1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
3 * This driver supports the memory controllers found on the Intel
4 * processor family Sandy Bridge.
6 * This file may be distributed under the terms of the
7 * GNU General Public License version 2 only.
9 * Copyright (c) 2011 by:
10 * Mauro Carvalho Chehab <mchehab@redhat.com>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <asm/processor.h>
27 #include "edac_core.h"
30 static LIST_HEAD(sbridge_edac_list
);
31 static DEFINE_MUTEX(sbridge_edac_lock
);
35 * Alter this version for the module when modifications are made
37 #define SBRIDGE_REVISION " Ver: 1.0.0 "
38 #define EDAC_MOD_STR "sbridge_edac"
43 #define sbridge_printk(level, fmt, arg...) \
44 edac_printk(level, "sbridge", fmt, ##arg)
46 #define sbridge_mc_printk(mci, level, fmt, arg...) \
47 edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
50 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
52 #define GET_BITFIELD(v, lo, hi) \
53 (((v) & ((1ULL << ((hi) - (lo) + 1)) - 1) << (lo)) >> (lo))
56 * sbridge Memory Controller Registers
60 * FIXME: For now, let's order by device function, as it makes
61 * easier for driver's development process. This table should be
62 * moved to pci_id.h when submitted upstream
64 #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0 0x3cf4 /* 12.6 */
65 #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1 0x3cf6 /* 12.7 */
66 #define PCI_DEVICE_ID_INTEL_SBRIDGE_BR 0x3cf5 /* 13.6 */
67 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0 0x3ca0 /* 14.0 */
68 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA 0x3ca8 /* 15.0 */
69 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS 0x3c71 /* 15.1 */
70 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0 0x3caa /* 15.2 */
71 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1 0x3cab /* 15.3 */
72 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2 0x3cac /* 15.4 */
73 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3 0x3cad /* 15.5 */
74 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO 0x3cb8 /* 17.0 */
77 * Currently, unused, but will be needed in the future
78 * implementations, as they hold the error counters
80 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR0 0x3c72 /* 16.2 */
81 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR1 0x3c73 /* 16.3 */
82 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR2 0x3c76 /* 16.6 */
83 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR3 0x3c77 /* 16.7 */
85 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
86 static const u32 dram_rule
[] = {
87 0x80, 0x88, 0x90, 0x98, 0xa0,
88 0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
90 #define MAX_SAD ARRAY_SIZE(dram_rule)
92 #define SAD_LIMIT(reg) ((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
93 #define DRAM_ATTR(reg) GET_BITFIELD(reg, 2, 3)
94 #define INTERLEAVE_MODE(reg) GET_BITFIELD(reg, 1, 1)
95 #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
97 static char *get_dram_attr(u32 reg
)
99 switch(DRAM_ATTR(reg
)) {
111 static const u32 interleave_list
[] = {
112 0x84, 0x8c, 0x94, 0x9c, 0xa4,
113 0xac, 0xb4, 0xbc, 0xc4, 0xcc,
115 #define MAX_INTERLEAVE ARRAY_SIZE(interleave_list)
117 #define SAD_PKG0(reg) GET_BITFIELD(reg, 0, 2)
118 #define SAD_PKG1(reg) GET_BITFIELD(reg, 3, 5)
119 #define SAD_PKG2(reg) GET_BITFIELD(reg, 8, 10)
120 #define SAD_PKG3(reg) GET_BITFIELD(reg, 11, 13)
121 #define SAD_PKG4(reg) GET_BITFIELD(reg, 16, 18)
122 #define SAD_PKG5(reg) GET_BITFIELD(reg, 19, 21)
123 #define SAD_PKG6(reg) GET_BITFIELD(reg, 24, 26)
124 #define SAD_PKG7(reg) GET_BITFIELD(reg, 27, 29)
126 static inline int sad_pkg(u32 reg
, int interleave
)
128 switch (interleave
) {
130 return SAD_PKG0(reg
);
132 return SAD_PKG1(reg
);
134 return SAD_PKG2(reg
);
136 return SAD_PKG3(reg
);
138 return SAD_PKG4(reg
);
140 return SAD_PKG5(reg
);
142 return SAD_PKG6(reg
);
144 return SAD_PKG7(reg
);
150 /* Devices 12 Function 7 */
155 #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
156 #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
158 /* Device 13 Function 6 */
160 #define SAD_TARGET 0xf0
162 #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
164 #define SAD_CONTROL 0xf4
166 #define NODE_ID(reg) GET_BITFIELD(reg, 0, 2)
168 /* Device 14 function 0 */
170 static const u32 tad_dram_rule
[] = {
171 0x40, 0x44, 0x48, 0x4c,
172 0x50, 0x54, 0x58, 0x5c,
173 0x60, 0x64, 0x68, 0x6c,
175 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
177 #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
178 #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
179 #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
180 #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
181 #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
182 #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
183 #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
185 /* Device 15, function 0 */
189 #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
190 #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
191 #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
193 /* Device 15, function 1 */
195 #define RASENABLES 0xac
196 #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
198 /* Device 15, functions 2-5 */
200 static const int mtr_regs
[] = {
204 #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
