2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
23 #include "xfs_trans.h"
24 #include "xfs_mount.h"
25 #include "xfs_bmap_btree.h"
26 #include "xfs_alloc.h"
27 #include "xfs_dinode.h"
28 #include "xfs_inode.h"
29 #include "xfs_inode_item.h"
31 #include "xfs_error.h"
32 #include "xfs_vnodeops.h"
33 #include "xfs_da_btree.h"
34 #include "xfs_dir2_format.h"
35 #include "xfs_dir2_priv.h"
36 #include "xfs_ioctl.h"
37 #include "xfs_trace.h"
39 #include <linux/dcache.h>
40 #include <linux/falloc.h>
41 #include <linux/pagevec.h>
43 static const struct vm_operations_struct xfs_file_vm_ops
;
46 * Locking primitives for read and write IO paths to ensure we consistently use
47 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
54 if (type
& XFS_IOLOCK_EXCL
)
55 mutex_lock(&VFS_I(ip
)->i_mutex
);
64 xfs_iunlock(ip
, type
);
65 if (type
& XFS_IOLOCK_EXCL
)
66 mutex_unlock(&VFS_I(ip
)->i_mutex
);
74 xfs_ilock_demote(ip
, type
);
75 if (type
& XFS_IOLOCK_EXCL
)
76 mutex_unlock(&VFS_I(ip
)->i_mutex
);
82 * xfs_iozero clears the specified range of buffer supplied,
83 * and marks all the affected blocks as valid and modified. If
84 * an affected block is not allocated, it will be allocated. If
85 * an affected block is not completely overwritten, and is not
86 * valid before the operation, it will be read from disk before
87 * being partially zeroed.
91 struct xfs_inode
*ip
, /* inode */
92 loff_t pos
, /* offset in file */
93 size_t count
) /* size of data to zero */
96 struct address_space
*mapping
;
99 mapping
= VFS_I(ip
)->i_mapping
;
101 unsigned offset
, bytes
;
104 offset
= (pos
& (PAGE_CACHE_SIZE
-1)); /* Within page */
105 bytes
= PAGE_CACHE_SIZE
- offset
;
109 status
= pagecache_write_begin(NULL
, mapping
, pos
, bytes
,
110 AOP_FLAG_UNINTERRUPTIBLE
,
115 zero_user(page
, offset
, bytes
);
117 status
= pagecache_write_end(NULL
, mapping
, pos
, bytes
, bytes
,
119 WARN_ON(status
<= 0); /* can't return less than zero! */
129 * Fsync operations on directories are much simpler than on regular files,
130 * as there is no file data to flush, and thus also no need for explicit
131 * cache flush operations, and there are no non-transaction metadata updates
132 * on directories either.
141 struct xfs_inode
*ip
= XFS_I(file
->f_mapping
->host
);
142 struct xfs_mount
*mp
= ip
->i_mount
;
145 trace_xfs_dir_fsync(ip
);
147 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
148 if (xfs_ipincount(ip
))
149 lsn
= ip
->i_itemp
->ili_last_lsn
;
150 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
154 return _xfs_log_force_lsn(mp
, lsn
, XFS_LOG_SYNC
, NULL
);
164 struct inode
*inode
= file
->f_mapping
->host
;
165 struct xfs_inode
*ip
= XFS_I(inode
);
166 struct xfs_mount
*mp
= ip
->i_mount
;
171 trace_xfs_file_fsync(ip
);
173 error
= filemap_write_and_wait_range(inode
->i_mapping
, start
, end
);
177 if (XFS_FORCED_SHUTDOWN(mp
))
178 return -XFS_ERROR(EIO
);
180 xfs_iflags_clear(ip
, XFS_ITRUNCATED
);
182 if (mp
->m_flags
& XFS_MOUNT_BARRIER
) {
184 * If we have an RT and/or log subvolume we need to make sure
185 * to flush the write cache the device used for file data
186 * first. This is to ensure newly written file data make
187 * it to disk before logging the new inode size in case of
188 * an extending write.
190 if (XFS_IS_REALTIME_INODE(ip
))
191 xfs_blkdev_issue_flush(mp
->m_rtdev_targp
);
192 else if (mp
->m_logdev_targp
!= mp
->m_ddev_targp
)
193 xfs_blkdev_issue_flush(mp
->m_ddev_targp
);
197 * All metadata updates are logged, which means that we just have
198 * to flush the log up to the latest LSN that touched the inode.
200 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
201 if (xfs_ipincount(ip
)) {
203 (ip
->i_itemp
->ili_fields
& ~XFS_ILOG_TIMESTAMP
))
204 lsn
= ip
->i_itemp
->ili_last_lsn
;
206 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
209 error
= _xfs_log_force_lsn(mp
, lsn
, XFS_LOG_SYNC
, &log_flushed
);
212 * If we only have a single device, and the log force about was
213 * a no-op we might have to flush the data device cache here.
