1 #include <linux/ceph/ceph_debug.h>
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
13 #include <linux/bio.h>
14 #endif /* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
18 #include <linux/ceph/libceph.h>
19 #include <linux/ceph/messenger.h>
20 #include <linux/ceph/decode.h>
21 #include <linux/ceph/pagelist.h>
22 #include <linux/export.h>
24 #define list_entry_next(pos, member) \
25 list_entry(pos->member.next, typeof(*pos), member)
28 * Ceph uses the messenger to exchange ceph_msg messages with other
29 * hosts in the system. The messenger provides ordered and reliable
30 * delivery. We tolerate TCP disconnects by reconnecting (with
31 * exponential backoff) in the case of a fault (disconnection, bad
32 * crc, protocol error). Acks allow sent messages to be discarded by
37 * We track the state of the socket on a given connection using
38 * values defined below. The transition to a new socket state is
39 * handled by a function which verifies we aren't coming from an
43 * | NEW* | transient initial state
45 * | con_sock_state_init()
48 * | CLOSED | initialized, but no socket (and no
49 * ---------- TCP connection)
51 * | \ con_sock_state_connecting()
52 * | ----------------------
54 * + con_sock_state_closed() \
55 * |+--------------------------- \
58 * | | CLOSING | socket event; \ \
59 * | ----------- await close \ \
62 * | + con_sock_state_closing() \ |
64 * | / --------------- | |
67 * | / -----------------| CONNECTING | socket created, TCP
68 * | | / -------------- connect initiated
69 * | | | con_sock_state_connected()
72 * | CONNECTED | TCP connection established
75 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
78 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
79 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
80 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
81 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
82 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
87 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
88 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
89 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
90 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
91 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
92 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
95 * ceph_connection flag bits
97 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
98 * messages on errors */
99 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
100 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
101 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
102 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
104 static bool con_flag_valid(unsigned long con_flag
)
107 case CON_FLAG_LOSSYTX
:
108 case CON_FLAG_KEEPALIVE_PENDING
:
109 case CON_FLAG_WRITE_PENDING
:
110 case CON_FLAG_SOCK_CLOSED
:
111 case CON_FLAG_BACKOFF
:
118 static void con_flag_clear(struct ceph_connection
*con
, unsigned long con_flag
)
120 BUG_ON(!con_flag_valid(con_flag
));
122 clear_bit(con_flag
, &con
->flags
);
125 static void con_flag_set(struct ceph_connection
*con
, unsigned long con_flag
)
127 BUG_ON(!con_flag_valid(con_flag
));
129 set_bit(con_flag
, &con
->flags
);
132 static bool con_flag_test(struct ceph_connection
*con
, unsigned long con_flag
)
134 BUG_ON(!con_flag_valid(con_flag
));
136 return test_bit(con_flag
, &con
->flags
);
139 static bool con_flag_test_and_clear(struct ceph_connection
*con
,
140 unsigned long con_flag
)
142 BUG_ON(!con_flag_valid(con_flag
));
144 return test_and_clear_bit(con_flag
, &con
->flags
);
147 static bool con_flag_test_and_set(struct ceph_connection
*con
,
148 unsigned long con_flag
)
150 BUG_ON(!con_flag_valid(con_flag
));
152 return test_and_set_bit(con_flag
, &con
->flags
);
155 /* Slab caches for frequently-allocated structures */
157 static struct kmem_cache
*ceph_msg_cache
;
158 static struct kmem_cache
*ceph_msg_data_cache
;
160 /* static tag bytes (protocol control messages) */
161 static char tag_msg
= CEPH_MSGR_TAG_MSG
;
162 static char tag_ack
= CEPH_MSGR_TAG_ACK
;
163 static char tag_keepalive
= CEPH_MSGR_TAG_KEEPALIVE
;
165 #ifdef CONFIG_LOCKDEP
166 static struct lock_class_key socket_class
;
170 * When skipping (ignoring) a block of input we read it into a "skip
171 * buffer," which is this many bytes in size.
173 #define SKIP_BUF_SIZE 1024
175 static void queue_con(struct ceph_connection
*con
);
176 static void con_work(struct work_struct
*);
177 static void con_fault(struct ceph_connection
*con
);
180 * Nicely render a sockaddr as a string. An array of formatted
181 * strings is used, to approximate reentrancy.
183 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
184 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
185 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
186 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
188 static char addr_str
[ADDR_STR_COUNT
][MAX_ADDR_STR_LEN
];
189 static atomic_t addr_str_seq
= ATOMIC_INIT(0);
191 static struct page
*zero_page
; /* used in certain error cases */
193 const char *ceph_pr_addr(const struct sockaddr_storage
*ss
)
197 struct sockaddr_in
*in4
= (struct sockaddr_in
*) ss
;
198 struct sockaddr_in6
*in6
= (struct sockaddr_in6
*) ss
;
200 i
= atomic_inc_return(&addr_str_seq
) & ADDR_STR_COUNT_MASK
;
203 switch (ss
->ss_family
) {
205 snprintf(s
, MAX_ADDR_STR_LEN
, "%pI4:%hu", &in4
->sin_addr
,
206 ntohs(in4
->sin_port
));
210 snprintf(s
, MAX_ADDR_STR_LEN
, "[%pI6c]:%hu", &in6
->sin6_addr
,
211 ntohs(in6
->sin6_port
));
215 snprintf(s
, MAX_ADDR_STR_LEN
, "(unknown sockaddr family %hu)",
221 EXPORT_SYMBOL(ceph_pr_addr
);
223 static void encode_my_addr(struct ceph_messenger
*msgr
)
225 memcpy(&msgr
->my_enc_addr
, &msgr
->inst
.addr
, sizeof(msgr
->my_enc_addr
));
226 ceph_encode_addr(&msgr
->my_enc_addr
);
230 * work queue for all reading and writing to/from the socket.
232 static struct workqueue_struct
*ceph_msgr_wq
;
234 static int ceph_msgr_slab_init(void)
236 BUG_ON(ceph_msg_cache
);
237 ceph_msg_cache
= kmem_cache_create("ceph_msg",
238 sizeof (struct ceph_msg
),
239 __alignof__(struct ceph_msg
), 0, NULL
);
244 BUG_ON(ceph_msg_data_cache
);
245 ceph_msg_data_cache
= kmem_cache_create("ceph_msg_data",
246 sizeof (struct ceph_msg_data
),
247 __alignof__(struct ceph_msg_data
),
249 if (ceph_msg_data_cache
)
252 kmem_cache_destroy(ceph_msg_cache
);
253 ceph_msg_cache
= NULL
;
258 static void ceph_msgr_slab_exit(void)
260 BUG_ON(!ceph_msg_data_cache
);
261 kmem_cache_destroy(ceph_msg_data_cache
);
262 ceph_msg_data_cache
= NULL
;
264 BUG_ON(!ceph_msg_cache
);
265 kmem_cache_destroy(ceph_msg_cache
);
266 ceph_msg_cache
= NULL
;
269 static void _ceph_msgr_exit(void)
272 destroy_workqueue(ceph_msgr_wq
);
276 ceph_msgr_slab_exit();
278 BUG_ON(zero_page
== NULL
);
280 page_cache_release(zero_page
);
284 int ceph_msgr_init(void)
286 BUG_ON(zero_page
!= NULL
);
287 zero_page
= ZERO_PAGE(0);
288 page_cache_get(zero_page
);
290 if (ceph_msgr_slab_init())
293 ceph_msgr_wq
= alloc_workqueue("ceph-msgr", 0, 0);
297 pr_err("msgr_init failed to create workqueue\n");
302 EXPORT_SYMBOL(ceph_msgr_init
);
304 void ceph_msgr_exit(void)
306 BUG_ON(ceph_msgr_wq
== NULL
);
310 EXPORT_SYMBOL(ceph_msgr_exit
);
312 void ceph_msgr_flush(void)
314 flush_workqueue(ceph_msgr_wq
);
316 EXPORT_SYMBOL(ceph_msgr_flush
);
318 /* Connection socket state transition functions */
320 static void con_sock_state_init(struct ceph_connection
*con
)
324 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSED
);
325 if (WARN_ON(old_state
!= CON_SOCK_STATE_NEW
))
326 printk("%s: unexpected old state %d\n", __func__
, old_state
);
327 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
328 CON_SOCK_STATE_CLOSED
);
331 static void con_sock_state_connecting(struct ceph_connection
*con
)
335 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CONNECTING
);
336 if (WARN_ON(old_state
!= CON_SOCK_STATE_CLOSED
))
337 printk("%s: unexpected old state %d\n", __func__
, old_state
);
338 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
339 CON_SOCK_STATE_CONNECTING
);
342 static void con_sock_state_connected(struct ceph_connection
*con
)
346 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CONNECTED
);
347 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTING
))
348 printk("%s: unexpected old state %d\n", __func__
, old_state
);
349 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
350 CON_SOCK_STATE_CONNECTED
);
353 static void con_sock_state_closing(struct ceph_connection
*con
)
357 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSING
);
358 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTING
&&
359 old_state
!= CON_SOCK_STATE_CONNECTED
&&
360 old_state
!= CON_SOCK_STATE_CLOSING
))
361 printk("%s: unexpected old state %d\n", __func__
, old_state
);
362 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
363 CON_SOCK_STATE_CLOSING
);
366 static void con_sock_state_closed(struct ceph_connection
*con
)
370 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSED
);
371 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTED
&&
372 old_state
!= CON_SOCK_STATE_CLOSING
&&
373 old_state
!= CON_SOCK_STATE_CONNECTING
&&
374 old_state
!= CON_SOCK_STATE_CLOSED
))
375 printk("%s: unexpected old state %d\n", __func__
, old_state
);
376 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
377 CON_SOCK_STATE_CLOSED
);
381 * socket callback functions
384 /* data available on socket, or listen socket received a connect */
385 static void ceph_sock_data_ready(struct sock
*sk
, int count_unused
)
387 struct ceph_connection
*con
= sk
->sk_user_data
;
388 if (atomic_read(&con
->msgr
->stopping
)) {
392 if (sk
->sk_state
!= TCP_CLOSE_WAIT
) {
393 dout("%s on %p state = %lu, queueing work\n", __func__
,
399 /* socket has buffer space for writing */
400 static void ceph_sock_write_space(struct sock
*sk
)
402 struct ceph_connection
*con
= sk
->sk_user_data
;
404 /* only queue to workqueue if there is data we want to write,
405 * and there is sufficient space in the socket buffer to accept
406 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
407 * doesn't get called again until try_write() fills the socket
408 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
409 * and net/core/stream.c:sk_stream_write_space().
411 if (con_flag_test(con
, CON_FLAG_WRITE_PENDING
)) {
412 if (sk_stream_is_writeable(sk
)) {
413 dout("%s %p queueing write work\n", __func__
, con
);
414 clear_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
418 dout("%s %p nothing to write\n", __func__
, con
);
422 /* socket's state has changed */
423 static void ceph_sock_state_change(struct sock
*sk
)
425 struct ceph_connection
*con
= sk
->sk_user_data
;
427 dout("%s %p state = %lu sk_state = %u\n", __func__
,
428 con
, con
->state
, sk
->sk_state
);
430 switch (sk
->sk_state
) {
432 dout("%s TCP_CLOSE\n", __func__
);
434 dout("%s TCP_CLOSE_WAIT\n", __func__
);
435 con_sock_state_closing(con
);
436 con_flag_set(con
, CON_FLAG_SOCK_CLOSED
);
439 case TCP_ESTABLISHED
:
440 dout("%s TCP_ESTABLISHED\n", __func__
);
441 con_sock_state_connected(con
);
444 default: /* Everything else is uninteresting */
450 * set up socket callbacks
452 static void set_sock_callbacks(struct socket
*sock
,
453 struct ceph_connection
*con
)
455 struct sock
*sk
= sock
->sk
;
456 sk
->sk_user_data
= con
;
457 sk
->sk_data_ready
= ceph_sock_data_ready
;
458 sk
->sk_write_space
= ceph_sock_write_space
;
459 sk
->sk_state_change
= ceph_sock_state_change
;
468 * initiate connection to a remote socket.