205 #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
206 #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
207 #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
208 #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
210 static const u32 tad_ch_nilv_offset
[] = {
211 0x90, 0x94, 0x98, 0x9c,
212 0xa0, 0xa4, 0xa8, 0xac,
213 0xb0, 0xb4, 0xb8, 0xbc,
215 #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
216 #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
218 static const u32 rir_way_limit
[] = {
219 0x108, 0x10c, 0x110, 0x114, 0x118,
221 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
223 #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
224 #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
225 #define RIR_LIMIT(reg) ((GET_BITFIELD(reg, 1, 10) << 29)| 0x1fffffff)
227 #define MAX_RIR_WAY 8
229 static const u32 rir_offset
[MAX_RIR_RANGES
][MAX_RIR_WAY
] = {
230 { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
231 { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
232 { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
233 { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
234 { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
237 #define RIR_RNK_TGT(reg) GET_BITFIELD(reg, 16, 19)
238 #define RIR_OFFSET(reg) GET_BITFIELD(reg, 2, 14)
240 /* Device 16, functions 2-7 */
243 * FIXME: Implement the error count reads directly
246 static const u32 correrrcnt
[] = {
247 0x104, 0x108, 0x10c, 0x110,
250 #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
251 #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
252 #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
253 #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
255 static const u32 correrrthrsld
[] = {
256 0x11c, 0x120, 0x124, 0x128,
259 #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
260 #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
263 /* Device 17, function 0 */
265 #define RANK_CFG_A 0x0328
267 #define IS_RDIMM_ENABLED(reg) GET_BITFIELD(reg, 11, 11)
273 #define NUM_CHANNELS 4
274 #define MAX_DIMMS 3 /* Max DIMMS per channel */
276 struct sbridge_info
{
280 struct sbridge_channel
{
285 struct pci_id_descr
{
292 struct pci_id_table
{
293 const struct pci_id_descr
*descr
;
298 struct list_head list
;
300 u8 node_id
, source_id
;
301 struct pci_dev
**pdev
;
303 struct mem_ctl_info
*mci
;
307 struct pci_dev
*pci_ta
, *pci_ddrio
, *pci_ras
;
308 struct pci_dev
*pci_sad0
, *pci_sad1
, *pci_ha0
;
309 struct pci_dev
*pci_br
;
310 struct pci_dev
*pci_tad
[NUM_CHANNELS
];
312 struct sbridge_dev
*sbridge_dev
;
314 struct sbridge_info info
;
315 struct sbridge_channel channel
[NUM_CHANNELS
];
317 /* Memory type detection */
318 bool is_mirrored
, is_lockstep
, is_close_pg
;
320 /* Fifo double buffers */
321 struct mce mce_entry
[MCE_LOG_LEN
];
322 struct mce mce_outentry
[MCE_LOG_LEN
];
324 /* Fifo in/out counters */
325 unsigned mce_in
, mce_out
;
327 /* Count indicator to show errors not got */
328 unsigned mce_overrun
;
330 /* Memory description */
334 #define PCI_DESCR(device, function, device_id, opt) \
336 .func = (function), \
337 .dev_id = (device_id), \
340 static const struct pci_id_descr pci_dev_descr_sbridge
[] = {
341 /* Processor Home Agent */
342 { PCI_DESCR(14, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0
, 0) },
344 /* Memory controller */
345 { PCI_DESCR(15, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA
, 0) },
346 { PCI_DESCR(15, 1, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS
, 0) },
347 { PCI_DESCR(15, 2, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0
, 0) },
348 { PCI_DESCR(15, 3, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1
, 0) },
349 { PCI_DESCR(15, 4, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2
, 0) },
350 { PCI_DESCR(15, 5, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3
, 0) },
351 { PCI_DESCR(17, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO
, 1) },
353 /* System Address Decoder */
354 { PCI_DESCR(12, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0
, 0) },
355 { PCI_DESCR(12, 7, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1
, 0) },
357 /* Broadcast Registers */
358 { PCI_DESCR(13, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_BR
, 0) },
361 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
362 static const struct pci_id_table pci_dev_descr_sbridge_table
[] = {
363 PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge
),
364 {0,} /* 0 terminated list. */
368 * pci_device_id table for which devices we are looking for
370 static DEFINE_PCI_DEVICE_TABLE(sbridge_pci_tbl
) = {
371 {PCI_DEVICE(PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA
)},
372 {0,} /* 0 terminated list. */
376 /****************************************************************************
377 Ancillary status routines
378 ****************************************************************************/
380 static inline int numrank(u32 mtr
)
382 int ranks
= (1 << RANK_CNT_BITS(mtr
));
385 edac_dbg(0, "Invalid number of ranks: %d (max = 4) raw value = %x (%04x)\n",
386 ranks
, (unsigned int)RANK_CNT_BITS(mtr
), mtr
);
393 static inline int numrow(u32 mtr
)
395 int rows
= (RANK_WIDTH_BITS(mtr
) + 12);
397 if (rows
< 13 || rows
> 18) {
398 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
399 rows
, (unsigned int)RANK_WIDTH_BITS(mtr
), mtr
);
406 static inline int numcol(u32 mtr
