mmc: esdhc: set the timeout to the max value
[linux-2.6.git] / mm / memblock.c
blob77b5f227e1d86d9228ae6a67f52f18418a2beb98
1 /*
2 * Procedures for maintaining information about logical memory blocks.
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
23 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
24 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
26 struct memblock memblock __initdata_memblock = {
27 .memory.regions = memblock_memory_init_regions,
28 .memory.cnt = 1, /* empty dummy entry */
29 .memory.max = INIT_MEMBLOCK_REGIONS,
31 .reserved.regions = memblock_reserved_init_regions,
32 .reserved.cnt = 1, /* empty dummy entry */
33 .reserved.max = INIT_MEMBLOCK_REGIONS,
35 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
38 int memblock_debug __initdata_memblock;
39 static int memblock_can_resize __initdata_memblock;
41 /* inline so we don't get a warning when pr_debug is compiled out */
42 static inline const char *memblock_type_name(struct memblock_type *type)
44 if (type == &memblock.memory)
45 return "memory";
46 else if (type == &memblock.reserved)
47 return "reserved";
48 else
49 return "unknown";
52 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
53 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
55 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
59 * Address comparison utilities
61 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
62 phys_addr_t base2, phys_addr_t size2)
64 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
67 static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
68 phys_addr_t base, phys_addr_t size)
70 unsigned long i;
72 for (i = 0; i < type->cnt; i++) {
73 phys_addr_t rgnbase = type->regions[i].base;
74 phys_addr_t rgnsize = type->regions[i].size;
75 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
76 break;
79 return (i < type->cnt) ? i : -1;
82 /**
83 * memblock_find_in_range_node - find free area in given range and node
84 * @start: start of candidate range
85 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
86 * @size: size of free area to find
87 * @align: alignment of free area to find
88 * @nid: nid of the free area to find, %MAX_NUMNODES for any node
90 * Find @size free area aligned to @align in the specified range and node.
92 * RETURNS:
93 * Found address on success, %0 on failure.
95 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
96 phys_addr_t end, phys_addr_t size,
97 phys_addr_t align, int nid)
99 phys_addr_t this_start, this_end, cand;
100 u64 i;
102 /* align @size to avoid excessive fragmentation on reserved array */
103 size = round_up(size, align);
105 /* pump up @end */
106 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
107 end = memblock.current_limit;
109 /* avoid allocating the first page */
110 start = max_t(phys_addr_t, start, PAGE_SIZE);
111 end = max(start, end);
113 for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
114 this_start = clamp(this_start, start, end);
115 this_end = clamp(this_end, start, end);
117 if (this_end < size)
118 continue;
120 cand = round_down(this_end - size, align);
121 if (cand >= this_start)
122 return cand;
124 return 0;
128 * memblock_find_in_range - find free area in given range
129 * @start: start of candidate range
130 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
131 * @size: size of free area to find
132 * @align: alignment of free area to find
134 * Find @size free area aligned to @align in the specified range.
136 * RETURNS:
137 * Found address on success, %0 on failure.
139 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
140 phys_addr_t end, phys_addr_t size,
141 phys_addr_t align)
143 return memblock_find_in_range_node(start, end, size, align,
144 MAX_NUMNODES);
148 * Free memblock.reserved.regions
150 int __init_memblock memblock_free_reserved_regions(void)
152 if (memblock.reserved.regions == memblock_reserved_init_regions)
153 return 0;
155 return memblock_free(__pa(memblock.reserved.regions),
156 sizeof(struct memblock_region) * memblock.reserved.max);
160 * Reserve memblock.reserved.regions
162 int __init_memblock memblock_reserve_reserved_regions(void)
164 if (memblock.reserved.regions == memblock_reserved_init_regions)
165 return 0;
167 return memblock_reserve(__pa(memblock.reserved.regions),
168 sizeof(struct memblock_region) * memblock.reserved.max);
171 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
173 type->total_size -= type->regions[r].size;
174 memmove(&type->regions[r], &type->regions[r + 1],
175 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
176 type->cnt--;
178 /* Special case for empty arrays */
179 if (type->cnt == 0) {
180 WARN_ON(type->total_size != 0);
181 type->cnt = 1;
182 type->regions[0].base = 0;
183 type->regions[0].size = 0;
184 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
188 static int __init_memblock memblock_double_array(struct memblock_type *type)
190 struct memblock_region *new_array, *old_array;
191 phys_addr_t old_size, new_size, addr;
192 int use_slab = slab_is_available();
194 /* We don't allow resizing until we know about the reserved regions
195 * of memory that aren't suitable for allocation
197 if (!memblock_can_resize)
198 return -1;
200 /* Calculate new doubled size */
201 old_size = type->max * sizeof(struct memblock_region);
202 new_size = old_size << 1;
204 /* Try to find some space for it.