470 static int ceph_tcp_connect(struct ceph_connection
*con
)
472 struct sockaddr_storage
*paddr
= &con
->peer_addr
.in_addr
;
477 ret
= sock_create_kern(con
->peer_addr
.in_addr
.ss_family
, SOCK_STREAM
,
481 sock
->sk
->sk_allocation
= GFP_NOFS
;
483 #ifdef CONFIG_LOCKDEP
484 lockdep_set_class(&sock
->sk
->sk_lock
, &socket_class
);
487 set_sock_callbacks(sock
, con
);
489 dout("connect %s\n", ceph_pr_addr(&con
->peer_addr
.in_addr
));
491 con_sock_state_connecting(con
);
492 ret
= sock
->ops
->connect(sock
, (struct sockaddr
*)paddr
, sizeof(*paddr
),
494 if (ret
== -EINPROGRESS
) {
495 dout("connect %s EINPROGRESS sk_state = %u\n",
496 ceph_pr_addr(&con
->peer_addr
.in_addr
),
498 } else if (ret
< 0) {
499 pr_err("connect %s error %d\n",
500 ceph_pr_addr(&con
->peer_addr
.in_addr
), ret
);
502 con
->error_msg
= "connect error";
510 static int ceph_tcp_recvmsg(struct socket
*sock
, void *buf
, size_t len
)
512 struct kvec iov
= {buf
, len
};
513 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
516 r
= kernel_recvmsg(sock
, &msg
, &iov
, 1, len
, msg
.msg_flags
);
522 static int ceph_tcp_recvpage(struct socket
*sock
, struct page
*page
,
523 int page_offset
, size_t length
)
528 BUG_ON(page_offset
+ length
> PAGE_SIZE
);
532 ret
= ceph_tcp_recvmsg(sock
, kaddr
+ page_offset
, length
);
539 * write something. @more is true if caller will be sending more data
542 static int ceph_tcp_sendmsg(struct socket
*sock
, struct kvec
*iov
,
543 size_t kvlen
, size_t len
, int more
)
545 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
549 msg
.msg_flags
|= MSG_MORE
;
551 msg
.msg_flags
|= MSG_EOR
; /* superfluous, but what the hell */
553 r
= kernel_sendmsg(sock
, &msg
, iov
, kvlen
, len
);
559 static int ceph_tcp_sendpage(struct socket
*sock
, struct page
*page
,
560 int offset
, size_t size
, bool more
)
562 int flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
| (more
? MSG_MORE
: MSG_EOR
);
565 ret
= kernel_sendpage(sock
, page
, offset
, size
, flags
);
574 * Shutdown/close the socket for the given connection.
576 static int con_close_socket(struct ceph_connection
*con
)
580 dout("con_close_socket on %p sock %p\n", con
, con
->sock
);
582 rc
= con
->sock
->ops
->shutdown(con
->sock
, SHUT_RDWR
);
583 sock_release(con
->sock
);
588 * Forcibly clear the SOCK_CLOSED flag. It gets set
589 * independent of the connection mutex, and we could have
590 * received a socket close event before we had the chance to
591 * shut the socket down.
593 con_flag_clear(con
, CON_FLAG_SOCK_CLOSED
);
595 con_sock_state_closed(con
);
600 * Reset a connection. Discard all incoming and outgoing messages
601 * and clear *_seq state.
603 static void ceph_msg_remove(struct ceph_msg
*msg
)
605 list_del_init(&msg
->list_head
);
606 BUG_ON(msg
->con
== NULL
);
607 msg
->con
->ops
->put(msg
->con
);
612 static void ceph_msg_remove_list(struct list_head
*head
)
614 while (!list_empty(head
)) {
615 struct ceph_msg
*msg
= list_first_entry(head
, struct ceph_msg
,
617 ceph_msg_remove(msg
);
621 static void reset_connection(struct ceph_connection
*con
)
623 /* reset connection, out_queue, msg_ and connect_seq */
624 /* discard existing out_queue and msg_seq */
625 dout("reset_connection %p\n", con
);
626 ceph_msg_remove_list(&con
->out_queue
);
627 ceph_msg_remove_list(&con
->out_sent
);
630 BUG_ON(con
->in_msg
->con
!= con
);
631 con
->in_msg
->con
= NULL
;
632 ceph_msg_put(con
->in_msg
);
637 con
->connect_seq
= 0;
640 ceph_msg_put(con
->out_msg
);
644 con
->in_seq_acked
= 0;
648 * mark a peer down. drop any open connections.
650 void ceph_con_close(struct ceph_connection
*con
)
652 mutex_lock(&con
->mutex
);
653 dout("con_close %p peer %s\n", con
,
654 ceph_pr_addr(&con
->peer_addr
.in_addr
));
655 con
->state
= CON_STATE_CLOSED
;
657 con_flag_clear(con
, CON_FLAG_LOSSYTX
); /* so we retry next connect */
658 con_flag_clear(con
, CON_FLAG_KEEPALIVE_PENDING
);
659 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
660 con_flag_clear(con
, CON_FLAG_BACKOFF
);
662 reset_connection(con
);
663 con
->peer_global_seq
= 0;
664 cancel_delayed_work(&con
->work
);
665 con_close_socket(con
);
666 mutex_unlock(&con
->mutex
);
668 EXPORT_SYMBOL(ceph_con_close
);
671 * Reopen a closed connection, with a new peer address.
673 void ceph_con_open(struct ceph_connection
*con
,
674 __u8 entity_type
, __u64 entity_num
,
675 struct ceph_entity_addr
*addr
)
677 mutex_lock(&con
->mutex
);
678 dout("con_open %p %s\n", con
, ceph_pr_addr(&addr
->in_addr
));
680 WARN_ON(con
->state
!= CON_STATE_CLOSED
);
681 con
->state
= CON_STATE_PREOPEN
;
683 con
->peer_name
.type
= (__u8
) entity_type
;
684 con
->peer_name
.num
= cpu_to_le64(entity_num
);
686 memcpy(&con
->peer_addr
, addr
, sizeof(*addr
));
687 con
->delay
= 0; /* reset backoff memory */
688 mutex_unlock(&con
->mutex
);
691 EXPORT_SYMBOL(ceph_con_open
);
694 * return true if this connection ever successfully opened
696 bool ceph_con_opened(struct ceph_connection
*con
)
698 return con
->connect_seq
> 0;
702 * initialize a new connection.
704 void ceph_con_init(struct ceph_connection
*con
, void *private,
705 const struct ceph_connection_operations
*ops
,
706 struct ceph_messenger
*msgr
)
708 dout("con_init %p\n", con
);
709 memset(con
, 0, sizeof(*con
));
710 con
->private = private;
714 con_sock_state_init(con
);
716 mutex_init(&con
->mutex
);
717 INIT_LIST_HEAD(&con
->out_queue
);
718 INIT_LIST_HEAD(&con
->out_sent
);
719 INIT_DELAYED_WORK(&con
->work
, con_work
);
721 con
->state
= CON_STATE_CLOSED
;
723 EXPORT_SYMBOL(ceph_con_init
);
727 * We maintain a global counter to order connection attempts. Get
728 * a unique seq greater than @gt.
730 static u32
get_global_seq(struct ceph_messenger
*msgr
, u32 gt
)
734 spin_lock(&msgr
->global_seq_lock
);
735 if (msgr
->global_seq
< gt
)
736 msgr
->global_seq
= gt
;
737 ret
= ++msgr
->global_seq
;
738 spin_unlock(&msgr
->global_seq_lock
);
742 static void con_out_kvec_reset(struct ceph_connection
*con
)
744 con
->out_kvec_left
= 0;
745 con
->out_kvec_bytes
= 0;
746 con
->out_kvec_cur
= &con
->out_kvec
[0];
749 static void con_out_kvec_add(struct ceph_connection
*con
,
750 size_t size
, void *data
)
754 index
= con
->out_kvec_left
;
755 BUG_ON(index
>= ARRAY_SIZE(con
->out_kvec
));
757 con
->out_kvec
[index
].iov_len
= size
;
758 con
->out_kvec
[index
].iov_base
= data
;
759 con
->out_kvec_left
++;
760 con
->out_kvec_bytes
+= size
;
766 * For a bio data item, a piece is whatever remains of the next
767 * entry in the current bio iovec, or the first entry in the next
770 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor
*cursor
,
773 struct ceph_msg_data
*data
= cursor
->data
;
776 BUG_ON(data
->type
!= CEPH_MSG_DATA_BIO
);
780 BUG_ON(!bio
->bi_vcnt
);
782 cursor
->resid
= min(length
, data
->bio_length
);
784 cursor
->vector_index
= 0;
785 cursor
->vector_offset
= 0;
786 cursor
->last_piece
= length
<= bio
->bi_io_vec
[0].bv_len
;
789 static struct page
*ceph_msg_data_bio_next(struct ceph_msg_data_cursor
*cursor
,
793 struct ceph_msg_data
*data
= cursor
->data
;
795 struct bio_vec
*bio_vec
;
798 BUG_ON(data
->type
!= CEPH_MSG_DATA_BIO
);
803 index
= cursor
->vector_index
;
804 BUG_ON(index
>= (unsigned int) bio
->bi_vcnt
);
806 bio_vec
= &bio
->bi_io_vec
[index
];
807 BUG_ON(cursor
->vector_offset
>= bio_vec
->bv_len
);
808 *page_offset
= (size_t) (bio_vec
->bv_offset
+ cursor
->vector_offset
);
809 BUG_ON(*page_offset
>= PAGE_SIZE
);
810 if (cursor
->last_piece
) /* pagelist offset is always 0 */
811 *length
= cursor
->resid
;
813 *length
= (size_t) (bio_vec
->bv_len
- cursor
->vector_offset
);
814 BUG_ON(*length
> cursor
->resid
);
815 BUG_ON(*page_offset
+ *length
> PAGE_SIZE
);
817 return bio_vec
->bv_page
;
820 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor
*cursor
,
824 struct bio_vec
*bio_vec
;
827 BUG_ON(cursor
->data
->type
!= CEPH_MSG_DATA_BIO
);
832 index
= cursor
->vector_index
;
833 BUG_ON(index
>= (unsigned int) bio
->bi_vcnt
);
834 bio_vec
= &bio
->bi_io_vec
[index
];
836 /* Advance the cursor offset */
838 BUG_ON(cursor
->resid
< bytes
);
839 cursor
->resid
-= bytes
;
840 cursor
->vector_offset
+= bytes
;
841 if (cursor
->vector_offset
< bio_vec
->bv_len
)
842 return false; /* more bytes to process in this segment */
843 BUG_ON(cursor
->vector_offset
!= bio_vec
->bv_len
);
845 /* Move on to the next segment, and possibly the next bio */
847 if (++index
== (unsigned int) bio
->bi_vcnt
) {
852 cursor
->vector_index
= index
;
853 cursor
->vector_offset
= 0;
855 if (!cursor
->last_piece
) {
856 BUG_ON(!cursor
->resid
);
858 /* A short read is OK, so use <= rather than == */
859 if (cursor
->resid
<= bio
->bi_io_vec
[index
].bv_len
)
860 cursor
->last_piece
= true;
865 #endif /* CONFIG_BLOCK */
868 * For a page array, a piece comes from the first page in the array
869 * that has not already been fully consumed.