)
408 int cols
= (COL_WIDTH_BITS(mtr
) + 10);
411 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
412 cols
, (unsigned int)COL_WIDTH_BITS(mtr
), mtr
);
419 static struct sbridge_dev
*get_sbridge_dev(u8 bus
)
421 struct sbridge_dev
*sbridge_dev
;
423 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
424 if (sbridge_dev
->bus
== bus
)
431 static struct sbridge_dev
*alloc_sbridge_dev(u8 bus
,
432 const struct pci_id_table
*table
)
434 struct sbridge_dev
*sbridge_dev
;
436 sbridge_dev
= kzalloc(sizeof(*sbridge_dev
), GFP_KERNEL
);
440 sbridge_dev
->pdev
= kzalloc(sizeof(*sbridge_dev
->pdev
) * table
->n_devs
,
442 if (!sbridge_dev
->pdev
) {
447 sbridge_dev
->bus
= bus
;
448 sbridge_dev
->n_devs
= table
->n_devs
;
449 list_add_tail(&sbridge_dev
->list
, &sbridge_edac_list
);
454 static void free_sbridge_dev(struct sbridge_dev
*sbridge_dev
)
456 list_del(&sbridge_dev
->list
);
457 kfree(sbridge_dev
->pdev
);
461 /****************************************************************************
462 Memory check routines
463 ****************************************************************************/
464 static struct pci_dev
*get_pdev_slot_func(u8 bus
, unsigned slot
,
467 struct sbridge_dev
*sbridge_dev
= get_sbridge_dev(bus
);
473 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
474 if (!sbridge_dev
->pdev
[i
])
477 if (PCI_SLOT(sbridge_dev
->pdev
[i
]->devfn
) == slot
&&
478 PCI_FUNC(sbridge_dev
->pdev
[i
]->devfn
) == func
) {
479 edac_dbg(1, "Associated %02x.%02x.%d with %p\n",
480 bus
, slot
, func
, sbridge_dev
->pdev
[i
]);
481 return sbridge_dev
->pdev
[i
];
489 * check_if_ecc_is_active() - Checks if ECC is active
492 static int check_if_ecc_is_active(const u8 bus
)
494 struct pci_dev
*pdev
= NULL
;
497 pdev
= get_pdev_slot_func(bus
, 15, 0);
499 sbridge_printk(KERN_ERR
, "Couldn't find PCI device "
505 pci_read_config_dword(pdev
, MCMTR
, &mcmtr
);
506 if (!IS_ECC_ENABLED(mcmtr
)) {
507 sbridge_printk(KERN_ERR
, "ECC is disabled. Aborting\n");
513 static int get_dimm_config(struct mem_ctl_info
*mci
)
515 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
516 struct dimm_info
*dimm
;
517 unsigned i
, j
, banks
, ranks
, rows
, cols
, npages
;
523 pci_read_config_dword(pvt
->pci_br
, SAD_TARGET
, ®
);
524 pvt
->sbridge_dev
->source_id
= SOURCE_ID(reg
);
526 pci_read_config_dword(pvt
->pci_br
, SAD_CONTROL
, ®
);
527 pvt
->sbridge_dev
->node_id
= NODE_ID(reg
);
528 edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
529 pvt
->sbridge_dev
->mc
,
530 pvt
->sbridge_dev
->node_id
,
531 pvt
->sbridge_dev
->source_id
);
533 pci_read_config_dword(pvt
->pci_ras
, RASENABLES
, ®
);
534 if (IS_MIRROR_ENABLED(reg
)) {
535 edac_dbg(0, "Memory mirror is enabled\n");
536 pvt
->is_mirrored
= true;
538 edac_dbg(0, "Memory mirror is disabled\n");
539 pvt
->is_mirrored
= false;
542 pci_read_config_dword(pvt
->pci_ta
, MCMTR
, &pvt
->info
.mcmtr
);
543 if (IS_LOCKSTEP_ENABLED(pvt
->info
.mcmtr
)) {
544 edac_dbg(0, "Lockstep is enabled\n");
545 mode
= EDAC_S8ECD8ED
;
546 pvt
->is_lockstep
= true;
548 edac_dbg(0, "Lockstep is disabled\n");
549 mode
= EDAC_S4ECD4ED
;
550 pvt
->is_lockstep
= false;
552 if (IS_CLOSE_PG(pvt
->info
.mcmtr
)) {
553 edac_dbg(0, "address map is on closed page mode\n");
554 pvt
->is_close_pg
= true;
556 edac_dbg(0, "address map is on open page mode\n");
557 pvt
->is_close_pg
= false;
560 if (pvt
->pci_ddrio
) {
561 pci_read_config_dword(pvt
->pci_ddrio
, RANK_CFG_A
, ®
);
562 if (IS_RDIMM_ENABLED(reg
)) {
563 /* FIXME: Can also be LRDIMM */
564 edac_dbg(0, "Memory is registered\n");
567 edac_dbg(0, "Memory is unregistered\n");
571 edac_dbg(0, "Cannot determine memory type\n");
575 /* On all supported DDR3 DIMM types, there are 8 banks available */
578 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
581 for (j
= 0; j
< ARRAY_SIZE(mtr_regs
); j
++) {
582 dimm
= EDAC_DIMM_PTR(mci
->layers
, mci
->dimms
, mci
->n_layers
,
584 pci_read_config_dword(pvt
->pci_tad
[i
],
586 edac_dbg(4, "Channel #%d MTR%d = %x\n", i
, j
, mtr
);
587 if (IS_DIMM_PRESENT(mtr
)) {
588 pvt
->channel
[i
].dimms
++;
590 ranks
= numrank(mtr
);
594 /* DDR3 has 8 I/O banks */
595 size
= ((u64
)rows
* cols
* banks
* ranks
) >> (20 - 3);
596 npages
= MiB_TO_PAGES(size
);
598 edac_dbg(0, "mc#%d: channel %d, dimm %d, %Ld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
599 pvt
->sbridge_dev
->mc
, i
, j
,
601 banks
, ranks
, rows
, cols
);
603 dimm
->nr_pages
= npages
;
605 dimm
->dtype
= (banks
== 8) ? DEV_X8
: DEV_X4
;
607 dimm
->edac_mode
= mode
;
608 snprintf(dimm
->label
, sizeof(dimm
->label
),
609 "CPU_SrcID#%u_Channel#%u_DIMM#%u",
610 pvt
->sbridge_dev
->source_id
, i
, j
);
618 static void get_memory_layout(const struct mem_ctl_info
*mci
)
620 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
621 int i
, j
, k
, n_sads
, n_tads
, sad_interl
;
629 * Step 1) Get TOLM/TOHM ranges
632 /* Address range is 32:28 */
633 pci_read_config_dword(pvt
->pci_sad1
, TOLM
,
635 pvt
->tolm
= GET_TOLM(reg
);
636 tmp_mb
= (1 + pvt
->tolm
) >> 20;
638 mb
= div_u64_rem(tmp_mb
, 1000, &kb
);
639 edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n", mb
, kb
, (u64
)pvt
->tolm
);
641 /* Address range is already 45:25 */
642 pci_read_config_dword(pvt
->pci_sad1
, TOHM
,
644 pvt
->tohm
= GET_TOHM(reg
);
645 tmp_mb
= (1 + pvt
->tohm
) >> 20;
647 mb
= div_u64_rem(tmp_mb
, 1000, &kb
