4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
45 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
);
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
50 init_buffer(struct buffer_head
*bh
, bh_end_io_t
*handler
, void *private)
52 bh
->b_end_io
= handler
;
53 bh
->b_private
= private;
55 EXPORT_SYMBOL(init_buffer
);
57 static int sleep_on_buffer(void *word
)
63 void __lock_buffer(struct buffer_head
*bh
)
65 wait_on_bit_lock(&bh
->b_state
, BH_Lock
, sleep_on_buffer
,
66 TASK_UNINTERRUPTIBLE
);
68 EXPORT_SYMBOL(__lock_buffer
);
70 void unlock_buffer(struct buffer_head
*bh
)
72 clear_bit_unlock(BH_Lock
, &bh
->b_state
);
73 smp_mb__after_clear_bit();
74 wake_up_bit(&bh
->b_state
, BH_Lock
);
76 EXPORT_SYMBOL(unlock_buffer
);
79 * Block until a buffer comes unlocked. This doesn't stop it
80 * from becoming locked again - you have to lock it yourself
81 * if you want to preserve its state.
83 void __wait_on_buffer(struct buffer_head
* bh
)
85 wait_on_bit(&bh
->b_state
, BH_Lock
, sleep_on_buffer
, TASK_UNINTERRUPTIBLE
);
87 EXPORT_SYMBOL(__wait_on_buffer
);
90 __clear_page_buffers(struct page
*page
)
92 ClearPagePrivate(page
);
93 set_page_private(page
, 0);
94 page_cache_release(page
);
98 static int quiet_error(struct buffer_head
*bh
)
100 if (!test_bit(BH_Quiet
, &bh
->b_state
) && printk_ratelimit())
106 static void buffer_io_error(struct buffer_head
*bh
)
108 char b
[BDEVNAME_SIZE
];
109 printk(KERN_ERR
"Buffer I/O error on device %s, logical block %Lu\n",
110 bdevname(bh
->b_bdev
, b
),
111 (unsigned long long)bh
->b_blocknr
);
115 * End-of-IO handler helper function which does not touch the bh after
117 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
118 * a race there is benign: unlock_buffer() only use the bh's address for
119 * hashing after unlocking the buffer, so it doesn't actually touch the bh
122 static void __end_buffer_read_notouch(struct buffer_head
*bh
, int uptodate
)
125 set_buffer_uptodate(bh
);
127 /* This happens, due to failed READA attempts. */
128 clear_buffer_uptodate(bh
);
134 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
135 * unlock the buffer. This is what ll_rw_block uses too.
137 void end_buffer_read_sync(struct buffer_head
*bh
, int uptodate
)
139 __end_buffer_read_notouch(bh
, uptodate
);
142 EXPORT_SYMBOL(end_buffer_read_sync
);
144 void end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
146 char b
[BDEVNAME_SIZE
];
149 set_buffer_uptodate(bh
);
151 if (!quiet_error(bh
)) {
153 printk(KERN_WARNING
"lost page write due to "
155 bdevname(bh
->b_bdev
, b
));
157 set_buffer_write_io_error(bh
);
158 clear_buffer_uptodate(bh
);
163 EXPORT_SYMBOL(end_buffer_write_sync
);
166 * Various filesystems appear to want __find_get_block to be non-blocking.
167 * But it's the page lock which protects the buffers. To get around this,
168 * we get exclusion from try_to_free_buffers with the blockdev mapping's
171 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
172 * may be quite high. This code could TryLock the page, and if that
173 * succeeds, there is no need to take private_lock. (But if
174 * private_lock is contended then so is mapping->tree_lock).
176 static struct buffer_head
*
177 __find_get_block_slow(struct block_device
*bdev
, sector_t block
)
179 struct inode
*bd_inode
= bdev
->bd_inode
;
180 struct address_space
*bd_mapping
= bd_inode
->i_mapping
;
181 struct buffer_head
*ret
= NULL
;
183 struct buffer_head
*bh
;
184 struct buffer_head
*head
;
188 index
= block
>> (PAGE_CACHE_SHIFT
- bd_inode
->i_blkbits
);
189 page
= find_get_page(bd_mapping
, index
);
193 spin_lock(&bd_mapping
->private_lock
);
194 if (!page_has_buffers(page
))
196 head
= page_buffers(page
);
199 if (!buffer_mapped(bh
))
201 else if (bh
->b_blocknr
== block
) {
206 bh
= bh
->b_this_page
;
207 } while (bh
!= head
);
209 /* we might be here because some of the buffers on this page are
210 * not mapped. This is due to various races between
211 * file io on the block device and getblk. It gets dealt with
212 * elsewhere, don't buffer_error if we had some unmapped buffers
215 char b
[BDEVNAME_SIZE
];
217 printk("__find_get_block_slow() failed. "
218 "block=%llu, b_blocknr=%llu\n",
219 (unsigned long long)block
,
220 (unsigned long long)bh
->b_blocknr
);
221 printk("b_state=0x%08lx, b_size=%zu\n",
222 bh
->b_state
, bh
->b_size
);
223 printk("device %s blocksize: %d\n", bdevname(bdev
, b
),
224 1 << bd_inode
->i_blkbits
);
227 spin_unlock(&bd_mapping
->private_lock
);
228 page_cache_release(page
);
234 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
236 static void free_more_memory(void)
241 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM
);
244 for_each_online_node(nid
) {
245 (void)first_zones_zonelist(node_zonelist(nid
, GFP_NOFS
),
246 gfp_zone(GFP_NOFS
), NULL
,
249 try_to_free_pages(node_zonelist(nid
, GFP_NOFS
), 0,
255 * I/O completion handler for block_read_full_page() - pages
256 * which come unlocked at the end of I/O.
258 static void end_buffer_async_read(struct buffer_head
*bh
, int uptodate
)
261 struct buffer_head
*first
;
262 struct buffer_head
*tmp
;
264 int page_uptodate
= 1;
266 BUG_ON(!buffer_async_read(bh
));
270 set_buffer_uptodate(bh
);
272 clear_buffer_uptodate(bh
);
273 if (!quiet_error(bh
))
279 * Be _very_ careful from here on. Bad things can happen if
280 * two buffer heads end IO at almost the same time and both
281 * decide that the page is now completely done.
283 first
= page_buffers(page
);
284 local_irq_save(flags
);
285 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
286 clear_buffer_async_read(bh
);
290 if (!buffer_uptodate(tmp
))
292 if (buffer_async_read(tmp
)) {
293 BUG_ON(!buffer_locked(tmp
));
296 tmp
= tmp
->b_this_page
;
298 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
299 local_irq_restore(flags
);
302 * If none of the buffers had errors and they are all
303 * uptodate then we can set the page uptodate.
305 if (page_uptodate
&& !PageError(page
))
306 SetPageUptodate(page
);
311 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
312 local_irq_restore(flags
);
317 * Completion handler for block_write_full_page() - pages which are unlocked
318 * during I/O, and which have PageWriteback cleared upon I/O completion.
320 void end_buffer_async_write(struct buffer_head
*bh
, int uptodate
)
322 char b
[BDEVNAME_SIZE
];
324 struct buffer_head
*first
;
325 struct buffer_head
*tmp
;
328 BUG_ON(!buffer_async_write(bh
));
332 set_buffer_uptodate(bh
);
334 if (!quiet_error(bh
)) {
336 printk(KERN_WARNING
"lost page write due to "
338 bdevname(bh
->b_bdev
, b
));
340 set_bit(AS_EIO
, &page
->mapping
->flags
);
341 set_buffer_write_io_error(bh
);
342 clear_buffer_uptodate(bh
);
346 first
= page_buffers(page
);
347 local_irq_save(flags
);
348 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
350 clear_buffer_async_write(bh
);
352 tmp
= bh
->b_this_page
;
354 if (buffer_async_write(tmp
)) {
355 BUG_ON(!buffer_locked(tmp
));
358 tmp
= tmp
->b_this_page
;
360 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
361 local_irq_restore(flags
);
362 end_page_writeback(page
);
366 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
367 local_irq_restore(flags
);
370 EXPORT_SYMBOL(end_buffer_async_write
);
373 * If a page's buffers are under async readin (end_buffer_async_read
374 * completion) then there is a possibility that another thread of
375 * control could lock one of the buffers after it has completed
376 * but while some of the other buffers have not completed. This
377 * locked buffer would confuse end_buffer_async_read() into not unlocking
378 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
379 * that this buffer is not under async I/O.
381 * The page comes unlocked when it has no locked buffer_async buffers
384 * PageLocked prevents anyone starting new async I/O reads any of
387 * PageWriteback is used to prevent simultaneous writeout of the same
390 * PageLocked prevents anyone from starting writeback of a page which is
391 * under read I/O (PageWriteback is only ever set against a locked page).
393 static void mark_buffer_async_read(struct buffer_head
*bh
)
395 bh
->b_end_io
= end_buffer_async_read
;
396 set_buffer_async_read(bh
);
399 static void mark_buffer_async_write_endio(struct buffer_head
*bh
,
400 bh_end_io_t
*handler
)
402 bh
->b_end_io
= handler
;
403 set_buffer_async_write(bh
);
406 void mark_buffer_async_write(struct buffer_head
*bh
)
408 mark_buffer_async_write_endio(bh
, end_buffer_async_write
);
410 EXPORT_SYMBOL(mark_buffer_async_write
);
414 * fs/buffer.c contains helper functions for buffer-backed address space's
415 * fsync functions. A common requirement for buffer-based filesystems is
416 * that certain data from the backing blockdev needs to be written out for
417 * a successful fsync(). For example, ext2 indirect blocks need to be
418 * written back and waited upon before fsync() returns.
420 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
421 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
422 * management of a list of dependent buffers at ->i_mapping->private_list.
424 * Locking is a little subtle: try_to_free_buffers() will remove buffers
425 * from their controlling inode's queue when they are being freed. But
426 * try_to_free_buffers() will be operating against the *blockdev* mapping
427 * at the time, not against the S_ISREG file which depends on those buffers.
428 * So the locking for private_list is via the private_lock in the address_space
429 * which backs the buffers. Which is different from the address_space
430 * against which the buffers are listed. So for a particular address_space,
431 * mapping->private_lock does *not* protect mapping->private_list! In fact,
432 * mapping->private_list will always be protected by the backing blockdev's
435 * Which introduces a requirement: all buffers on an address_space's
436 * ->private_list must be from the same address_space: the blockdev's.
438 * address_spaces which do not place buffers at ->private_list via these
439 * utility functions are free to use private_lock and private_list for
440 * whatever they want. The only requirement is that list_empty(private_list)
441 * be true at clear_inode() time.
443 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
444 * filesystems should do that. invalidate_inode_buffers() should just go
445 * BUG_ON(!list_empty).