206 * WARNING: We assume that either slab_is_available() and we use it or
207 * we use MEMBLOCK for allocations. That means that this is unsafe to use
208 * when bootmem is currently active (unless bootmem itself is implemented
209 * on top of MEMBLOCK which isn't the case yet)
211 * This should however not be an issue for now, as we currently only
212 * call into MEMBLOCK while it's still active, or much later when slab is
213 * active for memory hotplug operations
215 if (use_slab) {
216 new_array = kmalloc(new_size, GFP_KERNEL);
217 addr = new_array ? __pa(new_array) : 0;
218 } else
219 addr = memblock_find_in_range(0, MEMBLOCK_ALLOC_ACCESSIBLE, new_size, sizeof(phys_addr_t));
220 if (!addr) {
221 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
222 memblock_type_name(type), type->max, type->max * 2);
223 return -1;
225 new_array = __va(addr);
227 memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
228 memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1);
230 /* Found space, we now need to move the array over before
231 * we add the reserved region since it may be our reserved
232 * array itself that is full.
234 memcpy(new_array, type->regions, old_size);
235 memset(new_array + type->max, 0, old_size);
236 old_array = type->regions;
237 type->regions = new_array;
238 type->max <<= 1;
240 /* If we use SLAB that's it, we are done */
241 if (use_slab)
242 return 0;
244 /* Add the new reserved region now. Should not fail ! */
245 BUG_ON(memblock_reserve(addr, new_size));
247 /* If the array wasn't our static init one, then free it. We only do
248 * that before SLAB is available as later on, we don't know whether
249 * to use kfree or free_bootmem_pages(). Shouldn't be a big deal
250 * anyways
252 if (old_array != memblock_memory_init_regions &&
253 old_array != memblock_reserved_init_regions)
254 memblock_free(__pa(old_array), old_size);
256 return 0;
260 * memblock_merge_regions - merge neighboring compatible regions
261 * @type: memblock type to scan
263 * Scan @type and merge neighboring compatible regions.
265 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
267 int i = 0;
269 /* cnt never goes below 1 */
270 while (i < type->cnt - 1) {
271 struct memblock_region *this = &type->regions[i];
272 struct memblock_region *next = &type->regions[i + 1];
274 if (this->base + this->size != next->base ||
275 memblock_get_region_node(this) !=
276 memblock_get_region_node(next)) {
277 BUG_ON(this->base + this->size > next->base);
278 i++;
279 continue;
282 this->size += next->size;
283 memmove(next, next + 1, (type->cnt - (i + 1)) * sizeof(*next));
284 type->cnt--;
289 * memblock_insert_region - insert new memblock region
290 * @type: memblock type to insert into
291 * @idx: index for the insertion point
292 * @base: base address of the new region
293 * @size: size of the new region
295 * Insert new memblock region [@base,@base+@size) into @type at @idx.
296 * @type must already have extra room to accomodate the new region.