214 * This can only happen for fdatasync/O_DSYNC if we were overwriting
215 * an already allocated file and thus do not have any metadata to
218 if ((mp
->m_flags
& XFS_MOUNT_BARRIER
) &&
219 mp
->m_logdev_targp
== mp
->m_ddev_targp
&&
220 !XFS_IS_REALTIME_INODE(ip
) &&
222 xfs_blkdev_issue_flush(mp
->m_ddev_targp
);
230 const struct iovec
*iovp
,
231 unsigned long nr_segs
,
234 struct file
*file
= iocb
->ki_filp
;
235 struct inode
*inode
= file
->f_mapping
->host
;
236 struct xfs_inode
*ip
= XFS_I(inode
);
237 struct xfs_mount
*mp
= ip
->i_mount
;
243 XFS_STATS_INC(xs_read_calls
);
245 BUG_ON(iocb
->ki_pos
!= pos
);
247 if (unlikely(file
->f_flags
& O_DIRECT
))
248 ioflags
|= IO_ISDIRECT
;
249 if (file
->f_mode
& FMODE_NOCMTIME
)
252 ret
= generic_segment_checks(iovp
, &nr_segs
, &size
, VERIFY_WRITE
);
256 if (unlikely(ioflags
& IO_ISDIRECT
)) {
257 xfs_buftarg_t
*target
=
258 XFS_IS_REALTIME_INODE(ip
) ?
259 mp
->m_rtdev_targp
: mp
->m_ddev_targp
;
260 if ((pos
& target
->bt_smask
) || (size
& target
->bt_smask
)) {
261 if (pos
== i_size_read(inode
))
263 return -XFS_ERROR(EINVAL
);
267 n
= mp
->m_super
->s_maxbytes
- pos
;
268 if (n
<= 0 || size
== 0)
274 if (XFS_FORCED_SHUTDOWN(mp
))
278 * Locking is a bit tricky here. If we take an exclusive lock
279 * for direct IO, we effectively serialise all new concurrent
280 * read IO to this file and block it behind IO that is currently in
281 * progress because IO in progress holds the IO lock shared. We only
282 * need to hold the lock exclusive to blow away the page cache, so
283 * only take lock exclusively if the page cache needs invalidation.
284 * This allows the normal direct IO case of no page cache pages to
285 * proceeed concurrently without serialisation.
287 xfs_rw_ilock(ip
, XFS_IOLOCK_SHARED
);
288 if ((ioflags
& IO_ISDIRECT
) && inode
->i_mapping
->nrpages
) {
289 xfs_rw_iunlock(ip
, XFS_IOLOCK_SHARED
);
290 xfs_rw_ilock(ip
, XFS_IOLOCK_EXCL
);
292 if (inode
->i_mapping
->nrpages
) {
293 ret
= -filemap_write_and_wait_range(
294 VFS_I(ip
)->i_mapping
,
297 xfs_rw_iunlock(ip
, XFS_IOLOCK_EXCL
);
300 truncate_pagecache_range(VFS_I(ip
), pos
, -1);
302 xfs_rw_ilock_demote(ip
, XFS_IOLOCK_EXCL
);
305 trace_xfs_file_read(ip
, size
, pos
, ioflags
);
307 ret
= generic_file_aio_read(iocb
, iovp
, nr_segs
, pos
);
309 XFS_STATS_ADD(xs_read_bytes
, ret
);
311 xfs_rw_iunlock(ip
, XFS_IOLOCK_SHARED
);
316 xfs_file_splice_read(
319 struct pipe_inode_info
*pipe
,
323 struct xfs_inode
*ip
= XFS_I(infilp
->f_mapping
->host
);
327 XFS_STATS_INC(xs_read_calls
);
329 if (infilp
->f_mode
& FMODE_NOCMTIME
)
332 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
335 xfs_rw_ilock(ip
, XFS_IOLOCK_SHARED
);
337 trace_xfs_file_splice_read(ip
, count
, *ppos
, ioflags
);
339 ret
= generic_file_splice_read(infilp
, ppos
, pipe
, count
, flags
);
341 XFS_STATS_ADD(xs_read_bytes
, ret
);
343 xfs_rw_iunlock(ip
, XFS_IOLOCK_SHARED
);
348 * xfs_file_splice_write() does not use xfs_rw_ilock() because
349 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
350 * couuld cause lock inversions between the aio_write path and the splice path
351 * if someone is doing concurrent splice(2) based writes and write(2) based
352 * writes to the same inode. The only real way to fix this is to re-implement
353 * the generic code here with correct locking orders.
