smp: blackfin: fix check error, using atomic_ops to handle atomic_t type
[linux-2.6.git] / arch / sparc / mm / fault_64.c
blob5062ff389e83bb3b2865deaabb0a4d5338256e09
1 /*
2 * arch/sparc64/mm/fault.c: Page fault handlers for the 64-bit Sparc.
4 * Copyright (C) 1996, 2008 David S. Miller (davem@davemloft.net)
5 * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz)
6 */
8 #include <asm/head.h>
10 #include <linux/string.h>
11 #include <linux/types.h>
12 #include <linux/sched.h>
13 #include <linux/ptrace.h>
14 #include <linux/mman.h>
15 #include <linux/signal.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/perf_event.h>
20 #include <linux/interrupt.h>
21 #include <linux/kprobes.h>
22 #include <linux/kdebug.h>
23 #include <linux/percpu.h>
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/openprom.h>
28 #include <asm/oplib.h>
29 #include <asm/uaccess.h>
30 #include <asm/asi.h>
31 #include <asm/lsu.h>
32 #include <asm/sections.h>
33 #include <asm/mmu_context.h>
35 int show_unhandled_signals = 1;
37 static inline __kprobes int notify_page_fault(struct pt_regs *regs)
39 int ret = 0;
41 /* kprobe_running() needs smp_processor_id() */
42 if (kprobes_built_in() && !user_mode(regs)) {
43 preempt_disable();
44 if (kprobe_running() && kprobe_fault_handler(regs, 0))
45 ret = 1;
46 preempt_enable();
48 return ret;
51 static void __kprobes unhandled_fault(unsigned long address,
52 struct task_struct *tsk,
53 struct pt_regs *regs)
55 if ((unsigned long) address < PAGE_SIZE) {
56 printk(KERN_ALERT "Unable to handle kernel NULL "
57 "pointer dereference\n");
58 } else {
59 printk(KERN_ALERT "Unable to handle kernel paging request "
60 "at virtual address %016lx\n", (unsigned long)address);
62 printk(KERN_ALERT "tsk->{mm,active_mm}->context = %016lx\n",
63 (tsk->mm ?
64 CTX_HWBITS(tsk->mm->context) :
65 CTX_HWBITS(tsk->active_mm->context)));
66 printk(KERN_ALERT "tsk->{mm,active_mm}->pgd = %016lx\n",
67 (tsk->mm ? (unsigned long) tsk->mm->pgd :
68 (unsigned long) tsk->active_mm->pgd));
69 die_if_kernel("Oops", regs);
72 static void __kprobes bad_kernel_pc(struct pt_regs *regs, unsigned long vaddr)
74 printk(KERN_CRIT "OOPS: Bogus kernel PC [%016lx] in fault handler\n",
75 regs->tpc);
76 printk(KERN_CRIT "OOPS: RPC [%016lx]\n", regs->u_regs[15]);
77 printk("OOPS: RPC <%pS>\n", (void *) regs->u_regs[15]);
78 printk(KERN_CRIT "OOPS: Fault was to vaddr[%lx]\n", vaddr);
79 dump_stack();
80 unhandled_fault(regs->tpc, current, regs);
84 * We now make sure that mmap_sem is held in all paths that call
85 * this. Additionally, to prevent kswapd from ripping ptes from
86 * under us, raise interrupts around the time that we look at the
87 * pte, kswapd will have to wait to get his smp ipi response from
88 * us. vmtruncate likewise. This saves us having to get pte lock.
