usb: dwc3: gadget: implement gadget state tracking
[linux-2.6.git] / fs / xfs / xfs_file.c
blobf03bf1a456fbcacf43cc4999124a5d9072d733f0
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_log.h"
21 #include "xfs_sb.h"
22 #include "xfs_ag.h"
23 #include "xfs_trans.h"
24 #include "xfs_mount.h"
25 #include "xfs_bmap_btree.h"
26 #include "xfs_alloc.h"
27 #include "xfs_dinode.h"
28 #include "xfs_inode.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_error.h"
32 #include "xfs_vnodeops.h"
33 #include "xfs_da_btree.h"
34 #include "xfs_dir2_format.h"
35 #include "xfs_dir2_priv.h"
36 #include "xfs_ioctl.h"
37 #include "xfs_trace.h"
39 #include <linux/dcache.h>
40 #include <linux/falloc.h>
41 #include <linux/pagevec.h>
43 static const struct vm_operations_struct xfs_file_vm_ops;
46 * Locking primitives for read and write IO paths to ensure we consistently use
47 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
49 static inline void
50 xfs_rw_ilock(
51 struct xfs_inode *ip,
52 int type)
54 if (type & XFS_IOLOCK_EXCL)
55 mutex_lock(&VFS_I(ip)->i_mutex);
56 xfs_ilock(ip, type);
59 static inline void
60 xfs_rw_iunlock(
61 struct xfs_inode *ip,
62 int type)
64 xfs_iunlock(ip, type);
65 if (type & XFS_IOLOCK_EXCL)
66 mutex_unlock(&VFS_I(ip)->i_mutex);
69 static inline void
70 xfs_rw_ilock_demote(
71 struct xfs_inode *ip,
72 int type)
74 xfs_ilock_demote(ip, type);
75 if (type & XFS_IOLOCK_EXCL)
76 mutex_unlock(&VFS_I(ip)->i_mutex);
80 * xfs_iozero
82 * xfs_iozero clears the specified range of buffer supplied,
83 * and marks all the affected blocks as valid and modified. If
84 * an affected block is not allocated, it will be allocated. If
85 * an affected block is not completely overwritten, and is not
86 * valid before the operation, it will be read from disk before
87 * being partially zeroed.
89 int
90 xfs_iozero(
91 struct xfs_inode *ip, /* inode */
92 loff_t pos, /* offset in file */
93 size_t count) /* size of data to zero */
95 struct page *page;
96 struct address_space *mapping;
97 int status;
99 mapping = VFS_I(ip)->i_mapping;
100 do {
101 unsigned offset, bytes;
102 void *fsdata;
104 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
105 bytes = PAGE_CACHE_SIZE - offset;
106 if (bytes > count)
107 bytes = count;
109 status = pagecache_write_begin(NULL, mapping, pos, bytes,
110 AOP_FLAG_UNINTERRUPTIBLE,
111 &page, &fsdata);
112 if (status)
113 break;
115 zero_user(page, offset, bytes);
117 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
118 page, fsdata);
119 WARN_ON(status <= 0); /* can't return less than zero! */
120 pos += bytes;
121 count -= bytes;
122 status = 0;
123 } while (count);
125 return (-status);
129 * Fsync operations on directories are much simpler than on regular files,
130 * as there is no file data to flush, and thus also no need for explicit
131 * cache flush operations, and there are no non-transaction metadata updates
132 * on directories either.
134 STATIC int
135 xfs_dir_fsync(
136 struct file *file,
137 loff_t start,
138 loff_t end,
139 int datasync)
141 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
142 struct xfs_mount *mp = ip->i_mount;
143 xfs_lsn_t lsn = 0;
145 trace_xfs_dir_fsync(ip);
147 xfs_ilock(ip, XFS_ILOCK_SHARED);
148 if (xfs_ipincount(ip))
149 lsn = ip->i_itemp->ili_last_lsn;
150 xfs_iunlock(ip, XFS_ILOCK_SHARED);
152 if (!lsn)
153 return 0;
154 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
157 STATIC int
158 xfs_file_fsync(
159 struct file *file,
160 loff_t start,
161 loff_t end,
162 int datasync)
164 struct inode *inode = file->f_mapping->host;
165 struct xfs_inode *ip = XFS_I(inode);
166 struct xfs_mount *mp = ip->i_mount;
167 int error = 0;
168 int log_flushed = 0;
169 xfs_lsn_t lsn = 0;
171 trace_xfs_file_fsync(ip);
173 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
174 if (error)
175 return error;
177 if (XFS_FORCED_SHUTDOWN(mp))
178 return -XFS_ERROR(EIO);
180 xfs_iflags_clear(ip, XFS_ITRUNCATED);
182 if (mp->m_flags & XFS_MOUNT_BARRIER) {
184 * If we have an RT and/or log subvolume we need to make sure
185 * to flush the write cache the device used for file data
186 * first. This is to ensure newly written file data make
187 * it to disk before logging the new inode size in case of
188 * an extending write.