356 xfs_file_splice_write(
357 struct pipe_inode_info
*pipe
,
358 struct file
*outfilp
,
363 struct inode
*inode
= outfilp
->f_mapping
->host
;
364 struct xfs_inode
*ip
= XFS_I(inode
);
368 XFS_STATS_INC(xs_write_calls
);
370 if (outfilp
->f_mode
& FMODE_NOCMTIME
)
373 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
376 xfs_ilock(ip
, XFS_IOLOCK_EXCL
);
378 trace_xfs_file_splice_write(ip
, count
, *ppos
, ioflags
);
380 ret
= generic_file_splice_write(pipe
, outfilp
, ppos
, count
, flags
);
382 XFS_STATS_ADD(xs_write_bytes
, ret
);
384 xfs_iunlock(ip
, XFS_IOLOCK_EXCL
);
389 * This routine is called to handle zeroing any space in the last block of the
390 * file that is beyond the EOF. We do this since the size is being increased
391 * without writing anything to that block and we don't want to read the
392 * garbage on the disk.
394 STATIC
int /* error (positive) */
396 struct xfs_inode
*ip
,
400 struct xfs_mount
*mp
= ip
->i_mount
;
401 xfs_fileoff_t last_fsb
= XFS_B_TO_FSBT(mp
, isize
);
402 int zero_offset
= XFS_B_FSB_OFFSET(mp
, isize
);
406 struct xfs_bmbt_irec imap
;
408 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
409 error
= xfs_bmapi_read(ip
, last_fsb
, 1, &imap
, &nimaps
, 0);
410 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
417 * If the block underlying isize is just a hole, then there
418 * is nothing to zero.
420 if (imap
.br_startblock
== HOLESTARTBLOCK
)
423 zero_len
= mp
->m_sb
.sb_blocksize
- zero_offset
;
424 if (isize
+ zero_len
> offset
)
425 zero_len
= offset
- isize
;
426 return xfs_iozero(ip
, isize
, zero_len
);
430 * Zero any on disk space between the current EOF and the new, larger EOF.
432 * This handles the normal case of zeroing the remainder of the last block in
433 * the file and the unusual case of zeroing blocks out beyond the size of the
434 * file. This second case only happens with fixed size extents and when the
435 * system crashes before the inode size was updated but after blocks were
438 * Expects the iolock to be held exclusive, and will take the ilock internally.
440 int /* error (positive) */
442 struct xfs_inode
*ip
,
443 xfs_off_t offset
, /* starting I/O offset */
444 xfs_fsize_t isize
) /* current inode size */
446 struct xfs_mount
*mp
= ip
->i_mount
;
447 xfs_fileoff_t start_zero_fsb
;
448 xfs_fileoff_t end_zero_fsb
;
449 xfs_fileoff_t zero_count_fsb
;
450 xfs_fileoff_t last_fsb
;
451 xfs_fileoff_t zero_off
;
452 xfs_fsize_t zero_len
;
455 struct xfs_bmbt_irec imap
;
457 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
458 ASSERT(offset
> isize
);
461 * First handle zeroing the block on which isize resides.
463 * We only zero a part of that block so it is handled specially.
465 if (XFS_B_FSB_OFFSET(mp
, isize
) != 0) {
466 error
= xfs_zero_last_block(ip
, offset
, isize
);
472 * Calculate the range between the new size and the old where blocks
473 * needing to be zeroed may exist.
475 * To get the block where the last byte in the file currently resides,
476 * we need to subtract one from the size and truncate back to a block
477 * boundary. We subtract 1 in case the size is exactly on a block
480 last_fsb
= isize
? XFS_B_TO_FSBT(mp
, isize
- 1) : (xfs_fileoff_t
)-1;
481 start_zero_fsb
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)isize
);
482 end_zero_fsb
= XFS_B_TO_FSBT(mp
, offset
- 1);
483 ASSERT((xfs_sfiloff_t
)last_fsb
< (xfs_sfiloff_t
)start_zero_fsb
);
484 if (last_fsb
== end_zero_fsb
) {
486 * The size was only incremented on its last block.
487 * We took care of that above, so just return.
492 ASSERT(start_zero_fsb
<= end_zero_fsb
);
493 while (start_zero_fsb
<= end_zero_fsb
) {
495 zero_count_fsb
= end_zero_fsb
- start_zero_fsb
+ 1;
497 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
498 error
= xfs_bmapi_read(ip
, start_zero_fsb
, zero_count_fsb
,
500 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
506 if (imap
.br_state
== XFS_EXT_UNWRITTEN
||
507 imap
.br_startblock
== HOLESTARTBLOCK
) {
508 start_zero_fsb
= imap
.br_startoff
+ imap
.br_blockcount
;
509 ASSERT(start_zero_fsb
<= (end_zero_fsb
+ 1));
514 * There are blocks we need to zero.