447 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
448 * take an address_space, not an inode. And it should be called
449 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
452 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
453 * list if it is already on a list. Because if the buffer is on a list,
454 * it *must* already be on the right one. If not, the filesystem is being
455 * silly. This will save a ton of locking. But first we have to ensure
456 * that buffers are taken *off* the old inode's list when they are freed
457 * (presumably in truncate). That requires careful auditing of all
458 * filesystems (do it inside bforget()). It could also be done by bringing
463 * The buffer's backing address_space's private_lock must be held
465 static void __remove_assoc_queue(struct buffer_head
*bh
)
467 list_del_init(&bh
->b_assoc_buffers
);
468 WARN_ON(!bh
->b_assoc_map
);
469 if (buffer_write_io_error(bh
))
470 set_bit(AS_EIO
, &bh
->b_assoc_map
->flags
);
471 bh
->b_assoc_map
= NULL
;
474 int inode_has_buffers(struct inode
*inode
)
476 return !list_empty(&inode
->i_data
.private_list
);
480 * osync is designed to support O_SYNC io. It waits synchronously for
481 * all already-submitted IO to complete, but does not queue any new
482 * writes to the disk.
484 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
485 * you dirty the buffers, and then use osync_inode_buffers to wait for
486 * completion. Any other dirty buffers which are not yet queued for
487 * write will not be flushed to disk by the osync.
489 static int osync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
491 struct buffer_head
*bh
;
497 list_for_each_prev(p
, list
) {
499 if (buffer_locked(bh
)) {
503 if (!buffer_uptodate(bh
))
514 static void do_thaw_one(struct super_block
*sb
, void *unused
)
516 char b
[BDEVNAME_SIZE
];
517 while (sb
->s_bdev
&& !thaw_bdev(sb
->s_bdev
, sb
))
518 printk(KERN_WARNING
"Emergency Thaw on %s\n",
519 bdevname(sb
->s_bdev
, b
));
522 static void do_thaw_all(struct work_struct
*work
)
524 iterate_supers(do_thaw_one
, NULL
);
526 printk(KERN_WARNING
"Emergency Thaw complete\n");
530 * emergency_thaw_all -- forcibly thaw every frozen filesystem
532 * Used for emergency unfreeze of all filesystems via SysRq
534 void emergency_thaw_all(void)
536 struct work_struct
*work
;
538 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
540 INIT_WORK(work
, do_thaw_all
);
546 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
547 * @mapping: the mapping which wants those buffers written
549 * Starts I/O against the buffers at mapping->private_list, and waits upon
552 * Basically, this is a convenience function for fsync().
553 * @mapping is a file or directory which needs those buffers to be written for
554 * a successful fsync().
556 int sync_mapping_buffers(struct address_space
*mapping
)
558 struct address_space
*buffer_mapping
= mapping
->assoc_mapping
;
560 if (buffer_mapping
== NULL
|| list_empty(&mapping
->private_list
))
563 return fsync_buffers_list(&buffer_mapping
->private_lock
,
564 &mapping
->private_list
);
566 EXPORT_SYMBOL(sync_mapping_buffers
);
569 * Called when we've recently written block `bblock', and it is known that
570 * `bblock' was for a buffer_boundary() buffer. This means that the block at
571 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
572 * dirty, schedule it for IO. So that indirects merge nicely with their data.
574 void write_boundary_block(struct block_device
*bdev
,
575 sector_t bblock
, unsigned blocksize
)
577 struct buffer_head
*bh
= __find_get_block(bdev
, bblock
+ 1, blocksize
);
579 if (buffer_dirty(bh
))
580 ll_rw_block(WRITE
, 1, &bh
);
585 void mark_buffer_dirty_inode(struct buffer_head
*bh
, struct inode
*inode
)
587 struct address_space
*mapping
= inode
->i_mapping
;
588 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
590 mark_buffer_dirty(bh
);
591 if (!mapping
->assoc_mapping
) {
592 mapping
->assoc_mapping
= buffer_mapping
;
594 BUG_ON(mapping
->assoc_mapping
!= buffer_mapping
);
596 if (!bh
->b_assoc_map
) {
597 spin_lock(&buffer_mapping
->private_lock
);
598 list_move_tail(&bh
->b_assoc_buffers
,
599 &mapping
->private_list
);
600 bh
->b_assoc_map
= mapping
;
601 spin_unlock(&buffer_mapping
->private_lock
);
604 EXPORT_SYMBOL(mark_buffer_dirty_inode
);
607 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
610 * If warn is true, then emit a warning if the page is not uptodate and has
611 * not been truncated.
613 static void __set_page_dirty(struct page
*page
,
614 struct address_space
*mapping
, int warn
)
616 spin_lock_irq(&mapping
->tree_lock
);
617 if (page
->mapping
) { /* Race with truncate? */
618 WARN_ON_ONCE(warn
&& !PageUptodate(page
));
619 account_page_dirtied(page
, mapping
);
620 radix_tree_tag_set(&mapping
->page_tree
,
621 page_index(page
), PAGECACHE_TAG_DIRTY
);
623 spin_unlock_irq(&mapping
->tree_lock
);
624 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
628 * Add a page to the dirty page list.
630 * It is a sad fact of life that this function is called from several places
631 * deeply under spinlocking. It may not sleep.
633 * If the page has buffers, the uptodate buffers are set dirty, to preserve
634 * dirty-state coherency between the page and the buffers. It the page does
635 * not have buffers then when they are later attached they will all be set
638 * The buffers are dirtied before the page is dirtied. There's a small race
639 * window in which a writepage caller may see the page cleanness but not the
640 * buffer dirtiness. That's fine. If this code were to set the page dirty
641 * before the buffers, a concurrent writepage caller could clear the page dirty
642 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
643 * page on the dirty page list.
645 * We use private_lock to lock against try_to_free_buffers while using the
646 * page's buffer list. Also use this to protect against clean buffers being
647 * added to the page after it was set dirty.
649 * FIXME: may need to call ->reservepage here as well. That's rather up to the
650 * address_space though.
652 int __set_page_dirty_buffers(struct page
*page
)
655 struct address_space
*mapping
= page_mapping(page
);
657 if (unlikely(!mapping
))
658 return !TestSetPageDirty(page
);
660 spin_lock(&mapping
->private_lock
);
661 if (page_has_buffers(page
)) {
662 struct buffer_head
*head
= page_buffers(page
);
663 struct buffer_head
*bh
= head
;
666 set_buffer_dirty(bh
);
667 bh
= bh
->b_this_page
;
668 } while (bh
!= head
);
670 newly_dirty
= !TestSetPageDirty(page
);
671 spin_unlock(&mapping
->private_lock
);
674 __set_page_dirty(page
, mapping
, 1);
677 EXPORT_SYMBOL(__set_page_dirty_buffers
);
680 * Write out and wait upon a list of buffers.
682 * We have conflicting pressures: we want to make sure that all
683 * initially dirty buffers get waited on, but that any subsequently
684 * dirtied buffers don't. After all, we don't want fsync to last
685 * forever if somebody is actively writing to the file.
687 * Do this in two main stages: first we copy dirty buffers to a
688 * temporary inode list, queueing the writes as we go. Then we clean
689 * up, waiting for those writes to complete.
691 * During this second stage, any subsequent updates to the file may end
692 * up refiling the buffer on the original inode's dirty list again, so
693 * there is a chance we will end up with a buffer queued for write but
694 * not yet completed on that list. So, as a final cleanup we go through
695 * the osync code to catch these locked, dirty buffers without requeuing
696 * any newly dirty buffers for write.
698 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
700 struct buffer_head
*bh
;
701 struct list_head tmp
;
702 struct address_space
*mapping
;
704 struct blk_plug plug
;
706 INIT_LIST_HEAD(&tmp
);
707 blk_start_plug(&plug
);
710 while (!list_empty(list
)) {
711 bh
= BH_ENTRY(list
->next
);
712 mapping
= bh
->b_assoc_map
;
713 __remove_assoc_queue(bh
);
714 /* Avoid race with mark_buffer_dirty_inode() which does
715 * a lockless check and we rely on seeing the dirty bit */
717 if (buffer_dirty(bh
) || buffer_locked(bh
)) {
718 list_add(&bh
->b_assoc_buffers
, &tmp
);
719 bh
->b_assoc_map
= mapping
;
720 if (buffer_dirty(bh
)) {
724 * Ensure any pending I/O completes so that
725 * write_dirty_buffer() actually writes the
726 * current contents - it is a noop if I/O is
727 * still in flight on potentially older
730 write_dirty_buffer(bh
, WRITE_SYNC
);
733 * Kick off IO for the previous mapping. Note
734 * that we will not run the very last mapping,
735 * wait_on_buffer() will do that for us
736 * through sync_buffer().
745 blk_finish_plug(&plug
);
748 while (!list_empty(&tmp
)) {
749 bh
= BH_ENTRY(tmp
.prev
);
751 mapping
= bh
->b_assoc_map
;
752 __remove_assoc_queue(bh
);
753 /* Avoid race with mark_buffer_dirty_inode() which does
754 * a lockless check and we rely on seeing the dirty bit */
756 if (buffer_dirty(bh
)) {
757 list_add(&bh
->b_assoc_buffers
,
758 &mapping
->private_list
);
759 bh
->b_assoc_map
= mapping
;
763 if (!buffer_uptodate(bh
))
770 err2
= osync_buffers_list(lock
, list
);
778 * Invalidate any and all dirty buffers on a given inode. We are
779 * probably unmounting the fs, but that doesn't mean we have already
780 * done a sync(). Just drop the buffers from the inode list.
782 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
783 * assumes that all the buffers are against the blockdev. Not true
786 void invalidate_inode_buffers(struct inode
*inode
)
788 if (inode_has_buffers(inode
)) {
789 struct address_space
*mapping
= &inode
->i_data
;
790 struct list_head
*list
= &mapping
->private_list
;
791 struct address_space
*buffer_mapping
= mapping
->assoc_mapping
;
793 spin_lock(&buffer_mapping
->private_lock
);
794 while (!list_empty(list
))
795 __remove_assoc_queue(BH_ENTRY(list
->next
));
796 spin_unlock(&buffer_mapping
->private_lock
);
799 EXPORT_SYMBOL(invalidate_inode_buffers
);
802 * Remove any clean buffers from the inode's buffer list. This is called
803 * when we're trying to free the inode itself. Those buffers can pin it.
805 * Returns true if all buffers were removed.
807 int remove_inode_buffers(struct inode
*inode
)
811 if (inode_has_buffers(inode
)) {
812 struct address_space
*mapping
= &inode
->i_data
;
813 struct list_head
*list
= &mapping
->private_list
;
814 struct address_space
*buffer_mapping
= mapping
->assoc_mapping
;
816 spin_lock(&buffer_mapping
->private_lock
);
817 while (!list_empty(list
)) {
818 struct buffer_head
*bh
= BH_ENTRY(list
->next
);
819 if (buffer_dirty(bh
)) {
823 __remove_assoc_queue(bh
);
825 spin_unlock(&buffer_mapping
->private_lock
);
831 * Create the appropriate buffers when given a page for data area and
832 * the size of each buffer.. Use the bh->b_this_page linked list to
833 * follow the buffers created. Return NULL if unable to create more
836 * The retry flag is used to differentiate async IO (paging, swapping)
837 * which may not fail from ordinary buffer allocations.