871 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor
*cursor
,
874 struct ceph_msg_data
*data
= cursor
->data
;
877 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGES
);
879 BUG_ON(!data
->pages
);
880 BUG_ON(!data
->length
);
882 cursor
->resid
= min(length
, data
->length
);
883 page_count
= calc_pages_for(data
->alignment
, (u64
)data
->length
);
884 cursor
->page_offset
= data
->alignment
& ~PAGE_MASK
;
885 cursor
->page_index
= 0;
886 BUG_ON(page_count
> (int)USHRT_MAX
);
887 cursor
->page_count
= (unsigned short)page_count
;
888 BUG_ON(length
> SIZE_MAX
- cursor
->page_offset
);
889 cursor
->last_piece
= (size_t)cursor
->page_offset
+ length
<= PAGE_SIZE
;
893 ceph_msg_data_pages_next(struct ceph_msg_data_cursor
*cursor
,
894 size_t *page_offset
, size_t *length
)
896 struct ceph_msg_data
*data
= cursor
->data
;
898 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGES
);
900 BUG_ON(cursor
->page_index
>= cursor
->page_count
);
901 BUG_ON(cursor
->page_offset
>= PAGE_SIZE
);
903 *page_offset
= cursor
->page_offset
;
904 if (cursor
->last_piece
)
905 *length
= cursor
->resid
;
907 *length
= PAGE_SIZE
- *page_offset
;
909 return data
->pages
[cursor
->page_index
];
912 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor
*cursor
,
915 BUG_ON(cursor
->data
->type
!= CEPH_MSG_DATA_PAGES
);
917 BUG_ON(cursor
->page_offset
+ bytes
> PAGE_SIZE
);
919 /* Advance the cursor page offset */
921 cursor
->resid
-= bytes
;
922 cursor
->page_offset
= (cursor
->page_offset
+ bytes
) & ~PAGE_MASK
;
923 if (!bytes
|| cursor
->page_offset
)
924 return false; /* more bytes to process in the current page */
926 /* Move on to the next page; offset is already at 0 */
928 BUG_ON(cursor
->page_index
>= cursor
->page_count
);
929 cursor
->page_index
++;
930 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
936 * For a pagelist, a piece is whatever remains to be consumed in the
937 * first page in the list, or the front of the next page.
940 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor
*cursor
,
943 struct ceph_msg_data
*data
= cursor
->data
;
944 struct ceph_pagelist
*pagelist
;
947 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
949 pagelist
= data
->pagelist
;
953 return; /* pagelist can be assigned but empty */
955 BUG_ON(list_empty(&pagelist
->head
));
956 page
= list_first_entry(&pagelist
->head
, struct page
, lru
);
958 cursor
->resid
= min(length
, pagelist
->length
);
961 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
965 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor
*cursor
,
966 size_t *page_offset
, size_t *length
)
968 struct ceph_msg_data
*data
= cursor
->data
;
969 struct ceph_pagelist
*pagelist
;
971 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
973 pagelist
= data
->pagelist
;
976 BUG_ON(!cursor
->page
);
977 BUG_ON(cursor
->offset
+ cursor
->resid
!= pagelist
->length
);
979 /* offset of first page in pagelist is always 0 */
980 *page_offset
= cursor
->offset
& ~PAGE_MASK
;
981 if (cursor
->last_piece
)
982 *length
= cursor
->resid
;
984 *length
= PAGE_SIZE
- *page_offset
;
989 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor
*cursor
,
992 struct ceph_msg_data
*data
= cursor
->data
;
993 struct ceph_pagelist
*pagelist
;
995 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
997 pagelist
= data
->pagelist
;
1000 BUG_ON(cursor
->offset
+ cursor
->resid
!= pagelist
->length
);
1001 BUG_ON((cursor
->offset
& ~PAGE_MASK
) + bytes
> PAGE_SIZE
);
1003 /* Advance the cursor offset */
1005 cursor
->resid
-= bytes
;
1006 cursor
->offset
+= bytes
;
1007 /* offset of first page in pagelist is always 0 */
1008 if (!bytes
|| cursor
->offset
& ~PAGE_MASK
)
1009 return false; /* more bytes to process in the current page */
1011 /* Move on to the next page */
1013 BUG_ON(list_is_last(&cursor
->page
->lru
, &pagelist
->head
));
1014 cursor
->page
= list_entry_next(cursor
->page
, lru
);
1015 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
1021 * Message data is handled (sent or received) in pieces, where each
1022 * piece resides on a single page. The network layer might not
1023 * consume an entire piece at once. A data item's cursor keeps
1024 * track of which piece is next to process and how much remains to
1025 * be processed in that piece. It also tracks whether the current
1026 * piece is the last one in the data item.
1028 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor
*cursor
)
1030 size_t length
= cursor
->total_resid
;
1032 switch (cursor
->data
->type
) {
1033 case CEPH_MSG_DATA_PAGELIST
:
1034 ceph_msg_data_pagelist_cursor_init(cursor
, length
);
1036 case CEPH_MSG_DATA_PAGES
:
1037 ceph_msg_data_pages_cursor_init(cursor
, length
);
1040 case CEPH_MSG_DATA_BIO
:
1041 ceph_msg_data_bio_cursor_init(cursor
, length
);
1043 #endif /* CONFIG_BLOCK */
1044 case CEPH_MSG_DATA_NONE
:
1049 cursor
->need_crc
= true;
1052 static void ceph_msg_data_cursor_init(struct ceph_msg
*msg
, size_t length
)
1054 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
1055 struct ceph_msg_data
*data
;
1058 BUG_ON(length
> msg
->data_length
);
1059 BUG_ON(list_empty(&msg
->data
));
1061 cursor
->data_head
= &msg
->data
;
1062 cursor
->total_resid
= length
;
1063 data
= list_first_entry(&msg
->data
, struct ceph_msg_data
, links
);
1064 cursor
->data
= data
;
1066 __ceph_msg_data_cursor_init(cursor
);
1070 * Return the page containing the next piece to process for a given
1071 * data item, and supply the page offset and length of that piece.
1072 * Indicate whether this is the last piece in this data item.
1074 static struct page
*ceph_msg_data_next(struct ceph_msg_data_cursor
*cursor
,
1075 size_t *page_offset
, size_t *length
,
1080 switch (cursor
->data
->type
) {
1081 case CEPH_MSG_DATA_PAGELIST
:
1082 page
= ceph_msg_data_pagelist_next(cursor
, page_offset
, length
);
1084 case CEPH_MSG_DATA_PAGES
:
1085 page
= ceph_msg_data_pages_next(cursor
, page_offset
, length
);
1088 case CEPH_MSG_DATA_BIO
:
1089 page
= ceph_msg_data_bio_next(cursor
, page_offset
, length
);
1091 #endif /* CONFIG_BLOCK */
1092 case CEPH_MSG_DATA_NONE
:
1098 BUG_ON(*page_offset
+ *length
> PAGE_SIZE
);
1101 *last_piece
= cursor
->last_piece
;
1107 * Returns true if the result moves the cursor on to the next piece
1110 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor
*cursor
,
1115 BUG_ON(bytes
> cursor
->resid
);
1116 switch (cursor
->data
->type
) {
1117 case CEPH_MSG_DATA_PAGELIST
:
1118 new_piece
= ceph_msg_data_pagelist_advance(cursor
, bytes
);
1120 case CEPH_MSG_DATA_PAGES
:
1121 new_piece
= ceph_msg_data_pages_advance(cursor
, bytes
);
1124 case CEPH_MSG_DATA_BIO
:
1125 new_piece
= ceph_msg_data_bio_advance(cursor
, bytes
);
1127 #endif /* CONFIG_BLOCK */
1128 case CEPH_MSG_DATA_NONE
:
1133 cursor
->total_resid
-= bytes
;
1135 if (!cursor
->resid
&& cursor
->total_resid
) {
1136 WARN_ON(!cursor
->last_piece
);
1137 BUG_ON(list_is_last(&cursor
->data
->links
, cursor
->data_head
));
1138 cursor
->data
= list_entry_next(cursor
->data
, links
);
1139 __ceph_msg_data_cursor_init(cursor
);
1142 cursor
->need_crc
= new_piece
;
1147 static void prepare_message_data(struct ceph_msg
*msg
, u32 data_len
)
1152 /* Initialize data cursor */
1154 ceph_msg_data_cursor_init(msg
, (size_t)data_len
);
1158 * Prepare footer for currently outgoing message, and finish things
1159 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1161 static void prepare_write_message_footer(struct ceph_connection
*con
)
1163 struct ceph_msg
*m
= con
->out_msg
;
1164 int v
= con
->out_kvec_left
;
1166 m
->footer
.flags
|= CEPH_MSG_FOOTER_COMPLETE
;
1168 dout("prepare_write_message_footer %p\n", con
);
1169 con
->out_kvec_is_msg
= true;
1170 con
->out_kvec
[v
].iov_base
= &m
->footer
;
1171 con
->out_kvec
[v
].iov_len
= sizeof(m
->footer
);
1172 con
->out_kvec_bytes
+= sizeof(m
->footer
);
1173 con
->out_kvec_left
++;
1174 con
->out_more
= m
->more_to_follow
;
1175 con
->out_msg_done
= true;
1179 * Prepare headers for the next outgoing message.
1181 static void prepare_write_message(struct ceph_connection
*con
)
1186 con_out_kvec_reset(con
);
1187 con
->out_kvec_is_msg
= true;
1188 con
->out_msg_done
= false;
1190 /* Sneak an ack in there first? If we can get it into the same
1191 * TCP packet that's a good thing. */
1192 if (con
->in_seq
> con
->in_seq_acked
) {
1193 con
->in_seq_acked
= con
->in_seq
;
1194 con_out_kvec_add(con
, sizeof (tag_ack
), &tag_ack
);
1195 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1196 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1197 &con
->out_temp_ack
);
1200 BUG_ON(list_empty(&con
->out_queue
));
1201 m
= list_first_entry(&con
->out_queue
, struct ceph_msg
, list_head
);
1203 BUG_ON(m
->con
!= con
);
1205 /* put message on sent list */
1207 list_move_tail(&m
->list_head
, &con
->out_sent
);
1210 * only assign outgoing seq # if we haven't sent this message
1211 * yet. if it is requeued, resend with it's original seq.