190 if (XFS_IS_REALTIME_INODE(ip))
191 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
192 else if (mp->m_logdev_targp != mp->m_ddev_targp)
193 xfs_blkdev_issue_flush(mp->m_ddev_targp);
197 * All metadata updates are logged, which means that we just have
198 * to flush the log up to the latest LSN that touched the inode.
200 xfs_ilock(ip, XFS_ILOCK_SHARED);
201 if (xfs_ipincount(ip)) {
202 if (!datasync ||
203 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
204 lsn = ip->i_itemp->ili_last_lsn;
206 xfs_iunlock(ip, XFS_ILOCK_SHARED);
208 if (lsn)
209 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
212 * If we only have a single device, and the log force about was
213 * a no-op we might have to flush the data device cache here.
214 * This can only happen for fdatasync/O_DSYNC if we were overwriting
215 * an already allocated file and thus do not have any metadata to
216 * commit.
218 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
219 mp->m_logdev_targp == mp->m_ddev_targp &&
220 !XFS_IS_REALTIME_INODE(ip) &&
221 !log_flushed)
222 xfs_blkdev_issue_flush(mp->m_ddev_targp);
224 return -error;
227 STATIC ssize_t
228 xfs_file_aio_read(
229 struct kiocb *iocb,
230 const struct iovec *iovp,
231 unsigned long nr_segs,
232 loff_t pos)
234 struct file *file = iocb->ki_filp;
235 struct inode *inode = file->f_mapping->host;
236 struct xfs_inode *ip = XFS_I(inode);
237 struct xfs_mount *mp = ip->i_mount;
238 size_t size = 0;
239 ssize_t ret = 0;
240 int ioflags = 0;
241 xfs_fsize_t n;
243 XFS_STATS_INC(xs_read_calls);
245 BUG_ON(iocb->ki_pos != pos);
247 if (unlikely(file->f_flags & O_DIRECT))
248 ioflags |= IO_ISDIRECT;
249 if (file->f_mode & FMODE_NOCMTIME)
250 ioflags |= IO_INVIS;
252 ret = generic_segment_checks(iovp, &nr_segs, &size, VERIFY_WRITE);
253 if (ret < 0)
254 return ret;
256 if (unlikely(ioflags & IO_ISDIRECT)) {
257 xfs_buftarg_t *target =
258 XFS_IS_REALTIME_INODE(ip) ?
259 mp->m_rtdev_targp : mp->m_ddev_targp;
260 if ((pos & target->bt_smask) || (size & target->bt_smask)) {
261 if (pos == i_size_read(inode))
262 return 0;
263 return -XFS_ERROR(EINVAL);
267 n = mp->m_super->s_maxbytes - pos;
268 if (n <= 0 || size == 0)
269 return 0;
271 if (n < size)
272 size = n;
274 if (XFS_FORCED_SHUTDOWN(mp))
275 return -EIO;
278 * Locking is a bit tricky here. If we take an exclusive lock
279 * for direct IO, we effectively serialise all new concurrent
280 * read IO to this file and block it behind IO that is currently in
281 * progress because IO in progress holds the IO lock shared. We only
282 * need to hold the lock exclusive to blow away the page cache, so
283 * only take lock exclusively if the page cache needs invalidation.
284 * This allows the normal direct IO case of no page cache pages to
285 * proceeed concurrently without serialisation.
287 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
288 if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
289 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
290 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
292 if (inode->i_mapping->nrpages) {
293 ret = -filemap_write_and_wait_range(
294 VFS_I(ip)->i_mapping,
295 pos, -1);
296 if (ret) {
297 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
298 return ret;
300 truncate_pagecache_range(VFS_I(ip), pos, -1);
302 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
305 trace_xfs_file_read(ip, size, pos, ioflags);
307 ret = generic_file_aio_read(iocb, iovp, nr_segs, pos);
308 if (ret > 0)
309 XFS_STATS_ADD(xs_read_bytes, ret);
311 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
312 return ret;
315 STATIC ssize_t
316 xfs_file_splice_read(
317 struct file *infilp,
318 loff_t *ppos,
319 struct pipe_inode_info *pipe,
320 size_t count,
321 unsigned int flags)
323 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
324 int ioflags = 0;
325 ssize_t ret;
327 XFS_STATS_INC(xs_read_calls);
329 if (infilp->f_mode & FMODE_NOCMTIME)
330 ioflags |= IO_INVIS;
332 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
333 return -EIO;
335 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
337 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
339 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
340 if (ret > 0)
341 XFS_STATS_ADD(xs_read_bytes, ret);
343 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
344 return ret;
348 * xfs_file_splice_write() does not use xfs_rw_ilock() because
349 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
350 * couuld cause lock inversions between the aio_write path and the splice path
351 * if someone is doing concurrent splice(2) based writes and write(2) based
352 * writes to the same inode. The only real way to fix this is to re-implement
353 * the generic code here with correct locking orders.
