x86, MCA: Finish mca_config conversion
[linux-2.6.git] / arch / x86 / kernel / cpu / mcheck / mce.c
blob80dbda84f1c3c2b215242d5e5381848a4ec0c372
1 /*
2 * Machine check handler.
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 #include <linux/thread_info.h>
14 #include <linux/capability.h>
15 #include <linux/miscdevice.h>
16 #include <linux/ratelimit.h>
17 #include <linux/kallsyms.h>
18 #include <linux/rcupdate.h>
19 #include <linux/kobject.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kernel.h>
23 #include <linux/percpu.h>
24 #include <linux/string.h>
25 #include <linux/device.h>
26 #include <linux/syscore_ops.h>
27 #include <linux/delay.h>
28 #include <linux/ctype.h>
29 #include <linux/sched.h>
30 #include <linux/sysfs.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/kmod.h>
35 #include <linux/poll.h>
36 #include <linux/nmi.h>
37 #include <linux/cpu.h>
38 #include <linux/smp.h>
39 #include <linux/fs.h>
40 #include <linux/mm.h>
41 #include <linux/debugfs.h>
42 #include <linux/irq_work.h>
43 #include <linux/export.h>
45 #include <asm/processor.h>
46 #include <asm/mce.h>
47 #include <asm/msr.h>
49 #include "mce-internal.h"
51 static DEFINE_MUTEX(mce_chrdev_read_mutex);
53 #define rcu_dereference_check_mce(p) \
54 rcu_dereference_index_check((p), \
55 rcu_read_lock_sched_held() || \
56 lockdep_is_held(&mce_chrdev_read_mutex))
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/mce.h>
61 #define SPINUNIT 100 /* 100ns */
63 atomic_t mce_entry;
65 DEFINE_PER_CPU(unsigned, mce_exception_count);
67 struct mce_bank *mce_banks __read_mostly;
69 struct mca_config mca_cfg __read_mostly = {
70 .bootlog = -1,
72 * Tolerant levels:
73 * 0: always panic on uncorrected errors, log corrected errors
74 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
75 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
76 * 3: never panic or SIGBUS, log all errors (for testing only)
78 .tolerant = 1,
79 .monarch_timeout = -1
82 /* User mode helper program triggered by machine check event */
83 static unsigned long mce_need_notify;
84 static char mce_helper[128];
85 static char *mce_helper_argv[2] = { mce_helper, NULL };
87 static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait);
89 static DEFINE_PER_CPU(struct mce, mces_seen);
90 static int cpu_missing;
92 /* MCA banks polled by the period polling timer for corrected events */
93 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
94 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
97 static DEFINE_PER_CPU(struct work_struct, mce_work);
99 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
102 * CPU/chipset specific EDAC code can register a notifier call here to print
103 * MCE errors in a human-readable form.
105 ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
107 /* Do initial initialization of a struct mce */
108 void mce_setup(struct mce *m)
110 memset(m, 0, sizeof(struct mce));
111 m->cpu = m->extcpu = smp_processor_id();
112 rdtscll(m->tsc);
113 /* We hope get_seconds stays lockless */
114 m->time = get_seconds();
115 m->cpuvendor = boot_cpu_data.x86_vendor;
116 m->cpuid = cpuid_eax(1);
117 m->socketid = cpu_data(m->extcpu).phys_proc_id;
118 m->apicid = cpu_data(m->extcpu).initial_apicid;
119 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
122 DEFINE_PER_CPU(struct mce, injectm);
123 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
126 * Lockless MCE logging infrastructure.
127 * This avoids deadlocks on printk locks without having to break locks. Also
128 * separate MCEs from kernel messages to avoid bogus bug reports.
131 static struct mce_log mcelog = {
132 .signature = MCE_LOG_SIGNATURE,
133 .len = MCE_LOG_LEN,
134 .recordlen = sizeof(struct mce),
137 void mce_log(struct mce *mce)
139 unsigned next, entry;
140 int ret = 0;
142 /* Emit the trace record: */
143 trace_mce_record(mce);
145 ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, mce);
146 if (ret == NOTIFY_STOP)
147 return;
149 mce->finished = 0;
150 wmb();
151 for (;;) {
152 entry = rcu_dereference_check_mce(mcelog.next);
153 for (;;) {
156 * When the buffer fills up discard new entries.
