor_performance *perf;
99 int i;
101 perf = data->acpi_data;
103 for (i = 0; i < perf->state_count; i++) {
104 if (value == perf->states[i].status)
105 return data->freq_table[i].frequency;
107 return 0;
110 static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
112 int i;
113 struct acpi_processor_performance *perf;
115 msr &= INTEL_MSR_RANGE;
116 perf = data->acpi_data;
118 for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
119 if (msr == perf->states[data->freq_table[i].index].status)
120 return data->freq_table[i].frequency;
122 return data->freq_table[0].frequency;
125 static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
127 switch (data->cpu_feature) {
128 case SYSTEM_INTEL_MSR_CAPABLE:
129 return extract_msr(val, data);
130 case SYSTEM_IO_CAPABLE:
131 return extract_io(val, data);
132 default:
133 return 0;
137 struct msr_addr {
138 u32 reg;
141 struct io_addr {
142 u16 port;
143 u8 bit_width;
146 struct drv_cmd {
147 unsigned int type;
148 const struct cpumask *mask;
149 union {
150 struct msr_addr msr;
151 struct io_addr io;
152 } addr;
153 u32 val;
156 static long do_drv_read(void *_cmd)
158 struct drv_cmd *cmd = _cmd;
159 u32 h;
161 switch (cmd->type) {
162 case SYSTEM_INTEL_MSR_CAPABLE:
163 rdmsr(cmd->addr.msr.reg, cmd->val, h);
164 break;
165 case SYSTEM_IO_CAPABLE:
166 acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
167 &cmd->val,
168 (u32)cmd->addr.io.bit_width);
169 break;
170 default:
171 break;
173 return 0;
176 static long do_drv_write(void *_cmd)
178 struct drv_cmd *cmd = _cmd;
179 u32 lo, hi;
181 switch (cmd->type) {
182 case SYSTEM_INTEL_MSR_CAPABLE:
183 rdmsr(cmd->addr.msr.reg, lo, hi);
184 lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
185 wrmsr(cmd->addr.msr.reg, lo, hi);
186 break;
187 case SYSTEM_IO_CAPABLE:
188 acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
189 cmd->val,
190 (u32)cmd->addr.io.bit_width);
191 break;
192 default:
193 break;
195 return 0;
198 static void drv_read(struct drv_cmd *cmd)
200 cmd->val = 0;
202 work_on_cpu(cpumask_any(cmd->mask), do_drv_read, cmd);
205 static void drv_write(struct drv_cmd *cmd)
207 unsigned int i;
209 for_each_cpu(i, cmd->mask) {
210 work_on_cpu(i, do_drv_write, cmd);
214 static u32 get_cur_val(const struct cpumask *mask)
216 struct acpi_processor_performance *perf;
217 struct drv_cmd cmd;
219 if (unlikely(cpumask_empty(mask)))
220 return 0;
222 switch (per_cpu(drv_data, cpumask_first(mask))->cpu_feature) {
223 case SYSTEM_INTEL_MSR_CAPABLE:
224 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
225 cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
226 break;
227 case SYSTEM_IO_CAPABLE:
228 cmd.type = SYSTEM_IO_CAPABLE;
229 perf = per_cpu(drv_data, cpumask_first(mask))->acpi_data;
230 cmd.addr.io.port = perf->control_register.address;
231 cmd.addr.io.bit_width = perf->control_register.bit_width;
232 break;
233 default:
234 return 0;
237 cmd.mask = mask;
238 drv_read(&cmd);
240 dprintk("get_cur_val = %u\n", cmd.val);
242 return cmd.val;
245 struct perf_pair {
246 union {
247 struct {
248 u32 lo;
249 u32 hi;
250 } split;
251 u64 whole;
252 } aperf, mperf;
256 static long read_measured_perf_ctrs(void *_cur)
258 struct perf_pair *cur = _cur;
260 rdmsr(MSR_IA32_APERF, cur->aperf.split.lo, cur->aperf.split.hi);
261 rdmsr(MSR_IA32_MPERF, cur->mperf.split.lo, cur->mperf.split.hi);
263 return 0;
267 * Return the measured active (C0) frequency on this CPU since last call
268 * to this function.