355 STATIC ssize_t
356 xfs_file_splice_write(
357 struct pipe_inode_info *pipe,
358 struct file *outfilp,
359 loff_t *ppos,
360 size_t count,
361 unsigned int flags)
363 struct inode *inode = outfilp->f_mapping->host;
364 struct xfs_inode *ip = XFS_I(inode);
365 int ioflags = 0;
366 ssize_t ret;
368 XFS_STATS_INC(xs_write_calls);
370 if (outfilp->f_mode & FMODE_NOCMTIME)
371 ioflags |= IO_INVIS;
373 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
374 return -EIO;
376 xfs_ilock(ip, XFS_IOLOCK_EXCL);
378 trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
380 ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
381 if (ret > 0)
382 XFS_STATS_ADD(xs_write_bytes, ret);
384 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
385 return ret;
389 * This routine is called to handle zeroing any space in the last block of the
390 * file that is beyond the EOF. We do this since the size is being increased
391 * without writing anything to that block and we don't want to read the
392 * garbage on the disk.
394 STATIC int /* error (positive) */
395 xfs_zero_last_block(
396 struct xfs_inode *ip,
397 xfs_fsize_t offset,
398 xfs_fsize_t isize)
400 struct xfs_mount *mp = ip->i_mount;
401 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize);
402 int zero_offset = XFS_B_FSB_OFFSET(mp, isize);
403 int zero_len;
404 int nimaps = 1;
405 int error = 0;
406 struct xfs_bmbt_irec imap;
408 xfs_ilock(ip, XFS_ILOCK_EXCL);
409 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
410 xfs_iunlock(ip, XFS_ILOCK_EXCL);
411 if (error)
412 return error;
414 ASSERT(nimaps > 0);
417 * If the block underlying isize is just a hole, then there
418 * is nothing to zero.
420 if (imap.br_startblock == HOLESTARTBLOCK)
421 return 0;
423 zero_len = mp->m_sb.sb_blocksize - zero_offset;
424 if (isize + zero_len > offset)
425 zero_len = offset - isize;
426 return xfs_iozero(ip, isize, zero_len);
430 * Zero any on disk space between the current EOF and the new, larger EOF.
432 * This handles the normal case of zeroing the remainder of the last block in
433 * the file and the unusual case of zeroing blocks out beyond the size of the
434 * file. This second case only happens with fixed size extents and when the
435 * system crashes before the inode size was updated but after blocks were
436 * allocated.
438 * Expects the iolock to be held exclusive, and will take the ilock internally.
440 int /* error (positive) */
441 xfs_zero_eof(
442 struct xfs_inode *ip,
443 xfs_off_t offset, /* starting I/O offset */
444 xfs_fsize_t isize) /* current inode size */
446 struct xfs_mount *mp = ip->i_mount;
447 xfs_fileoff_t start_zero_fsb;
448 xfs_fileoff_t end_zero_fsb;
449 xfs_fileoff_t zero_count_fsb;
450 xfs_fileoff_t last_fsb;
451 xfs_fileoff_t zero_off;
452 xfs_fsize_t zero_len;
453 int nimaps;
454 int error = 0;
455 struct xfs_bmbt_irec imap;
457 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
458 ASSERT(offset > isize);
461 * First handle zeroing the block on which isize resides.
463 * We only zero a part of that block so it is handled specially.
465 if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
466 error = xfs_zero_last_block(ip, offset, isize);
467 if (error)
468 return error;
472 * Calculate the range between the new size and the old where blocks
473 * needing to be zeroed may exist.
475 * To get the block where the last byte in the file currently resides,
476 * we need to subtract one from the size and truncate back to a block
477 * boundary. We subtract 1 in case the size is exactly on a block
478 * boundary.
480 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
481 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
482 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
483 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
484 if (last_fsb == end_zero_fsb) {
486 * The size was only incremented on its last block.
487 * We took care of that above, so just return.
489 return 0;
492 ASSERT(start_zero_fsb <= end_zero_fsb);
493 while (start_zero_fsb <= end_zero_fsb) {
494 nimaps = 1;
495 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
497 xfs_ilock(ip, XFS_ILOCK_EXCL);
498 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
499 &imap, &nimaps, 0);
500 xfs_iunlock(ip, XFS_ILOCK_EXCL);
501 if (error)
502 return error;
504 ASSERT(nimaps > 0);
506 if (imap.br_state == XFS_EXT_UNWRITTEN ||
507 imap.br_startblock == HOLESTARTBLOCK) {
508 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
509 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
510 continue;
514 * There are blocks we need to zero.
516 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
517 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
519 if ((zero_off + zero_len) > offset)
520 zero_len = offset - zero_off;
522 error = xfs_iozero(ip, zero_off, zero_len);
523 if (error)
524 return error;
526 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
527 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
530 return 0;
534 * Common pre-write limit and setup checks.
536 * Called with the iolocked held either shared and exclusive according to
537 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
538 * if called for a direct write beyond i_size.