839 struct buffer_head
*alloc_page_buffers(struct page
*page
, unsigned long size
,
842 struct buffer_head
*bh
, *head
;
848 while ((offset
-= size
) >= 0) {
849 bh
= alloc_buffer_head(GFP_NOFS
);
854 bh
->b_this_page
= head
;
859 atomic_set(&bh
->b_count
, 0);
862 /* Link the buffer to its page */
863 set_bh_page(bh
, page
, offset
);
865 init_buffer(bh
, NULL
, NULL
);
869 * In case anything failed, we just free everything we got.
875 head
= head
->b_this_page
;
876 free_buffer_head(bh
);
881 * Return failure for non-async IO requests. Async IO requests
882 * are not allowed to fail, so we have to wait until buffer heads
883 * become available. But we don't want tasks sleeping with
884 * partially complete buffers, so all were released above.
889 /* We're _really_ low on memory. Now we just
890 * wait for old buffer heads to become free due to
891 * finishing IO. Since this is an async request and
892 * the reserve list is empty, we're sure there are
893 * async buffer heads in use.
898 EXPORT_SYMBOL_GPL(alloc_page_buffers
);
901 link_dev_buffers(struct page
*page
, struct buffer_head
*head
)
903 struct buffer_head
*bh
, *tail
;
908 bh
= bh
->b_this_page
;
910 tail
->b_this_page
= head
;
911 attach_page_buffers(page
, head
);
915 * Initialise the state of a blockdev page's buffers.
918 init_page_buffers(struct page
*page
, struct block_device
*bdev
,
919 sector_t block
, int size
)
921 struct buffer_head
*head
= page_buffers(page
);
922 struct buffer_head
*bh
= head
;
923 int uptodate
= PageUptodate(page
);
924 sector_t end_block
= blkdev_max_block(I_BDEV(bdev
->bd_inode
));
927 if (!buffer_mapped(bh
)) {
928 init_buffer(bh
, NULL
, NULL
);
930 bh
->b_blocknr
= block
;
932 set_buffer_uptodate(bh
);
933 if (block
< end_block
)
934 set_buffer_mapped(bh
);
937 bh
= bh
->b_this_page
;
938 } while (bh
!= head
);
942 * Create the page-cache page that contains the requested block.
944 * This is user purely for blockdev mappings.
947 grow_dev_page(struct block_device
*bdev
, sector_t block
,
948 pgoff_t index
, int size
)
950 struct inode
*inode
= bdev
->bd_inode
;
952 struct buffer_head
*bh
;
954 page
= find_or_create_page(inode
->i_mapping
, index
,
955 (mapping_gfp_mask(inode
->i_mapping
) & ~__GFP_FS
)|__GFP_MOVABLE
);
959 BUG_ON(!PageLocked(page
));
961 if (page_has_buffers(page
)) {
962 bh
= page_buffers(page
);
963 if (bh
->b_size
== size
) {
964 init_page_buffers(page
, bdev
, block
, size
);
967 if (!try_to_free_buffers(page
))
972 * Allocate some buffers for this page
974 bh
= alloc_page_buffers(page
, size
, 0);
979 * Link the page to the buffers and initialise them. Take the
980 * lock to be atomic wrt __find_get_block(), which does not
981 * run under the page lock.
983 spin_lock(&inode
->i_mapping
->private_lock
);
984 link_dev_buffers(page
, bh
);
985 init_page_buffers(page
, bdev
, block
, size
);
986 spin_unlock(&inode
->i_mapping
->private_lock
);
991 page_cache_release(page
);
996 * Create buffers for the specified block device block's page. If
997 * that page was dirty, the buffers are set dirty also.
1000 grow_buffers(struct block_device
*bdev
, sector_t block
, int size
)
1009 } while ((size
<< sizebits
) < PAGE_SIZE
);
1011 index
= block
>> sizebits
;
1014 * Check for a block which wants to lie outside our maximum possible
1015 * pagecache index. (this comparison is done using sector_t types).
1017 if (unlikely(index
!= block
>> sizebits
)) {
1018 char b
[BDEVNAME_SIZE
];
1020 printk(KERN_ERR
"%s: requested out-of-range block %llu for "
1022 __func__
, (unsigned long long)block
,
1026 block
= index
<< sizebits
;
1027 /* Create a page with the proper size buffers.. */
1028 page
= grow_dev_page(bdev
, block
, index
, size
);
1032 page_cache_release(page
);
1036 static struct buffer_head
*
1037 __getblk_slow(struct block_device
*bdev
, sector_t block
, int size
)
1039 /* Size must be multiple of hard sectorsize */
1040 if (unlikely(size
& (bdev_logical_block_size(bdev
)-1) ||
1041 (size
< 512 || size
> PAGE_SIZE
))) {
1042 printk(KERN_ERR
"getblk(): invalid block size %d requested\n",
1044 printk(KERN_ERR
"logical block size: %d\n",
1045 bdev_logical_block_size(bdev
));
1052 struct buffer_head
* bh
;
1055 bh
= __find_get_block(bdev
, block
, size
);
1059 ret
= grow_buffers(bdev
, block
, size
);
1068 * The relationship between dirty buffers and dirty pages:
1070 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1071 * the page is tagged dirty in its radix tree.
1073 * At all times, the dirtiness of the buffers represents the dirtiness of
1074 * subsections of the page. If the page has buffers, the page dirty bit is
1075 * merely a hint about the true dirty state.
1077 * When a page is set dirty in its entirety, all its buffers are marked dirty
1078 * (if the page has buffers).
1080 * When a buffer is marked dirty, its page is dirtied, but the page's other
1083 * Also. When blockdev buffers are explicitly read with bread(), they
1084 * individually become uptodate. But their backing page remains not
1085 * uptodate - even if all of its buffers are uptodate. A subsequent
1086 * block_read_full_page() against that page will discover all the uptodate
1087 * buffers, will set the page uptodate and will perform no I/O.
1091 * mark_buffer_dirty - mark a buffer_head as needing writeout
1092 * @bh: the buffer_head to mark dirty
1094 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1095 * backing page dirty, then tag the page as dirty in its address_space's radix
1096 * tree and then attach the address_space's inode to its superblock's dirty
1099 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1100 * mapping->tree_lock and mapping->host->i_lock.
1102 void mark_buffer_dirty(struct buffer_head
*bh
)
1104 WARN_ON_ONCE(!buffer_uptodate(bh
));
1107 * Very *carefully* optimize the it-is-already-dirty case.
1109 * Don't let the final "is it dirty" escape to before we
1110 * perhaps modified the buffer.
1112 if (buffer_dirty(bh
)) {
1114 if (buffer_dirty(bh
))
1118 if (!test_set_buffer_dirty(bh
)) {
1119 struct page
*page
= bh
->b_page
;
1120 if (!TestSetPageDirty(page
)) {
1121 struct address_space
*mapping
= page_mapping(page
);
1123 __set_page_dirty(page
, mapping
, 0);
1127 EXPORT_SYMBOL(mark_buffer_dirty
);
1130 * Decrement a buffer_head's reference count. If all buffers against a page
1131 * have zero reference count, are clean and unlocked, and if the page is clean
1132 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1133 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1134 * a page but it ends up not being freed, and buffers may later be reattached).
1136 void __brelse(struct buffer_head
* buf
)
1138 if (atomic_read(&buf
->b_count
)) {
1142 WARN(1, KERN_ERR
"VFS: brelse: Trying to free free buffer\n");
1144 EXPORT_SYMBOL(__brelse
);
1147 * bforget() is like brelse(), except it discards any
1148 * potentially dirty data.
1150 void __bforget(struct buffer_head
*bh
)
1152 clear_buffer_dirty(bh
);
1153 if (bh
->b_assoc_map
) {
1154 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
1156 spin_lock(&buffer_mapping
->private_lock
);
1157 list_del_init(&bh
->b_assoc_buffers
);
1158 bh
->b_assoc_map
= NULL
;
1159 spin_unlock(&buffer_mapping
->private_lock
);
1163 EXPORT_SYMBOL(__bforget
);
1165 static struct buffer_head
*__bread_slow(struct buffer_head
*bh
)
1168 if (buffer_uptodate(bh
)) {
1173 bh
->b_end_io
= end_buffer_read_sync
;
1174 submit_bh(READ
, bh
);
1176 if (buffer_uptodate(bh
))
1184 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1185 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1186 * refcount elevated by one when they're in an LRU. A buffer can only appear
1187 * once in a particular CPU's LRU. A single buffer can be present in multiple
1188 * CPU's LRUs at the same time.
1190 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1191 * sb_find_get_block().
1193 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1194 * a local interrupt disable for that.
1197 #define BH_LRU_SIZE 8
1200 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1203 static DEFINE_PER_CPU(struct bh_lru
, bh_lrus
) = {{ NULL
}};
1206 #define bh_lru_lock() local_irq_disable()
1207 #define bh_lru_unlock() local_irq_enable()
1209 #define bh_lru_lock() preempt_disable()
1210 #define bh_lru_unlock() preempt_enable()
1213 static inline void check_irqs_on(void)
1215 #ifdef irqs_disabled
1216 BUG_ON(irqs_disabled());
1221 * The LRU management algorithm is dopey-but-simple. Sorry.
1223 static void bh_lru_install(struct buffer_head
*bh
)
1225 struct buffer_head
*evictee
= NULL
;
1229 if (__this_cpu_read(bh_lrus
.bhs
[0]) != bh
) {
1230 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1236 for (in
= 0; in
< BH_LRU_SIZE
; in
++) {
1237 struct buffer_head
*bh2
=
1238 __this_cpu_read(bh_lrus
.bhs
[in
]);
1243 if (out
>= BH_LRU_SIZE
) {
1244 BUG_ON(evictee
!= NULL
);
1251 while (out
< BH_LRU_SIZE
)
1253 memcpy(__this_cpu_ptr(&bh_lrus
.bhs
), bhs
, sizeof(bhs
));
1262 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1264 static struct buffer_head
*
1265 lookup_bh_lru(struct block_device
*bdev
, sector_t block
, unsigned size
)
1267 struct buffer_head
*ret
= NULL
;
1272 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1273 struct buffer_head
*bh
= __this_cpu_read(bh_lrus
.bhs
[i
]);
1275 if (bh
&& bh
->b_bdev
== bdev
&&
1276 bh
->b_blocknr
== block
&& bh
->b_size
== size
) {
1279 __this_cpu_write(bh_lrus
.bhs
[i
],
1280 __this_cpu_read(bh_lrus
.bhs
[i
- 1]));
1283 __this_cpu_write(bh_lrus
.bhs
[0], bh
);
1295 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1296 * it in the LRU and mark it as accessed. If it is not present then return
1299 struct buffer_head
*
1300 __find_get_block(struct block_device
*bdev
, sector_t block
, unsigned size
)
1302 struct buffer_head
*bh
= lookup_bh_lru(bdev
, block
, size
);
1305 bh
= __find_get_block_slow(bdev
, block
);
1313 EXPORT_SYMBOL(__find_get_block
);
1316 * __getblk will locate (and, if necessary, create) the buffer_head
1317 * which corresponds to the passed block_device, block and size. The
1318 * returned buffer has its reference count incremented.