516 zero_off
= XFS_FSB_TO_B(mp
, start_zero_fsb
);
517 zero_len
= XFS_FSB_TO_B(mp
, imap
.br_blockcount
);
519 if ((zero_off
+ zero_len
) > offset
)
520 zero_len
= offset
- zero_off
;
522 error
= xfs_iozero(ip
, zero_off
, zero_len
);
526 start_zero_fsb
= imap
.br_startoff
+ imap
.br_blockcount
;
527 ASSERT(start_zero_fsb
<= (end_zero_fsb
+ 1));
534 * Common pre-write limit and setup checks.
536 * Called with the iolocked held either shared and exclusive according to
537 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
538 * if called for a direct write beyond i_size.
541 xfs_file_aio_write_checks(
547 struct inode
*inode
= file
->f_mapping
->host
;
548 struct xfs_inode
*ip
= XFS_I(inode
);
552 error
= generic_write_checks(file
, pos
, count
, S_ISBLK(inode
->i_mode
));
557 * If the offset is beyond the size of the file, we need to zero any
558 * blocks that fall between the existing EOF and the start of this
559 * write. If zeroing is needed and we are currently holding the
560 * iolock shared, we need to update it to exclusive which implies
561 * having to redo all checks before.
563 if (*pos
> i_size_read(inode
)) {
564 if (*iolock
== XFS_IOLOCK_SHARED
) {
565 xfs_rw_iunlock(ip
, *iolock
);
566 *iolock
= XFS_IOLOCK_EXCL
;
567 xfs_rw_ilock(ip
, *iolock
);
570 error
= -xfs_zero_eof(ip
, *pos
, i_size_read(inode
));
576 * Updating the timestamps will grab the ilock again from
577 * xfs_fs_dirty_inode, so we have to call it after dropping the
578 * lock above. Eventually we should look into a way to avoid
579 * the pointless lock roundtrip.
581 if (likely(!(file
->f_mode
& FMODE_NOCMTIME
))) {
582 error
= file_update_time(file
);
588 * If we're writing the file then make sure to clear the setuid and
589 * setgid bits if the process is not being run by root. This keeps
590 * people from modifying setuid and setgid binaries.
592 return file_remove_suid(file
);
596 * xfs_file_dio_aio_write - handle direct IO writes
598 * Lock the inode appropriately to prepare for and issue a direct IO write.
599 * By separating it from the buffered write path we remove all the tricky to
600 * follow locking changes and looping.
602 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
603 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
604 * pages are flushed out.
606 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
607 * allowing them to be done in parallel with reads and other direct IO writes.
608 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
609 * needs to do sub-block zeroing and that requires serialisation against other
610 * direct IOs to the same block. In this case we need to serialise the
611 * submission of the unaligned IOs so that we don't get racing block zeroing in
612 * the dio layer. To avoid the problem with aio, we also need to wait for
613 * outstanding IOs to complete so that unwritten extent conversion is completed
614 * before we try to map the overlapping block. This is currently implemented by
615 * hitting it with a big hammer (i.e. inode_dio_wait()).
617 * Returns with locks held indicated by @iolock and errors indicated by
618 * negative return values.
621 xfs_file_dio_aio_write(
623 const struct iovec
*iovp
,
624 unsigned long nr_segs
,
628 struct file
*file
= iocb
->ki_filp
;
629 struct address_space
*mapping
= file
->f_mapping
;
630 struct inode
*inode
= mapping
->host
;
631 struct xfs_inode
*ip
= XFS_I(inode
);
632 struct xfs_mount
*mp
= ip
->i_mount
;
634 size_t count
= ocount
;
635 int unaligned_io
= 0;
637 struct xfs_buftarg
*target
= XFS_IS_REALTIME_INODE(ip
) ?
638 mp
->m_rtdev_targp
: mp
->m_ddev_targp
;
640 if ((pos
& target
->bt_smask
) || (count
& target
->bt_smask
))
641 return -XFS_ERROR(EINVAL
);
643 if ((pos
& mp
->m_blockmask
) || ((pos
+ count
) & mp
->m_blockmask
))
647 * We don't need to take an exclusive lock unless there page cache needs
648 * to be invalidated or unaligned IO is being executed. We don't need to
649 * consider the EOF extension case here because
650 * xfs_file_aio_write_checks() will relock the inode as necessary for
651 * EOF zeroing cases and fill out the new inode size as appropriate.
653 if (unaligned_io
|| mapping
->nrpages
)
654 iolock
= XFS_IOLOCK_EXCL
;
656 iolock
= XFS_IOLOCK_SHARED
;
657 xfs_rw_ilock(ip
, iolock
);
660 * Recheck if there are cached pages that need invalidate after we got
661 * the iolock to protect against other threads adding new pages while
662 * we were waiting for the iolock.