540 STATIC ssize_t
541 xfs_file_aio_write_checks(
542 struct file *file,
543 loff_t *pos,
544 size_t *count,
545 int *iolock)
547 struct inode *inode = file->f_mapping->host;
548 struct xfs_inode *ip = XFS_I(inode);
549 int error = 0;
551 restart:
552 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
553 if (error)
554 return error;
557 * If the offset is beyond the size of the file, we need to zero any
558 * blocks that fall between the existing EOF and the start of this
559 * write. If zeroing is needed and we are currently holding the
560 * iolock shared, we need to update it to exclusive which implies
561 * having to redo all checks before.
563 if (*pos > i_size_read(inode)) {
564 if (*iolock == XFS_IOLOCK_SHARED) {
565 xfs_rw_iunlock(ip, *iolock);
566 *iolock = XFS_IOLOCK_EXCL;
567 xfs_rw_ilock(ip, *iolock);
568 goto restart;
570 error = -xfs_zero_eof(ip, *pos, i_size_read(inode));
571 if (error)
572 return error;
576 * Updating the timestamps will grab the ilock again from
577 * xfs_fs_dirty_inode, so we have to call it after dropping the
578 * lock above. Eventually we should look into a way to avoid
579 * the pointless lock roundtrip.
581 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
582 error = file_update_time(file);
583 if (error)
584 return error;
588 * If we're writing the file then make sure to clear the setuid and
589 * setgid bits if the process is not being run by root. This keeps
590 * people from modifying setuid and setgid binaries.
592 return file_remove_suid(file);
596 * xfs_file_dio_aio_write - handle direct IO writes
598 * Lock the inode appropriately to prepare for and issue a direct IO write.
599 * By separating it from the buffered write path we remove all the tricky to
600 * follow locking changes and looping.
602 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
603 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
604 * pages are flushed out.
606 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
607 * allowing them to be done in parallel with reads and other direct IO writes.
608 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
609 * needs to do sub-block zeroing and that requires serialisation against other
610 * direct IOs to the same block. In this case we need to serialise the
611 * submission of the unaligned IOs so that we don't get racing block zeroing in
612 * the dio layer. To avoid the problem with aio, we also need to wait for
613 * outstanding IOs to complete so that unwritten extent conversion is completed
614 * before we try to map the overlapping block. This is currently implemented by
615 * hitting it with a big hammer (i.e. inode_dio_wait()).
617 * Returns with locks held indicated by @iolock and errors indicated by
618 * negative return values.
620 STATIC ssize_t
621 xfs_file_dio_aio_write(
622 struct kiocb *iocb,
623 const struct iovec *iovp,
624 unsigned long nr_segs,
625 loff_t pos,
626 size_t ocount)
628 struct file *file = iocb->ki_filp;
629 struct address_space *mapping = file->f_mapping;
630 struct inode *inode = mapping->host;
631 struct xfs_inode *ip = XFS_I(inode);
632 struct xfs_mount *mp = ip->i_mount;
633 ssize_t ret = 0;
634 size_t count = ocount;
635 int unaligned_io = 0;
636 int iolock;
637 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
638 mp->m_rtdev_targp : mp->m_ddev_targp;
640 if ((pos & target->bt_smask) || (count & target->bt_smask))
641 return -XFS_ERROR(EINVAL);
643 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
644 unaligned_io = 1;
647 * We don't need to take an exclusive lock unless there page cache needs
648 * to be invalidated or unaligned IO is being executed. We don't need to
649 * consider the EOF extension case here because
650 * xfs_file_aio_write_checks() will relock the inode as necessary for
651 * EOF zeroing cases and fill out the new inode size as appropriate.
653 if (unaligned_io || mapping->nrpages)
654 iolock = XFS_IOLOCK_EXCL;
655 else
656 iolock = XFS_IOLOCK_SHARED;
657 xfs_rw_ilock(ip, iolock);
660 * Recheck if there are cached pages that need invalidate after we got
661 * the iolock to protect against other threads adding new pages while
662 * we were waiting for the iolock.
664 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
665 xfs_rw_iunlock(ip, iolock);
666 iolock = XFS_IOLOCK_EXCL;
667 xfs_rw_ilock(ip, iolock);
670 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
671 if (ret)
672 goto out;
674 if (mapping->nrpages) {
675 ret = -filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
676 pos, -1);
677 if (ret)
678 goto out;
679 truncate_pagecache_range(VFS_I(ip), pos, -1);
683 * If we are doing unaligned IO, wait for all other IO to drain,
684 * otherwise demote the lock if we had to flush cached pages
686 if (unaligned_io)
687 inode_dio_wait(inode);
688 else if (iolock == XFS_IOLOCK_EXCL) {
689 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
690 iolock = XFS_IOLOCK_SHARED;
693 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
694 ret = generic_file_direct_write(iocb, iovp,
695 &nr_segs, pos, &iocb->ki_pos, count, ocount);
697 out:
698 xfs_rw_iunlock(ip, iolock);
700 /* No fallback to buffered IO on errors for XFS. */
701 ASSERT(ret < 0 || ret == count);
702 return ret;
705 STATIC ssize_t
706 xfs_file_buffered_aio_write(
707 struct kiocb *iocb,
708 const struct iovec *iovp,
709 unsigned long nr_segs,
710 loff_t pos,
711 size_t ocount)
713 struct file *file = iocb->ki_filp;
714 struct address_space *mapping = file->f_mapping;
715 struct inode *inode = mapping->host;
716 struct xfs_inode *ip = XFS_I(inode);
717 ssize_t ret;
718 int enospc = 0;
719 int iolock = XFS_IOLOCK_EXCL;
720 size_t count = ocount;
722 xfs_rw_ilock(ip, iolock);
724 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
725 if (ret)
726 goto out;
728 /* We can write back this queue in page reclaim */
729 current->backing_dev_info = mapping->backing_dev_info;
731 write_retry:
732 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
733 ret = generic_file_buffered_write(iocb, iovp, nr_segs,
734 pos, &iocb->ki_pos, count, 0);
737 * If we just got an ENOSPC, try to write back all dirty inodes to
738 * convert delalloc space to free up some of the excess reserved
739 * metadata space.