1320 * __getblk() cannot fail - it just keeps trying. If you pass it an
1321 * illegal block number, __getblk() will happily return a buffer_head
1322 * which represents the non-existent block. Very weird.
1324 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1325 * attempt is failing. FIXME, perhaps?
1327 struct buffer_head
*
1328 __getblk(struct block_device
*bdev
, sector_t block
, unsigned size
)
1330 struct buffer_head
*bh
= __find_get_block(bdev
, block
, size
);
1334 bh
= __getblk_slow(bdev
, block
, size
);
1337 EXPORT_SYMBOL(__getblk
);
1340 * Do async read-ahead on a buffer..
1342 void __breadahead(struct block_device
*bdev
, sector_t block
, unsigned size
)
1344 struct buffer_head
*bh
= __getblk(bdev
, block
, size
);
1346 ll_rw_block(READA
, 1, &bh
);
1350 EXPORT_SYMBOL(__breadahead
);
1353 * __bread() - reads a specified block and returns the bh
1354 * @bdev: the block_device to read from
1355 * @block: number of block
1356 * @size: size (in bytes) to read
1358 * Reads a specified block, and returns buffer head that contains it.
1359 * It returns NULL if the block was unreadable.
1361 struct buffer_head
*
1362 __bread(struct block_device
*bdev
, sector_t block
, unsigned size
)
1364 struct buffer_head
*bh
= __getblk(bdev
, block
, size
);
1366 if (likely(bh
) && !buffer_uptodate(bh
))
1367 bh
= __bread_slow(bh
);
1370 EXPORT_SYMBOL(__bread
);
1373 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1374 * This doesn't race because it runs in each cpu either in irq
1375 * or with preempt disabled.
1377 static void invalidate_bh_lru(void *arg
)
1379 struct bh_lru
*b
= &get_cpu_var(bh_lrus
);
1382 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1386 put_cpu_var(bh_lrus
);
1389 static bool has_bh_in_lru(int cpu
, void *dummy
)
1391 struct bh_lru
*b
= per_cpu_ptr(&bh_lrus
, cpu
);
1394 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1402 void invalidate_bh_lrus(void)
1404 on_each_cpu_cond(has_bh_in_lru
, invalidate_bh_lru
, NULL
, 1, GFP_KERNEL
);
1406 EXPORT_SYMBOL_GPL(invalidate_bh_lrus
);
1408 void set_bh_page(struct buffer_head
*bh
,
1409 struct page
*page
, unsigned long offset
)
1412 BUG_ON(offset
>= PAGE_SIZE
);
1413 if (PageHighMem(page
))
1415 * This catches illegal uses and preserves the offset:
1417 bh
->b_data
= (char *)(0 + offset
);
1419 bh
->b_data
= page_address(page
) + offset
;
1421 EXPORT_SYMBOL(set_bh_page
);
1424 * Called when truncating a buffer on a page completely.
1426 static void discard_buffer(struct buffer_head
* bh
)
1429 clear_buffer_dirty(bh
);
1431 clear_buffer_mapped(bh
);
1432 clear_buffer_req(bh
);
1433 clear_buffer_new(bh
);
1434 clear_buffer_delay(bh
);
1435 clear_buffer_unwritten(bh
);
1440 * block_invalidatepage - invalidate part or all of a buffer-backed page
1442 * @page: the page which is affected
1443 * @offset: the index of the truncation point
1445 * block_invalidatepage() is called when all or part of the page has become
1446 * invalidated by a truncate operation.
1448 * block_invalidatepage() does not have to release all buffers, but it must
1449 * ensure that no dirty buffer is left outside @offset and that no I/O
1450 * is underway against any of the blocks which are outside the truncation
1451 * point. Because the caller is about to free (and possibly reuse) those
1454 void block_invalidatepage(struct page
*page
, unsigned long offset
)
1456 struct buffer_head
*head
, *bh
, *next
;
1457 unsigned int curr_off
= 0;
1459 BUG_ON(!PageLocked(page
));
1460 if (!page_has_buffers(page
))
1463 head
= page_buffers(page
);
1466 unsigned int next_off
= curr_off
+ bh
->b_size
;
1467 next
= bh
->b_this_page
;
1470 * is this block fully invalidated?
1472 if (offset
<= curr_off
)
1474 curr_off
= next_off
;
1476 } while (bh
!= head
);
1479 * We release buffers only if the entire page is being invalidated.
1480 * The get_block cached value has been unconditionally invalidated,
1481 * so real IO is not possible anymore.
1484 try_to_release_page(page
, 0);
1488 EXPORT_SYMBOL(block_invalidatepage
);
1491 * We attach and possibly dirty the buffers atomically wrt
1492 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1493 * is already excluded via the page lock.
1495 void create_empty_buffers(struct page
*page
,
1496 unsigned long blocksize
, unsigned long b_state
)
1498 struct buffer_head
*bh
, *head
, *tail
;
1500 head
= alloc_page_buffers(page
, blocksize
, 1);
1503 bh
->b_state
|= b_state
;
1505 bh
= bh
->b_this_page
;
1507 tail
->b_this_page
= head
;
1509 spin_lock(&page
->mapping
->private_lock
);
1510 if (PageUptodate(page
) || PageDirty(page
)) {
1513 if (PageDirty(page
))
1514 set_buffer_dirty(bh
);
1515 if (PageUptodate(page
))
1516 set_buffer_uptodate(bh
);
1517 bh
= bh
->b_this_page
;
1518 } while (bh
!= head
);
1520 attach_page_buffers(page
, head
);
1521 spin_unlock(&page
->mapping
->private_lock
);
1523 EXPORT_SYMBOL(create_empty_buffers
);
1526 * We are taking a block for data and we don't want any output from any
1527 * buffer-cache aliases starting from return from that function and
1528 * until the moment when something will explicitly mark the buffer
1529 * dirty (hopefully that will not happen until we will free that block ;-)
1530 * We don't even need to mark it not-uptodate - nobody can expect
1531 * anything from a newly allocated buffer anyway. We used to used
1532 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1533 * don't want to mark the alias unmapped, for example - it would confuse
1534 * anyone who might pick it with bread() afterwards...
1536 * Also.. Note that bforget() doesn't lock the buffer. So there can
1537 * be writeout I/O going on against recently-freed buffers. We don't
1538 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1539 * only if we really need to. That happens here.
1541 void unmap_underlying_metadata(struct block_device
*bdev
, sector_t block
)
1543 struct buffer_head
*old_bh
;
1547 old_bh
= __find_get_block_slow(bdev
, block
);
1549 clear_buffer_dirty(old_bh
);
1550 wait_on_buffer(old_bh
);
1551 clear_buffer_req(old_bh
);
1555 EXPORT_SYMBOL(unmap_underlying_metadata
);
1558 * NOTE! All mapped/uptodate combinations are valid:
1560 * Mapped Uptodate Meaning
1562 * No No "unknown" - must do get_block()
1563 * No Yes "hole" - zero-filled
1564 * Yes No "allocated" - allocated on disk, not read in
1565 * Yes Yes "valid" - allocated and up-to-date in memory.
1567 * "Dirty" is valid only with the last case (mapped+uptodate).
1571 * While block_write_full_page is writing back the dirty buffers under
1572 * the page lock, whoever dirtied the buffers may decide to clean them
1573 * again at any time. We handle that by only looking at the buffer
1574 * state inside lock_buffer().
1576 * If block_write_full_page() is called for regular writeback
1577 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1578 * locked buffer. This only can happen if someone has written the buffer
1579 * directly, with submit_bh(). At the address_space level PageWriteback
1580 * prevents this contention from occurring.
1582 * If block_write_full_page() is called with wbc->sync_mode ==
1583 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1584 * causes the writes to be flagged as synchronous writes.
1586 static int __block_write_full_page(struct inode
*inode
, struct page
*page
,
1587 get_block_t
*get_block
, struct writeback_control
*wbc
,
1588 bh_end_io_t
*handler
)
1592 sector_t last_block
;
1593 struct buffer_head
*bh
, *head
;
1594 const unsigned blocksize
= 1 << inode
->i_blkbits
;
1595 int nr_underway
= 0;
1596 int write_op
= (wbc
->sync_mode
== WB_SYNC_ALL
?
1597 WRITE_SYNC
: WRITE
);
1599 BUG_ON(!PageLocked(page
));
1601 last_block
= (i_size_read(inode
) - 1) >> inode
->i_blkbits
;
1603 if (!page_has_buffers(page
)) {
1604 create_empty_buffers(page
, blocksize
,
1605 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
1609 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1610 * here, and the (potentially unmapped) buffers may become dirty at
1611 * any time. If a buffer becomes dirty here after we've inspected it
1612 * then we just miss that fact, and the page stays dirty.
1614 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1615 * handle that here by just cleaning them.
1618 block
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1619 head
= page_buffers(page
);
1623 * Get all the dirty buffers mapped to disk addresses and
1624 * handle any aliases from the underlying blockdev's mapping.
1627 if (block
> last_block
) {
1629 * mapped buffers outside i_size will occur, because
1630 * this page can be outside i_size when there is a
1631 * truncate in progress.
1634 * The buffer was zeroed by block_write_full_page()
1636 clear_buffer_dirty(bh
);
1637 set_buffer_uptodate(bh
);
1638 } else if ((!buffer_mapped(bh
) || buffer_delay(bh
)) &&
1640 WARN_ON(bh
->b_size
!= blocksize
);
1641 err
= get_block(inode
, block
, bh
, 1);
1644 clear_buffer_delay(bh
);
1645 if (buffer_new(bh
)) {
1646 /* blockdev mappings never come here */
1647 clear_buffer_new(bh
);
1648 unmap_underlying_metadata(bh
->b_bdev
,
1652 bh
= bh
->b_this_page
;
1654 } while (bh
!= head
);
1657 if (!buffer_mapped(bh
))
1660 * If it's a fully non-blocking write attempt and we cannot
1661 * lock the buffer then redirty the page. Note that this can
1662 * potentially cause a busy-wait loop from writeback threads
1663 * and kswapd activity, but those code paths have their own
1664 * higher-level throttling.
1666 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
1668 } else if (!trylock_buffer(bh
)) {
1669 redirty_page_for_writepage(wbc
, page
);
1672 if (test_clear_buffer_dirty(bh
)) {
1673 mark_buffer_async_write_endio(bh
, handler
);
1677 } while ((bh
= bh
->b_this_page
) != head
);
1680 * The page and its buffers are protected by PageWriteback(), so we can
1681 * drop the bh refcounts early.
1683 BUG_ON(PageWriteback(page
));
1684 set_page_writeback(page
);
1687 struct buffer_head
*next
= bh
->b_this_page
;
1688 if (buffer_async_write(bh
)) {
1689 submit_bh(write_op
, bh
);
1693 } while (bh
!= head
);
1698 if (nr_underway
== 0) {
1700 * The page was marked dirty, but the buffers were
1701 * clean. Someone wrote them back by hand with
1702 * ll_rw_block/submit_bh. A rare case.