1213 if (m
->needs_out_seq
) {
1214 m
->hdr
.seq
= cpu_to_le64(++con
->out_seq
);
1215 m
->needs_out_seq
= false;
1217 WARN_ON(m
->data_length
!= le32_to_cpu(m
->hdr
.data_len
));
1219 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1220 m
, con
->out_seq
, le16_to_cpu(m
->hdr
.type
),
1221 le32_to_cpu(m
->hdr
.front_len
), le32_to_cpu(m
->hdr
.middle_len
),
1223 BUG_ON(le32_to_cpu(m
->hdr
.front_len
) != m
->front
.iov_len
);
1225 /* tag + hdr + front + middle */
1226 con_out_kvec_add(con
, sizeof (tag_msg
), &tag_msg
);
1227 con_out_kvec_add(con
, sizeof (m
->hdr
), &m
->hdr
);
1228 con_out_kvec_add(con
, m
->front
.iov_len
, m
->front
.iov_base
);
1231 con_out_kvec_add(con
, m
->middle
->vec
.iov_len
,
1232 m
->middle
->vec
.iov_base
);
1234 /* fill in crc (except data pages), footer */
1235 crc
= crc32c(0, &m
->hdr
, offsetof(struct ceph_msg_header
, crc
));
1236 con
->out_msg
->hdr
.crc
= cpu_to_le32(crc
);
1237 con
->out_msg
->footer
.flags
= 0;
1239 crc
= crc32c(0, m
->front
.iov_base
, m
->front
.iov_len
);
1240 con
->out_msg
->footer
.front_crc
= cpu_to_le32(crc
);
1242 crc
= crc32c(0, m
->middle
->vec
.iov_base
,
1243 m
->middle
->vec
.iov_len
);
1244 con
->out_msg
->footer
.middle_crc
= cpu_to_le32(crc
);
1246 con
->out_msg
->footer
.middle_crc
= 0;
1247 dout("%s front_crc %u middle_crc %u\n", __func__
,
1248 le32_to_cpu(con
->out_msg
->footer
.front_crc
),
1249 le32_to_cpu(con
->out_msg
->footer
.middle_crc
));
1251 /* is there a data payload? */
1252 con
->out_msg
->footer
.data_crc
= 0;
1253 if (m
->data_length
) {
1254 prepare_message_data(con
->out_msg
, m
->data_length
);
1255 con
->out_more
= 1; /* data + footer will follow */
1257 /* no, queue up footer too and be done */
1258 prepare_write_message_footer(con
);
1261 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1267 static void prepare_write_ack(struct ceph_connection
*con
)
1269 dout("prepare_write_ack %p %llu -> %llu\n", con
,
1270 con
->in_seq_acked
, con
->in_seq
);
1271 con
->in_seq_acked
= con
->in_seq
;
1273 con_out_kvec_reset(con
);
1275 con_out_kvec_add(con
, sizeof (tag_ack
), &tag_ack
);
1277 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1278 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1279 &con
->out_temp_ack
);
1281 con
->out_more
= 1; /* more will follow.. eventually.. */
1282 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1286 * Prepare to share the seq during handshake
1288 static void prepare_write_seq(struct ceph_connection
*con
)
1290 dout("prepare_write_seq %p %llu -> %llu\n", con
,
1291 con
->in_seq_acked
, con
->in_seq
);
1292 con
->in_seq_acked
= con
->in_seq
;
1294 con_out_kvec_reset(con
);
1296 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1297 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1298 &con
->out_temp_ack
);
1300 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1304 * Prepare to write keepalive byte.
1306 static void prepare_write_keepalive(struct ceph_connection
*con
)
1308 dout("prepare_write_keepalive %p\n", con
);
1309 con_out_kvec_reset(con
);
1310 con_out_kvec_add(con
, sizeof (tag_keepalive
), &tag_keepalive
);
1311 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1315 * Connection negotiation.
1318 static struct ceph_auth_handshake
*get_connect_authorizer(struct ceph_connection
*con
,
1321 struct ceph_auth_handshake
*auth
;
1323 if (!con
->ops
->get_authorizer
) {
1324 con
->out_connect
.authorizer_protocol
= CEPH_AUTH_UNKNOWN
;
1325 con
->out_connect
.authorizer_len
= 0;
1329 /* Can't hold the mutex while getting authorizer */
1330 mutex_unlock(&con
->mutex
);
1331 auth
= con
->ops
->get_authorizer(con
, auth_proto
, con
->auth_retry
);
1332 mutex_lock(&con
->mutex
);
1336 if (con
->state
!= CON_STATE_NEGOTIATING
)
1337 return ERR_PTR(-EAGAIN
);
1339 con
->auth_reply_buf
= auth
->authorizer_reply_buf
;
1340 con
->auth_reply_buf_len
= auth
->authorizer_reply_buf_len
;
1345 * We connected to a peer and are saying hello.
1347 static void prepare_write_banner(struct ceph_connection
*con
)
1349 con_out_kvec_add(con
, strlen(CEPH_BANNER
), CEPH_BANNER
);
1350 con_out_kvec_add(con
, sizeof (con
->msgr
->my_enc_addr
),
1351 &con
->msgr
->my_enc_addr
);
1354 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1357 static int prepare_write_connect(struct ceph_connection
*con
)
1359 unsigned int global_seq
= get_global_seq(con
->msgr
, 0);
1362 struct ceph_auth_handshake
*auth
;
1364 switch (con
->peer_name
.type
) {
1365 case CEPH_ENTITY_TYPE_MON
:
1366 proto
= CEPH_MONC_PROTOCOL
;
1368 case CEPH_ENTITY_TYPE_OSD
:
1369 proto
= CEPH_OSDC_PROTOCOL
;
1371 case CEPH_ENTITY_TYPE_MDS
:
1372 proto
= CEPH_MDSC_PROTOCOL
;
1378 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con
,
1379 con
->connect_seq
, global_seq
, proto
);
1381 con
->out_connect
.features
= cpu_to_le64(con
->msgr
->supported_features
);
1382 con
->out_connect
.host_type
= cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT
);
1383 con
->out_connect
.connect_seq
= cpu_to_le32(con
->connect_seq
);
1384 con
->out_connect
.global_seq
= cpu_to_le32(global_seq
);
1385 con
->out_connect
.protocol_version
= cpu_to_le32(proto
);
1386 con
->out_connect
.flags
= 0;
1388 auth_proto
= CEPH_AUTH_UNKNOWN
;
1389 auth
= get_connect_authorizer(con
, &auth_proto
);
1391 return PTR_ERR(auth
);
1393 con
->out_connect
.authorizer_protocol
= cpu_to_le32(auth_proto
);
1394 con
->out_connect
.authorizer_len
= auth
?
1395 cpu_to_le32(auth
->authorizer_buf_len
) : 0;
1397 con_out_kvec_add(con
, sizeof (con
->out_connect
),
1399 if (auth
&& auth
->authorizer_buf_len
)
1400 con_out_kvec_add(con
, auth
->authorizer_buf_len
,
1401 auth
->authorizer_buf
);
1404 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1410 * write as much of pending kvecs to the socket as we can.
1412 * 0 -> socket full, but more to do
1415 static int write_partial_kvec(struct ceph_connection
*con
)
1419 dout("write_partial_kvec %p %d left\n", con
, con
->out_kvec_bytes
);
1420 while (con
->out_kvec_bytes
> 0) {
1421 ret
= ceph_tcp_sendmsg(con
->sock
, con
->out_kvec_cur
,
1422 con
->out_kvec_left
, con
->out_kvec_bytes
,
1426 con
->out_kvec_bytes
-= ret
;
1427 if (con
->out_kvec_bytes
== 0)
1430 /* account for full iov entries consumed */
1431 while (ret
>= con
->out_kvec_cur
->iov_len
) {
1432 BUG_ON(!con
->out_kvec_left
);
1433 ret
-= con
->out_kvec_cur
->iov_len
;
1434 con
->out_kvec_cur
++;
1435 con
->out_kvec_left
--;
1437 /* and for a partially-consumed entry */
1439 con
->out_kvec_cur
->iov_len
-= ret
;
1440 con
->out_kvec_cur
->iov_base
+= ret
;
1443 con
->out_kvec_left
= 0;
1444 con
->out_kvec_is_msg
= false;
1447 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con
,
1448 con
->out_kvec_bytes
, con
->out_kvec_left
, ret
);
1449 return ret
; /* done! */
1452 static u32
ceph_crc32c_page(u32 crc
, struct page
*page
,
1453 unsigned int page_offset
,
1454 unsigned int length
)
1459 BUG_ON(kaddr
== NULL
);
1460 crc
= crc32c(crc
, kaddr
+ page_offset
, length
);
1466 * Write as much message data payload as we can. If we finish, queue
1468 * 1 -> done, footer is now queued in out_kvec[].
1469 * 0 -> socket full, but more to do
1472 static int write_partial_message_data(struct ceph_connection
*con
)
1474 struct ceph_msg
*msg
= con
->out_msg
;
1475 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
1476 bool do_datacrc
= !con
->msgr
->nocrc
;
1479 dout("%s %p msg %p\n", __func__
, con
, msg
);
1481 if (list_empty(&msg
->data
))
1485 * Iterate through each page that contains data to be
1486 * written, and send as much as possible for each.
1488 * If we are calculating the data crc (the default), we will
1489 * need to map the page. If we have no pages, they have
1490 * been revoked, so use the zero page.
1492 crc
= do_datacrc
? le32_to_cpu(msg
->footer
.data_crc
) : 0;
1493 while (cursor
->resid
) {
1501 page
= ceph_msg_data_next(&msg
->cursor
, &page_offset
, &length
,
1503 ret
= ceph_tcp_sendpage(con
->sock
, page
, page_offset
,
1504 length
, last_piece
);
1507 msg
->footer
.data_crc
= cpu_to_le32(crc
);
1511 if (do_datacrc
&& cursor
->need_crc
)
1512 crc
= ceph_crc32c_page(crc
, page
, page_offset
, length
);
1513 need_crc
= ceph_msg_data_advance(&msg
->cursor
, (size_t)ret
);
1516 dout("%s %p msg %p done\n", __func__
, con
, msg
);
1518 /* prepare and queue up footer, too */
1520 msg
->footer
.data_crc
= cpu_to_le32(crc
);
1522 msg
->footer
.flags
|= CEPH_MSG_FOOTER_NOCRC
;
1523 con_out_kvec_reset(con
);
1524 prepare_write_message_footer(con
);
1526 return 1; /* must return > 0 to indicate success */
1532 static int write_partial_skip(struct ceph_connection
*con
)
1536 while (con
->out_skip
> 0) {
1537 size_t size
= min(con
->out_skip
, (int) PAGE_CACHE_SIZE
);
1539 ret
= ceph_tcp_sendpage(con
->sock
, zero_page
, 0, size
, true);
1542 con
->out_skip
-= ret
;
1550 * Prepare to read connection handshake, or an ack.
1552 static void prepare_read_banner(struct ceph_connection
*con
)
1554 dout("prepare_read_banner %p\n", con
);
1555 con
->in_base_pos
= 0;
1558 static void prepare_read_connect(struct ceph_connection
*con
)
1560 dout("prepare_read_connect %p\n", con
);
1561 con
->in_base_pos
= 0;
1564 static void prepare_read_ack(struct ceph_connection
*con
)
1566 dout("prepare_read_ack %p\n", con
);
1567 con
->in_base_pos
= 0;
1570 static void prepare_read_seq(struct ceph_connection
*con
)
1572 dout("prepare_read_seq %p\n", con
);
1573 con
->in_base_pos
= 0;
1574 con
->in_tag
= CEPH_MSGR_TAG_SEQ
;
1577 static void prepare_read_tag(struct ceph_connection
*con
)
1579 dout("prepare_read_tag %p\n", con
);
1580 con
->in_base_pos
= 0;
1581 con
->in_tag
= CEPH_MSGR_TAG_READY
;
1585 * Prepare to read a message.
1587 static int prepare_read_message(struct ceph_connection
*con
)
1589 dout("prepare_read_message %p\n", con
);
1590 BUG_ON(con
->in_msg
!= NULL
);
1591 con
->in_base_pos
= 0;
1592 con
->in_front_crc
= con
->in_middle_crc
= con
->in_data_crc
= 0;
1597 static int read_partial(struct ceph_connection
*con
,
1598 int end
, int size
, void *object
)
1600 while (con
->in_base_pos
< end
) {
1601 int left
= end
- con
->in_base_pos
;
1602 int have
= size
- left
;
1603 int ret
= ceph_tcp_recvmsg(con
->sock
, object
+ have
, left
);
1606 con
->in_base_pos
+= ret
;
1613 * Read all or part of the connect-side handshake on a new connection
1615 static int read_partial_banner(struct ceph_connection
*con
)
1621 dout("read_partial_banner %p at %d\n", con
, con
->in_base_pos
);
1624 size
= strlen(CEPH_BANNER
);
1626 ret
= read_partial(con
, end
, size
, con
->in_banner
);
1630 size
= sizeof (con
->actual_peer_addr
);
1632 ret
= read_partial(con
, end
, size
, &con
->actual_peer_addr
);
1636 size
= sizeof (con
->peer_addr_for_me
);
1638 ret
= read_partial(con
, end
, size
, &con
->peer_addr_for_me
);
1646 static int read_partial_connect(struct ceph_connection
*con
)
1652 dout("read_partial_connect %p at %d\n", con
, con
->in_base_pos
);
1654 size
= sizeof (con
->in_reply
);
1656 ret
= read_partial(con
, end
, size
, &con
->in_reply
);
1660 size
= le32_to_cpu(con
->in_reply
.authorizer_len
);
1662 ret
= read_partial(con
, end
, size
, con
->auth_reply_buf
);
1666 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1667 con
, (int)con
->in_reply
.tag
,
1668 le32_to_cpu(con
->in_reply
.connect_seq
),
1669 le32_to_cpu(con
->in_reply
.global_seq
));
1676 * Verify the hello banner looks okay.