157 * Assume that the earlier errors are the more
158 * interesting ones:
160 if (entry >= MCE_LOG_LEN) {
161 set_bit(MCE_OVERFLOW,
162 (unsigned long *)&mcelog.flags);
163 return;
165 /* Old left over entry. Skip: */
166 if (mcelog.entry[entry].finished) {
167 entry++;
168 continue;
170 break;
172 smp_rmb();
173 next = entry + 1;
174 if (cmpxchg(&mcelog.next, entry, next) == entry)
175 break;
177 memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
178 wmb();
179 mcelog.entry[entry].finished = 1;
180 wmb();
182 mce->finished = 1;
183 set_bit(0, &mce_need_notify);
186 static void drain_mcelog_buffer(void)
188 unsigned int next, i, prev = 0;
190 next = ACCESS_ONCE(mcelog.next);
192 do {
193 struct mce *m;
195 /* drain what was logged during boot */
196 for (i = prev; i < next; i++) {
197 unsigned long start = jiffies;
198 unsigned retries = 1;
200 m = &mcelog.entry[i];
202 while (!m->finished) {
203 if (time_after_eq(jiffies, start + 2*retries))
204 retries++;
206 cpu_relax();
208 if (!m->finished && retries >= 4) {
209 pr_err("skipping error being logged currently!\n");
210 break;
213 smp_rmb();
214 atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
217 memset(mcelog.entry + prev, 0, (next - prev) * sizeof(*m));
218 prev = next;
219 next = cmpxchg(&mcelog.next, prev, 0);
220 } while (next != prev);
224 void mce_register_decode_chain(struct notifier_block *nb)
226 atomic_notifier_chain_register(&x86_mce_decoder_chain, nb);
227 drain_mcelog_buffer();
229 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
231 void mce_unregister_decode_chain(struct notifier_block *nb)
233 atomic_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
235 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
237 static void print_mce(struct mce *m)
239 int ret = 0;
241 pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
242 m->extcpu, m->mcgstatus, m->bank, m->status);
244 if (m->ip) {
245 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
246 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
247 m->cs, m->ip);
249 if (m->cs == __KERNEL_CS)
250 print_symbol("{%s}", m->ip);
251 pr_cont("\n");
254 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
255 if (m->addr)
256 pr_cont("ADDR %llx ", m->addr);
257 if (m->misc)
258 pr_cont("MISC %llx ", m->misc);
260 pr_cont("\n");
262 * Note this output is parsed by external tools and old fields
263 * should not be changed.
265 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
266 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
267 cpu_data(m->extcpu).microcode);
270 * Print out human-readable details about the MCE error,
271 * (if the CPU has an implementation for that)
273 ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
274 if (ret == NOTIFY_STOP)
275 return;
277 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
280 #define PANIC_TIMEOUT 5 /* 5 seconds */
282 static atomic_t mce_paniced;
284 static int fake_panic;
285 static atomic_t mce_fake_paniced;
287 /* Panic in progress. Enable interrupts and wait for final IPI */
288 static void wait_for_panic(void)
290 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
292 preempt_disable();
293 local_irq_enable();
294 while (timeout-- > 0)
295 udelay(1);
296 if (panic_timeout == 0)
297 panic_timeout = mca_cfg.panic_timeout;
298 panic("Panicing machine check CPU died");
301 static void mce_panic(char *msg, struct mce *final, char *exp)
303 int i, apei_err = 0;
305 if (!fake_panic) {
307 * Make sure only one CPU runs in machine check panic
309 if (atomic_inc_return(&mce_paniced) > 1)
310 wait_for_panic();
311 barrier();
313 bust_spinlocks(1);
314 console_verbose();
315 } else {
316 /* Don't log too much for fake panic */
317 if (atomic_inc_return(&mce_fake_paniced) > 1)
318 return;
320 /* First print corrected ones that are still unlogged */
321 for (i = 0; i < MCE_LOG_LEN; i++) {
322 struct mce *m = &mcelog.entry[i];
323 if (!(m->status & MCI_STATUS_VAL))
324 continue;
325 if (!(m->status & MCI_STATUS_UC)) {
326 print_mce(m);
327 if (!apei_err)
328 apei_err = apei_write_mce(m);
331 /* Now print uncorrected but with the final one last */
332 for (i = 0; i < MCE_LOG_LEN; i++) {
333 struct mce *m = &mcelog.entry[i];
334 if (!(m->status & MCI_STATUS_VAL))
335 continue;
336 if (!(m->status & MCI_STATUS_UC))
337 continue;
338 if (!final || memcmp(m, final, sizeof(struct mce))) {
339 print_mce(m);
340 if (!apei_err)
341 apei_err = apei_write_mce(m);
344 if (final) {
345 print_mce(final);
346 if (!apei_err)
347 apei_err = apei_write_mce(final);
349 if (cpu_missing)
350 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
351 if (exp)
352 pr_emerg(HW_ERR "Machine check: %s\n", exp);
353 if (!fake_panic) {
354 if (panic_timeout == 0)
355 panic_timeout = mca_cfg.panic_timeout;
356 panic(msg);
357 } else
358 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
361 /* Support code for software error injection */
363 static int msr_to_offset(u32 msr)
365 unsigned bank = __this_cpu_read(injectm.bank);
367 if (msr == mca_cfg.rip_msr)
368 return offsetof(struct mce, ip);
369 if (msr == MSR_IA32_MCx_STATUS(bank))
370 return offsetof(struct mce, status);
371 if (msr == MSR_IA32_MCx_ADDR(bank))
372 return offsetof(struct mce, addr);
373 if (msr == MSR_IA32_MCx_MISC(bank))
374 return offsetof(struct mce, misc);
375 if (msr == MSR_IA32_MCG_STATUS)
376 return offsetof(struct mce, mcgstatus);
377 return -1;
380 /* MSR access wrappers used for error injection */
381 static u64 mce_rdmsrl(u32 msr)
383 u64 v;
385 if (__this_cpu_read(injectm.finished)) {
386 int offset = msr_to_offset(msr);
388 if (offset < 0)
389 return 0;
390 return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
393 if (rdmsrl_safe(msr, &v)) {
394 WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
396 * Return zero in case the access faulted. This should
397 * not happen normally but can happen if the CPU does
398 * something weird, or if the code is buggy.