1704 end_page_writeback(page
);
1707 * The page and buffer_heads can be released at any time from
1715 * ENOSPC, or some other error. We may already have added some
1716 * blocks to the file, so we need to write these out to avoid
1717 * exposing stale data.
1718 * The page is currently locked and not marked for writeback
1721 /* Recovery: lock and submit the mapped buffers */
1723 if (buffer_mapped(bh
) && buffer_dirty(bh
) &&
1724 !buffer_delay(bh
)) {
1726 mark_buffer_async_write_endio(bh
, handler
);
1729 * The buffer may have been set dirty during
1730 * attachment to a dirty page.
1732 clear_buffer_dirty(bh
);
1734 } while ((bh
= bh
->b_this_page
) != head
);
1736 BUG_ON(PageWriteback(page
));
1737 mapping_set_error(page
->mapping
, err
);
1738 set_page_writeback(page
);
1740 struct buffer_head
*next
= bh
->b_this_page
;
1741 if (buffer_async_write(bh
)) {
1742 clear_buffer_dirty(bh
);
1743 submit_bh(write_op
, bh
);
1747 } while (bh
!= head
);
1753 * If a page has any new buffers, zero them out here, and mark them uptodate
1754 * and dirty so they'll be written out (in order to prevent uninitialised
1755 * block data from leaking). And clear the new bit.
1757 void page_zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
1759 unsigned int block_start
, block_end
;
1760 struct buffer_head
*head
, *bh
;
1762 BUG_ON(!PageLocked(page
));
1763 if (!page_has_buffers(page
))
1766 bh
= head
= page_buffers(page
);
1769 block_end
= block_start
+ bh
->b_size
;
1771 if (buffer_new(bh
)) {
1772 if (block_end
> from
&& block_start
< to
) {
1773 if (!PageUptodate(page
)) {
1774 unsigned start
, size
;
1776 start
= max(from
, block_start
);
1777 size
= min(to
, block_end
) - start
;
1779 zero_user(page
, start
, size
);
1780 set_buffer_uptodate(bh
);
1783 clear_buffer_new(bh
);
1784 mark_buffer_dirty(bh
);
1788 block_start
= block_end
;
1789 bh
= bh
->b_this_page
;
1790 } while (bh
!= head
);
1792 EXPORT_SYMBOL(page_zero_new_buffers
);
1794 int __block_write_begin(struct page
*page
, loff_t pos
, unsigned len
,
1795 get_block_t
*get_block
)
1797 unsigned from
= pos
& (PAGE_CACHE_SIZE
- 1);
1798 unsigned to
= from
+ len
;
1799 struct inode
*inode
= page
->mapping
->host
;
1800 unsigned block_start
, block_end
;
1803 unsigned blocksize
, bbits
;
1804 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
=wait
;
1806 BUG_ON(!PageLocked(page
));
1807 BUG_ON(from
> PAGE_CACHE_SIZE
);
1808 BUG_ON(to
> PAGE_CACHE_SIZE
);
1811 blocksize
= 1 << inode
->i_blkbits
;
1812 if (!page_has_buffers(page
))
1813 create_empty_buffers(page
, blocksize
, 0);
1814 head
= page_buffers(page
);
1816 bbits
= inode
->i_blkbits
;
1817 block
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- bbits
);
1819 for(bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
1820 block
++, block_start
=block_end
, bh
= bh
->b_this_page
) {
1821 block_end
= block_start
+ blocksize
;
1822 if (block_end
<= from
|| block_start
>= to
) {
1823 if (PageUptodate(page
)) {
1824 if (!buffer_uptodate(bh
))
1825 set_buffer_uptodate(bh
);
1830 clear_buffer_new(bh
);
1831 if (!buffer_mapped(bh
)) {
1832 WARN_ON(bh
->b_size
!= blocksize
);
1833 err
= get_block(inode
, block
, bh
, 1);
1836 if (buffer_new(bh
)) {
1837 unmap_underlying_metadata(bh
->b_bdev
,
1839 if (PageUptodate(page
)) {
1840 clear_buffer_new(bh
);
1841 set_buffer_uptodate(bh
);
1842 mark_buffer_dirty(bh
);
1845 if (block_end
> to
|| block_start
< from
)
1846 zero_user_segments(page
,
1852 if (PageUptodate(page
)) {
1853 if (!buffer_uptodate(bh
))
1854 set_buffer_uptodate(bh
);
1857 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
1858 !buffer_unwritten(bh
) &&
1859 (block_start
< from
|| block_end
> to
)) {
1860 ll_rw_block(READ
, 1, &bh
);
1865 * If we issued read requests - let them complete.
1867 while(wait_bh
> wait
) {
1868 wait_on_buffer(*--wait_bh
);
1869 if (!buffer_uptodate(*wait_bh
))
1873 page_zero_new_buffers(page
, from
, to
);
1876 EXPORT_SYMBOL(__block_write_begin
);
1878 static int __block_commit_write(struct inode
*inode
, struct page
*page
,
1879 unsigned from
, unsigned to
)
1881 unsigned block_start
, block_end
;
1884 struct buffer_head
*bh
, *head
;
1886 blocksize
= 1 << inode
->i_blkbits
;
1888 for(bh
= head
= page_buffers(page
), block_start
= 0;
1889 bh
!= head
|| !block_start
;
1890 block_start
=block_end
, bh
= bh
->b_this_page
) {
1891 block_end
= block_start
+ blocksize
;
1892 if (block_end
<= from
|| block_start
>= to
) {
1893 if (!buffer_uptodate(bh
))
1896 set_buffer_uptodate(bh
);
1897 mark_buffer_dirty(bh
);
1899 clear_buffer_new(bh
);
1903 * If this is a partial write which happened to make all buffers
1904 * uptodate then we can optimize away a bogus readpage() for
1905 * the next read(). Here we 'discover' whether the page went
1906 * uptodate as a result of this (potentially partial) write.
1909 SetPageUptodate(page
);
1914 * block_write_begin takes care of the basic task of block allocation and
1915 * bringing partial write blocks uptodate first.
1917 * The filesystem needs to handle block truncation upon failure.
1919 int block_write_begin(struct address_space
*mapping
, loff_t pos
, unsigned len
,
1920 unsigned flags
, struct page
**pagep
, get_block_t
*get_block
)
1922 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1926 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1930 status
= __block_write_begin(page
, pos
, len
, get_block
);
1931 if (unlikely(status
)) {
1933 page_cache_release(page
);
1940 EXPORT_SYMBOL(block_write_begin
);
1942 int block_write_end(struct file
*file
, struct address_space
*mapping
,
1943 loff_t pos
, unsigned len
, unsigned copied
,
1944 struct page
*page
, void *fsdata
)
1946 struct inode
*inode
= mapping
->host
;
1949 start
= pos
& (PAGE_CACHE_SIZE
- 1);
1951 if (unlikely(copied
< len
)) {
1953 * The buffers that were written will now be uptodate, so we
1954 * don't have to worry about a readpage reading them and
1955 * overwriting a partial write. However if we have encountered
1956 * a short write and only partially written into a buffer, it
1957 * will not be marked uptodate, so a readpage might come in and
1958 * destroy our partial write.
1960 * Do the simplest thing, and just treat any short write to a
1961 * non uptodate page as a zero-length write, and force the
1962 * caller to redo the whole thing.
1964 if (!PageUptodate(page
))
1967 page_zero_new_buffers(page
, start
+copied
, start
+len
);
1969 flush_dcache_page(page
);
1971 /* This could be a short (even 0-length) commit */
1972 __block_commit_write(inode
, page
, start
, start
+copied
);
1976 EXPORT_SYMBOL(block_write_end
);
1978 int generic_write_end(struct file
*file
, struct address_space
*mapping
,
1979 loff_t pos
, unsigned len
, unsigned copied
,
1980 struct page
*page
, void *fsdata
)
1982 struct inode
*inode
= mapping
->host
;
1983 int i_size_changed
= 0;
1985 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1988 * No need to use i_size_read() here, the i_size
1989 * cannot change under us because we hold i_mutex.
1991 * But it's important to update i_size while still holding page lock:
1992 * page writeout could otherwise come in and zero beyond i_size.
1994 if (pos
+copied
> inode
->i_size
) {
1995 i_size_write(inode
, pos
+copied
);
2000 page_cache_release(page
);
2003 * Don't mark the inode dirty under page lock. First, it unnecessarily
2004 * makes the holding time of page lock longer. Second, it forces lock
2005 * ordering of page lock and transaction start for journaling
2009 mark_inode_dirty(inode
);
2013 EXPORT_SYMBOL(generic_write_end
);
2016 * block_is_partially_uptodate checks whether buffers within a page are
2019 * Returns true if all buffers which correspond to a file portion
2020 * we want to read are uptodate.
2022 int block_is_partially_uptodate(struct page
*page
, read_descriptor_t
*desc
,
2025 struct inode
*inode
= page
->mapping
->host
;
2026 unsigned block_start
, block_end
, blocksize
;
2028 struct buffer_head
*bh
, *head
;
2031 if (!page_has_buffers(page
))
2034 blocksize
= 1 << inode
->i_blkbits
;
2035 to
= min_t(unsigned, PAGE_CACHE_SIZE
- from
, desc
->count
);
2037 if (from
< blocksize
&& to
> PAGE_CACHE_SIZE
- blocksize
)
2040 head
= page_buffers(page
);
2044 block_end
= block_start
+ blocksize
;
2045 if (block_end
> from
&& block_start
< to
) {
2046 if (!buffer_uptodate(bh
)) {
2050 if (block_end
>= to
)
2053 block_start
= block_end
;
2054 bh
= bh
->b_this_page
;
2055 } while (bh
!= head
);
2059 EXPORT_SYMBOL(block_is_partially_uptodate
);
2062 * Generic "read page" function for block devices that have the normal
2063 * get_block functionality. This is most of the block device filesystems.
2064 * Reads the page asynchronously --- the unlock_buffer() and
2065 * set/clear_buffer_uptodate() functions propagate buffer state into the
2066 * page struct once IO has completed.
2068 int block_read_full_page(struct page
*page
, get_block_t
*get_block
)
2070 struct inode
*inode
= page
->mapping
->host
;
2071 sector_t iblock
, lblock
;
2072 struct buffer_head
*bh
, *head
, *arr
[MAX_BUF_PER_PAGE
];
2073 unsigned int blocksize
;
2075 int fully_mapped
= 1;
2077 BUG_ON(!PageLocked(page
));
2078 blocksize
= 1 << inode
->i_blkbits
;
2079 if (!page_has_buffers(page
))
2080 create_empty_buffers(page
, blocksize
, 0);
2081 head
= page_buffers(page
);
2083 iblock
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2084 lblock
= (i_size_read(inode
)+blocksize
-1) >> inode
->i_blkbits
;
2090 if (buffer_uptodate(bh
))
2093 if (!buffer_mapped(bh
)) {
2097 if (iblock
< lblock
) {
2098 WARN_ON(bh
->b_size
!= blocksize
);
2099 err
= get_block(inode
, iblock
, bh
, 0);
2103 if (!buffer_mapped(bh
)) {
2104 zero_user(page
, i
* blocksize
, blocksize
);
2106 set_buffer_uptodate(bh
);
2110 * get_block() might have updated the buffer
2113 if (buffer_uptodate(bh
))
2117 } while (i
++, iblock
++, (bh
= bh
->b_this_page
) != head
);
2120 SetPageMappedToDisk(page
);
2124 * All buffers are uptodate - we can set the page uptodate
2125 * as well. But not if get_block() returned an error.