);
648 edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n", mb
, kb
, (u64
)pvt
->tohm
);
651 * Step 2) Get SAD range and SAD Interleave list
652 * TAD registers contain the interleave wayness. However, it
653 * seems simpler to just discover it indirectly, with the
657 for (n_sads
= 0; n_sads
< MAX_SAD
; n_sads
++) {
658 /* SAD_LIMIT Address range is 45:26 */
659 pci_read_config_dword(pvt
->pci_sad0
, dram_rule
[n_sads
],
661 limit
= SAD_LIMIT(reg
);
663 if (!DRAM_RULE_ENABLE(reg
))
669 tmp_mb
= (limit
+ 1) >> 20;
670 mb
= div_u64_rem(tmp_mb
, 1000, &kb
);
671 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
675 ((u64
)tmp_mb
) << 20L,
676 INTERLEAVE_MODE(reg
) ? "8:6" : "[8:6]XOR[18:16]",
680 pci_read_config_dword(pvt
->pci_sad0
, interleave_list
[n_sads
],
682 sad_interl
= sad_pkg(reg
, 0);
683 for (j
= 0; j
< 8; j
++) {
684 if (j
> 0 && sad_interl
== sad_pkg(reg
, j
))
687 edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
688 n_sads
, j
, sad_pkg(reg
, j
));
693 * Step 3) Get TAD range
696 for (n_tads
= 0; n_tads
< MAX_TAD
; n_tads
++) {
697 pci_read_config_dword(pvt
->pci_ha0
, tad_dram_rule
[n_tads
],
699 limit
= TAD_LIMIT(reg
);
702 tmp_mb
= (limit
+ 1) >> 20;
704 mb
= div_u64_rem(tmp_mb
, 1000, &kb
);
705 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
707 ((u64
)tmp_mb
) << 20L,
719 * Step 4) Get TAD offsets, per each channel
721 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
722 if (!pvt
->channel
[i
].dimms
)
724 for (j
= 0; j
< n_tads
; j
++) {
725 pci_read_config_dword(pvt
->pci_tad
[i
],
726 tad_ch_nilv_offset
[j
],
728 tmp_mb
= TAD_OFFSET(reg
) >> 20;
729 mb
= div_u64_rem(tmp_mb
, 1000, &kb
);
730 edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
733 ((u64
)tmp_mb
) << 20L,
739 * Step 6) Get RIR Wayness/Limit, per each channel
741 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
742 if (!pvt
->channel
[i
].dimms
)
744 for (j
= 0; j
< MAX_RIR_RANGES
; j
++) {
745 pci_read_config_dword(pvt
->pci_tad
[i
],
749 if (!IS_RIR_VALID(reg
))
752 tmp_mb
= RIR_LIMIT(reg
) >> 20;
753 rir_way
= 1 << RIR_WAY(reg
);
754 mb
= div_u64_rem(tmp_mb
, 1000, &kb
);
755 edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
758 ((u64
)tmp_mb
) << 20L,
762 for (k
= 0; k
< rir_way
; k
++) {
763 pci_read_config_dword(pvt
->pci_tad
[i
],
766 tmp_mb
= RIR_OFFSET(reg
) << 6;
768 mb
= div_u64_rem(tmp_mb
, 1000, &kb
);
769 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
772 ((u64
)tmp_mb
) << 20L,
773 (u32
)RIR_RNK_TGT(reg
),
780 struct mem_ctl_info
*get_mci_for_node_id(u8 node_id
)
782 struct sbridge_dev
*sbridge_dev
;
784 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
785 if (sbridge_dev
->node_id
== node_id
)
786 return sbridge_dev
->mci
;
791 static int get_memory_error_data(struct mem_ctl_info
*mci
,
796 char **area_type
, char *msg
)
798 struct mem_ctl_info
*new_mci
;
799 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
800 int n_rir
, n_sads
, n_tads
, sad_way
, sck_xch
;
801 int sad_interl
, idx
, base_ch
;
803 unsigned sad_interleave
[MAX_INTERLEAVE
];
809 u64 ch_addr
, offset
, limit
, prv
= 0;
813 * Step 0) Check if the address is at special memory ranges
814 * The check bellow is probably enough to fill all cases where
815 * the error is not inside a memory, except for the legacy
816 * range (e. g. VGA addresses). It is unlikely, however, that the
817 * memory controller would generate an error on that range.
819 if ((addr
> (u64
) pvt
->tolm
) && (addr
< (1LL << 32))) {
820 sprintf(msg
, "Error at TOLM area, on addr 0x%08Lx", addr
);
823 if (addr
>= (u64
)pvt
->tohm
) {
824 sprintf(msg
, "Error at MMIOH area, on addr 0x%016Lx", addr
);
831 for (n_sads
= 0; n_sads
< MAX_SAD
; n_sads
++) {
832 pci_read_config_dword(pvt
->pci_sad0
, dram_rule
[n_sads
],
835 if (!DRAM_RULE_ENABLE(reg
))
838 limit
= SAD_LIMIT(reg
);
840 sprintf(msg
, "Can't discover the memory socket");
847 if (n_sads
== MAX_SAD
) {
848 sprintf(msg
, "Can't discover the memory socket");
851 *area_type
= get_dram_attr(reg
);
852 interleave_mode
= INTERLEAVE_MODE(reg
);
854 pci_read_config_dword(pvt
->pci_sad0
, interleave_list
[n_sads
],
856 sad_interl
= sad_pkg(reg
, 0);
857 for (sad_way
= 0; sad_way
< 8; sad_way
++) {
858 if (sad_way
> 0 && sad_interl
== sad_pkg(reg
, sad_way
))
860 sad_interleave
[sad_way
] = sad_pkg(reg
, sad_way
);
861 edac_dbg(0, "SAD interleave #%d: %d\n",
862 sad_way
, sad_interleave
[sad_way
]);
864 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
865 pvt
->sbridge_dev
->mc
,
870 interleave_mode
? "" : "XOR[18:16]");
872 idx
= ((addr
>> 6) ^ (addr
>> 16)) & 7;
874 idx
= (addr
>> 6) & 7;
888 sprintf(msg
, "Can't discover socket interleave");
891 *socket
= sad_interleave
[idx
];
892 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
893 idx
, sad_way
, *socket
);
896 * Move to the proper node structure, in order to access the
897 * right PCI registers
899 new_mci
= get_mci_for_node_id(*socket
);
901 sprintf(msg
, "Struct for socket #%u wasn't initialized",
909 * Step 2) Get memory channel
912 for (n_tads
= 0; n_tads
< MAX_TAD
; n_tads
++) {
913 pci_read_config_dword(pvt
->pci_ha0
, tad_dram_rule
[n_tads
],
915 limit
= TAD_LIMIT(reg
);
917 sprintf(msg
, "Can't discover the memory channel");
924 ch_way
= TAD_CH(reg
) + 1;
925 sck_way
= TAD_SOCK(reg
) + 1;
927 * FIXME: Is it right to always use channel 0 for offsets?