269 * Input: cpu number
270 * Return: Average CPU frequency in terms of max frequency (zero on error)
272 * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance
273 * over a period of time, while CPU is in C0 state.
274 * IA32_MPERF counts at the rate of max advertised frequency
275 * IA32_APERF counts at the rate of actual CPU frequency
276 * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and
277 * no meaning should be associated with absolute values of these MSRs.
279 static unsigned int get_measured_perf(struct cpufreq_policy *policy,
280 unsigned int cpu)
282 struct perf_pair readin, cur;
283 unsigned int perf_percent;
284 unsigned int retval;
286 if (!work_on_cpu(cpu, read_measured_perf_ctrs, &readin))
287 return 0;
289 cur.aperf.whole = readin.aperf.whole -
290 per_cpu(drv_data, cpu)->saved_aperf;
291 cur.mperf.whole = readin.mperf.whole -
292 per_cpu(drv_data, cpu)->saved_mperf;
293 per_cpu(drv_data, cpu)->saved_aperf = readin.aperf.whole;
294 per_cpu(drv_data, cpu)->saved_mperf = readin.mperf.whole;
296 #ifdef __i386__
298 * We dont want to do 64 bit divide with 32 bit kernel
299 * Get an approximate value. Return failure in case we cannot get
300 * an approximate value.
302 if (unlikely(cur.aperf.split.hi || cur.mperf.split.hi)) {
303 int shift_count;
304 u32 h;
306 h = max_t(u32, cur.aperf.split.hi, cur.mperf.split.hi);
307 shift_count = fls(h);
309 cur.aperf.whole >>= shift_count;
310 cur.mperf.whole >>= shift_count;
313 if (((unsigned long)(-1) / 100) < cur.aperf.split.lo) {
314 int shift_count = 7;
315 cur.aperf.split.lo >>= shift_count;
316 cur.mperf.split.lo >>= shift_count;
319 if (cur.aperf.split.lo && cur.mperf.split.lo)
320 perf_percent = (cur.aperf.split.lo * 100) / cur.mperf.split.lo;
321 else
322 perf_percent = 0;
324 #else
325 if (unlikely(((unsigned long)(-1) / 100) < cur.aperf.whole)) {
326 int shift_count = 7;
327 cur.aperf.whole >>= shift_count;
328 cur.mperf.whole >>= shift_count;
331 if (cur.aperf.whole && cur.mperf.whole)
332 perf_percent = (cur.aperf.whole * 100) / cur.mperf.whole;
333 else
334 perf_percent = 0;
336 #endif
338 retval = per_cpu(drv_data, policy->cpu)->max_freq * perf_percent / 100;
340 return retval;
343 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
345 struct acpi_cpufreq_data *data = per_cpu(drv_data, cpu);
346 unsigned int freq;
347 unsigned int cached_freq;
349 dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
351 if (unlikely(data == NULL ||
352 data->acpi_data == NULL || data->freq_table == NULL)) {
353 return 0;
356 cached_freq = data->freq_table[data->acpi_data->state].frequency;
357 freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
358 if (freq != cached_freq) {
360 * The dreaded BIOS frequency change behind our back.
361 * Force set the frequency on next target call.