2127 if (!PageError(page
))
2128 SetPageUptodate(page
);
2133 /* Stage two: lock the buffers */
2134 for (i
= 0; i
< nr
; i
++) {
2137 mark_buffer_async_read(bh
);
2141 * Stage 3: start the IO. Check for uptodateness
2142 * inside the buffer lock in case another process reading
2143 * the underlying blockdev brought it uptodate (the sct fix).
2145 for (i
= 0; i
< nr
; i
++) {
2147 if (buffer_uptodate(bh
))
2148 end_buffer_async_read(bh
, 1);
2150 submit_bh(READ
, bh
);
2154 EXPORT_SYMBOL(block_read_full_page
);
2156 /* utility function for filesystems that need to do work on expanding
2157 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2158 * deal with the hole.
2160 int generic_cont_expand_simple(struct inode
*inode
, loff_t size
)
2162 struct address_space
*mapping
= inode
->i_mapping
;
2167 err
= inode_newsize_ok(inode
, size
);
2171 err
= pagecache_write_begin(NULL
, mapping
, size
, 0,
2172 AOP_FLAG_UNINTERRUPTIBLE
|AOP_FLAG_CONT_EXPAND
,
2177 err
= pagecache_write_end(NULL
, mapping
, size
, 0, 0, page
, fsdata
);
2183 EXPORT_SYMBOL(generic_cont_expand_simple
);
2185 static int cont_expand_zero(struct file
*file
, struct address_space
*mapping
,
2186 loff_t pos
, loff_t
*bytes
)
2188 struct inode
*inode
= mapping
->host
;
2189 unsigned blocksize
= 1 << inode
->i_blkbits
;
2192 pgoff_t index
, curidx
;
2194 unsigned zerofrom
, offset
, len
;
2197 index
= pos
>> PAGE_CACHE_SHIFT
;
2198 offset
= pos
& ~PAGE_CACHE_MASK
;
2200 while (index
> (curidx
= (curpos
= *bytes
)>>PAGE_CACHE_SHIFT
)) {
2201 zerofrom
= curpos
& ~PAGE_CACHE_MASK
;
2202 if (zerofrom
& (blocksize
-1)) {
2203 *bytes
|= (blocksize
-1);
2206 len
= PAGE_CACHE_SIZE
- zerofrom
;
2208 err
= pagecache_write_begin(file
, mapping
, curpos
, len
,
2209 AOP_FLAG_UNINTERRUPTIBLE
,
2213 zero_user(page
, zerofrom
, len
);
2214 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2221 balance_dirty_pages_ratelimited(mapping
);
2224 /* page covers the boundary, find the boundary offset */
2225 if (index
== curidx
) {
2226 zerofrom
= curpos
& ~PAGE_CACHE_MASK
;
2227 /* if we will expand the thing last block will be filled */
2228 if (offset
<= zerofrom
) {
2231 if (zerofrom
& (blocksize
-1)) {
2232 *bytes
|= (blocksize
-1);
2235 len
= offset
- zerofrom
;
2237 err
= pagecache_write_begin(file
, mapping
, curpos
, len
,
2238 AOP_FLAG_UNINTERRUPTIBLE
,
2242 zero_user(page
, zerofrom
, len
);
2243 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2255 * For moronic filesystems that do not allow holes in file.
2256 * We may have to extend the file.
2258 int cont_write_begin(struct file
*file
, struct address_space
*mapping
,
2259 loff_t pos
, unsigned len
, unsigned flags
,
2260 struct page
**pagep
, void **fsdata
,
2261 get_block_t
*get_block
, loff_t
*bytes
)
2263 struct inode
*inode
= mapping
->host
;
2264 unsigned blocksize
= 1 << inode
->i_blkbits
;
2268 err
= cont_expand_zero(file
, mapping
, pos
, bytes
);
2272 zerofrom
= *bytes
& ~PAGE_CACHE_MASK
;
2273 if (pos
+len
> *bytes
&& zerofrom
& (blocksize
-1)) {
2274 *bytes
|= (blocksize
-1);
2278 return block_write_begin(mapping
, pos
, len
, flags
, pagep
, get_block
);
2280 EXPORT_SYMBOL(cont_write_begin
);
2282 int block_commit_write(struct page
*page
, unsigned from
, unsigned to
)
2284 struct inode
*inode
= page
->mapping
->host
;
2285 __block_commit_write(inode
,page
,from
,to
);
2288 EXPORT_SYMBOL(block_commit_write
);
2291 * block_page_mkwrite() is not allowed to change the file size as it gets
2292 * called from a page fault handler when a page is first dirtied. Hence we must
2293 * be careful to check for EOF conditions here. We set the page up correctly
2294 * for a written page which means we get ENOSPC checking when writing into
2295 * holes and correct delalloc and unwritten extent mapping on filesystems that
2296 * support these features.
2298 * We are not allowed to take the i_mutex here so we have to play games to
2299 * protect against truncate races as the page could now be beyond EOF. Because
2300 * truncate writes the inode size before removing pages, once we have the
2301 * page lock we can determine safely if the page is beyond EOF. If it is not
2302 * beyond EOF, then the page is guaranteed safe against truncation until we
2305 * Direct callers of this function should call vfs_check_frozen() so that page
2306 * fault does not busyloop until the fs is thawed.
2308 int __block_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
2309 get_block_t get_block
)
2311 struct page
*page
= vmf
->page
;
2312 struct inode
*inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
2318 size
= i_size_read(inode
);
2319 if ((page
->mapping
!= inode
->i_mapping
) ||
2320 (page_offset(page
) > size
)) {
2321 /* We overload EFAULT to mean page got truncated */
2326 /* page is wholly or partially inside EOF */
2327 if (((page
->index
+ 1) << PAGE_CACHE_SHIFT
) > size
)
2328 end
= size
& ~PAGE_CACHE_MASK
;
2330 end
= PAGE_CACHE_SIZE
;
2332 ret
= __block_write_begin(page
, 0, end
, get_block
);
2334 ret
= block_commit_write(page
, 0, end
);
2336 if (unlikely(ret
< 0))
2339 * Freezing in progress? We check after the page is marked dirty and
2340 * with page lock held so if the test here fails, we are sure freezing
2341 * code will wait during syncing until the page fault is done - at that
2342 * point page will be dirty and unlocked so freezing code will write it
2343 * and writeprotect it again.
2345 set_page_dirty(page
);
2346 if (inode
->i_sb
->s_frozen
!= SB_UNFROZEN
) {
2350 wait_on_page_writeback(page
);
2356 EXPORT_SYMBOL(__block_page_mkwrite
);
2358 int block_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
2359 get_block_t get_block
)
2362 struct super_block
*sb
= vma
->vm_file
->f_path
.dentry
->d_inode
->i_sb
;
2365 * This check is racy but catches the common case. The check in
2366 * __block_page_mkwrite() is reliable.
2368 vfs_check_frozen(sb
, SB_FREEZE_WRITE
);
2369 ret
= __block_page_mkwrite(vma
, vmf
, get_block
);
2370 return block_page_mkwrite_return(ret
);
2372 EXPORT_SYMBOL(block_page_mkwrite
);
2375 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2376 * immediately, while under the page lock. So it needs a special end_io
2377 * handler which does not touch the bh after unlocking it.
2379 static void end_buffer_read_nobh(struct buffer_head
*bh
, int uptodate
)
2381 __end_buffer_read_notouch(bh
, uptodate
);
2385 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2386 * the page (converting it to circular linked list and taking care of page
2389 static void attach_nobh_buffers(struct page
*page
, struct buffer_head
*head
)
2391 struct buffer_head
*bh
;
2393 BUG_ON(!PageLocked(page
));
2395 spin_lock(&page
->mapping
->private_lock
);
2398 if (PageDirty(page
))
2399 set_buffer_dirty(bh
);
2400 if (!bh
->b_this_page
)
2401 bh
->b_this_page
= head
;
2402 bh
= bh
->b_this_page
;
2403 } while (bh
!= head
);
2404 attach_page_buffers(page
, head
);
2405 spin_unlock(&page
->mapping
->private_lock
);
2409 * On entry, the page is fully not uptodate.
2410 * On exit the page is fully uptodate in the areas outside (from,to)
2411 * The filesystem needs to handle block truncation upon failure.
2413 int nobh_write_begin(struct address_space
*mapping
,
2414 loff_t pos
, unsigned len
, unsigned flags
,
2415 struct page
**pagep
, void **fsdata
,
2416 get_block_t
*get_block
)
2418 struct inode
*inode
= mapping
->host
;
2419 const unsigned blkbits
= inode
->i_blkbits
;
2420 const unsigned blocksize
= 1 << blkbits
;
2421 struct buffer_head
*head
, *bh
;
2425 unsigned block_in_page
;
2426 unsigned block_start
, block_end
;
2427 sector_t block_in_file
;
2430 int is_mapped_to_disk
= 1;
2432 index
= pos
>> PAGE_CACHE_SHIFT
;
2433 from
= pos
& (PAGE_CACHE_SIZE
- 1);
2436 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2442 if (page_has_buffers(page
)) {
2443 ret
= __block_write_begin(page
, pos
, len
, get_block
);
2449 if (PageMappedToDisk(page
))
2453 * Allocate buffers so that we can keep track of state, and potentially
2454 * attach them to the page if an error occurs. In the common case of
2455 * no error, they will just be freed again without ever being attached
2456 * to the page (which is all OK, because we're under the page lock).
2458 * Be careful: the buffer linked list is a NULL terminated one, rather
2459 * than the circular one we're used to.
2461 head
= alloc_page_buffers(page
, blocksize
, 0);
2467 block_in_file
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- blkbits
);
2470 * We loop across all blocks in the page, whether or not they are
2471 * part of the affected region. This is so we can discover if the
2472 * page is fully mapped-to-disk.