929 pci_read_config_dword(pvt
->pci_tad
[0],
930 tad_ch_nilv_offset
[n_tads
],
936 idx
= addr
>> (6 + sck_way
);
940 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
944 base_ch
= TAD_TGT0(reg
);
947 base_ch
= TAD_TGT1(reg
);
950 base_ch
= TAD_TGT2(reg
);
953 base_ch
= TAD_TGT3(reg
);
956 sprintf(msg
, "Can't discover the TAD target");
959 *channel_mask
= 1 << base_ch
;
961 if (pvt
->is_mirrored
) {
962 *channel_mask
|= 1 << ((base_ch
+ 2) % 4);
966 sck_xch
= 1 << sck_way
* (ch_way
>> 1);
969 sprintf(msg
, "Invalid mirror set. Can't decode addr");
973 sck_xch
= (1 << sck_way
) * ch_way
;
975 if (pvt
->is_lockstep
)
976 *channel_mask
|= 1 << ((base_ch
+ 1) % 4);
978 offset
= TAD_OFFSET(tad_offset
);
980 edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
991 /* Calculate channel address */
992 /* Remove the TAD offset */
995 sprintf(msg
, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
1000 /* Store the low bits [0:6] of the addr */
1001 ch_addr
= addr
& 0x7f;
1002 /* Remove socket wayness and remove 6 bits */
1004 addr
= div_u64(addr
, sck_xch
);
1006 /* Divide by channel way */
1007 addr
= addr
/ ch_way
;
1009 /* Recover the last 6 bits */
1010 ch_addr
|= addr
<< 6;
1013 * Step 3) Decode rank
1015 for (n_rir
= 0; n_rir
< MAX_RIR_RANGES
; n_rir
++) {
1016 pci_read_config_dword(pvt
->pci_tad
[base_ch
],
1017 rir_way_limit
[n_rir
],
1020 if (!IS_RIR_VALID(reg
))
1023 limit
= RIR_LIMIT(reg
);
1024 mb
= div_u64_rem(limit
>> 20, 1000, &kb
);
1025 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
1030 if (ch_addr
<= limit
)
1033 if (n_rir
== MAX_RIR_RANGES
) {
1034 sprintf(msg
, "Can't discover the memory rank for ch addr 0x%08Lx",
1038 rir_way
= RIR_WAY(reg
);
1039 if (pvt
->is_close_pg
)
1040 idx
= (ch_addr
>> 6);
1042 idx
= (ch_addr
>> 13); /* FIXME: Datasheet says to shift by 15 */
1043 idx
%= 1 << rir_way
;
1045 pci_read_config_dword(pvt
->pci_tad
[base_ch
],
1046 rir_offset
[n_rir
][idx
],
1048 *rank
= RIR_RNK_TGT(reg
);
1050 edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
1060 /****************************************************************************
1061 Device initialization routines: put/get, init/exit
1062 ****************************************************************************/
1065 * sbridge_put_all_devices 'put' all the devices that we have
1066 * reserved via 'get'
1068 static void sbridge_put_devices(struct sbridge_dev
*sbridge_dev
)
1073 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
1074 struct pci_dev
*pdev
= sbridge_dev
->pdev
[i
];
1077 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
1079 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
));
1084 static void sbridge_put_all_devices(void)
1086 struct sbridge_dev
*sbridge_dev
, *tmp
;
1088 list_for_each_entry_safe(sbridge_dev
, tmp
, &sbridge_edac_list
, list
) {
1089 sbridge_put_devices(sbridge_dev
);
1090 free_sbridge_dev(sbridge_dev
);
1095 * sbridge_get_all_devices Find and perform 'get' operation on the MCH's
1096 * device/functions we want to reference for this driver
1098 * Need to 'get' device 16 func 1 and func 2
1100 static int sbridge_get_onedevice(struct pci_dev
**prev
,
1102 const struct pci_id_table
*table
,
1103 const unsigned devno
)
1105 struct sbridge_dev
*sbridge_dev
;
1106 const struct pci_id_descr
*dev_descr
= &table
->descr
[devno
];
1108 struct pci_dev
*pdev
= NULL
;
1111 sbridge_printk(KERN_INFO
,
1112 "Seeking for: dev %02x.%d PCI ID %04x:%04x\n",
1113 dev_descr
->dev
, dev_descr
->func
,
1114 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
1116 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
,
1117 dev_descr
->dev_id
, *prev
);
1125 if (dev_descr
->optional
)
1131 sbridge_printk(KERN_INFO
,
1132 "Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1133 dev_descr
->dev
, dev_descr
->func
,
1134 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
1136 /* End of list, leave */
1139 bus
= pdev
->bus
->number
;
1141 sbridge_dev
= get_sbridge_dev(bus
);
1143 sbridge_dev
= alloc_sbridge_dev(bus
, table
);
1151 if (sbridge_dev
->pdev
[devno
]) {
1152 sbridge_printk(KERN_ERR
,
1153 "Duplicated device for "
1154 "dev %02x:%d.%d PCI ID %04x:%04x\n",
1155 bus
, dev_descr
->dev
, dev_descr
->func
,
1156 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
1161 sbridge_dev
->pdev
[devno
] = pdev
;
1164 if (unlikely(PCI_SLOT(pdev
->devfn
) != dev_descr
->dev
||
1165 PCI_FUNC(pdev
->devfn
) != dev_descr
->func
)) {
1166 sbridge_printk(KERN_ERR
,
1167 "Device PCI ID %04x:%04x "
1168 "has dev %02x:%d.%d instead of dev %02x:%02x.%d\n",
1169 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
,
1170 bus
, PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
1171 bus
, dev_descr
->dev
, dev_descr