741 if (ret == -ENOSPC && !enospc) {
742 enospc = 1;
743 xfs_flush_inodes(ip->i_mount);
744 goto write_retry;
747 current->backing_dev_info = NULL;
748 out:
749 xfs_rw_iunlock(ip, iolock);
750 return ret;
753 STATIC ssize_t
754 xfs_file_aio_write(
755 struct kiocb *iocb,
756 const struct iovec *iovp,
757 unsigned long nr_segs,
758 loff_t pos)
760 struct file *file = iocb->ki_filp;
761 struct address_space *mapping = file->f_mapping;
762 struct inode *inode = mapping->host;
763 struct xfs_inode *ip = XFS_I(inode);
764 ssize_t ret;
765 size_t ocount = 0;
767 XFS_STATS_INC(xs_write_calls);
769 BUG_ON(iocb->ki_pos != pos);
771 ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
772 if (ret)
773 return ret;
775 if (ocount == 0)
776 return 0;
778 sb_start_write(inode->i_sb);
780 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
781 ret = -EIO;
782 goto out;
785 if (unlikely(file->f_flags & O_DIRECT))
786 ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount);
787 else
788 ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
789 ocount);
791 if (ret > 0) {
792 ssize_t err;
794 XFS_STATS_ADD(xs_write_bytes, ret);
796 /* Handle various SYNC-type writes */
797 err = generic_write_sync(file, pos, ret);
798 if (err < 0)
799 ret = err;
802 out:
803 sb_end_write(inode->i_sb);
804 return ret;
807 STATIC long
808 xfs_file_fallocate(
809 struct file *file,
810 int mode,
811 loff_t offset,
812 loff_t len)
814 struct inode *inode = file_inode(file);
815 long error;
816 loff_t new_size = 0;
817 xfs_flock64_t bf;
818 xfs_inode_t *ip = XFS_I(inode);
819 int cmd = XFS_IOC_RESVSP;
820 int attr_flags = XFS_ATTR_NOLOCK;
822 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
823 return -EOPNOTSUPP;
825 bf.l_whence = 0;
826 bf.l_start = offset;
827 bf.l_len = len;
829 xfs_ilock(ip, XFS_IOLOCK_EXCL);
831 if (mode & FALLOC_FL_PUNCH_HOLE)
832 cmd = XFS_IOC_UNRESVSP;
834 /* check the new inode size is valid before allocating */
835 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
836 offset + len > i_size_read(inode)) {
837 new_size = offset + len;
838 error = inode_newsize_ok(inode, new_size);
839 if (error)
840 goto out_unlock;
843 if (file->f_flags & O_DSYNC)
844 attr_flags |= XFS_ATTR_SYNC;
846 error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags);
847 if (error)
848 goto out_unlock;
850 /* Change file size if needed */
851 if (new_size) {
852 struct iattr iattr;
854 iattr.ia_valid = ATTR_SIZE;
855 iattr.ia_size = new_size;
856 error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK);
859 out_unlock:
860 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
861 return error;
865 STATIC int
866 xfs_file_open(
867 struct inode *inode,
868 struct file *file)
870 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
871 return -EFBIG;
872 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
873 return -EIO;
874 return 0;
877 STATIC int
878 xfs_dir_open(
879 struct inode *inode,
880 struct file *file)
882 struct xfs_inode *ip = XFS_I(inode);
883 int mode;
884 int error;
886 error = xfs_file_open(inode, file);
887 if (error)
888 return error;
891 * If there are any blocks, read-ahead block 0 as we're almost
892 * certain to have the next operation be a read there.
894 mode = xfs_ilock_map_shared(ip);
895 if (ip->i_d.di_nextents > 0)
896 xfs_dir2_data_readahead(NULL, ip, 0, -1);
897 xfs_iunlock(ip, mode);
898 return 0;
901 STATIC int
902 xfs_file_release(
903 struct inode *inode,
904 struct file *filp)
906 return -xfs_release(XFS_I(inode));
909 STATIC int
910 xfs_file_readdir(
911 struct file *filp,
912 void *dirent,
913 filldir_t filldir)
915 struct inode *inode = file_inode(filp);
916 xfs_inode_t *ip = XFS_I(inode);
917 int error;
918 size_t bufsize;
921 * The Linux API doesn't pass down the total size of the buffer
922 * we read into down to the filesystem. With the filldir concept
923 * it's not needed for correct information, but the XFS dir2 leaf
924 * code wants an estimate of the buffer size to calculate it's
925 * readahead window and size the buffers used for mapping to
926 * physical blocks.