363 data->resume = 1;
366 dprintk("cur freq = %u\n", freq);
368 return freq;
371 static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
372 struct acpi_cpufreq_data *data)
374 unsigned int cur_freq;
375 unsigned int i;
377 for (i = 0; i < 100; i++) {
378 cur_freq = extract_freq(get_cur_val(mask), data);
379 if (cur_freq == freq)
380 return 1;
381 udelay(10);
383 return 0;
386 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
387 unsigned int target_freq, unsigned int relation)
389 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
390 struct acpi_processor_performance *perf;
391 struct cpufreq_freqs freqs;
392 struct drv_cmd cmd;
393 unsigned int next_state = 0; /* Index into freq_table */
394 unsigned int next_perf_state = 0; /* Index into perf table */
395 unsigned int i;
396 int result = 0;
397 struct power_trace it;
399 dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
401 if (unlikely(data == NULL ||
402 data->acpi_data == NULL || data->freq_table == NULL)) {
403 return -ENODEV;
406 perf = data->acpi_data;
407 result = cpufreq_frequency_table_target(policy,
408 data->freq_table,
409 target_freq,
410 relation, &next_state);
411 if (unlikely(result)) {
412 result = -ENODEV;
413 goto out;
416 next_perf_state = data->freq_table[next_state].index;
417 if (perf->state == next_perf_state) {
418 if (unlikely(data->resume)) {
419 dprintk("Called after resume, resetting to P%d\n",
420 next_perf_state);
421 data->resume = 0;
422 } else {
423 dprintk("Already at target state (P%d)\n",
424 next_perf_state);
425 goto out;
429 trace_power_mark(&it, POWER_PSTATE, next_perf_state);
431 switch (data->cpu_feature) {
432 case SYSTEM_INTEL_MSR_CAPABLE:
433 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
434 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
435 cmd.val = (u32) perf->states[next_perf_state].control;
436 break;
437 case SYSTEM_IO_CAPABLE:
438 cmd.type = SYSTEM_IO_CAPABLE;
439 cmd.addr.io.port = perf->control_register.address;
440 cmd.addr.io.bit_width = perf->control_register.bit_width;
441 cmd.val = (u32) perf->states[next_perf_state].control;
442 break;
443 default:
444 result = -ENODEV;
445 goto out;
448 /* cpufreq holds the hotplug lock, so we are safe from here on */
449 if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
450 cmd.mask = policy->cpus;
451 else
452 cmd.mask = cpumask_of(policy->cpu);
454 freqs.old = perf->states[perf->state].core_frequency * 1000;
455 freqs.new = data->freq_table[next_state].frequency;
456 for_each_cpu(i, cmd.mask) {
457 freqs.cpu = i;
458 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
461 drv_write(&cmd);
463 if (acpi_pstate_strict) {
464 if (!check_freqs(cmd.mask, freqs.new, data)) {
465 dprintk("acpi_cpufreq_target failed (%d)\n",
466 policy->cpu);
467 result = -EAGAIN;
468 goto out;
472 for_each_cpu(i, cmd.mask) {
473 freqs.cpu = i;
474 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
476 perf->state = next_perf_state;
478 out:
479 return result;
482 static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
484 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
486 dprintk("acpi_cpufreq_verify\n");
488 return cpufreq_frequency_table_verify(policy, data->freq_table);
491 static unsigned long
492 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
494 struct acpi_processor_performance *perf = data->acpi_data;
496 if (cpu_khz) {
497 /* search the closest match to cpu_khz */
498 unsigned int i;
499 unsigned long freq;
500 unsigned long freqn = perf->states[0].core_frequency * 1000;
502 for (i = 0; i < (perf->state_count-1); i++) {
503 freq = freqn;
504 freqn = perf->states[i+1].core_frequency * 1000;
505 if ((2 * cpu_khz) > (freqn + freq)) {
506 perf->state = i;
507 return freq;
510 perf->state = perf->state_count-1;
511 return freqn;
512 } else {
513 /* assume CPU is at P0... */
514 perf->state = 0;
515 return perf->states[0].core_frequency * 1000;
519 static void free_acpi_perf_data(void)
521 unsigned int i;
523 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
524 for_each_possible_cpu(i)
525 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
526 ->shared_cpu_map);
527 free_percpu(acpi_perf_data);
531 * acpi_cpufreq_early_init - initialize ACPI P-States library
533 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
534 * in order to determine correct frequency and voltage pairings. We can
535 * do _PDC and _PSD and find out the processor dependency for the
536 * actual init that will happen later...