298 static void __init_memblock memblock_insert_region(struct memblock_type *type,
299 int idx, phys_addr_t base,
300 phys_addr_t size, int nid)
302 struct memblock_region *rgn = &type->regions[idx];
304 BUG_ON(type->cnt >= type->max);
305 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
306 rgn->base = base;
307 rgn->size = size;
308 memblock_set_region_node(rgn, nid);
309 type->cnt++;
310 type->total_size += size;
314 * memblock_add_region - add new memblock region
315 * @type: memblock type to add new region into
316 * @base: base address of the new region
317 * @size: size of the new region
318 * @nid: nid of the new region
320 * Add new memblock region [@base,@base+@size) into @type. The new region
321 * is allowed to overlap with existing ones - overlaps don't affect already
322 * existing regions. @type is guaranteed to be minimal (all neighbouring
323 * compatible regions are merged) after the addition.
325 * RETURNS:
326 * 0 on success, -errno on failure.
328 static int __init_memblock memblock_add_region(struct memblock_type *type,
329 phys_addr_t base, phys_addr_t size, int nid)
331 bool insert = false;
332 phys_addr_t obase = base;
333 phys_addr_t end = base + memblock_cap_size(base, &size);
334 int i, nr_new;
336 /* special case for empty array */
337 if (type->regions[0].size == 0) {
338 WARN_ON(type->cnt != 1 || type->total_size);
339 type->regions[0].base = base;
340 type->regions[0].size = size;
341 memblock_set_region_node(&type->regions[0], nid);
342 type->total_size = size;
343 return 0;
345 repeat:
347 * The following is executed twice. Once with %false @insert and
348 * then with %true. The first counts the number of regions needed
349 * to accomodate the new area. The second actually inserts them.
351 base = obase;
352 nr_new = 0;
354 for (i = 0; i < type->cnt; i++) {
355 struct memblock_region *rgn = &type->regions[i];
356 phys_addr_t rbase = rgn->base;
357 phys_addr_t rend = rbase + rgn->size;
359 if (rbase >= end)
360 break;
361 if (rend <= base)
362 continue;
364 * @rgn overlaps. If it separates the lower part of new
365 * area, insert that portion.
367 if (rbase > base) {
368 nr_new++;
369 if (insert)
370 memblock_insert_region(type, i++, base,
371 rbase - base, nid);
373 /* area below @rend is dealt with, forget about it */
374 base = min(rend, end);
377 /* insert the remaining portion */
378 if (base < end) {
379 nr_new++;
380 if (insert)
381 memblock_insert_region(type, i, base, end - base, nid);
385 * If this was the first round, resize array and repeat for actual
386 * insertions; otherwise, merge and return.
388 if (!insert) {
389 while (type->cnt + nr_new > type->max)
390 if (memblock_double_array(type) < 0)
391 return -ENOMEM;
392 insert = true;
393 goto repeat;
394 } else {
395 memblock_merge_regions(type);
396 return 0;
400 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
401 int nid)
403 return memblock_add_region(&memblock.memory, base, size, nid);
406 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
408 return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES);
412 * memblock_isolate_range - isolate given range into disjoint memblocks
413 * @type: memblock type to isolate range for
414 * @base: base of range to isolate
415 * @size: size of range to isolate
416 * @start_rgn: out parameter for the start of isolated region
417 * @end_rgn: out parameter for the end of isolated region
419 * Walk @type and ensure that regions don't cross the boundaries defined by
420 * [@base,@base+@size). Crossing regions are split at the boundaries,
421 * which may create at most two more regions. The index of the first
422 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
424 * RETURNS:
425 * 0 on success, -errno on failure.
427 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
428 phys_addr_t base, phys_addr_t size,
429 int *start_rgn, int *end_rgn)
431 phys_addr_t end = base + memblock_cap_size(base, &size);
432 int i;
434 *start_rgn = *end_rgn = 0;
436 /* we'll create at most two more regions */
437 while (type->cnt + 2 > type->max)
438 if (memblock_double_array(type) < 0)
439 return -ENOMEM;
441 for (i = 0; i < type->cnt; i++) {
442 struct memblock_region *rgn = &type->regions[i];
443 phys_addr_t rbase = rgn->base;
444 phys_addr_t rend = rbase + rgn->size;
446 if (rbase >= end)
447 break;
448 if (rend <= base)
449 continue;
451 if (rbase < base) {
453 * @rgn intersects from below. Split and continue
454 * to process the next region - the new top half.