664 if (mapping
->nrpages
&& iolock
== XFS_IOLOCK_SHARED
) {
665 xfs_rw_iunlock(ip
, iolock
);
666 iolock
= XFS_IOLOCK_EXCL
;
667 xfs_rw_ilock(ip
, iolock
);
670 ret
= xfs_file_aio_write_checks(file
, &pos
, &count
, &iolock
);
674 if (mapping
->nrpages
) {
675 ret
= -filemap_write_and_wait_range(VFS_I(ip
)->i_mapping
,
679 truncate_pagecache_range(VFS_I(ip
), pos
, -1);
683 * If we are doing unaligned IO, wait for all other IO to drain,
684 * otherwise demote the lock if we had to flush cached pages
687 inode_dio_wait(inode
);
688 else if (iolock
== XFS_IOLOCK_EXCL
) {
689 xfs_rw_ilock_demote(ip
, XFS_IOLOCK_EXCL
);
690 iolock
= XFS_IOLOCK_SHARED
;
693 trace_xfs_file_direct_write(ip
, count
, iocb
->ki_pos
, 0);
694 ret
= generic_file_direct_write(iocb
, iovp
,
695 &nr_segs
, pos
, &iocb
->ki_pos
, count
, ocount
);
698 xfs_rw_iunlock(ip
, iolock
);
700 /* No fallback to buffered IO on errors for XFS. */
701 ASSERT(ret
< 0 || ret
== count
);
706 xfs_file_buffered_aio_write(
708 const struct iovec
*iovp
,
709 unsigned long nr_segs
,
713 struct file
*file
= iocb
->ki_filp
;
714 struct address_space
*mapping
= file
->f_mapping
;
715 struct inode
*inode
= mapping
->host
;
716 struct xfs_inode
*ip
= XFS_I(inode
);
719 int iolock
= XFS_IOLOCK_EXCL
;
720 size_t count
= ocount
;
722 xfs_rw_ilock(ip
, iolock
);
724 ret
= xfs_file_aio_write_checks(file
, &pos
, &count
, &iolock
);
728 /* We can write back this queue in page reclaim */
729 current
->backing_dev_info
= mapping
->backing_dev_info
;
732 trace_xfs_file_buffered_write(ip
, count
, iocb
->ki_pos
, 0);
733 ret
= generic_file_buffered_write(iocb
, iovp
, nr_segs
,
734 pos
, &iocb
->ki_pos
, count
, 0);
737 * If we just got an ENOSPC, try to write back all dirty inodes to
738 * convert delalloc space to free up some of the excess reserved
741 if (ret
== -ENOSPC
&& !enospc
) {
743 xfs_flush_inodes(ip
->i_mount
);
747 current
->backing_dev_info
= NULL
;
749 xfs_rw_iunlock(ip
, iolock
);
756 const struct iovec
*iovp
,
757 unsigned long nr_segs
,
760 struct file
*file
= iocb
->ki_filp
;
761 struct address_space
*mapping
= file
->f_mapping
;
762 struct inode
*inode
= mapping
->host
;
763 struct xfs_inode
*ip
= XFS_I(inode
);
767 XFS_STATS_INC(xs_write_calls
);
769 BUG_ON(iocb
->ki_pos
!= pos
);
771 ret
= generic_segment_checks(iovp
, &nr_segs
, &ocount
, VERIFY_READ
);
778 sb_start_write(inode
->i_sb
);
780 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
785 if (unlikely(file
->f_flags
& O_DIRECT
))
786 ret
= xfs_file_dio_aio_write(iocb
, iovp
, nr_segs
, pos
, ocount
);
788 ret
= xfs_file_buffered_aio_write(iocb
, iovp
, nr_segs
, pos
,
794 XFS_STATS_ADD(xs_write_bytes
, ret
);
796 /* Handle various SYNC-type writes */
797 err
= generic_write_sync(file
, pos
, ret
);
803 sb_end_write(inode
->i_sb
);
814 struct inode
*inode
= file_inode(file
);
818 xfs_inode_t
*ip
= XFS_I(inode
);
819 int cmd
= XFS_IOC_RESVSP
;
820 int attr_flags
= XFS_ATTR_NOLOCK
;
822 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
829 xfs_ilock(ip
, XFS_IOLOCK_EXCL
);
831 if (mode
& FALLOC_FL_PUNCH_HOLE
)
832 cmd
= XFS_IOC_UNRESVSP
;
834 /* check the new inode size is valid before allocating */
835 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
836 offset
+ len
> i_size_read(inode
)) {
837 new_size
= offset
+ len
;
838 error
= inode_newsize_ok(inode
, new_size
);
843 if (file
->f_flags
& O_DSYNC
)
844 attr_flags
|= XFS_ATTR_SYNC
;
846 error
= -xfs_change_file_space(ip
, cmd
, &bf
, 0, attr_flags
);
850 /* Change file size if needed */
854 iattr
.ia_valid
= ATTR_SIZE
;
855 iattr
.ia_size
= new_size
;
856 error
= -xfs_setattr_size(ip
, &iattr
, XFS_ATTR_NOLOCK
);
860 xfs_iunlock(ip
, XFS_IOLOCK_EXCL
);
870 if (!(file
->f_flags
& O_LARGEFILE
) && i_size_read(inode
) > MAX_NON_LFS
)
872 if (XFS_FORCED_SHUTDOWN(XFS_M(inode
->i_sb
)))
882 struct xfs_inode
*ip
= XFS_I(inode
);
886 error
= xfs_file_open(inode
, file
);
891 * If there are any blocks, read-ahead block 0 as we're almost
892 * certain to have the next operation be a read there.