538 static int __init acpi_cpufreq_early_init(void)
540 unsigned int i;
541 dprintk("acpi_cpufreq_early_init\n");
543 acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
544 if (!acpi_perf_data) {
545 dprintk("Memory allocation error for acpi_perf_data.\n");
546 return -ENOMEM;
548 for_each_possible_cpu(i) {
549 if (!alloc_cpumask_var_node(
550 &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
551 GFP_KERNEL, cpu_to_node(i))) {
553 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
554 free_acpi_perf_data();
555 return -ENOMEM;
559 /* Do initialization in ACPI core */
560 acpi_processor_preregister_performance(acpi_perf_data);
561 return 0;
564 #ifdef CONFIG_SMP
566 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
567 * or do it in BIOS firmware and won't inform about it to OS. If not
568 * detected, this has a side effect of making CPU run at a different speed
569 * than OS intended it to run at. Detect it and handle it cleanly.
571 static int bios_with_sw_any_bug;
573 static int sw_any_bug_found(const struct dmi_system_id *d)
575 bios_with_sw_any_bug = 1;
576 return 0;
579 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
581 .callback = sw_any_bug_found,
582 .ident = "Supermicro Server X6DLP",
583 .matches = {
584 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
585 DMI_MATCH(DMI_BIOS_VERSION, "080010"),
586 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
591 #endif
593 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
595 unsigned int i;
596 unsigned int valid_states = 0;
597 unsigned int cpu = policy->cpu;
598 struct acpi_cpufreq_data *data;
599 unsigned int result = 0;
600 struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
601 struct acpi_processor_performance *perf;
603 dprintk("acpi_cpufreq_cpu_init\n");
605 data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
606 if (!data)
607 return -ENOMEM;
609 data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
610 per_cpu(drv_data, cpu) = data;
612 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
613 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
615 result = acpi_processor_register_performance(data->acpi_data, cpu);
616 if (result)
617 goto err_free;
619 perf = data->acpi_data;
620 policy->shared_type = perf->shared_type;
623 * Will let policy->cpus know about dependency only when software
624 * coordination is required.
626 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
627 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
628 cpumask_copy(policy->cpus, perf->shared_cpu_map);
630 cpumask_copy(policy->related_cpus, perf->shared_cpu_map);
632 #ifdef CONFIG_SMP
633 dmi_check_system(sw_any_bug_dmi_table);
634 if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) {
635 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
636 cpumask_copy(policy->cpus, cpu_core_mask(cpu));
638 #endif
640 /* capability check */
641 if (perf->state_count <= 1) {
642 dprintk("No P-States\n");
643 result = -ENODEV;
644 goto err_unreg;
647 if (perf->control_register.space_id != perf->status_register.space_id) {
648 result = -ENODEV;
649 goto err_unreg;
652 switch (perf->control_register.space_id) {
653 case ACPI_ADR_SPACE_SYSTEM_IO:
654 dprintk("SYSTEM IO addr space\n");
655 data->cpu_feature = SYSTEM_IO_CAPABLE;
656 break;
657 case ACPI_ADR_SPACE_FIXED_HARDWARE:
658 dprintk("HARDWARE addr space\n");
659 if (!check_est_cpu(cpu)) {
660 result = -ENODEV;
661 goto err_unreg;
663 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
664 break;
665 default:
666 dprintk("Unknown addr space %d\n",
667 (u32) (perf->control_register.space_id));
668 result = -ENODEV;
669 goto err_unreg;
672 data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
673 (perf->state_count+1), GFP_KERNEL);
674 if (!data->freq_table) {
675 result = -ENOMEM;
676 goto err_unreg;
679 /* detect transition latency */
680 policy->cpuinfo.transition_latency = 0;
681 for (i = 0; i < perf->state_count; i++) {
682 if ((perf->states[i].transition_latency * 1000) >
683 policy->cpuinfo.transition_latency)
684 policy->cpuinfo.transition_latency =
685 perf->states[i].transition_latency * 1000;
688 /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