928 * Try to give it an estimate that's good enough, maybe at some
929 * point we can change the ->readdir prototype to include the
930 * buffer size. For now we use the current glibc buffer size.
932 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
934 error = xfs_readdir(ip, dirent, bufsize,
935 (xfs_off_t *)&filp->f_pos, filldir);
936 if (error)
937 return -error;
938 return 0;
941 STATIC int
942 xfs_file_mmap(
943 struct file *filp,
944 struct vm_area_struct *vma)
946 vma->vm_ops = &xfs_file_vm_ops;
948 file_accessed(filp);
949 return 0;
953 * mmap()d file has taken write protection fault and is being made
954 * writable. We can set the page state up correctly for a writable
955 * page, which means we can do correct delalloc accounting (ENOSPC
956 * checking!) and unwritten extent mapping.
958 STATIC int
959 xfs_vm_page_mkwrite(
960 struct vm_area_struct *vma,
961 struct vm_fault *vmf)
963 return block_page_mkwrite(vma, vmf, xfs_get_blocks);
967 * This type is designed to indicate the type of offset we would like
968 * to search from page cache for either xfs_seek_data() or xfs_seek_hole().
970 enum {
971 HOLE_OFF = 0,
972 DATA_OFF,
976 * Lookup the desired type of offset from the given page.
978 * On success, return true and the offset argument will point to the
979 * start of the region that was found. Otherwise this function will
980 * return false and keep the offset argument unchanged.
982 STATIC bool
983 xfs_lookup_buffer_offset(
984 struct page *page,
985 loff_t *offset,
986 unsigned int type)
988 loff_t lastoff = page_offset(page);
989 bool found = false;
990 struct buffer_head *bh, *head;
992 bh = head = page_buffers(page);
993 do {
995 * Unwritten extents that have data in the page
996 * cache covering them can be identified by the
997 * BH_Unwritten state flag. Pages with multiple
998 * buffers might have a mix of holes, data and
999 * unwritten extents - any buffer with valid
1000 * data in it should have BH_Uptodate flag set
1001 * on it.
1003 if (buffer_unwritten(bh) ||
1004 buffer_uptodate(bh)) {
1005 if (type == DATA_OFF)
1006 found = true;
1007 } else {
1008 if (type == HOLE_OFF)
1009 found = true;
1012 if (found) {
1013 *offset = lastoff;
1014 break;
1016 lastoff += bh->b_size;
1017 } while ((bh = bh->b_this_page) != head);
1019 return found;
1023 * This routine is called to find out and return a data or hole offset
1024 * from the page cache for unwritten extents according to the desired
1025 * type for xfs_seek_data() or xfs_seek_hole().
1027 * The argument offset is used to tell where we start to search from the
1028 * page cache. Map is used to figure out the end points of the range to
1029 * lookup pages.
1031 * Return true if the desired type of offset was found, and the argument
1032 * offset is filled with that address. Otherwise, return false and keep
1033 * offset unchanged.
1035 STATIC bool
1036 xfs_find_get_desired_pgoff(
1037 struct inode *inode,
1038 struct xfs_bmbt_irec *map,
1039 unsigned int type,
1040 loff_t *offset)
1042 struct xfs_inode *ip = XFS_I(inode);
1043 struct xfs_mount *mp = ip->i_mount;
1044 struct pagevec pvec;
1045 pgoff_t index;
1046 pgoff_t end;
1047 loff_t endoff;
1048 loff_t startoff = *offset;
1049 loff_t lastoff = startoff;
1050 bool found = false;
1052 pagevec_init(&pvec, 0);
1054 index = startoff >> PAGE_CACHE_SHIFT;
1055 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1056 end = endoff >> PAGE_CACHE_SHIFT;
1057 do {
1058 int want;
1059 unsigned nr_pages;
1060 unsigned int i;
1062 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1063 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1064 want);
1066 * No page mapped into given range. If we are searching holes
1067 * and if this is the first time we got into the loop, it means
1068 * that the given offset is landed in a hole, return it.
1070 * If we have already stepped through some block buffers to find
1071 * holes but they all contains data. In this case, the last
1072 * offset is already updated and pointed to the end of the last
1073 * mapped page, if it does not reach the endpoint to search,
1074 * that means there should be a hole between them.
1076 if (nr_pages == 0) {
1077 /* Data search found nothing */
1078 if (type == DATA_OFF)
1079 break;
1081 ASSERT(type == HOLE_OFF);
1082 if (lastoff == startoff || lastoff < endoff) {
1083 found = true;
1084 *offset = lastoff;
1086 break;
1090 * At lease we found one page. If this is the first time we
1091 * step into the loop, and if the first page index offset is
1092 * greater than the given search offset, a hole was found.