1678 static int verify_hello(struct ceph_connection
*con
)
1680 if (memcmp(con
->in_banner
, CEPH_BANNER
, strlen(CEPH_BANNER
))) {
1681 pr_err("connect to %s got bad banner\n",
1682 ceph_pr_addr(&con
->peer_addr
.in_addr
));
1683 con
->error_msg
= "protocol error, bad banner";
1689 static bool addr_is_blank(struct sockaddr_storage
*ss
)
1691 switch (ss
->ss_family
) {
1693 return ((struct sockaddr_in
*)ss
)->sin_addr
.s_addr
== 0;
1696 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[0] == 0 &&
1697 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[1] == 0 &&
1698 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[2] == 0 &&
1699 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[3] == 0;
1704 static int addr_port(struct sockaddr_storage
*ss
)
1706 switch (ss
->ss_family
) {
1708 return ntohs(((struct sockaddr_in
*)ss
)->sin_port
);
1710 return ntohs(((struct sockaddr_in6
*)ss
)->sin6_port
);
1715 static void addr_set_port(struct sockaddr_storage
*ss
, int p
)
1717 switch (ss
->ss_family
) {
1719 ((struct sockaddr_in
*)ss
)->sin_port
= htons(p
);
1722 ((struct sockaddr_in6
*)ss
)->sin6_port
= htons(p
);
1728 * Unlike other *_pton function semantics, zero indicates success.
1730 static int ceph_pton(const char *str
, size_t len
, struct sockaddr_storage
*ss
,
1731 char delim
, const char **ipend
)
1733 struct sockaddr_in
*in4
= (struct sockaddr_in
*) ss
;
1734 struct sockaddr_in6
*in6
= (struct sockaddr_in6
*) ss
;
1736 memset(ss
, 0, sizeof(*ss
));
1738 if (in4_pton(str
, len
, (u8
*)&in4
->sin_addr
.s_addr
, delim
, ipend
)) {
1739 ss
->ss_family
= AF_INET
;
1743 if (in6_pton(str
, len
, (u8
*)&in6
->sin6_addr
.s6_addr
, delim
, ipend
)) {
1744 ss
->ss_family
= AF_INET6
;
1752 * Extract hostname string and resolve using kernel DNS facility.
1754 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1755 static int ceph_dns_resolve_name(const char *name
, size_t namelen
,
1756 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1758 const char *end
, *delim_p
;
1759 char *colon_p
, *ip_addr
= NULL
;
1763 * The end of the hostname occurs immediately preceding the delimiter or
1764 * the port marker (':') where the delimiter takes precedence.
1766 delim_p
= memchr(name
, delim
, namelen
);
1767 colon_p
= memchr(name
, ':', namelen
);
1769 if (delim_p
&& colon_p
)
1770 end
= delim_p
< colon_p
? delim_p
: colon_p
;
1771 else if (!delim_p
&& colon_p
)
1775 if (!end
) /* case: hostname:/ */
1776 end
= name
+ namelen
;
1782 /* do dns_resolve upcall */
1783 ip_len
= dns_query(NULL
, name
, end
- name
, NULL
, &ip_addr
, NULL
);
1785 ret
= ceph_pton(ip_addr
, ip_len
, ss
, -1, NULL
);
1793 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end
- name
), name
,
1794 ret
, ret
? "failed" : ceph_pr_addr(ss
));
1799 static inline int ceph_dns_resolve_name(const char *name
, size_t namelen
,
1800 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1807 * Parse a server name (IP or hostname). If a valid IP address is not found
1808 * then try to extract a hostname to resolve using userspace DNS upcall.
1810 static int ceph_parse_server_name(const char *name
, size_t namelen
,
1811 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1815 ret
= ceph_pton(name
, namelen
, ss
, delim
, ipend
);
1817 ret
= ceph_dns_resolve_name(name
, namelen
, ss
, delim
, ipend
);
1823 * Parse an ip[:port] list into an addr array. Use the default
1824 * monitor port if a port isn't specified.
1826 int ceph_parse_ips(const char *c
, const char *end
,
1827 struct ceph_entity_addr
*addr
,
1828 int max_count
, int *count
)
1830 int i
, ret
= -EINVAL
;
1833 dout("parse_ips on '%.*s'\n", (int)(end
-c
), c
);
1834 for (i
= 0; i
< max_count
; i
++) {
1836 struct sockaddr_storage
*ss
= &addr
[i
].in_addr
;
1845 ret
= ceph_parse_server_name(p
, end
- p
, ss
, delim
, &ipend
);
1854 dout("missing matching ']'\n");
1861 if (p
< end
&& *p
== ':') {
1864 while (p
< end
&& *p
>= '0' && *p
<= '9') {
1865 port
= (port
* 10) + (*p
- '0');
1868 if (port
> 65535 || port
== 0)
1871 port
= CEPH_MON_PORT
;
1874 addr_set_port(ss
, port
);
1876 dout("parse_ips got %s\n", ceph_pr_addr(ss
));
1893 pr_err("parse_ips bad ip '%.*s'\n", (int)(end
- c
), c
);
1896 EXPORT_SYMBOL(ceph_parse_ips
);
1898 static int process_banner(struct ceph_connection
*con
)
1900 dout("process_banner on %p\n", con
);
1902 if (verify_hello(con
) < 0)
1905 ceph_decode_addr(&con
->actual_peer_addr
);
1906 ceph_decode_addr(&con
->peer_addr_for_me
);
1909 * Make sure the other end is who we wanted. note that the other
1910 * end may not yet know their ip address, so if it's 0.0.0.0, give
1911 * them the benefit of the doubt.
1913 if (memcmp(&con
->peer_addr
, &con
->actual_peer_addr
,
1914 sizeof(con
->peer_addr
)) != 0 &&
1915 !(addr_is_blank(&con
->actual_peer_addr
.in_addr
) &&
1916 con
->actual_peer_addr
.nonce
== con
->peer_addr
.nonce
)) {
1917 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1918 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1919 (int)le32_to_cpu(con
->peer_addr
.nonce
),
1920 ceph_pr_addr(&con
->actual_peer_addr
.in_addr
),
1921 (int)le32_to_cpu(con
->actual_peer_addr
.nonce
));
1922 con
->error_msg
= "wrong peer at address";
1927 * did we learn our address?
1929 if (addr_is_blank(&con
->msgr
->inst
.addr
.in_addr
)) {
1930 int port
= addr_port(&con
->msgr
->inst
.addr
.in_addr
);
1932 memcpy(&con
->msgr
->inst
.addr
.in_addr
,
1933 &con
->peer_addr_for_me
.in_addr
,
1934 sizeof(con
->peer_addr_for_me
.in_addr
));
1935 addr_set_port(&con
->msgr
->inst
.addr
.in_addr
, port
);
1936 encode_my_addr(con
->msgr
);
1937 dout("process_banner learned my addr is %s\n",
1938 ceph_pr_addr(&con
->msgr
->inst
.addr
.in_addr
));
1944 static int process_connect(struct ceph_connection
*con
)
1946 u64 sup_feat
= con
->msgr
->supported_features
;
1947 u64 req_feat
= con
->msgr
->required_features
;
1948 u64 server_feat
= le64_to_cpu(con
->in_reply
.features
);
1951 dout("process_connect on %p tag %d\n", con
, (int)con
->in_tag
);
1953 switch (con
->in_reply
.tag
) {
1954 case CEPH_MSGR_TAG_FEATURES
:
1955 pr_err("%s%lld %s feature set mismatch,"
1956 " my %llx < server's %llx, missing %llx\n",
1957 ENTITY_NAME(con
->peer_name
),
1958 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1959 sup_feat
, server_feat
, server_feat
& ~sup_feat
);
1960 con
->error_msg
= "missing required protocol features";
1961 reset_connection(con
);
1964 case CEPH_MSGR_TAG_BADPROTOVER
:
1965 pr_err("%s%lld %s protocol version mismatch,"
1966 " my %d != server's %d\n",
1967 ENTITY_NAME(con
->peer_name
),
1968 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1969 le32_to_cpu(con
->out_connect
.protocol_version
),
1970 le32_to_cpu(con
->in_reply
.protocol_version
));
1971 con
->error_msg
= "protocol version mismatch";
1972 reset_connection(con
);
1975 case CEPH_MSGR_TAG_BADAUTHORIZER
:
1977 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con
,
1979 if (con
->auth_retry
== 2) {
1980 con
->error_msg
= "connect authorization failure";
1983 con_out_kvec_reset(con
);
1984 ret
= prepare_write_connect(con
);
1987 prepare_read_connect(con
);
1990 case CEPH_MSGR_TAG_RESETSESSION
:
1992 * If we connected with a large connect_seq but the peer
1993 * has no record of a session with us (no connection, or
1994 * connect_seq == 0), they will send RESETSESION to indicate
1995 * that they must have reset their session, and may have
1998 dout("process_connect got RESET peer seq %u\n",
1999 le32_to_cpu(con
->in_reply
.connect_seq
));
2000 pr_err("%s%lld %s connection reset\n",
2001 ENTITY_NAME(con
->peer_name
),
2002 ceph_pr_addr(&con
->peer_addr
.in_addr
));
2003 reset_connection(con
);
2004 con_out_kvec_reset(con
);
2005 ret
= prepare_write_connect(con
);
2008 prepare_read_connect(con
);
2010 /* Tell ceph about it. */
2011 mutex_unlock(&con
->mutex
);
2012 pr_info("reset on %s%lld\n", ENTITY_NAME(con
->peer_name
));
2013 if (con
->ops
->peer_reset
)
2014 con
->ops
->peer_reset(con
);
2015 mutex_lock(&con
->mutex
);
2016 if (con
->state
!= CON_STATE_NEGOTIATING
)
2020 case CEPH_MSGR_TAG_RETRY_SESSION
:
2022 * If we sent a smaller connect_seq than the peer has, try
2023 * again with a larger value.
2025 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2026 le32_to_cpu(con
->out_connect
.connect_seq
),
2027 le32_to_cpu(con
->in_reply
.connect_seq
));
2028 con
->connect_seq
= le32_to_cpu(con
->in_reply
.connect_seq
);
2029 con_out_kvec_reset(con
);
2030 ret
= prepare_write_connect(con
);
2033 prepare_read_connect(con
);
2036 case CEPH_MSGR_TAG_RETRY_GLOBAL
:
2038 * If we sent a smaller global_seq than the peer has, try
2039 * again with a larger value.