90 static unsigned int get_user_insn(unsigned long tpc)
92 pgd_t *pgdp = pgd_offset(current->mm, tpc);
93 pud_t *pudp;
94 pmd_t *pmdp;
95 pte_t *ptep, pte;
96 unsigned long pa;
97 u32 insn = 0;
98 unsigned long pstate;
100 if (pgd_none(*pgdp))
101 goto outret;
102 pudp = pud_offset(pgdp, tpc);
103 if (pud_none(*pudp))
104 goto outret;
105 pmdp = pmd_offset(pudp, tpc);
106 if (pmd_none(*pmdp))
107 goto outret;
109 /* This disables preemption for us as well. */
110 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
111 __asm__ __volatile__("wrpr %0, %1, %%pstate"
112 : : "r" (pstate), "i" (PSTATE_IE));
113 ptep = pte_offset_map(pmdp, tpc);
114 pte = *ptep;
115 if (!pte_present(pte))
116 goto out;
118 pa = (pte_pfn(pte) << PAGE_SHIFT);
119 pa += (tpc & ~PAGE_MASK);
121 /* Use phys bypass so we don't pollute dtlb/dcache. */
122 __asm__ __volatile__("lduwa [%1] %2, %0"
123 : "=r" (insn)
124 : "r" (pa), "i" (ASI_PHYS_USE_EC));
126 out:
127 pte_unmap(ptep);
128 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" : : "r" (pstate));
129 outret:
130 return insn;
133 static inline void
134 show_signal_msg(struct pt_regs *regs, int sig, int code,
135 unsigned long address, struct task_struct *tsk)
137 if (!unhandled_signal(tsk, sig))
138 return;
140 if (!printk_ratelimit())
141 return;
143 printk("%s%s[%d]: segfault at %lx ip %p (rpc %p) sp %p error %x",
144 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
145 tsk->comm, task_pid_nr(tsk), address,
146 (void *)regs->tpc, (void *)regs->u_regs[UREG_I7],
147 (void *)regs->u_regs[UREG_FP], code);
149 print_vma_addr(KERN_CONT " in ", regs->tpc);
151 printk(KERN_CONT "\n");
154 static void do_fault_siginfo(int code, int sig, struct pt_regs *regs,
155 unsigned int insn, int fault_code)
157 unsigned long addr;
158 siginfo_t info;
160 info.si_code = code;
161 info.si_signo = sig;
162 info.si_errno = 0;
163 if (fault_code & FAULT_CODE_ITLB)
164 addr = regs->tpc;
165 else
166 addr = compute_effective_address(regs, insn, 0);
167 info.si_addr = (void __user *) addr;
168 info.si_trapno = 0;
170 if (unlikely(show_unhandled_signals))
171 show_signal_msg(regs, sig, code, addr, current);
173 force_sig_info(sig, &info, current);
176 extern int handle_ldf_stq(u32, struct pt_regs *);
177 extern int handle_ld_nf(u32, struct pt_regs *);
179 static unsigned int get_fault_insn(struct pt_regs *regs, unsigned int insn)
181 if (!insn) {
182 if (!regs->tpc || (regs->tpc & 0x3))
183 return 0;
184 if (regs->tstate & TSTATE_PRIV) {
185 insn = *(unsigned int *) regs->tpc;
186 } else {
187 insn = get_user_insn(regs->tpc);
190 return insn;
193 static void __kprobes do_kernel_fault(struct pt_regs *regs, int si_code,
194 int fault_code, unsigned int insn,
195 unsigned long address)
197 unsigned char asi = ASI_P;
199 if ((!insn) && (regs->tstate & TSTATE_PRIV))
200 goto cannot_handle;
202 /* If user insn could be read (thus insn is zero), that
203 * is fine. We will just gun down the process with a signal
204 * in that case.
207 if (!(fault_code & (FAULT_CODE_WRITE|FAULT_CODE_ITLB)) &&
208 (insn & 0xc0800000) == 0xc0800000) {
209 if (insn & 0x2000)
210 asi = (regs->tstate >> 24);
211 else
212 asi = (insn >> 5);
213 if ((asi & 0xf2) == 0x82) {
214 if (insn & 0x1000000) {
215 handle_ldf_stq(insn, regs);
216 } else {
217 /* This was a non-faulting load. Just clear the
218 * destination register(s) and continue with the next
219 * instruction. -jj
221 handle_ld_nf(insn, regs);
223 return;
227 /* Is this in ex_table? */
228 if (regs->tstate & TSTATE_PRIV) {
229 const struct exception_table_entry *entry;
231 entry = search_exception_tables(regs->tpc);
232 if (entry) {
233 regs->tpc = entry->fixup;
234 regs->tnpc = regs->tpc + 4;
235 return;
237 } else {
238 /* The si_code was set to make clear whether
239 * this was a SEGV_MAPERR or SEGV_ACCERR fault.