2474 for (block_start
= 0, block_in_page
= 0, bh
= head
;
2475 block_start
< PAGE_CACHE_SIZE
;
2476 block_in_page
++, block_start
+= blocksize
, bh
= bh
->b_this_page
) {
2479 block_end
= block_start
+ blocksize
;
2482 if (block_start
>= to
)
2484 ret
= get_block(inode
, block_in_file
+ block_in_page
,
2488 if (!buffer_mapped(bh
))
2489 is_mapped_to_disk
= 0;
2491 unmap_underlying_metadata(bh
->b_bdev
, bh
->b_blocknr
);
2492 if (PageUptodate(page
)) {
2493 set_buffer_uptodate(bh
);
2496 if (buffer_new(bh
) || !buffer_mapped(bh
)) {
2497 zero_user_segments(page
, block_start
, from
,
2501 if (buffer_uptodate(bh
))
2502 continue; /* reiserfs does this */
2503 if (block_start
< from
|| block_end
> to
) {
2505 bh
->b_end_io
= end_buffer_read_nobh
;
2506 submit_bh(READ
, bh
);
2513 * The page is locked, so these buffers are protected from
2514 * any VM or truncate activity. Hence we don't need to care
2515 * for the buffer_head refcounts.
2517 for (bh
= head
; bh
; bh
= bh
->b_this_page
) {
2519 if (!buffer_uptodate(bh
))
2526 if (is_mapped_to_disk
)
2527 SetPageMappedToDisk(page
);
2529 *fsdata
= head
; /* to be released by nobh_write_end */
2536 * Error recovery is a bit difficult. We need to zero out blocks that
2537 * were newly allocated, and dirty them to ensure they get written out.
2538 * Buffers need to be attached to the page at this point, otherwise
2539 * the handling of potential IO errors during writeout would be hard
2540 * (could try doing synchronous writeout, but what if that fails too?)
2542 attach_nobh_buffers(page
, head
);
2543 page_zero_new_buffers(page
, from
, to
);
2547 page_cache_release(page
);
2552 EXPORT_SYMBOL(nobh_write_begin
);
2554 int nobh_write_end(struct file
*file
, struct address_space
*mapping
,
2555 loff_t pos
, unsigned len
, unsigned copied
,
2556 struct page
*page
, void *fsdata
)
2558 struct inode
*inode
= page
->mapping
->host
;
2559 struct buffer_head
*head
= fsdata
;
2560 struct buffer_head
*bh
;
2561 BUG_ON(fsdata
!= NULL
&& page_has_buffers(page
));
2563 if (unlikely(copied
< len
) && head
)
2564 attach_nobh_buffers(page
, head
);
2565 if (page_has_buffers(page
))
2566 return generic_write_end(file
, mapping
, pos
, len
,
2567 copied
, page
, fsdata
);
2569 SetPageUptodate(page
);
2570 set_page_dirty(page
);
2571 if (pos
+copied
> inode
->i_size
) {
2572 i_size_write(inode
, pos
+copied
);
2573 mark_inode_dirty(inode
);
2577 page_cache_release(page
);
2581 head
= head
->b_this_page
;
2582 free_buffer_head(bh
);
2587 EXPORT_SYMBOL(nobh_write_end
);
2590 * nobh_writepage() - based on block_full_write_page() except
2591 * that it tries to operate without attaching bufferheads to
2594 int nobh_writepage(struct page
*page
, get_block_t
*get_block
,
2595 struct writeback_control
*wbc
)
2597 struct inode
* const inode
= page
->mapping
->host
;
2598 loff_t i_size
= i_size_read(inode
);
2599 const pgoff_t end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2603 /* Is the page fully inside i_size? */
2604 if (page
->index
< end_index
)
2607 /* Is the page fully outside i_size? (truncate in progress) */
2608 offset
= i_size
& (PAGE_CACHE_SIZE
-1);
2609 if (page
->index
>= end_index
+1 || !offset
) {
2611 * The page may have dirty, unmapped buffers. For example,
2612 * they may have been added in ext3_writepage(). Make them
2613 * freeable here, so the page does not leak.
2616 /* Not really sure about this - do we need this ? */
2617 if (page
->mapping
->a_ops
->invalidatepage
)
2618 page
->mapping
->a_ops
->invalidatepage(page
, offset
);
2621 return 0; /* don't care */
2625 * The page straddles i_size. It must be zeroed out on each and every
2626 * writepage invocation because it may be mmapped. "A file is mapped
2627 * in multiples of the page size. For a file that is not a multiple of
2628 * the page size, the remaining memory is zeroed when mapped, and
2629 * writes to that region are not written out to the file."
2631 zero_user_segment(page
, offset
, PAGE_CACHE_SIZE
);
2633 ret
= mpage_writepage(page
, get_block
, wbc
);
2635 ret
= __block_write_full_page(inode
, page
, get_block
, wbc
,
2636 end_buffer_async_write
);
2639 EXPORT_SYMBOL(nobh_writepage
);
2641 int nobh_truncate_page(struct address_space
*mapping
,
2642 loff_t from
, get_block_t
*get_block
)
2644 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
2645 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2648 unsigned length
, pos
;
2649 struct inode
*inode
= mapping
->host
;
2651 struct buffer_head map_bh
;
2654 blocksize
= 1 << inode
->i_blkbits
;
2655 length
= offset
& (blocksize
- 1);
2657 /* Block boundary? Nothing to do */
2661 length
= blocksize
- length
;
2662 iblock
= (sector_t
)index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2664 page
= grab_cache_page(mapping
, index
);
2669 if (page_has_buffers(page
)) {
2672 page_cache_release(page
);
2673 return block_truncate_page(mapping
, from
, get_block
);
2676 /* Find the buffer that contains "offset" */
2678 while (offset
>= pos
) {
2683 map_bh
.b_size
= blocksize
;
2685 err
= get_block(inode
, iblock
, &map_bh
, 0);
2688 /* unmapped? It's a hole - nothing to do */
2689 if (!buffer_mapped(&map_bh
))
2692 /* Ok, it's mapped. Make sure it's up-to-date */
2693 if (!PageUptodate(page
)) {
2694 err
= mapping
->a_ops
->readpage(NULL
, page
);
2696 page_cache_release(page
);
2700 if (!PageUptodate(page
)) {
2704 if (page_has_buffers(page
))
2707 zero_user(page
, offset
, length
);
2708 set_page_dirty(page
);
2713 page_cache_release(page
);
2717 EXPORT_SYMBOL(nobh_truncate_page
);
2719 int block_truncate_page(struct address_space
*mapping
,
2720 loff_t from
, get_block_t
*get_block
)
2722 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
2723 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2726 unsigned length
, pos
;
2727 struct inode
*inode
= mapping
->host
;
2729 struct buffer_head
*bh
;
2732 blocksize
= 1 << inode
->i_blkbits
;
2733 length
= offset
& (blocksize
- 1);
2735 /* Block boundary? Nothing to do */
2739 length
= blocksize
- length
;
2740 iblock
= (sector_t
)index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2742 page
= grab_cache_page(mapping
, index
);
2747 if (!page_has_buffers(page
))
2748 create_empty_buffers(page
, blocksize
, 0);
2750 /* Find the buffer that contains "offset" */
2751 bh
= page_buffers(page
);
2753 while (offset
>= pos
) {
2754 bh
= bh
->b_this_page
;
2760 if (!buffer_mapped(bh
)) {
2761 WARN_ON(bh
->b_size
!= blocksize
);
2762 err
= get_block(inode
, iblock
, bh
, 0);
2765 /* unmapped? It's a hole - nothing to do */
2766 if (!buffer_mapped(bh
))
2770 /* Ok, it's mapped. Make sure it's up-to-date */
2771 if (PageUptodate(page
))
2772 set_buffer_uptodate(bh
);
2774 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) && !buffer_unwritten(bh
)) {
2776 ll_rw_block(READ
, 1, &bh
);
2778 /* Uhhuh. Read error. Complain and punt. */
2779 if (!buffer_uptodate(bh
))
2783 zero_user(page
, offset
, length
);
2784 mark_buffer_dirty(bh
);
2789 page_cache_release(page
);
2793 EXPORT_SYMBOL(block_truncate_page
);
2796 * The generic ->writepage function for buffer-backed address_spaces
2797 * this form passes in the end_io handler used to finish the IO.
2799 int block_write_full_page_endio(struct page
*page
, get_block_t
*get_block
,
2800 struct writeback_control
*wbc
, bh_end_io_t
*handler
)
2802 struct inode
* const inode
= page
->mapping
->host
;
2803 loff_t i_size
= i_size_read(inode
);
2804 const pgoff_t end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2807 /* Is the page fully inside i_size? */
2808 if (page
->index
< end_index
)
2809 return __block_write_full_page(inode
, page
, get_block
, wbc
,
2812 /* Is the page fully outside i_size? (truncate in progress) */
2813 offset
= i_size
& (PAGE_CACHE_SIZE
-1);
2814 if (page
->index
>= end_index
+1 || !offset
) {
2816 * The page may have dirty, unmapped buffers. For example,
2817 * they may have been added in ext3_writepage(). Make them
2818 * freeable here, so the page does not leak.
2820 do_invalidatepage(page
, 0);
2822 return 0; /* don't care */
2826 * The page straddles i_size. It must be zeroed out on each and every
2827 * writepage invocation because it may be mmapped. "A file is mapped
2828 * in multiples of the page size. For a file that is not a multiple of
2829 * the page size, the remaining memory is zeroed when mapped, and
2830 * writes to that region are not written out to the file."
2832 zero_user_segment(page
, offset
, PAGE_CACHE_SIZE
);
2833 return __block_write_full_page(inode
, page
, get_block
, wbc
, handler
);
2835 EXPORT_SYMBOL(block_write_full_page_endio
);
2838 * The generic ->writepage function for buffer-backed address_spaces
2840 int block_write_full_page(struct page
*page
, get_block_t
*get_block
,
2841 struct writeback_control
*wbc
)
2843 return block_write_full_page_endio(page
, get_block
, wbc
,
2844 end_buffer_async_write
);
2846 EXPORT_SYMBOL(block_write_full_page
);
2848 sector_t
generic_block_bmap(struct address_space
*mapping
, sector_t block
,
2849 get_block_t
*get_block
)
2851 struct buffer_head tmp
;
2852 struct inode
*inode
= mapping
->host
;
2855 tmp
.b_size
= 1 << inode
->i_blkbits
;
2856 get_block(inode
, block
, &tmp
, 0);
2857 return tmp
.b_blocknr
;
2859 EXPORT_SYMBOL(generic_block_bmap
);
2861 static void end_bio_bh_io_sync(struct bio
*bio
, int err
)
2863 struct buffer_head
*bh
= bio
->bi_private
;
2865 if (err
== -EOPNOTSUPP
) {
2866 set_bit(BIO_EOPNOTSUPP
, &bio
->bi_flags
);
2869 if (unlikely (test_bit(BIO_QUIET
,&bio
->bi_flags
)))
2870 set_bit(BH_Quiet
, &bh
->b_state
);
2872 bh
->b_end_io(bh
, test_bit(BIO_UPTODATE
, &bio
->bi_flags
));
2876 int submit_bh(int rw
, struct buffer_head
* bh
)
2881 BUG_ON(!buffer_locked(bh
));
2882 BUG_ON(!buffer_mapped(bh
));
2883 BUG_ON(!bh
->b_end_io
);
2884 BUG_ON(buffer_delay(bh
));
2885 BUG_ON(buffer_unwritten(bh
));
2888 * Only clear out a write error when rewriting
2890 if (test_set_buffer_req(bh
) && (rw
& WRITE
))
2891 clear_buffer_write_io_error(bh
);
2894 * from here on down, it's all bio -- do the initial mapping,
2895 * submit_bio -> generic_make_request may further map this bio around
2897 bio
= bio_alloc(GFP_NOIO
, 1);
2899 bio
->bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
2900 bio
->bi_bdev
= bh
->b_bdev
;
2901 bio
->bi_io_vec
[0].bv_page
= bh
->b_page
;
2902 bio
->bi_io_vec
[0].bv_len
= bh
->b_size
;
2903 bio
->bi_io_vec
[0].bv_offset
= bh_offset(bh
);
2907 bio
->bi_size
= bh
->b_size
;
2909 bio
->bi_end_io
= end_bio_bh_io_sync
;
2910 bio
->bi_private
= bh
;
2913 submit_bio(rw
, bio
);
2915 if (bio_flagged(bio
, BIO_EOPNOTSUPP
))
2921 EXPORT_SYMBOL(submit_bh
);
2924 * ll_rw_block: low-level access to block devices (DEPRECATED)
2925 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2926 * @nr: number of &struct buffer_heads in the array
2927 * @bhs: array of pointers to &struct buffer_head
2929 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2930 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2931 * %READA option is described in the documentation for generic_make_request()
2932 * which ll_rw_block() calls.