894 mode
= xfs_ilock_map_shared(ip
);
895 if (ip
->i_d
.di_nextents
> 0)
896 xfs_dir2_data_readahead(NULL
, ip
, 0, -1);
897 xfs_iunlock(ip
, mode
);
906 return -xfs_release(XFS_I(inode
));
915 struct inode
*inode
= file_inode(filp
);
916 xfs_inode_t
*ip
= XFS_I(inode
);
921 * The Linux API doesn't pass down the total size of the buffer
922 * we read into down to the filesystem. With the filldir concept
923 * it's not needed for correct information, but the XFS dir2 leaf
924 * code wants an estimate of the buffer size to calculate it's
925 * readahead window and size the buffers used for mapping to
928 * Try to give it an estimate that's good enough, maybe at some
929 * point we can change the ->readdir prototype to include the
930 * buffer size. For now we use the current glibc buffer size.
932 bufsize
= (size_t)min_t(loff_t
, 32768, ip
->i_d
.di_size
);
934 error
= xfs_readdir(ip
, dirent
, bufsize
,
935 (xfs_off_t
*)&filp
->f_pos
, filldir
);
944 struct vm_area_struct
*vma
)
946 vma
->vm_ops
= &xfs_file_vm_ops
;
953 * mmap()d file has taken write protection fault and is being made
954 * writable. We can set the page state up correctly for a writable
955 * page, which means we can do correct delalloc accounting (ENOSPC
956 * checking!) and unwritten extent mapping.
960 struct vm_area_struct
*vma
,
961 struct vm_fault
*vmf
)
963 return block_page_mkwrite(vma
, vmf
, xfs_get_blocks
);
967 * This type is designed to indicate the type of offset we would like
968 * to search from page cache for either xfs_seek_data() or xfs_seek_hole().
976 * Lookup the desired type of offset from the given page.
978 * On success, return true and the offset argument will point to the
979 * start of the region that was found. Otherwise this function will
980 * return false and keep the offset argument unchanged.
983 xfs_lookup_buffer_offset(
988 loff_t lastoff
= page_offset(page
);
990 struct buffer_head
*bh
, *head
;
992 bh
= head
= page_buffers(page
);
995 * Unwritten extents that have data in the page
996 * cache covering them can be identified by the
997 * BH_Unwritten state flag. Pages with multiple
998 * buffers might have a mix of holes, data and
999 * unwritten extents - any buffer with valid
1000 * data in it should have BH_Uptodate flag set
1003 if (buffer_unwritten(bh
) ||
1004 buffer_uptodate(bh
)) {
1005 if (type
== DATA_OFF
)
1008 if (type
== HOLE_OFF
)
1016 lastoff
+= bh
->b_size
;
1017 } while ((bh
= bh
->b_this_page
) != head
);
1023 * This routine is called to find out and return a data or hole offset
1024 * from the page cache for unwritten extents according to the desired
1025 * type for xfs_seek_data() or xfs_seek_hole().
1027 * The argument offset is used to tell where we start to search from the
1028 * page cache. Map is used to figure out the end points of the range to
1031 * Return true if the desired type of offset was found, and the argument
1032 * offset is filled with that address. Otherwise, return false and keep
1036 xfs_find_get_desired_pgoff(
1037 struct inode
*inode
,
1038 struct xfs_bmbt_irec
*map
,
1042 struct xfs_inode
*ip
= XFS_I(inode
);
1043 struct xfs_mount
*mp
= ip
->i_mount
;
1044 struct pagevec pvec
;
1048 loff_t startoff
= *offset
;
1049 loff_t lastoff
= startoff
;
1052 pagevec_init(&pvec
, 0);
1054 index
= startoff
>> PAGE_CACHE_SHIFT
;
1055 endoff
= XFS_FSB_TO_B(mp
, map
->br_startoff
+ map
->br_blockcount
);
1056 end
= endoff
>> PAGE_CACHE_SHIFT
;
1062 want
= min_t(pgoff_t
, end
- index
, PAGEVEC_SIZE
);
1063 nr_pages
= pagevec_lookup(&pvec
, inode
->i_mapping
, index
,
1066 * No page mapped into given range. If we are searching holes
1067 * and if this is the first time we got into the loop, it means
1068 * that the given offset is landed in a hole, return it.