241 do_fault_siginfo(si_code, SIGSEGV, regs, insn, fault_code);
242 return;
245 cannot_handle:
246 unhandled_fault (address, current, regs);
249 static void noinline __kprobes bogus_32bit_fault_tpc(struct pt_regs *regs)
251 static int times;
253 if (times++ < 10)
254 printk(KERN_ERR "FAULT[%s:%d]: 32-bit process reports "
255 "64-bit TPC [%lx]\n",
256 current->comm, current->pid,
257 regs->tpc);
258 show_regs(regs);
261 static void noinline __kprobes bogus_32bit_fault_address(struct pt_regs *regs,
262 unsigned long addr)
264 static int times;
266 if (times++ < 10)
267 printk(KERN_ERR "FAULT[%s:%d]: 32-bit process "
268 "reports 64-bit fault address [%lx]\n",
269 current->comm, current->pid, addr);
270 show_regs(regs);
273 asmlinkage void __kprobes do_sparc64_fault(struct pt_regs *regs)
275 struct mm_struct *mm = current->mm;
276 struct vm_area_struct *vma;
277 unsigned int insn = 0;
278 int si_code, fault_code, fault;
279 unsigned long address, mm_rss;
280 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
282 fault_code = get_thread_fault_code();
284 if (notify_page_fault(regs))
285 return;
287 si_code = SEGV_MAPERR;
288 address = current_thread_info()->fault_address;
290 if ((fault_code & FAULT_CODE_ITLB) &&
291 (fault_code & FAULT_CODE_DTLB))
292 BUG();
294 if (test_thread_flag(TIF_32BIT)) {
295 if (!(regs->tstate & TSTATE_PRIV)) {
296 if (unlikely((regs->tpc >> 32) != 0)) {
297 bogus_32bit_fault_tpc(regs);
298 goto intr_or_no_mm;
301 if (unlikely((address >> 32) != 0)) {
302 bogus_32bit_fault_address(regs, address);
303 goto intr_or_no_mm;
307 if (regs->tstate & TSTATE_PRIV) {
308 unsigned long tpc = regs->tpc;
310 /* Sanity check the PC. */
311 if ((tpc >= KERNBASE && tpc < (unsigned long) __init_end) ||
312 (tpc >= MODULES_VADDR && tpc < MODULES_END)) {
313 /* Valid, no problems... */
314 } else {
315 bad_kernel_pc(regs, address);
316 return;
321 * If we're in an interrupt or have no user
322 * context, we must not take the fault..
324 if (in_atomic() || !mm)
325 goto intr_or_no_mm;
327 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
329 if (!down_read_trylock(&mm->mmap_sem)) {
330 if ((regs->tstate & TSTATE_PRIV) &&
331 !search_exception_tables(regs->tpc)) {
332 insn = get_fault_insn(regs, insn);
333 goto handle_kernel_fault;
336 retry:
337 down_read(&mm->mmap_sem);
340 vma = find_vma(mm, address);
341 if (!vma)
342 goto bad_area;
344 /* Pure DTLB misses do not tell us whether the fault causing
345 * load/store/atomic was a write or not, it only says that there
346 * was no match. So in such a case we (carefully) read the
347 * instruction to try and figure this out. It's an optimization
348 * so it's ok if we can't do this.
350 * Special hack, window spill/fill knows the exact fault type.
352 if (((fault_code &
353 (FAULT_CODE_DTLB | FAULT_CODE_WRITE | FAULT_CODE_WINFIXUP)) == FAULT_CODE_DTLB) &&
354 (vma->vm_flags & VM_WRITE) != 0) {
355 insn = get_fault_insn(regs, 0);
356 if (!insn)
357 goto continue_fault;
358 /* All loads, stores and atomics have bits 30 and 31 both set
359 * in the instruction. Bit 21 is set in all stores, but we
360 * have to avoid prefetches which also have bit 21 set.
362 if ((insn & 0xc0200000) == 0xc0200000 &&
363 (insn & 0x01780000) != 0x01680000) {
364 /* Don't bother updating thread struct value,
365 * because update_mmu_cache only cares which tlb
366 * the access came from.
368 fault_code |= FAULT_CODE_WRITE;
371 continue_fault:
373 if (vma->vm_start <= address)
374 goto good_area;
375 if (!(vma->vm_flags & VM_GROWSDOWN))
376 goto bad_area;
377 if (!(fault_code & FAULT_CODE_WRITE)) {
378 /* Non-faulting loads shouldn't expand stack. */
379 insn = get_fault_insn(regs, insn);
380 if ((insn & 0xc0800000) == 0xc0800000) {
381 unsigned char asi;
383 if (insn & 0x2000)
384 asi = (regs->tstate >> 24);
385 else
386 asi = (insn >> 5);
387 if ((asi & 0xf2) == 0x82)
388 goto bad_area;
391 if (expand_stack(vma, address))
392 goto bad_area;
394 * Ok, we have a good vm_area for this memory access, so
395 * we can handle it..