456 rgn->base = base;
457 rgn->size -= base - rbase;
458 type->total_size -= base - rbase;
459 memblock_insert_region(type, i, rbase, base - rbase,
460 memblock_get_region_node(rgn));
461 } else if (rend > end) {
463 * @rgn intersects from above. Split and redo the
464 * current region - the new bottom half.
466 rgn->base = end;
467 rgn->size -= end - rbase;
468 type->total_size -= end - rbase;
469 memblock_insert_region(type, i--, rbase, end - rbase,
470 memblock_get_region_node(rgn));
471 } else {
472 /* @rgn is fully contained, record it */
473 if (!*end_rgn)
474 *start_rgn = i;
475 *end_rgn = i + 1;
479 return 0;
482 static int __init_memblock __memblock_remove(struct memblock_type *type,
483 phys_addr_t base, phys_addr_t size)
485 int start_rgn, end_rgn;
486 int i, ret;
488 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
489 if (ret)
490 return ret;
492 for (i = end_rgn - 1; i >= start_rgn; i--)
493 memblock_remove_region(type, i);
494 return 0;
497 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
499 return __memblock_remove(&memblock.memory, base, size);
502 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
504 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
505 (unsigned long long)base,
506 (unsigned long long)base + size,
507 (void *)_RET_IP_);
509 return __memblock_remove(&memblock.reserved, base, size);
512 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
514 struct memblock_type *_rgn = &memblock.reserved;
516 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
517 (unsigned long long)base,
518 (unsigned long long)base + size,
519 (void *)_RET_IP_);
520 BUG_ON(0 == size);
522 return memblock_add_region(_rgn, base, size, MAX_NUMNODES);
526 * __next_free_mem_range - next function for for_each_free_mem_range()
527 * @idx: pointer to u64 loop variable
528 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
529 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
530 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
531 * @p_nid: ptr to int for nid of the range, can be %NULL
533 * Find the first free area from *@idx which matches @nid, fill the out
534 * parameters, and update *@idx for the next iteration. The lower 32bit of
535 * *@idx contains index into memory region and the upper 32bit indexes the
536 * areas before each reserved region. For example, if reserved regions
537 * look like the following,
539 * 0:[0-16), 1:[32-48), 2:[128-130)
541 * The upper 32bit indexes the following regions.
543 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
545 * As both region arrays are sorted, the function advances the two indices
546 * in lockstep and returns each intersection.
548 void __init_memblock __next_free_mem_range(u64 *idx, int nid,
549 phys_addr_t *out_start,
550 phys_addr_t *out_end, int *out_nid)
552 struct memblock_type *mem = &memblock.memory;
553 struct memblock_type *rsv = &memblock.reserved;
554 int mi = *idx & 0xffffffff;
555 int ri = *idx >> 32;
557 for ( ; mi < mem->cnt; mi++) {
558 struct memblock_region *m = &mem->regions[mi];
559 phys_addr_t m_start = m->base;
560 phys_addr_t m_end = m->base + m->size;
562 /* only memory regions are associated with nodes, check it */
563 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
564 continue;
566 /* scan areas before each reservation for intersection */
567 for ( ; ri < rsv->cnt + 1; ri++) {
568 struct memblock_region *r = &rsv->regions[ri];
569 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
570 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
572 /* if ri advanced past mi, break out to advance mi */
573 if (r_start >= m_end)
574 break;
575 /* if the two regions intersect, we're done */
576 if (m_start < r_end) {
577 if (out_start)
578 *out_start = max(m_start, r_start);
579 if (out_end)
580 *out_end = min(m_end, r_end);
581 if (out_nid)
582 *out_nid = memblock_get_region_node(m);
584 * The region which ends first is advanced
585 * for the next iteration.
587 if (m_end <= r_end)
588 mi++;
589 else
590 ri++;
591 *idx = (u32)mi | (u64)ri << 32;
592 return;
597 /* signal end of iteration */
598 *idx = ULLONG_MAX;
602 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
603 * @idx: pointer to u64 loop variable
604 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
605 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
606 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
607 * @p_nid: ptr to int for nid of the range, can be %NULL
609 * Reverse of __next_free_mem_range().