->func
);
1175 /* Be sure that the device is enabled */
1176 if (unlikely(pci_enable_device(pdev
) < 0)) {
1177 sbridge_printk(KERN_ERR
,
1179 "dev %02x:%d.%d PCI ID %04x:%04x\n",
1180 bus
, dev_descr
->dev
, dev_descr
->func
,
1181 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
1185 edac_dbg(0, "Detected dev %02x:%d.%d PCI ID %04x:%04x\n",
1186 bus
, dev_descr
->dev
, dev_descr
->func
,
1187 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
1190 * As stated on drivers/pci/search.c, the reference count for
1191 * @from is always decremented if it is not %NULL. So, as we need
1192 * to get all devices up to null, we need to do a get for the device
1201 static int sbridge_get_all_devices(u8
*num_mc
)
1204 struct pci_dev
*pdev
= NULL
;
1205 const struct pci_id_table
*table
= pci_dev_descr_sbridge_table
;
1207 while (table
&& table
->descr
) {
1208 for (i
= 0; i
< table
->n_devs
; i
++) {
1211 rc
= sbridge_get_onedevice(&pdev
, num_mc
,
1218 sbridge_put_all_devices();
1229 static int mci_bind_devs(struct mem_ctl_info
*mci
,
1230 struct sbridge_dev
*sbridge_dev
)
1232 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1233 struct pci_dev
*pdev
;
1236 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
1237 pdev
= sbridge_dev
->pdev
[i
];
1240 slot
= PCI_SLOT(pdev
->devfn
);
1241 func
= PCI_FUNC(pdev
->devfn
);
1246 pvt
->pci_sad0
= pdev
;
1249 pvt
->pci_sad1
= pdev
;
1267 pvt
->pci_ha0
= pdev
;
1279 pvt
->pci_ras
= pdev
;
1285 pvt
->pci_tad
[func
- 2] = pdev
;
1294 pvt
->pci_ddrio
= pdev
;
1304 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1306 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
1310 /* Check if everything were registered */
1311 if (!pvt
->pci_sad0
|| !pvt
->pci_sad1
|| !pvt
->pci_ha0
||
1312 !pvt
-> pci_tad
|| !pvt
->pci_ras
|| !pvt
->pci_ta
)
1315 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
1316 if (!pvt
->pci_tad
[i
])
1322 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
1326 sbridge_printk(KERN_ERR
, "Device %d, function %d "
1327 "is out of the expected range\n",
1332 /****************************************************************************
1333 Error check routines
1334 ****************************************************************************/
1337 * While Sandy Bridge has error count registers, SMI BIOS read values from
1338 * and resets the counters. So, they are not reliable for the OS to read
1339 * from them. So, we have no option but to just trust on whatever MCE is
1340 * telling us about the errors.
1342 static void sbridge_mce_output_error(struct mem_ctl_info
*mci
,
1343 const struct mce
*m
)
1345 struct mem_ctl_info
*new_mci
;
1346 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1347 enum hw_event_mc_err_type tp_event
;
1348 char *type
, *optype
, msg
[256];
1349 bool ripv
= GET_BITFIELD(m
->mcgstatus
, 0, 0);
1350 bool overflow
= GET_BITFIELD(m
->status
, 62, 62);
1351 bool uncorrected_error
= GET_BITFIELD(m
->status
, 61, 61);
1352 bool recoverable
= GET_BITFIELD(m
->status
, 56, 56);
1353 u32 core_err_cnt
= GET_BITFIELD(m
->status
, 38, 52);
1354 u32 mscod
= GET_BITFIELD(m
->status
, 16, 31);
1355 u32 errcode
= GET_BITFIELD(m
->status
, 0, 15);
1356 u32 channel
= GET_BITFIELD(m
->status
, 0, 3);
1357 u32 optypenum
= GET_BITFIELD(m
->status
, 4, 6);
1358 long channel_mask
, first_channel
;
1361 char *area_type
= NULL
;
1363 if (uncorrected_error
) {
1366 tp_event
= HW_EVENT_ERR_FATAL
;
1369 tp_event
= HW_EVENT_ERR_UNCORRECTED
;
1373 tp_event
= HW_EVENT_ERR_CORRECTED
;
1377 * According with Table 15-9 of the Intel Architecture spec vol 3A,
1378 * memory errors should fit in this mask:
1379 * 000f 0000 1mmm cccc (binary)
1381 * f = Correction Report Filtering Bit. If 1, subsequent errors
1385 * If the mask doesn't match, report an error to the parsing logic
1387 if (! ((errcode
& 0xef80) == 0x80)) {
1388 optype
= "Can't parse: it is not a mem";
1390 switch (optypenum
) {
1392 optype
= "generic undef request error";
1395 optype
= "memory read error";
1398 optype
= "memory write error";
1401 optype
= "addr/cmd error";
1404 optype
= "memory scrubbing error";
1407 optype
= "reserved";
1412 rc
= get_memory_error_data(mci
, m
->addr
, &socket
,
1413 &channel_mask
, &rank
, &area_type
, msg
);
1416 new_mci
= get_mci_for_node_id(socket
);
1418 strcpy(msg
, "Error: socket got corrupted!");
1422 pvt
= mci
->pvt_info
;
1424 first_channel
= find_first_bit(&channel_mask
, NUM_CHANNELS
);
1435 * FIXME: On some memory configurations (mirror, lockstep), the
1436 * Memory Controller can't point the error to a single DIMM. The
1437 * EDAC core should be handling the channel mask, in order to point
1438 * to the group of dimm's where the error may be happening.