397 good_area:
398 si_code = SEGV_ACCERR;
400 /* If we took a ITLB miss on a non-executable page, catch
401 * that here.
403 if ((fault_code & FAULT_CODE_ITLB) && !(vma->vm_flags & VM_EXEC)) {
404 BUG_ON(address != regs->tpc);
405 BUG_ON(regs->tstate & TSTATE_PRIV);
406 goto bad_area;
409 if (fault_code & FAULT_CODE_WRITE) {
410 if (!(vma->vm_flags & VM_WRITE))
411 goto bad_area;
413 /* Spitfire has an icache which does not snoop
414 * processor stores. Later processors do...
416 if (tlb_type == spitfire &&
417 (vma->vm_flags & VM_EXEC) != 0 &&
418 vma->vm_file != NULL)
419 set_thread_fault_code(fault_code |
420 FAULT_CODE_BLKCOMMIT);
421 } else {
422 /* Allow reads even for write-only mappings */
423 if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
424 goto bad_area;
427 flags |= ((fault_code & FAULT_CODE_WRITE) ? FAULT_FLAG_WRITE : 0);
428 fault = handle_mm_fault(mm, vma, address, flags);
430 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
431 return;
433 if (unlikely(fault & VM_FAULT_ERROR)) {
434 if (fault & VM_FAULT_OOM)
435 goto out_of_memory;
436 else if (fault & VM_FAULT_SIGBUS)
437 goto do_sigbus;
438 BUG();
441 if (flags & FAULT_FLAG_ALLOW_RETRY) {
442 if (fault & VM_FAULT_MAJOR) {
443 current->maj_flt++;
444 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ,
445 1, regs, address);
446 } else {
447 current->min_flt++;
448 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN,
449 1, regs, address);
451 if (fault & VM_FAULT_RETRY) {
452 flags &= ~FAULT_FLAG_ALLOW_RETRY;
453 flags |= FAULT_FLAG_TRIED;
455 /* No need to up_read(&mm->mmap_sem) as we would
456 * have already released it in __lock_page_or_retry
457 * in mm/filemap.c.
460 goto retry;
463 up_read(&mm->mmap_sem);
465 mm_rss = get_mm_rss(mm);
466 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
467 mm_rss -= (mm->context.huge_pte_count * (HPAGE_SIZE / PAGE_SIZE));
468 #endif
469 if (unlikely(mm_rss >
470 mm->context.tsb_block[MM_TSB_BASE].tsb_rss_limit))
471 tsb_grow(mm, MM_TSB_BASE, mm_rss);
472 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
473 mm_rss = mm->context.huge_pte_count;
474 if (unlikely(mm_rss >
475 mm->context.tsb_block[MM_TSB_HUGE].tsb_rss_limit)) {
476 if (mm->context.tsb_block[MM_TSB_HUGE].tsb)
477 tsb_grow(mm, MM_TSB_HUGE, mm_rss);
478 else
479 hugetlb_setup(regs);
482 #endif
483 return;
486 * Something tried to access memory that isn't in our memory map..
487 * Fix it, but check if it's kernel or user first..
489 bad_area:
490 insn = get_fault_insn(regs, insn);
491 up_read(&mm->mmap_sem);
493 handle_kernel_fault:
494 do_kernel_fault(regs, si_code, fault_code, insn, address);
495 return;
498 * We ran out of memory, or some other thing happened to us that made
499 * us unable to handle the page fault gracefully.
501 out_of_memory:
502 insn = get_fault_insn(regs, insn);
503 up_read(&mm->mmap_sem);
504 if (!(regs->tstate & TSTATE_PRIV)) {
505 pagefault_out_of_memory();
506 return;
508 goto handle_kernel_fault;
510 intr_or_no_mm:
511 insn = get_fault_insn(regs, 0);
512 goto handle_kernel_fault;
514 do_sigbus:
515 insn = get_fault_insn(regs, insn);
516 up_read(&mm->mmap_sem);
519 * Send a sigbus, regardless of whether we were in kernel
520 * or user mode.
522 do_fault_siginfo(BUS_ADRERR, SIGBUS, regs, insn, fault_code);
524 /* Kernel mode? Handle exceptions or die */
525 if (regs->tstate & TSTATE_PRIV)
526 goto handle_kernel_fault;