689 if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
690 policy->cpuinfo.transition_latency > 20 * 1000) {
691 static int print_once;
692 policy->cpuinfo.transition_latency = 20 * 1000;
693 if (!print_once) {
694 print_once = 1;
695 printk(KERN_INFO "Capping off P-state tranision latency"
696 " at 20 uS\n");
700 data->max_freq = perf->states[0].core_frequency * 1000;
701 /* table init */
702 for (i = 0; i < perf->state_count; i++) {
703 if (i > 0 && perf->states[i].core_frequency >=
704 data->freq_table[valid_states-1].frequency / 1000)
705 continue;
707 data->freq_table[valid_states].index = i;
708 data->freq_table[valid_states].frequency =
709 perf->states[i].core_frequency * 1000;
710 valid_states++;
712 data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
713 perf->state = 0;
715 result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
716 if (result)
717 goto err_freqfree;
719 switch (perf->control_register.space_id) {
720 case ACPI_ADR_SPACE_SYSTEM_IO:
721 /* Current speed is unknown and not detectable by IO port */
722 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
723 break;
724 case ACPI_ADR_SPACE_FIXED_HARDWARE:
725 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
726 policy->cur = get_cur_freq_on_cpu(cpu);
727 break;
728 default:
729 break;
732 /* notify BIOS that we exist */
733 acpi_processor_notify_smm(THIS_MODULE);
735 /* Check for APERF/MPERF support in hardware */
736 if (c->x86_vendor == X86_VENDOR_INTEL && c->cpuid_level >= 6) {
737 unsigned int ecx;
738 ecx = cpuid_ecx(6);
739 if (ecx & CPUID_6_ECX_APERFMPERF_CAPABILITY)
740 acpi_cpufreq_driver.getavg = get_measured_perf;
743 dprintk("CPU%u - ACPI performance management activated.\n", cpu);
744 for (i = 0; i < perf->state_count; i++)
745 dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
746 (i == perf->state ? '*' : ' '), i,
747 (u32) perf->states[i].core_frequency,
748 (u32) perf->states[i].power,
749 (u32) perf->states[i].transition_latency);
751 cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
754 * the first call to ->target() should result in us actually
755 * writing something to the appropriate registers.
757 data->resume = 1;
759 return result;
761 err_freqfree:
762 kfree(data->freq_table);
763 err_unreg:
764 acpi_processor_unregister_performance(perf, cpu);
765 err_free:
766 kfree(data);
767 per_cpu(drv_data, cpu) = NULL;
769 return result;
772 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
774 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
776 dprintk("acpi_cpufreq_cpu_exit\n");
778 if (data) {
779 cpufreq_frequency_table_put_attr(policy->cpu);
780 per_cpu(drv_data, policy->cpu) = NULL;
781 acpi_processor_unregister_performance(data->acpi_data,
782 policy->cpu);
783 kfree(data);
786 return 0;
789 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
791 struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
793 dprintk("acpi_cpufreq_resume\n");
795 data->resume = 1;
797 return 0;
800 static struct freq_attr *acpi_cpufreq_attr[] = {
801 &cpufreq_freq_attr_scaling_available_freqs,
802 NULL,
805 static struct cpufreq_driver acpi_cpufreq_driver = {
806 .verify = acpi_cpufreq_verify,
807 .target = acpi_cpufreq_target,
808 .init = acpi_cpufreq_cpu_init,
809 .exit = acpi_cpufreq_cpu_exit,
810 .resume = acpi_cpufreq_resume,
811 .name = "acpi-cpufreq",
812 .owner = THIS_MODULE,
813 .attr = acpi_cpufreq_attr,
816 static int __init acpi_cpufreq_init(void)
818 int ret;
820 if (acpi_disabled)
821 return 0;
823 dprintk("acpi_cpufreq_init\n");
825 ret = acpi_cpufreq_early_init();
826 if (ret)
827 return ret;
829 ret = cpufreq_register_driver(&acpi_cpufreq_driver);
830 if (ret)
831 free_acpi_perf_data();
833 return ret;
836 static void __exit acpi_cpufreq_exit(void)
838 dprintk("acpi_cpufreq_exit\n");
840 cpufreq_unregister_driver(&acpi_cpufreq_driver);
842 free_percpu(acpi_perf_data);
845 module_param(acpi_pstate_strict, uint, 0644);
846 MODULE_PARM_DESC(acpi_pstate_strict,
847 "value 0 or non-zero. non-zero -> strict ACPI checks are "
848 "performed during frequency changes.");
850 late_initcall(acpi_cpufreq_init);
851 module_exit(acpi_cpufreq_exit);
853 MODULE_ALIAS("acpi");