1440 snprintf(msg
, sizeof(msg
),
1441 "%s%s area:%s err_code:%04x:%04x socket:%d channel_mask:%ld rank:%d",
1442 overflow
? " OVERFLOW" : "",
1443 (uncorrected_error
&& recoverable
) ? " recoverable" : "",
1450 edac_dbg(0, "%s\n", msg
);
1452 /* FIXME: need support for channel mask */
1454 /* Call the helper to output message */
1455 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
,
1456 m
->addr
>> PAGE_SHIFT
, m
->addr
& ~PAGE_MASK
, 0,
1461 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
, 0, 0, 0,
1468 * sbridge_check_error Retrieve and process errors reported by the
1469 * hardware. Called by the Core module.
1471 static void sbridge_check_error(struct mem_ctl_info
*mci
)
1473 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1479 * MCE first step: Copy all mce errors into a temporary buffer
1480 * We use a double buffering here, to reduce the risk of
1484 count
= (pvt
->mce_out
+ MCE_LOG_LEN
- pvt
->mce_in
)
1489 m
= pvt
->mce_outentry
;
1490 if (pvt
->mce_in
+ count
> MCE_LOG_LEN
) {
1491 unsigned l
= MCE_LOG_LEN
- pvt
->mce_in
;
1493 memcpy(m
, &pvt
->mce_entry
[pvt
->mce_in
], sizeof(*m
) * l
);
1499 memcpy(m
, &pvt
->mce_entry
[pvt
->mce_in
], sizeof(*m
) * count
);
1501 pvt
->mce_in
+= count
;
1504 if (pvt
->mce_overrun
) {
1505 sbridge_printk(KERN_ERR
, "Lost %d memory errors\n",
1508 pvt
->mce_overrun
= 0;
1512 * MCE second step: parse errors and display
1514 for (i
= 0; i
< count
; i
++)
1515 sbridge_mce_output_error(mci
, &pvt
->mce_outentry
[i
]);
1519 * sbridge_mce_check_error Replicates mcelog routine to get errors
1520 * This routine simply queues mcelog errors, and
1521 * return. The error itself should be handled later
1522 * by sbridge_check_error.
1523 * WARNING: As this routine should be called at NMI time, extra care should
1524 * be taken to avoid deadlocks, and to be as fast as possible.
1526 static int sbridge_mce_check_error(struct notifier_block
*nb
, unsigned long val
,
1529 struct mce
*mce
= (struct mce
*)data
;
1530 struct mem_ctl_info
*mci
;
1531 struct sbridge_pvt
*pvt
;
1533 mci
= get_mci_for_node_id(mce
->socketid
);
1536 pvt
= mci
->pvt_info
;
1539 * Just let mcelog handle it if the error is
1540 * outside the memory controller. A memory error
1541 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
1542 * bit 12 has an special meaning.
1544 if ((mce
->status
& 0xefff) >> 7 != 1)
1547 printk("sbridge: HANDLING MCE MEMORY ERROR\n");
1549 printk("CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
1550 mce
->extcpu
, mce
->mcgstatus
, mce
->bank
, mce
->status
);
1551 printk("TSC %llx ", mce
->tsc
);
1552 printk("ADDR %llx ", mce
->addr
);
1553 printk("MISC %llx ", mce
->misc
);
1555 printk("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
1556 mce
->cpuvendor
, mce
->cpuid
, mce
->time
,
1557 mce
->socketid
, mce
->apicid
);
1559 /* Only handle if it is the right mc controller */
1560 if (cpu_data(mce
->cpu
).phys_proc_id
!= pvt
->sbridge_dev
->mc
)
1564 if ((pvt
->mce_out
+ 1) % MCE_LOG_LEN
== pvt
->mce_in
) {
1570 /* Copy memory error at the ringbuffer */
1571 memcpy(&pvt
->mce_entry
[pvt
->mce_out
], mce
, sizeof(*mce
));
1573 pvt
->mce_out
= (pvt
->mce_out
+ 1) % MCE_LOG_LEN
;
1575 /* Handle fatal errors immediately */
1576 if (mce
->mcgstatus
& 1)
1577 sbridge_check_error(mci
);
1579 /* Advice mcelog that the error were handled */
1583 static struct notifier_block sbridge_mce_dec
= {
1584 .notifier_call
= sbridge_mce_check_error
,
1587 /****************************************************************************
1588 EDAC register/unregister logic
1589 ****************************************************************************/
1591 static void sbridge_unregister_mci(struct sbridge_dev
*sbridge_dev
)
1593 struct mem_ctl_info
*mci
= sbridge_dev
->mci
;
1594 struct sbridge_pvt
*pvt
;
1596 if (unlikely(!mci
|| !mci
->pvt_info
)) {
1597 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev
->pdev
[0]->dev
);
1599 sbridge_printk(KERN_ERR
, "Couldn't find mci handler\n");
1603 pvt
= mci
->pvt_info
;
1605 edac_dbg(0, "MC: mci = %p, dev = %p\n",
1606 mci
, &sbridge_dev
->pdev
[0]->dev
);
1608 /* Remove MC sysfs nodes */
1609 edac_mc_del_mc(mci
->pdev
);
1611 edac_dbg(1, "%s: free mci struct\n", mci
->ctl_name
);
1612 kfree(mci
->ctl_name
);
1614 sbridge_dev
->mci
= NULL
;
1617 static int sbridge_register_mci(struct sbridge_dev
*sbridge_dev
)
1619 struct mem_ctl_info
*mci
;
1620 struct edac_mc_layer layers
[2];
1621 struct sbridge_pvt
*pvt
;
1624 /* Check the number of active and not disabled channels */
1625 rc
= check_if_ecc_is_active(sbridge_dev
->bus
);
1626 if (unlikely(rc
< 0))
1629 /* allocate a new MC control structure */
1630 layers
[0].type
= EDAC_MC_LAYER_CHANNEL
;
1631 layers
[0].size
= NUM_CHANNELS
;
1632 layers