2041 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2042 con
->peer_global_seq
,
2043 le32_to_cpu(con
->in_reply
.global_seq
));
2044 get_global_seq(con
->msgr
,
2045 le32_to_cpu(con
->in_reply
.global_seq
));
2046 con_out_kvec_reset(con
);
2047 ret
= prepare_write_connect(con
);
2050 prepare_read_connect(con
);
2053 case CEPH_MSGR_TAG_SEQ
:
2054 case CEPH_MSGR_TAG_READY
:
2055 if (req_feat
& ~server_feat
) {
2056 pr_err("%s%lld %s protocol feature mismatch,"
2057 " my required %llx > server's %llx, need %llx\n",
2058 ENTITY_NAME(con
->peer_name
),
2059 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2060 req_feat
, server_feat
, req_feat
& ~server_feat
);
2061 con
->error_msg
= "missing required protocol features";
2062 reset_connection(con
);
2066 WARN_ON(con
->state
!= CON_STATE_NEGOTIATING
);
2067 con
->state
= CON_STATE_OPEN
;
2068 con
->auth_retry
= 0; /* we authenticated; clear flag */
2069 con
->peer_global_seq
= le32_to_cpu(con
->in_reply
.global_seq
);
2071 con
->peer_features
= server_feat
;
2072 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2073 con
->peer_global_seq
,
2074 le32_to_cpu(con
->in_reply
.connect_seq
),
2076 WARN_ON(con
->connect_seq
!=
2077 le32_to_cpu(con
->in_reply
.connect_seq
));
2079 if (con
->in_reply
.flags
& CEPH_MSG_CONNECT_LOSSY
)
2080 con_flag_set(con
, CON_FLAG_LOSSYTX
);
2082 con
->delay
= 0; /* reset backoff memory */
2084 if (con
->in_reply
.tag
== CEPH_MSGR_TAG_SEQ
) {
2085 prepare_write_seq(con
);
2086 prepare_read_seq(con
);
2088 prepare_read_tag(con
);
2092 case CEPH_MSGR_TAG_WAIT
:
2094 * If there is a connection race (we are opening
2095 * connections to each other), one of us may just have
2096 * to WAIT. This shouldn't happen if we are the
2099 pr_err("process_connect got WAIT as client\n");
2100 con
->error_msg
= "protocol error, got WAIT as client";
2104 pr_err("connect protocol error, will retry\n");
2105 con
->error_msg
= "protocol error, garbage tag during connect";
2113 * read (part of) an ack
2115 static int read_partial_ack(struct ceph_connection
*con
)
2117 int size
= sizeof (con
->in_temp_ack
);
2120 return read_partial(con
, end
, size
, &con
->in_temp_ack
);
2124 * We can finally discard anything that's been acked.
2126 static void process_ack(struct ceph_connection
*con
)
2129 u64 ack
= le64_to_cpu(con
->in_temp_ack
);
2132 while (!list_empty(&con
->out_sent
)) {
2133 m
= list_first_entry(&con
->out_sent
, struct ceph_msg
,
2135 seq
= le64_to_cpu(m
->hdr
.seq
);
2138 dout("got ack for seq %llu type %d at %p\n", seq
,
2139 le16_to_cpu(m
->hdr
.type
), m
);
2140 m
->ack_stamp
= jiffies
;
2143 prepare_read_tag(con
);
2147 static int read_partial_message_section(struct ceph_connection
*con
,
2148 struct kvec
*section
,
2149 unsigned int sec_len
, u32
*crc
)
2155 while (section
->iov_len
< sec_len
) {
2156 BUG_ON(section
->iov_base
== NULL
);
2157 left
= sec_len
- section
->iov_len
;
2158 ret
= ceph_tcp_recvmsg(con
->sock
, (char *)section
->iov_base
+
2159 section
->iov_len
, left
);
2162 section
->iov_len
+= ret
;
2164 if (section
->iov_len
== sec_len
)
2165 *crc
= crc32c(0, section
->iov_base
, section
->iov_len
);
2170 static int read_partial_msg_data(struct ceph_connection
*con
)
2172 struct ceph_msg
*msg
= con
->in_msg
;
2173 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
2174 const bool do_datacrc
= !con
->msgr
->nocrc
;
2182 if (list_empty(&msg
->data
))
2186 crc
= con
->in_data_crc
;
2187 while (cursor
->resid
) {
2188 page
= ceph_msg_data_next(&msg
->cursor
, &page_offset
, &length
,
2190 ret
= ceph_tcp_recvpage(con
->sock
, page
, page_offset
, length
);
2193 con
->in_data_crc
= crc
;
2199 crc
= ceph_crc32c_page(crc
, page
, page_offset
, ret
);
2200 (void) ceph_msg_data_advance(&msg
->cursor
, (size_t)ret
);
2203 con
->in_data_crc
= crc
;
2205 return 1; /* must return > 0 to indicate success */
2209 * read (part of) a message.
2211 static int ceph_con_in_msg_alloc(struct ceph_connection
*con
, int *skip
);
2213 static int read_partial_message(struct ceph_connection
*con
)
2215 struct ceph_msg
*m
= con
->in_msg
;
2219 unsigned int front_len
, middle_len
, data_len
;
2220 bool do_datacrc
= !con
->msgr
->nocrc
;
2224 dout("read_partial_message con %p msg %p\n", con
, m
);
2227 size
= sizeof (con
->in_hdr
);
2229 ret
= read_partial(con
, end
, size
, &con
->in_hdr
);
2233 crc
= crc32c(0, &con
->in_hdr
, offsetof(struct ceph_msg_header
, crc
));
2234 if (cpu_to_le32(crc
) != con
->in_hdr
.crc
) {
2235 pr_err("read_partial_message bad hdr "
2236 " crc %u != expected %u\n",
2237 crc
, con
->in_hdr
.crc
);
2241 front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
2242 if (front_len
> CEPH_MSG_MAX_FRONT_LEN
)
2244 middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
2245 if (middle_len
> CEPH_MSG_MAX_MIDDLE_LEN
)
2247 data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
2248 if (data_len
> CEPH_MSG_MAX_DATA_LEN
)
2252 seq
= le64_to_cpu(con
->in_hdr
.seq
);
2253 if ((s64
)seq
- (s64
)con
->in_seq
< 1) {
2254 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2255 ENTITY_NAME(con
->peer_name
),
2256 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2257 seq
, con
->in_seq
+ 1);
2258 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
2260 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2262 } else if ((s64
)seq
- (s64
)con
->in_seq
> 1) {
2263 pr_err("read_partial_message bad seq %lld expected %lld\n",
2264 seq
, con
->in_seq
+ 1);
2265 con
->error_msg
= "bad message sequence # for incoming message";
2269 /* allocate message? */
2273 dout("got hdr type %d front %d data %d\n", con
->in_hdr
.type
,
2274 front_len
, data_len
);
2275 ret
= ceph_con_in_msg_alloc(con
, &skip
);
2279 BUG_ON(!con
->in_msg
^ skip
);
2280 if (con
->in_msg
&& data_len
> con
->in_msg
->data_length
) {
2281 pr_warning("%s skipping long message (%u > %zd)\n",
2282 __func__
, data_len
, con
->in_msg
->data_length
);
2283 ceph_msg_put(con
->in_msg
);
2288 /* skip this message */
2289 dout("alloc_msg said skip message\n");
2290 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
2292 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2297 BUG_ON(!con
->in_msg
);
2298 BUG_ON(con
->in_msg
->con
!= con
);
2300 m
->front
.iov_len
= 0; /* haven't read it yet */
2302 m
->middle
->vec
.iov_len
= 0;
2304 /* prepare for data payload, if any */
2307 prepare_message_data(con
->in_msg
, data_len
);
2311 ret
= read_partial_message_section(con
, &m
->front
, front_len
,
2312 &con
->in_front_crc
);
2318 ret
= read_partial_message_section(con
, &m
->middle
->vec
,
2320 &con
->in_middle_crc
);
2327 ret
= read_partial_msg_data(con
);
2333 size
= sizeof (m
->footer
);
2335 ret
= read_partial(con
, end
, size
, &m
->footer
);
2339 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2340 m
, front_len
, m
->footer
.front_crc
, middle_len
,
2341 m
->footer
.middle_crc
, data_len
, m
->footer
.data_crc
);
2344 if (con
->in_front_crc
!= le32_to_cpu(m
->footer
.front_crc
)) {
2345 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2346 m
, con
->in_front_crc
, m
->footer
.front_crc
);
2349 if (con
->in_middle_crc
!= le32_to_cpu(m
->footer
.middle_crc
)) {
2350 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2351 m
, con
->in_middle_crc
, m
->footer
.middle_crc
);
2355 (m
->footer
.flags
& CEPH_MSG_FOOTER_NOCRC
) == 0 &&
2356 con
->in_data_crc
!= le32_to_cpu(m
->footer
.data_crc
)) {
2357 pr_err("read_partial_message %p data crc %u != exp. %u\n", m
,
2358 con
->in_data_crc
, le32_to_cpu(m
->footer
.data_crc
));
2362 return 1; /* done! */
2366 * Process message. This happens in the worker thread. The callback should
2367 * be careful not to do anything that waits on other incoming messages or it
2370 static void process_message(struct ceph_connection
*con
)
2372 struct ceph_msg
*msg
;
2374 BUG_ON(con
->in_msg
->con
!= con
);
2375 con
->in_msg
->con
= NULL
;
2380 /* if first message, set peer_name */
2381 if (con
->peer_name
.type
== 0)
2382 con
->peer_name
= msg
->hdr
.src
;
2385 mutex_unlock(&con
->mutex
);
2387 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2388 msg
, le64_to_cpu(msg
->hdr
.seq
),
2389 ENTITY_NAME(msg
->hdr
.src
),
2390 le16_to_cpu(msg
->hdr
.type
),
2391 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
2392 le32_to_cpu(msg
->hdr
.front_len
),
2393 le32_to_cpu(msg
->hdr
.data_len
),
2394 con
->in_front_crc
, con
->in_middle_crc
, con
->in_data_crc
);
2395 con
->ops
->dispatch(con
, msg
);
2397 mutex_lock(&con
->mutex
);
2402 * Write something to the socket. Called in a worker thread when the
2403 * socket appears to be writeable and we have something ready to send.
2405 static int try_write(struct ceph_connection
*con
)
2409 dout("try_write start %p state %lu\n", con
, con
->state
);
2412 dout("try_write out_kvec_bytes %d\n", con
->out_kvec_bytes
);
2414 /* open the socket first? */
2415 if (con
->state
== CON_STATE_PREOPEN
) {
2417 con
->state
= CON_STATE_CONNECTING
;
2419 con_out_kvec_reset(con
);
2420 prepare_write_banner(con
);
2421 prepare_read_banner(con
);
2423 BUG_ON(con
->in_msg
);
2424 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2425 dout("try_write initiating connect on %p new state %lu\n",
2427 ret
= ceph_tcp_connect(con
);
2429 con
->error_msg
= "connect error";
2435 /* kvec data queued? */
2436 if (con
->out_skip
) {
2437 ret
= write_partial_skip(con
);
2441 if (con
->out_kvec_left
) {
2442 ret
= write_partial_kvec(con
);
2449 if (con
->out_msg_done
) {
2450 ceph_msg_put(con
->out_msg
);
2451 con
->out_msg
= NULL
; /* we're done with this one */
2455 ret
= write_partial_message_data(con
);
2457 goto more_kvec
; /* we need to send the footer, too! */
2461 dout("try_write write_partial_message_data err %d\n",
2468 if (con
->state
== CON_STATE_OPEN
) {
2469 /* is anything else pending? */
2470 if (!list_empty(&con
->out_queue
)) {
2471 prepare_write_message(con
);
2474 if (con
->in_seq
> con
->in_seq_acked
) {
2475 prepare_write_ack(con
);
2478 if (con_flag_test_and_clear(con
, CON_FLAG_KEEPALIVE_PENDING
)) {
2479 prepare_write_keepalive(con
);
2484 /* Nothing to do! */
2485 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
2486 dout("try_write nothing else to write.\n");
2489 dout("try_write done on %p ret %d\n", con
, ret
);
2496 * Read what we can from the socket.