1094 if (type == HOLE_OFF && lastoff == startoff &&
1095 lastoff < page_offset(pvec.pages[0])) {
1096 found = true;
1097 break;
1100 for (i = 0; i < nr_pages; i++) {
1101 struct page *page = pvec.pages[i];
1102 loff_t b_offset;
1105 * At this point, the page may be truncated or
1106 * invalidated (changing page->mapping to NULL),
1107 * or even swizzled back from swapper_space to tmpfs
1108 * file mapping. However, page->index will not change
1109 * because we have a reference on the page.
1111 * Searching done if the page index is out of range.
1112 * If the current offset is not reaches the end of
1113 * the specified search range, there should be a hole
1114 * between them.
1116 if (page->index > end) {
1117 if (type == HOLE_OFF && lastoff < endoff) {
1118 *offset = lastoff;
1119 found = true;
1121 goto out;
1124 lock_page(page);
1126 * Page truncated or invalidated(page->mapping == NULL).
1127 * We can freely skip it and proceed to check the next
1128 * page.
1130 if (unlikely(page->mapping != inode->i_mapping)) {
1131 unlock_page(page);
1132 continue;
1135 if (!page_has_buffers(page)) {
1136 unlock_page(page);
1137 continue;
1140 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1141 if (found) {
1143 * The found offset may be less than the start
1144 * point to search if this is the first time to
1145 * come here.
1147 *offset = max_t(loff_t, startoff, b_offset);
1148 unlock_page(page);
1149 goto out;
1153 * We either searching data but nothing was found, or
1154 * searching hole but found a data buffer. In either
1155 * case, probably the next page contains the desired
1156 * things, update the last offset to it so.
1158 lastoff = page_offset(page) + PAGE_SIZE;
1159 unlock_page(page);
1163 * The number of returned pages less than our desired, search
1164 * done. In this case, nothing was found for searching data,
1165 * but we found a hole behind the last offset.
1167 if (nr_pages < want) {
1168 if (type == HOLE_OFF) {
1169 *offset = lastoff;
1170 found = true;
1172 break;
1175 index = pvec.pages[i - 1]->index + 1;
1176 pagevec_release(&pvec);
1177 } while (index <= end);
1179 out:
1180 pagevec_release(&pvec);
1181 return found;
1184 STATIC loff_t
1185 xfs_seek_data(
1186 struct file *file,
1187 loff_t start)
1189 struct inode *inode = file->f_mapping->host;
1190 struct xfs_inode *ip = XFS_I(inode);
1191 struct xfs_mount *mp = ip->i_mount;
1192 loff_t uninitialized_var(offset);
1193 xfs_fsize_t isize;
1194 xfs_fileoff_t fsbno;
1195 xfs_filblks_t end;
1196 uint lock;
1197 int error;
1199 lock = xfs_ilock_map_shared(ip);
1201 isize = i_size_read(inode);
1202 if (start >= isize) {
1203 error = ENXIO;
1204 goto out_unlock;
1208 * Try to read extents from the first block indicated
1209 * by fsbno to the end block of the file.
1211 fsbno = XFS_B_TO_FSBT(mp, start);
1212 end = XFS_B_TO_FSB(mp, isize);
1213 for (;;) {
1214 struct xfs_bmbt_irec map[2];
1215 int nmap = 2;
1216 unsigned int i;
1218 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1219 XFS_BMAPI_ENTIRE);
1220 if (error)
1221 goto out_unlock;
1223 /* No extents at given offset, must be beyond EOF */
1224 if (nmap == 0) {
1225 error = ENXIO;
1226 goto out_unlock;
1229 for (i = 0; i < nmap; i++) {
1230 offset = max_t(loff_t, start,
1231 XFS_FSB_TO_B(mp, map[i].br_startoff));
1233 /* Landed in a data extent */
1234 if (map[i].br_startblock == DELAYSTARTBLOCK ||
1235 (map[i].br_state == XFS_EXT_NORM &&
1236 !isnullstartblock(map[i].br_startblock)))
1237 goto out;
1240 * Landed in an unwritten extent, try to search data
1241 * from page cache.
1243 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1244 if (xfs_find_get_desired_pgoff(inode, &map[i],
1245 DATA_OFF, &offset))
1246 goto out;
1251 * map[0] is hole or its an unwritten extent but
1252 * without data in page cache. Probably means that
1253 * we are reading after EOF if nothing in map[1].
1255 if (nmap == 1) {
1256 error = ENXIO;
1257 goto out_unlock;
1260 ASSERT(i > 1);
1263 * Nothing was found, proceed to the next round of search
1264 * if reading offset not beyond or hit EOF.