[0].is_virt_csrow
= false;
1633 layers
[1].type
= EDAC_MC_LAYER_SLOT
;
1634 layers
[1].size
= MAX_DIMMS
;
1635 layers
[1].is_virt_csrow
= true;
1636 mci
= edac_mc_alloc(sbridge_dev
->mc
, ARRAY_SIZE(layers
), layers
,
1642 edac_dbg(0, "MC: mci = %p, dev = %p\n",
1643 mci
, &sbridge_dev
->pdev
[0]->dev
);
1645 pvt
= mci
->pvt_info
;
1646 memset(pvt
, 0, sizeof(*pvt
));
1648 /* Associate sbridge_dev and mci for future usage */
1649 pvt
->sbridge_dev
= sbridge_dev
;
1650 sbridge_dev
->mci
= mci
;
1652 mci
->mtype_cap
= MEM_FLAG_DDR3
;
1653 mci
->edac_ctl_cap
= EDAC_FLAG_NONE
;
1654 mci
->edac_cap
= EDAC_FLAG_NONE
;
1655 mci
->mod_name
= "sbridge_edac.c";
1656 mci
->mod_ver
= SBRIDGE_REVISION
;
1657 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Sandy Bridge Socket#%d", mci
->mc_idx
);
1658 mci
->dev_name
= pci_name(sbridge_dev
->pdev
[0]);
1659 mci
->ctl_page_to_phys
= NULL
;
1661 /* Set the function pointer to an actual operation function */
1662 mci
->edac_check
= sbridge_check_error
;
1664 /* Store pci devices at mci for faster access */
1665 rc
= mci_bind_devs(mci
, sbridge_dev
);
1666 if (unlikely(rc
< 0))
1669 /* Get dimm basic config and the memory layout */
1670 get_dimm_config(mci
);
1671 get_memory_layout(mci
);
1673 /* record ptr to the generic device */
1674 mci
->pdev
= &sbridge_dev
->pdev
[0]->dev
;
1676 /* add this new MC control structure to EDAC's list of MCs */
1677 if (unlikely(edac_mc_add_mc(mci
))) {
1678 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1686 kfree(mci
->ctl_name
);
1688 sbridge_dev
->mci
= NULL
;
1693 * sbridge_probe Probe for ONE instance of device to see if it is
1696 * 0 for FOUND a device
1697 * < 0 for error code
1700 static int sbridge_probe(struct pci_dev
*pdev
, const struct pci_device_id
*id
)
1704 struct sbridge_dev
*sbridge_dev
;
1706 /* get the pci devices we want to reserve for our use */
1707 mutex_lock(&sbridge_edac_lock
);
1710 * All memory controllers are allocated at the first pass.
1712 if (unlikely(probed
>= 1)) {
1713 mutex_unlock(&sbridge_edac_lock
);
1718 rc
= sbridge_get_all_devices(&num_mc
);
1719 if (unlikely(rc
< 0))
1723 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
1724 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
1725 mc
, mc
+ 1, num_mc
);
1726 sbridge_dev
->mc
= mc
++;
1727 rc
= sbridge_register_mci(sbridge_dev
);
1728 if (unlikely(rc
< 0))
1732 sbridge_printk(KERN_INFO
, "Driver loaded.\n");
1734 mutex_unlock(&sbridge_edac_lock
);
1738 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
)
1739 sbridge_unregister_mci(sbridge_dev
);
1741 sbridge_put_all_devices();
1743 mutex_unlock(&sbridge_edac_lock
);
1748 * sbridge_remove destructor for one instance of device
1751 static void sbridge_remove(struct pci_dev
*pdev
)
1753 struct sbridge_dev
*sbridge_dev
;
1758 * we have a trouble here: pdev value for removal will be wrong, since
1759 * it will point to the X58 register used to detect that the machine
1760 * is a Nehalem or upper design. However, due to the way several PCI
1761 * devices are grouped together to provide MC functionality, we need
1762 * to use a different method for releasing the devices
1765 mutex_lock(&sbridge_edac_lock
);
1767 if (unlikely(!probed
)) {
1768 mutex_unlock(&sbridge_edac_lock
);
1772 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
)
1773 sbridge_unregister_mci(sbridge_dev
);
1775 /* Release PCI resources */
1776 sbridge_put_all_devices();
1780 mutex_unlock(&sbridge_edac_lock
);
1783 MODULE_DEVICE_TABLE(pci
, sbridge_pci_tbl
);
1786 * sbridge_driver pci_driver structure for this module
1789 static struct pci_driver sbridge_driver
= {
1790 .name
= "sbridge_edac",
1791 .probe
= sbridge_probe
,
1792 .remove
= sbridge_remove
,
1793 .id_table
= sbridge_pci_tbl
,
1797 * sbridge_init Module entry function
1798 * Try to initialize this module for its devices
1800 static int __init
sbridge_init(void)
1806 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1809 pci_rc
= pci_register_driver(&sbridge_driver
);
1812 mce_register_decode_chain(&sbridge_mce_dec
);
1816 sbridge_printk(KERN_ERR
, "Failed to register device with error %d.\n",
1823 * sbridge_exit() Module exit function
1824 * Unregister the driver
1826 static void __exit
sbridge_exit(void)
1829 pci_unregister_driver(&sbridge_driver
);
1830 mce_unregister_decode_chain(&sbridge_mce_dec
);
1833 module_init(sbridge_init
);
1834 module_exit(sbridge_exit
);
1836 module_param(edac_op_state
, int, 0444);
1837 MODULE_PARM_DESC(edac_op_state
, "EDAC Error Reporting state: 0=Poll,1=NMI");
1839 MODULE_LICENSE("GPL");
1840 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
1841 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
1842 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge memory controllers - "