611 void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
612 phys_addr_t *out_start,
613 phys_addr_t *out_end, int *out_nid)
615 struct memblock_type *mem = &memblock.memory;
616 struct memblock_type *rsv = &memblock.reserved;
617 int mi = *idx & 0xffffffff;
618 int ri = *idx >> 32;
620 if (*idx == (u64)ULLONG_MAX) {
621 mi = mem->cnt - 1;
622 ri = rsv->cnt;
625 for ( ; mi >= 0; mi--) {
626 struct memblock_region *m = &mem->regions[mi];
627 phys_addr_t m_start = m->base;
628 phys_addr_t m_end = m->base + m->size;
630 /* only memory regions are associated with nodes, check it */
631 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
632 continue;
634 /* scan areas before each reservation for intersection */
635 for ( ; ri >= 0; ri--) {
636 struct memblock_region *r = &rsv->regions[ri];
637 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
638 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
640 /* if ri advanced past mi, break out to advance mi */
641 if (r_end <= m_start)
642 break;
643 /* if the two regions intersect, we're done */
644 if (m_end > r_start) {
645 if (out_start)
646 *out_start = max(m_start, r_start);
647 if (out_end)
648 *out_end = min(m_end, r_end);
649 if (out_nid)
650 *out_nid = memblock_get_region_node(m);
652 if (m_start >= r_start)
653 mi--;
654 else
655 ri--;
656 *idx = (u32)mi | (u64)ri << 32;
657 return;
662 *idx = ULLONG_MAX;
665 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
667 * Common iterator interface used to define for_each_mem_range().
669 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
670 unsigned long *out_start_pfn,
671 unsigned long *out_end_pfn, int *out_nid)
673 struct memblock_type *type = &memblock.memory;
674 struct memblock_region *r;
676 while (++*idx < type->cnt) {
677 r = &type->regions[*idx];
679 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
680 continue;
681 if (nid == MAX_NUMNODES || nid == r->nid)
682 break;
684 if (*idx >= type->cnt) {
685 *idx = -1;
686 return;
689 if (out_start_pfn)
690 *out_start_pfn = PFN_UP(r->base);
691 if (out_end_pfn)
692 *out_end_pfn = PFN_DOWN(r->base + r->size);
693 if (out_nid)
694 *out_nid = r->nid;
698 * memblock_set_node - set node ID on memblock regions
699 * @base: base of area to set node ID for
700 * @size: size of area to set node ID for
701 * @nid: node ID to set
703 * Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
704 * Regions which cross the area boundaries are split as necessary.
706 * RETURNS:
707 * 0 on success, -errno on failure.
709 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
710 int nid)
712 struct memblock_type *type = &memblock.memory;
713 int start_rgn, end_rgn;
714 int i, ret;
716 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
717 if (ret)
718 return ret;
720 for (i = start_rgn; i < end_rgn; i++)
721 type->regions[i].nid = nid;
723 memblock_merge_regions(type);
724 return 0;
726 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
728 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
729 phys_addr_t align, phys_addr_t max_addr,
730 int nid)
732 phys_addr_t found;
734 found = memblock_find_in_range_node(0, max_addr, size, align, nid);
735 if (found && !memblock_reserve(found, size))
736 return found;
738 return 0;
741 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
743 return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
746 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
748 return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES);
751 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
753 phys_addr_t alloc;
755 alloc = __memblock_alloc_base(size, align, max_addr);
757 if (alloc == 0)
758 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
759 (unsigned long long) size, (unsigned long long) max_addr);
761 return alloc;
764 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
766 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
769 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
771 phys_addr_t res = memblock_alloc_nid(size, align, nid);
773 if (res)
774 return res;
775 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
780 * Remaining API functions
783 phys_addr_t __init memblock_phys_mem_size(void)
785 return memblock.memory.total_size;
788 /* lowest address */
789 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
791 return memblock.memory.regions[0].base;
794 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