2498 static int try_read(struct ceph_connection
*con
)
2503 dout("try_read start on %p state %lu\n", con
, con
->state
);
2504 if (con
->state
!= CON_STATE_CONNECTING
&&
2505 con
->state
!= CON_STATE_NEGOTIATING
&&
2506 con
->state
!= CON_STATE_OPEN
)
2511 dout("try_read tag %d in_base_pos %d\n", (int)con
->in_tag
,
2514 if (con
->state
== CON_STATE_CONNECTING
) {
2515 dout("try_read connecting\n");
2516 ret
= read_partial_banner(con
);
2519 ret
= process_banner(con
);
2523 con
->state
= CON_STATE_NEGOTIATING
;
2526 * Received banner is good, exchange connection info.
2527 * Do not reset out_kvec, as sending our banner raced
2528 * with receiving peer banner after connect completed.
2530 ret
= prepare_write_connect(con
);
2533 prepare_read_connect(con
);
2535 /* Send connection info before awaiting response */
2539 if (con
->state
== CON_STATE_NEGOTIATING
) {
2540 dout("try_read negotiating\n");
2541 ret
= read_partial_connect(con
);
2544 ret
= process_connect(con
);
2550 WARN_ON(con
->state
!= CON_STATE_OPEN
);
2552 if (con
->in_base_pos
< 0) {
2554 * skipping + discarding content.
2556 * FIXME: there must be a better way to do this!
2558 static char buf
[SKIP_BUF_SIZE
];
2559 int skip
= min((int) sizeof (buf
), -con
->in_base_pos
);
2561 dout("skipping %d / %d bytes\n", skip
, -con
->in_base_pos
);
2562 ret
= ceph_tcp_recvmsg(con
->sock
, buf
, skip
);
2565 con
->in_base_pos
+= ret
;
2566 if (con
->in_base_pos
)
2569 if (con
->in_tag
== CEPH_MSGR_TAG_READY
) {
2573 ret
= ceph_tcp_recvmsg(con
->sock
, &con
->in_tag
, 1);
2576 dout("try_read got tag %d\n", (int)con
->in_tag
);
2577 switch (con
->in_tag
) {
2578 case CEPH_MSGR_TAG_MSG
:
2579 prepare_read_message(con
);
2581 case CEPH_MSGR_TAG_ACK
:
2582 prepare_read_ack(con
);
2584 case CEPH_MSGR_TAG_CLOSE
:
2585 con_close_socket(con
);
2586 con
->state
= CON_STATE_CLOSED
;
2592 if (con
->in_tag
== CEPH_MSGR_TAG_MSG
) {
2593 ret
= read_partial_message(con
);
2597 con
->error_msg
= "bad crc";
2601 con
->error_msg
= "io error";
2606 if (con
->in_tag
== CEPH_MSGR_TAG_READY
)
2608 process_message(con
);
2609 if (con
->state
== CON_STATE_OPEN
)
2610 prepare_read_tag(con
);
2613 if (con
->in_tag
== CEPH_MSGR_TAG_ACK
||
2614 con
->in_tag
== CEPH_MSGR_TAG_SEQ
) {
2616 * the final handshake seq exchange is semantically
2617 * equivalent to an ACK
2619 ret
= read_partial_ack(con
);
2627 dout("try_read done on %p ret %d\n", con
, ret
);
2631 pr_err("try_read bad con->in_tag = %d\n", (int)con
->in_tag
);
2632 con
->error_msg
= "protocol error, garbage tag";
2639 * Atomically queue work on a connection after the specified delay.
2640 * Bump @con reference to avoid races with connection teardown.
2641 * Returns 0 if work was queued, or an error code otherwise.
2643 static int queue_con_delay(struct ceph_connection
*con
, unsigned long delay
)
2645 if (!con
->ops
->get(con
)) {
2646 dout("%s %p ref count 0\n", __func__
, con
);
2651 if (!queue_delayed_work(ceph_msgr_wq
, &con
->work
, delay
)) {
2652 dout("%s %p - already queued\n", __func__
, con
);
2658 dout("%s %p %lu\n", __func__
, con
, delay
);
2663 static void queue_con(struct ceph_connection
*con
)
2665 (void) queue_con_delay(con
, 0);
2668 static bool con_sock_closed(struct ceph_connection
*con
)
2670 if (!con_flag_test_and_clear(con
, CON_FLAG_SOCK_CLOSED
))
2674 case CON_STATE_ ## x: \
2675 con->error_msg = "socket closed (con state " #x ")"; \
2678 switch (con
->state
) {
2686 pr_warning("%s con %p unrecognized state %lu\n",
2687 __func__
, con
, con
->state
);
2688 con
->error_msg
= "unrecognized con state";
2697 static bool con_backoff(struct ceph_connection
*con
)
2701 if (!con_flag_test_and_clear(con
, CON_FLAG_BACKOFF
))
2704 ret
= queue_con_delay(con
, round_jiffies_relative(con
->delay
));
2706 dout("%s: con %p FAILED to back off %lu\n", __func__
,
2708 BUG_ON(ret
== -ENOENT
);
2709 con_flag_set(con
, CON_FLAG_BACKOFF
);
2715 /* Finish fault handling; con->mutex must *not* be held here */
2717 static void con_fault_finish(struct ceph_connection
*con
)
2720 * in case we faulted due to authentication, invalidate our
2721 * current tickets so that we can get new ones.
2723 if (con
->auth_retry
&& con
->ops
->invalidate_authorizer
) {
2724 dout("calling invalidate_authorizer()\n");
2725 con
->ops
->invalidate_authorizer(con
);
2728 if (con
->ops
->fault
)
2729 con
->ops
->fault(con
);
2733 * Do some work on a connection. Drop a connection ref when we're done.
2735 static void con_work(struct work_struct
*work
)
2737 struct ceph_connection
*con
= container_of(work
, struct ceph_connection
,
2741 mutex_lock(&con
->mutex
);
2745 if ((fault
= con_sock_closed(con
))) {
2746 dout("%s: con %p SOCK_CLOSED\n", __func__
, con
);
2749 if (con_backoff(con
)) {
2750 dout("%s: con %p BACKOFF\n", __func__
, con
);
2753 if (con
->state
== CON_STATE_STANDBY
) {
2754 dout("%s: con %p STANDBY\n", __func__
, con
);
2757 if (con
->state
== CON_STATE_CLOSED
) {
2758 dout("%s: con %p CLOSED\n", __func__
, con
);
2762 if (con
->state
== CON_STATE_PREOPEN
) {
2763 dout("%s: con %p PREOPEN\n", __func__
, con
);
2767 ret
= try_read(con
);
2771 con
->error_msg
= "socket error on read";
2776 ret
= try_write(con
);
2780 con
->error_msg
= "socket error on write";
2784 break; /* If we make it to here, we're done */
2788 mutex_unlock(&con
->mutex
);
2791 con_fault_finish(con
);
2797 * Generic error/fault handler. A retry mechanism is used with
2798 * exponential backoff
2800 static void con_fault(struct ceph_connection
*con
)
2802 pr_warning("%s%lld %s %s\n", ENTITY_NAME(con
->peer_name
),
2803 ceph_pr_addr(&con
->peer_addr
.in_addr
), con
->error_msg
);
2804 dout("fault %p state %lu to peer %s\n",
2805 con
, con
->state
, ceph_pr_addr(&con
->peer_addr
.in_addr
));
2807 WARN_ON(con
->state
!= CON_STATE_CONNECTING
&&
2808 con
->state
!= CON_STATE_NEGOTIATING
&&
2809 con
->state
!= CON_STATE_OPEN
);
2811 con_close_socket(con
);
2813 if (con_flag_test(con
, CON_FLAG_LOSSYTX
)) {
2814 dout("fault on LOSSYTX channel, marking CLOSED\n");
2815 con
->state
= CON_STATE_CLOSED
;
2820 BUG_ON(con
->in_msg
->con
!= con
);
2821 con
->in_msg
->con
= NULL
;
2822 ceph_msg_put(con
->in_msg
);
2827 /* Requeue anything that hasn't been acked */
2828 list_splice_init(&con
->out_sent
, &con
->out_queue
);
2830 /* If there are no messages queued or keepalive pending, place
2831 * the connection in a STANDBY state */
2832 if (list_empty(&con
->out_queue
) &&
2833 !con_flag_test(con
, CON_FLAG_KEEPALIVE_PENDING
)) {
2834 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con
);
2835 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
2836 con
->state
= CON_STATE_STANDBY
;
2838 /* retry after a delay. */
2839 con
->state
= CON_STATE_PREOPEN
;
2840 if (con
->delay
== 0)
2841 con
->delay
= BASE_DELAY_INTERVAL
;
2842 else if (con
->delay
< MAX_DELAY_INTERVAL
)
2844 con_flag_set(con
, CON_FLAG_BACKOFF
);
2852 * initialize a new messenger instance
2854 void ceph_messenger_init(struct ceph_messenger
*msgr
,
2855 struct ceph_entity_addr
*myaddr
,
2856 u32 supported_features
,
2857 u32 required_features
,
2860 msgr
->supported_features
= supported_features
;
2861 msgr
->required_features
= required_features
;
2863 spin_lock_init(&msgr
->global_seq_lock
);
2866 msgr
->inst
.addr
= *myaddr
;
2868 /* select a random nonce */
2869 msgr
->inst
.addr
.type
= 0;
2870 get_random_bytes(&msgr
->inst
.addr
.nonce
, sizeof(msgr
->inst
.addr
.nonce
));
2871 encode_my_addr(msgr
);
2872 msgr
->nocrc
= nocrc
;
2874 atomic_set(&msgr
->stopping
, 0);
2876 dout("%s %p\n", __func__
, msgr
);
2878 EXPORT_SYMBOL(ceph_messenger_init
);
2880 static void clear_standby(struct ceph_connection
*con
)
2882 /* come back from STANDBY? */
2883 if (con
->state
== CON_STATE_STANDBY
) {
2884 dout("clear_standby %p and ++connect_seq\n", con
);
2885 con
->state
= CON_STATE_PREOPEN
;
2887 WARN_ON(con_flag_test(con
, CON_FLAG_WRITE_PENDING
));
2888 WARN_ON(con_flag_test(con
, CON_FLAG_KEEPALIVE_PENDING
));
2893 * Queue up an outgoing message on the given connection.