1070 * If we have already stepped through some block buffers to find
1071 * holes but they all contains data. In this case, the last
1072 * offset is already updated and pointed to the end of the last
1073 * mapped page, if it does not reach the endpoint to search,
1074 * that means there should be a hole between them.
1076 if (nr_pages
== 0) {
1077 /* Data search found nothing */
1078 if (type
== DATA_OFF
)
1081 ASSERT(type
== HOLE_OFF
);
1082 if (lastoff
== startoff
|| lastoff
< endoff
) {
1090 * At lease we found one page. If this is the first time we
1091 * step into the loop, and if the first page index offset is
1092 * greater than the given search offset, a hole was found.
1094 if (type
== HOLE_OFF
&& lastoff
== startoff
&&
1095 lastoff
< page_offset(pvec
.pages
[0])) {
1100 for (i
= 0; i
< nr_pages
; i
++) {
1101 struct page
*page
= pvec
.pages
[i
];
1105 * At this point, the page may be truncated or
1106 * invalidated (changing page->mapping to NULL),
1107 * or even swizzled back from swapper_space to tmpfs
1108 * file mapping. However, page->index will not change
1109 * because we have a reference on the page.
1111 * Searching done if the page index is out of range.
1112 * If the current offset is not reaches the end of
1113 * the specified search range, there should be a hole
1116 if (page
->index
> end
) {
1117 if (type
== HOLE_OFF
&& lastoff
< endoff
) {
1126 * Page truncated or invalidated(page->mapping == NULL).
1127 * We can freely skip it and proceed to check the next
1130 if (unlikely(page
->mapping
!= inode
->i_mapping
)) {
1135 if (!page_has_buffers(page
)) {
1140 found
= xfs_lookup_buffer_offset(page
, &b_offset
, type
);
1143 * The found offset may be less than the start
1144 * point to search if this is the first time to
1147 *offset
= max_t(loff_t
, startoff
, b_offset
);
1153 * We either searching data but nothing was found, or
1154 * searching hole but found a data buffer. In either
1155 * case, probably the next page contains the desired
1156 * things, update the last offset to it so.
1158 lastoff
= page_offset(page
) + PAGE_SIZE
;
1163 * The number of returned pages less than our desired, search
1164 * done. In this case, nothing was found for searching data,
1165 * but we found a hole behind the last offset.
1167 if (nr_pages
< want
) {
1168 if (type
== HOLE_OFF
) {
1175 index
= pvec
.pages
[i
- 1]->index
+ 1;
1176 pagevec_release(&pvec
);
1177 } while (index
<= end
);
1180 pagevec_release(&pvec
);
1189 struct inode
*inode
= file
->f_mapping
->host
;
1190 struct xfs_inode
*ip
= XFS_I(inode
);
1191 struct xfs_mount
*mp
= ip
->i_mount
;
1192 loff_t
uninitialized_var(offset
);
1194 xfs_fileoff_t fsbno
;
1199 lock
= xfs_ilock_map_shared(ip
);
1201 isize
= i_size_read(inode
);
1202 if (start
>= isize
) {
1208 * Try to read extents from the first block indicated
1209 * by fsbno to the end block of the file.
1211 fsbno
= XFS_B_TO_FSBT(mp
, start
);
1212 end
= XFS_B_TO_FSB(mp
, isize
);
1214 struct xfs_bmbt_irec map
[2];
1218 error
= xfs_bmapi_read(ip
, fsbno
, end
- fsbno
, map
, &nmap
,
1223 /* No extents at given offset, must be beyond EOF */
1229 for (i
= 0; i
< nmap
; i
++) {
1230 offset
= max_t(loff_t
, start
,
1231 XFS_FSB_TO_B(mp
, map
[i
].br_startoff
));
1233 /* Landed in a data extent */
1234 if (map
[i
].br_startblock
== DELAYSTARTBLOCK
||
1235 (map
[i
].br_state
== XFS_EXT_NORM
&&
1236 !isnullstartblock(map
[i
].br_startblock
)))
1240 * Landed in an unwritten extent, try to search data
1243 if (map
[i
].br_state
== XFS_EXT_UNWRITTEN
) {
1244 if (xfs_find_get_desired_pgoff(inode
, &map
[i
],
1251 * map[0] is hole or its an unwritten extent but
1252 * without data in page cache. Probably means that
1253 * we are reading after EOF if nothing in map[1].