1266 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1267 start = XFS_FSB_TO_B(mp, fsbno);
1268 if (start >= isize) {
1269 error = ENXIO;
1270 goto out_unlock;
1274 out:
1275 if (offset != file->f_pos)
1276 file->f_pos = offset;
1278 out_unlock:
1279 xfs_iunlock_map_shared(ip, lock);
1281 if (error)
1282 return -error;
1283 return offset;
1286 STATIC loff_t
1287 xfs_seek_hole(
1288 struct file *file,
1289 loff_t start)
1291 struct inode *inode = file->f_mapping->host;
1292 struct xfs_inode *ip = XFS_I(inode);
1293 struct xfs_mount *mp = ip->i_mount;
1294 loff_t uninitialized_var(offset);
1295 xfs_fsize_t isize;
1296 xfs_fileoff_t fsbno;
1297 xfs_filblks_t end;
1298 uint lock;
1299 int error;
1301 if (XFS_FORCED_SHUTDOWN(mp))
1302 return -XFS_ERROR(EIO);
1304 lock = xfs_ilock_map_shared(ip);
1306 isize = i_size_read(inode);
1307 if (start >= isize) {
1308 error = ENXIO;
1309 goto out_unlock;
1312 fsbno = XFS_B_TO_FSBT(mp, start);
1313 end = XFS_B_TO_FSB(mp, isize);
1315 for (;;) {
1316 struct xfs_bmbt_irec map[2];
1317 int nmap = 2;
1318 unsigned int i;
1320 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1321 XFS_BMAPI_ENTIRE);
1322 if (error)
1323 goto out_unlock;
1325 /* No extents at given offset, must be beyond EOF */
1326 if (nmap == 0) {
1327 error = ENXIO;
1328 goto out_unlock;
1331 for (i = 0; i < nmap; i++) {
1332 offset = max_t(loff_t, start,
1333 XFS_FSB_TO_B(mp, map[i].br_startoff));
1335 /* Landed in a hole */
1336 if (map[i].br_startblock == HOLESTARTBLOCK)
1337 goto out;
1340 * Landed in an unwritten extent, try to search hole
1341 * from page cache.
1343 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1344 if (xfs_find_get_desired_pgoff(inode, &map[i],
1345 HOLE_OFF, &offset))
1346 goto out;
1351 * map[0] contains data or its unwritten but contains
1352 * data in page cache, probably means that we are
1353 * reading after EOF. We should fix offset to point
1354 * to the end of the file(i.e., there is an implicit
1355 * hole at the end of any file).
1357 if (nmap == 1) {
1358 offset = isize;
1359 break;
1362 ASSERT(i > 1);
1365 * Both mappings contains data, proceed to the next round of
1366 * search if the current reading offset not beyond or hit EOF.
1368 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1369 start = XFS_FSB_TO_B(mp, fsbno);
1370 if (start >= isize) {
1371 offset = isize;
1372 break;
1376 out:
1378 * At this point, we must have found a hole. However, the returned
1379 * offset may be bigger than the file size as it may be aligned to
1380 * page boundary for unwritten extents, we need to deal with this
1381 * situation in particular.
1383 offset = min_t(loff_t, offset, isize);
1384 if (offset != file->f_pos)
1385 file->f_pos = offset;
1387 out_unlock:
1388 xfs_iunlock_map_shared(ip, lock);
1390 if (error)
1391 return -error;
1392 return offset;
1395 STATIC loff_t
1396 xfs_file_llseek(
1397 struct file *file,
1398 loff_t offset,
1399 int origin)
1401 switch (origin) {
1402 case SEEK_END:
1403 case SEEK_CUR:
1404 case SEEK_SET:
1405 return generic_file_llseek(file, offset, origin);
1406 case SEEK_DATA:
1407 return xfs_seek_data(file, offset);
1408 case SEEK_HOLE:
1409 return xfs_seek_hole(file, offset);
1410 default:
1411 return -EINVAL;
1415 const struct file_operations xfs_file_operations = {
1416 .llseek = xfs_file_llseek,
1417 .read = do_sync_read,
1418 .write = do_sync_write,
1419 .aio_read = xfs_file_aio_read,
1420 .aio_write = xfs_file_aio_write,
1421 .splice_read = xfs_file_splice_read,
1422 .splice_write = xfs_file_splice_write,
1423 .unlocked_ioctl = xfs_file_ioctl,
1424 #ifdef CONFIG_COMPAT
1425 .compat_ioctl = xfs_file_compat_ioctl,
1426 #endif
1427 .mmap = xfs_file_mmap,
1428 .open = xfs_file_open,
1429 .release = xfs_file_release,
1430 .fsync = xfs_file_fsync,
1431 .fallocate = xfs_file_fallocate,
1434 const struct file_operations xfs_dir_file_operations = {
1435 .open = xfs_dir_open,
1436 .read = generic_read_dir,
1437 .readdir = xfs_file_readdir,
1438 .llseek = generic_file_llseek,
1439 .unlocked_ioctl = xfs_file_ioctl,
1440 #ifdef CONFIG_COMPAT
1441 .compat_ioctl = xfs_file_compat_ioctl,
1442 #endif
1443 .fsync = xfs_dir_fsync,
1446 static const struct vm_operations_struct xfs_file_vm_ops = {
1447 .fault = filemap_fault,
1448 .page_mkwrite = xfs_vm_page_mkwrite,
1449 .remap_pages = generic_file_remap_pages,