796 int idx = memblock.memory.cnt - 1;
798 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
801 void __init memblock_enforce_memory_limit(phys_addr_t limit)
803 unsigned long i;
804 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
806 if (!limit)
807 return;
809 /* find out max address */
810 for (i = 0; i < memblock.memory.cnt; i++) {
811 struct memblock_region *r = &memblock.memory.regions[i];
813 if (limit <= r->size) {
814 max_addr = r->base + limit;
815 break;
817 limit -= r->size;
820 /* truncate both memory and reserved regions */
821 __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
822 __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
825 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
827 unsigned int left = 0, right = type->cnt;
829 do {
830 unsigned int mid = (right + left) / 2;
832 if (addr < type->regions[mid].base)
833 right = mid;
834 else if (addr >= (type->regions[mid].base +
835 type->regions[mid].size))
836 left = mid + 1;
837 else
838 return mid;
839 } while (left < right);
840 return -1;
843 int __init memblock_is_reserved(phys_addr_t addr)
845 return memblock_search(&memblock.reserved, addr) != -1;
848 int __init_memblock memblock_is_memory(phys_addr_t addr)
850 return memblock_search(&memblock.memory, addr) != -1;
853 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
855 int idx = memblock_search(&memblock.memory, base);
856 phys_addr_t end = base + memblock_cap_size(base, &size);
858 if (idx == -1)
859 return 0;
860 return memblock.memory.regions[idx].base <= base &&
861 (memblock.memory.regions[idx].base +
862 memblock.memory.regions[idx].size) >= end;
865 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
867 memblock_cap_size(base, &size);
868 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
872 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
874 memblock.current_limit = limit;
877 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
879 unsigned long long base, size;
880 int i;
882 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
884 for (i = 0; i < type->cnt; i++) {
885 struct memblock_region *rgn = &type->regions[i];
886 char nid_buf[32] = "";
888 base = rgn->base;
889 size = rgn->size;
890 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
891 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
892 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
893 memblock_get_region_node(rgn));
894 #endif
895 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
896 name, i, base, base + size - 1, size, nid_buf);
900 void __init_memblock __memblock_dump_all(void)
902 pr_info("MEMBLOCK configuration:\n");
903 pr_info(" memory size = %#llx reserved size = %#llx\n",
904 (unsigned long long)memblock.memory.total_size,
905 (unsigned long long)memblock.reserved.total_size);
907 memblock_dump(&memblock.memory, "memory");
908 memblock_dump(&memblock.reserved, "reserved");
911 void __init memblock_allow_resize(void)
913 memblock_can_resize = 1;
916 static int __init early_memblock(char *p)
918 if (p && strstr(p, "debug"))
919 memblock_debug = 1;
920 return 0;
922 early_param("memblock", early_memblock);
924 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
926 static int memblock_debug_show(struct seq_file *m, void *private)
928 struct memblock_type *type = m->private;
929 struct memblock_region *reg;
930 int i;
932 for (i = 0; i < type->cnt; i++) {
933 reg = &type->regions[i];
934 seq_printf(m, "%4d: ", i);
935 if (sizeof(phys_addr_t) == 4)
936 seq_printf(m, "0x%08lx..0x%08lx\n",
937 (unsigned long)reg->base,
938 (unsigned long)(reg->base + reg->size - 1));
939 else
940 seq_printf(m, "0x%016llx..0x%016llx\n",
941 (unsigned long long)reg->base,
942 (unsigned long long)(reg->base + reg->size - 1));
945 return 0;
948 static int memblock_debug_open(struct inode *inode, struct file *file)
950 return single_open(file, memblock_debug_show, inode->i_private);
953 static const struct file_operations memblock_debug_fops = {
954 .open = memblock_debug_open,
955 .read = seq_read,
956 .llseek = seq_lseek,
957 .release = single_release,
960 static int __init memblock_init_debugfs(void)
962 struct dentry *root = debugfs_create_dir("memblock", NULL);
963 if (!root)
964 return -ENXIO;
965 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
966 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
968 return 0;
970 __initcall(memblock_init_debugfs);
972 #endif /* CONFIG_DEBUG_FS */