2934 * This function drops any buffer that it cannot get a lock on (with the
2935 * BH_Lock state bit), any buffer that appears to be clean when doing a write
2936 * request, and any buffer that appears to be up-to-date when doing read
2937 * request. Further it marks as clean buffers that are processed for
2938 * writing (the buffer cache won't assume that they are actually clean
2939 * until the buffer gets unlocked).
2941 * ll_rw_block sets b_end_io to simple completion handler that marks
2942 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2945 * All of the buffers must be for the same device, and must also be a
2946 * multiple of the current approved size for the device.
2948 void ll_rw_block(int rw
, int nr
, struct buffer_head
*bhs
[])
2952 for (i
= 0; i
< nr
; i
++) {
2953 struct buffer_head
*bh
= bhs
[i
];
2955 if (!trylock_buffer(bh
))
2958 if (test_clear_buffer_dirty(bh
)) {
2959 bh
->b_end_io
= end_buffer_write_sync
;
2961 submit_bh(WRITE
, bh
);
2965 if (!buffer_uptodate(bh
)) {
2966 bh
->b_end_io
= end_buffer_read_sync
;
2975 EXPORT_SYMBOL(ll_rw_block
);
2977 void write_dirty_buffer(struct buffer_head
*bh
, int rw
)
2980 if (!test_clear_buffer_dirty(bh
)) {
2984 bh
->b_end_io
= end_buffer_write_sync
;
2988 EXPORT_SYMBOL(write_dirty_buffer
);
2991 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2992 * and then start new I/O and then wait upon it. The caller must have a ref on
2995 int __sync_dirty_buffer(struct buffer_head
*bh
, int rw
)
2999 WARN_ON(atomic_read(&bh
->b_count
) < 1);
3001 if (test_clear_buffer_dirty(bh
)) {
3003 bh
->b_end_io
= end_buffer_write_sync
;
3004 ret
= submit_bh(rw
, bh
);
3006 if (!ret
&& !buffer_uptodate(bh
))
3013 EXPORT_SYMBOL(__sync_dirty_buffer
);
3015 int sync_dirty_buffer(struct buffer_head
*bh
)
3017 return __sync_dirty_buffer(bh
, WRITE_SYNC
);
3019 EXPORT_SYMBOL(sync_dirty_buffer
);
3022 * try_to_free_buffers() checks if all the buffers on this particular page
3023 * are unused, and releases them if so.
3025 * Exclusion against try_to_free_buffers may be obtained by either
3026 * locking the page or by holding its mapping's private_lock.
3028 * If the page is dirty but all the buffers are clean then we need to
3029 * be sure to mark the page clean as well. This is because the page
3030 * may be against a block device, and a later reattachment of buffers
3031 * to a dirty page will set *all* buffers dirty. Which would corrupt
3032 * filesystem data on the same device.
3034 * The same applies to regular filesystem pages: if all the buffers are
3035 * clean then we set the page clean and proceed. To do that, we require
3036 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3039 * try_to_free_buffers() is non-blocking.
3041 static inline int buffer_busy(struct buffer_head
*bh
)
3043 return atomic_read(&bh
->b_count
) |
3044 (bh
->b_state
& ((1 << BH_Dirty
) | (1 << BH_Lock
)));
3048 drop_buffers(struct page
*page
, struct buffer_head
**buffers_to_free
)
3050 struct buffer_head
*head
= page_buffers(page
);
3051 struct buffer_head
*bh
;
3055 if (buffer_write_io_error(bh
) && page
->mapping
)
3056 set_bit(AS_EIO
, &page
->mapping
->flags
);
3057 if (buffer_busy(bh
))
3059 bh
= bh
->b_this_page
;
3060 } while (bh
!= head
);
3063 struct buffer_head
*next
= bh
->b_this_page
;
3065 if (bh
->b_assoc_map
)
3066 __remove_assoc_queue(bh
);
3068 } while (bh
!= head
);
3069 *buffers_to_free
= head
;
3070 __clear_page_buffers(page
);
3076 int try_to_free_buffers(struct page
*page
)
3078 struct address_space
* const mapping
= page
->mapping
;
3079 struct buffer_head
*buffers_to_free
= NULL
;
3082 BUG_ON(!PageLocked(page
));
3083 if (PageWriteback(page
))
3086 if (mapping
== NULL
) { /* can this still happen? */
3087 ret
= drop_buffers(page
, &buffers_to_free
);
3091 spin_lock(&mapping
->private_lock
);
3092 ret
= drop_buffers(page
, &buffers_to_free
);
3095 * If the filesystem writes its buffers by hand (eg ext3)
3096 * then we can have clean buffers against a dirty page. We
3097 * clean the page here; otherwise the VM will never notice
3098 * that the filesystem did any IO at all.
3100 * Also, during truncate, discard_buffer will have marked all
3101 * the page's buffers clean. We discover that here and clean
3104 * private_lock must be held over this entire operation in order
3105 * to synchronise against __set_page_dirty_buffers and prevent the
3106 * dirty bit from being lost.
3109 cancel_dirty_page(page
, PAGE_CACHE_SIZE
);
3110 spin_unlock(&mapping
->private_lock
);
3112 if (buffers_to_free
) {
3113 struct buffer_head
*bh
= buffers_to_free
;
3116 struct buffer_head
*next
= bh
->b_this_page
;
3117 free_buffer_head(bh
);
3119 } while (bh
!= buffers_to_free
);
3123 EXPORT_SYMBOL(try_to_free_buffers
);
3126 * There are no bdflush tunables left. But distributions are
3127 * still running obsolete flush daemons, so we terminate them here.
3129 * Use of bdflush() is deprecated and will be removed in a future kernel.
3130 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3132 SYSCALL_DEFINE2(bdflush
, int, func
, long, data
)
3134 static int msg_count
;
3136 if (!capable(CAP_SYS_ADMIN
))
3139 if (msg_count
< 5) {
3142 "warning: process `%s' used the obsolete bdflush"
3143 " system call\n", current
->comm
);
3144 printk(KERN_INFO
"Fix your initscripts?\n");
3153 * Buffer-head allocation
3155 static struct kmem_cache
*bh_cachep __read_mostly
;
3158 * Once the number of bh's in the machine exceeds this level, we start
3159 * stripping them in writeback.
3161 static int max_buffer_heads
;
3163 int buffer_heads_over_limit
;
3165 struct bh_accounting
{
3166 int nr
; /* Number of live bh's */
3167 int ratelimit
; /* Limit cacheline bouncing */
3170 static DEFINE_PER_CPU(struct bh_accounting
, bh_accounting
) = {0, 0};
3172 static void recalc_bh_state(void)
3177 if (__this_cpu_inc_return(bh_accounting
.ratelimit
) - 1 < 4096)
3179 __this_cpu_write(bh_accounting
.ratelimit
, 0);
3180 for_each_online_cpu(i
)
3181 tot
+= per_cpu(bh_accounting
, i
).nr
;
3182 buffer_heads_over_limit
= (tot
> max_buffer_heads
);
3185 struct buffer_head
*alloc_buffer_head(gfp_t gfp_flags
)
3187 struct buffer_head
*ret
= kmem_cache_zalloc(bh_cachep
, gfp_flags
);
3189 INIT_LIST_HEAD(&ret
->b_assoc_buffers
);
3191 __this_cpu_inc(bh_accounting
.nr
);
3197 EXPORT_SYMBOL(alloc_buffer_head
);
3199 void free_buffer_head(struct buffer_head
*bh
)
3201 BUG_ON(!list_empty(&bh
->b_assoc_buffers
));
3202 kmem_cache_free(bh_cachep
, bh
);
3204 __this_cpu_dec(bh_accounting
.nr
);
3208 EXPORT_SYMBOL(free_buffer_head
);
3210 static void buffer_exit_cpu(int cpu
)
3213 struct bh_lru
*b
= &per_cpu(bh_lrus
, cpu
);
3215 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
3219 this_cpu_add(bh_accounting
.nr
, per_cpu(bh_accounting
, cpu
).nr
);
3220 per_cpu(bh_accounting
, cpu
).nr
= 0;
3223 static int buffer_cpu_notify(struct notifier_block
*self
,
3224 unsigned long action
, void *hcpu
)
3226 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
)
3227 buffer_exit_cpu((unsigned long)hcpu
);
3232 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3233 * @bh: struct buffer_head
3235 * Return true if the buffer is up-to-date and false,
3236 * with the buffer locked, if not.
3238 int bh_uptodate_or_lock(struct buffer_head
*bh
)
3240 if (!buffer_uptodate(bh
)) {
3242 if (!buffer_uptodate(bh
))
3248 EXPORT_SYMBOL(bh_uptodate_or_lock
);
3251 * bh_submit_read - Submit a locked buffer for reading
3252 * @bh: struct buffer_head
3254 * Returns zero on success and -EIO on error.
3256 int bh_submit_read(struct buffer_head
*bh
)
3258 BUG_ON(!buffer_locked(bh
));
3260 if (buffer_uptodate(bh
)) {
3266 bh
->b_end_io
= end_buffer_read_sync
;
3267 submit_bh(READ
, bh
);
3269 if (buffer_uptodate(bh
))
3273 EXPORT_SYMBOL(bh_submit_read
);
3275 void __init
buffer_init(void)
3279 bh_cachep
= kmem_cache_create("buffer_head",
3280 sizeof(struct buffer_head
), 0,
3281 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
3286 * Limit the bh occupancy to 10% of ZONE_NORMAL
3288 nrpages
= (nr_free_buffer_pages() * 10) / 100;
3289 max_buffer_heads
= nrpages
* (PAGE_SIZE
/ sizeof(struct buffer_head
));
3290 hotcpu_notifier(buffer_cpu_notify
, 0);