1263 * Nothing was found, proceed to the next round of search
1264 * if reading offset not beyond or hit EOF.
1266 fsbno
= map
[i
- 1].br_startoff
+ map
[i
- 1].br_blockcount
;
1267 start
= XFS_FSB_TO_B(mp
, fsbno
);
1268 if (start
>= isize
) {
1275 if (offset
!= file
->f_pos
)
1276 file
->f_pos
= offset
;
1279 xfs_iunlock_map_shared(ip
, lock
);
1291 struct inode
*inode
= file
->f_mapping
->host
;
1292 struct xfs_inode
*ip
= XFS_I(inode
);
1293 struct xfs_mount
*mp
= ip
->i_mount
;
1294 loff_t
uninitialized_var(offset
);
1296 xfs_fileoff_t fsbno
;
1301 if (XFS_FORCED_SHUTDOWN(mp
))
1302 return -XFS_ERROR(EIO
);
1304 lock
= xfs_ilock_map_shared(ip
);
1306 isize
= i_size_read(inode
);
1307 if (start
>= isize
) {
1312 fsbno
= XFS_B_TO_FSBT(mp
, start
);
1313 end
= XFS_B_TO_FSB(mp
, isize
);
1316 struct xfs_bmbt_irec map
[2];
1320 error
= xfs_bmapi_read(ip
, fsbno
, end
- fsbno
, map
, &nmap
,
1325 /* No extents at given offset, must be beyond EOF */
1331 for (i
= 0; i
< nmap
; i
++) {
1332 offset
= max_t(loff_t
, start
,
1333 XFS_FSB_TO_B(mp
, map
[i
].br_startoff
));
1335 /* Landed in a hole */
1336 if (map
[i
].br_startblock
== HOLESTARTBLOCK
)
1340 * Landed in an unwritten extent, try to search hole
1343 if (map
[i
].br_state
== XFS_EXT_UNWRITTEN
) {
1344 if (xfs_find_get_desired_pgoff(inode
, &map
[i
],
1351 * map[0] contains data or its unwritten but contains
1352 * data in page cache, probably means that we are
1353 * reading after EOF. We should fix offset to point
1354 * to the end of the file(i.e., there is an implicit
1355 * hole at the end of any file).
1365 * Both mappings contains data, proceed to the next round of
1366 * search if the current reading offset not beyond or hit EOF.
1368 fsbno
= map
[i
- 1].br_startoff
+ map
[i
- 1].br_blockcount
;
1369 start
= XFS_FSB_TO_B(mp
, fsbno
);
1370 if (start
>= isize
) {
1378 * At this point, we must have found a hole. However, the returned
1379 * offset may be bigger than the file size as it may be aligned to
1380 * page boundary for unwritten extents, we need to deal with this
1381 * situation in particular.
1383 offset
= min_t(loff_t
, offset
, isize
);
1384 if (offset
!= file
->f_pos
)
1385 file
->f_pos
= offset
;
1388 xfs_iunlock_map_shared(ip
, lock
);
1405 return generic_file_llseek(file
, offset
, origin
);
1407 return xfs_seek_data(file
, offset
);
1409 return xfs_seek_hole(file
, offset
);
1415 const struct file_operations xfs_file_operations
= {
1416 .llseek
= xfs_file_llseek
,
1417 .read
= do_sync_read
,
1418 .write
= do_sync_write
,
1419 .aio_read
= xfs_file_aio_read
,
1420 .aio_write
= xfs_file_aio_write
,
1421 .splice_read
= xfs_file_splice_read
,
1422 .splice_write
= xfs_file_splice_write
,
1423 .unlocked_ioctl
= xfs_file_ioctl
,
1424 #ifdef CONFIG_COMPAT
1425 .compat_ioctl
= xfs_file_compat_ioctl
,
1427 .mmap
= xfs_file_mmap
,
1428 .open
= xfs_file_open
,
1429 .release
= xfs_file_release
,
1430 .fsync
= xfs_file_fsync
,
1431 .fallocate
= xfs_file_fallocate
,
1434 const struct file_operations xfs_dir_file_operations
= {
1435 .open
= xfs_dir_open
,
1436 .read
= generic_read_dir
,
1437 .readdir
= xfs_file_readdir
,
1438 .llseek
= generic_file_llseek
,
1439 .unlocked_ioctl
= xfs_file_ioctl
,
1440 #ifdef CONFIG_COMPAT
1441 .compat_ioctl
= xfs_file_compat_ioctl
,
1443 .fsync
= xfs_dir_fsync
,
1446 static const struct vm_operations_struct xfs_file_vm_ops
= {
1447 .fault
= filemap_fault
,
1448 .page_mkwrite
= xfs_vm_page_mkwrite
,
1449 .remap_pages
= generic_file_remap_pages
,