2895 void ceph_con_send(struct ceph_connection
*con
, struct ceph_msg
*msg
)
2898 msg
->hdr
.src
= con
->msgr
->inst
.name
;
2899 BUG_ON(msg
->front
.iov_len
!= le32_to_cpu(msg
->hdr
.front_len
));
2900 msg
->needs_out_seq
= true;
2902 mutex_lock(&con
->mutex
);
2904 if (con
->state
== CON_STATE_CLOSED
) {
2905 dout("con_send %p closed, dropping %p\n", con
, msg
);
2907 mutex_unlock(&con
->mutex
);
2911 BUG_ON(msg
->con
!= NULL
);
2912 msg
->con
= con
->ops
->get(con
);
2913 BUG_ON(msg
->con
== NULL
);
2915 BUG_ON(!list_empty(&msg
->list_head
));
2916 list_add_tail(&msg
->list_head
, &con
->out_queue
);
2917 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg
,
2918 ENTITY_NAME(con
->peer_name
), le16_to_cpu(msg
->hdr
.type
),
2919 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
2920 le32_to_cpu(msg
->hdr
.front_len
),
2921 le32_to_cpu(msg
->hdr
.middle_len
),
2922 le32_to_cpu(msg
->hdr
.data_len
));
2925 mutex_unlock(&con
->mutex
);
2927 /* if there wasn't anything waiting to send before, queue
2929 if (con_flag_test_and_set(con
, CON_FLAG_WRITE_PENDING
) == 0)
2932 EXPORT_SYMBOL(ceph_con_send
);
2935 * Revoke a message that was previously queued for send
2937 void ceph_msg_revoke(struct ceph_msg
*msg
)
2939 struct ceph_connection
*con
= msg
->con
;
2942 return; /* Message not in our possession */
2944 mutex_lock(&con
->mutex
);
2945 if (!list_empty(&msg
->list_head
)) {
2946 dout("%s %p msg %p - was on queue\n", __func__
, con
, msg
);
2947 list_del_init(&msg
->list_head
);
2948 BUG_ON(msg
->con
== NULL
);
2949 msg
->con
->ops
->put(msg
->con
);
2955 if (con
->out_msg
== msg
) {
2956 dout("%s %p msg %p - was sending\n", __func__
, con
, msg
);
2957 con
->out_msg
= NULL
;
2958 if (con
->out_kvec_is_msg
) {
2959 con
->out_skip
= con
->out_kvec_bytes
;
2960 con
->out_kvec_is_msg
= false;
2966 mutex_unlock(&con
->mutex
);
2970 * Revoke a message that we may be reading data into
2972 void ceph_msg_revoke_incoming(struct ceph_msg
*msg
)
2974 struct ceph_connection
*con
;
2976 BUG_ON(msg
== NULL
);
2978 dout("%s msg %p null con\n", __func__
, msg
);
2980 return; /* Message not in our possession */
2984 mutex_lock(&con
->mutex
);
2985 if (con
->in_msg
== msg
) {
2986 unsigned int front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
2987 unsigned int middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
2988 unsigned int data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
2990 /* skip rest of message */
2991 dout("%s %p msg %p revoked\n", __func__
, con
, msg
);
2992 con
->in_base_pos
= con
->in_base_pos
-
2993 sizeof(struct ceph_msg_header
) -
2997 sizeof(struct ceph_msg_footer
);
2998 ceph_msg_put(con
->in_msg
);
3000 con
->in_tag
= CEPH_MSGR_TAG_READY
;
3003 dout("%s %p in_msg %p msg %p no-op\n",
3004 __func__
, con
, con
->in_msg
, msg
);
3006 mutex_unlock(&con
->mutex
);
3010 * Queue a keepalive byte to ensure the tcp connection is alive.
3012 void ceph_con_keepalive(struct ceph_connection
*con
)
3014 dout("con_keepalive %p\n", con
);
3015 mutex_lock(&con
->mutex
);
3017 mutex_unlock(&con
->mutex
);
3018 if (con_flag_test_and_set(con
, CON_FLAG_KEEPALIVE_PENDING
) == 0 &&
3019 con_flag_test_and_set(con
, CON_FLAG_WRITE_PENDING
) == 0)
3022 EXPORT_SYMBOL(ceph_con_keepalive
);
3024 static struct ceph_msg_data
*ceph_msg_data_create(enum ceph_msg_data_type type
)
3026 struct ceph_msg_data
*data
;
3028 if (WARN_ON(!ceph_msg_data_type_valid(type
)))
3031 data
= kmem_cache_zalloc(ceph_msg_data_cache
, GFP_NOFS
);
3034 INIT_LIST_HEAD(&data
->links
);
3039 static void ceph_msg_data_destroy(struct ceph_msg_data
*data
)
3044 WARN_ON(!list_empty(&data
->links
));
3045 if (data
->type
== CEPH_MSG_DATA_PAGELIST
) {
3046 ceph_pagelist_release(data
->pagelist
);
3047 kfree(data
->pagelist
);
3049 kmem_cache_free(ceph_msg_data_cache
, data
);
3052 void ceph_msg_data_add_pages(struct ceph_msg
*msg
, struct page
**pages
,
3053 size_t length
, size_t alignment
)
3055 struct ceph_msg_data
*data
;
3060 data
= ceph_msg_data_create(CEPH_MSG_DATA_PAGES
);
3062 data
->pages
= pages
;
3063 data
->length
= length
;
3064 data
->alignment
= alignment
& ~PAGE_MASK
;
3066 list_add_tail(&data
->links
, &msg
->data
);
3067 msg
->data_length
+= length
;
3069 EXPORT_SYMBOL(ceph_msg_data_add_pages
);
3071 void ceph_msg_data_add_pagelist(struct ceph_msg
*msg
,
3072 struct ceph_pagelist
*pagelist
)
3074 struct ceph_msg_data
*data
;
3077 BUG_ON(!pagelist
->length
);
3079 data
= ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST
);
3081 data
->pagelist
= pagelist
;
3083 list_add_tail(&data
->links
, &msg
->data
);
3084 msg
->data_length
+= pagelist
->length
;
3086 EXPORT_SYMBOL(ceph_msg_data_add_pagelist
);
3089 void ceph_msg_data_add_bio(struct ceph_msg
*msg
, struct bio
*bio
,
3092 struct ceph_msg_data
*data
;
3096 data
= ceph_msg_data_create(CEPH_MSG_DATA_BIO
);
3099 data
->bio_length
= length
;
3101 list_add_tail(&data
->links
, &msg
->data
);
3102 msg
->data_length
+= length
;
3104 EXPORT_SYMBOL(ceph_msg_data_add_bio
);
3105 #endif /* CONFIG_BLOCK */
3108 * construct a new message with given type, size
3109 * the new msg has a ref count of 1.
3111 struct ceph_msg
*ceph_msg_new(int type
, int front_len
, gfp_t flags
,
3116 m
= kmem_cache_zalloc(ceph_msg_cache
, flags
);
3120 m
->hdr
.type
= cpu_to_le16(type
);
3121 m
->hdr
.priority
= cpu_to_le16(CEPH_MSG_PRIO_DEFAULT
);
3122 m
->hdr
.front_len
= cpu_to_le32(front_len
);
3124 INIT_LIST_HEAD(&m
->list_head
);
3125 kref_init(&m
->kref
);
3126 INIT_LIST_HEAD(&m
->data
);
3129 m
->front_max
= front_len
;
3131 if (front_len
> PAGE_CACHE_SIZE
) {
3132 m
->front
.iov_base
= __vmalloc(front_len
, flags
,
3134 m
->front_is_vmalloc
= true;
3136 m
->front
.iov_base
= kmalloc(front_len
, flags
);
3138 if (m
->front
.iov_base
== NULL
) {
3139 dout("ceph_msg_new can't allocate %d bytes\n",
3144 m
->front
.iov_base
= NULL
;
3146 m
->front
.iov_len
= front_len
;
3148 dout("ceph_msg_new %p front %d\n", m
, front_len
);
3155 pr_err("msg_new can't create type %d front %d\n", type
,
3159 dout("msg_new can't create type %d front %d\n", type
,
3164 EXPORT_SYMBOL(ceph_msg_new
);
3167 * Allocate "middle" portion of a message, if it is needed and wasn't
3168 * allocated by alloc_msg. This allows us to read a small fixed-size
3169 * per-type header in the front and then gracefully fail (i.e.,
3170 * propagate the error to the caller based on info in the front) when
3171 * the middle is too large.
3173 static int ceph_alloc_middle(struct ceph_connection
*con
, struct ceph_msg
*msg
)
3175 int type
= le16_to_cpu(msg
->hdr
.type
);
3176 int middle_len
= le32_to_cpu(msg
->hdr
.middle_len
);
3178 dout("alloc_middle %p type %d %s middle_len %d\n", msg
, type
,
3179 ceph_msg_type_name(type
), middle_len
);
3180 BUG_ON(!middle_len
);
3181 BUG_ON(msg
->middle
);
3183 msg
->middle
= ceph_buffer_new(middle_len
, GFP_NOFS
);
3190 * Allocate a message for receiving an incoming message on a
3191 * connection, and save the result in con->in_msg. Uses the
3192 * connection's private alloc_msg op if available.
3194 * Returns 0 on success, or a negative error code.
3196 * On success, if we set *skip = 1:
3197 * - the next message should be skipped and ignored.
3198 * - con->in_msg == NULL
3199 * or if we set *skip = 0:
3200 * - con->in_msg is non-null.
3201 * On error (ENOMEM, EAGAIN, ...),
3202 * - con->in_msg == NULL
3204 static int ceph_con_in_msg_alloc(struct ceph_connection
*con
, int *skip
)
3206 struct ceph_msg_header
*hdr
= &con
->in_hdr
;
3207 int middle_len
= le32_to_cpu(hdr
->middle_len
);
3208 struct ceph_msg
*msg
;
3211 BUG_ON(con
->in_msg
!= NULL
);
3212 BUG_ON(!con
->ops
->alloc_msg
);
3214 mutex_unlock(&con
->mutex
);
3215 msg
= con
->ops
->alloc_msg(con
, hdr
, skip
);
3216 mutex_lock(&con
->mutex
);
3217 if (con
->state
!= CON_STATE_OPEN
) {
3225 con
->in_msg
->con
= con
->ops
->get(con
);
3226 BUG_ON(con
->in_msg
->con
== NULL
);
3229 * Null message pointer means either we should skip
3230 * this message or we couldn't allocate memory. The
3231 * former is not an error.
3235 con
->error_msg
= "error allocating memory for incoming message";
3239 memcpy(&con
->in_msg
->hdr
, &con
->in_hdr
, sizeof(con
->in_hdr
));
3241 if (middle_len
&& !con
->in_msg
->middle
) {
3242 ret
= ceph_alloc_middle(con
, con
->in_msg
);
3244 ceph_msg_put(con
->in_msg
);
3254 * Free a generically kmalloc'd message.
3256 void ceph_msg_kfree(struct ceph_msg
*m
)
3258 dout("msg_kfree %p\n", m
);
3259 if (m
->front_is_vmalloc
)
3260 vfree(m
->front
.iov_base
);
3262 kfree(m
->front
.iov_base
);
3263 kmem_cache_free(ceph_msg_cache
, m
);
3267 * Drop a msg ref. Destroy as needed.
3269 void ceph_msg_last_put(struct kref
*kref
)
3271 struct ceph_msg
*m
= container_of(kref
, struct ceph_msg
, kref
);
3273 struct list_head
*links
;
3274 struct list_head
*next
;
3276 dout("ceph_msg_put last one on %p\n", m
);
3277 WARN_ON(!list_empty(&m
->list_head
));
3279 /* drop middle, data, if any */
3281 ceph_buffer_put(m
->middle
);
3285 list_splice_init(&m
->data
, &data
);
3286 list_for_each_safe(links
, next
, &data
) {
3287 struct ceph_msg_data
*data
;
3289 data
= list_entry(links
, struct ceph_msg_data
, links
);
3290 list_del_init(links
);
3291 ceph_msg_data_destroy(data
);
3296 ceph_msgpool_put(m
->pool
, m
);
3300 EXPORT_SYMBOL(ceph_msg_last_put
);
3302 void ceph_msg_dump(struct ceph_msg
*msg
)
3304 pr_debug("msg_dump %p (front_max %d length %zd)\n", msg
,
3305 msg
->front_max
, msg
->data_length
);
3306 print_hex_dump(KERN_DEBUG
, "header: ",
3307 DUMP_PREFIX_OFFSET
, 16, 1,
3308 &msg
->hdr
, sizeof(msg
->hdr
), true);
3309 print_hex_dump(KERN_DEBUG
, " front: ",
3310 DUMP_PREFIX_OFFSET
, 16, 1,
3311 msg
->front
.iov_base
, msg
->front
.iov_len
, true);
3313 print_hex_dump(KERN_DEBUG
, "middle: ",
3314 DUMP_PREFIX_OFFSET
, 16, 1,
3315 msg
->middle
->vec
.iov_base
,
3316 msg
->middle
->vec
.iov_len
, true);
3317 print_hex_dump(KERN_DEBUG
, "footer: ",
3318 DUMP_PREFIX_OFFSET
, 16, 1,
3319 &msg
->footer
, sizeof(msg
->footer
), true);
3321 EXPORT_SYMBOL(ceph_msg_dump
);