400 v = 0;
403 return v;
406 static void mce_wrmsrl(u32 msr, u64 v)
408 if (__this_cpu_read(injectm.finished)) {
409 int offset = msr_to_offset(msr);
411 if (offset >= 0)
412 *(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
413 return;
415 wrmsrl(msr, v);
419 * Collect all global (w.r.t. this processor) status about this machine
420 * check into our "mce" struct so that we can use it later to assess
421 * the severity of the problem as we read per-bank specific details.
423 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
425 mce_setup(m);
427 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
428 if (regs) {
430 * Get the address of the instruction at the time of
431 * the machine check error.
433 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
434 m->ip = regs->ip;
435 m->cs = regs->cs;
438 * When in VM86 mode make the cs look like ring 3
439 * always. This is a lie, but it's better than passing
440 * the additional vm86 bit around everywhere.
442 if (v8086_mode(regs))
443 m->cs |= 3;
445 /* Use accurate RIP reporting if available. */
446 if (mca_cfg.rip_msr)
447 m->ip = mce_rdmsrl(mca_cfg.rip_msr);
452 * Simple lockless ring to communicate PFNs from the exception handler with the
453 * process context work function. This is vastly simplified because there's
454 * only a single reader and a single writer.
456 #define MCE_RING_SIZE 16 /* we use one entry less */
458 struct mce_ring {
459 unsigned short start;
460 unsigned short end;
461 unsigned long ring[MCE_RING_SIZE];
463 static DEFINE_PER_CPU(struct mce_ring, mce_ring);
465 /* Runs with CPU affinity in workqueue */
466 static int mce_ring_empty(void)
468 struct mce_ring *r = &__get_cpu_var(mce_ring);
470 return r->start == r->end;
473 static int mce_ring_get(unsigned long *pfn)
475 struct mce_ring *r;
476 int ret = 0;
478 *pfn = 0;
479 get_cpu();
480 r = &__get_cpu_var(mce_ring);
481 if (r->start == r->end)
482 goto out;
483 *pfn = r->ring[r->start];
484 r->start = (r->start + 1) % MCE_RING_SIZE;
485 ret = 1;
486 out:
487 put_cpu();
488 return ret;
491 /* Always runs in MCE context with preempt off */
492 static int mce_ring_add(unsigned long pfn)
494 struct mce_ring *r = &__get_cpu_var(mce_ring);
495 unsigned next;
497 next = (r->end + 1) % MCE_RING_SIZE;
498 if (next == r->start)
499 return -1;
500 r->ring[r->end] = pfn;
501 wmb();
502 r->end = next;
503 return 0;
506 int mce_available(struct cpuinfo_x86 *c)
508 if (mca_cfg.disabled)
509 return 0;
510 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
513 static void mce_schedule_work(void)
515 if (!mce_ring_empty()) {
516 struct work_struct *work = &__get_cpu_var(mce_work);
517 if (!work_pending(work))
518 schedule_work(work);
522 DEFINE_PER_CPU(struct irq_work, mce_irq_work);
524 static void mce_irq_work_cb(struct irq_work *entry)
526 mce_notify_irq();
527 mce_schedule_work();
530 static void mce_report_event(struct pt_regs *regs)
532 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
533 mce_notify_irq();
535 * Triggering the work queue here is just an insurance
536 * policy in case the syscall exit notify handler
537 * doesn't run soon enough or ends up running on the
538 * wrong CPU (can happen when audit sleeps)
540 mce_schedule_work();
541 return;
544 irq_work_queue(&__get_cpu_var(mce_irq_work));
548 * Read ADDR and MISC registers.
550 static void mce_read_aux(struct mce *m, int i)
552 if (m->status & MCI_STATUS_MISCV)
553 m->misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
554 if (m->status & MCI_STATUS_ADDRV) {
555 m->addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
558 * Mask the reported address by the reported granularity.
560 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
561 u8 shift = MCI_MISC_ADDR_LSB(m->misc);
562 m->addr >>= shift;
563 m->addr <<= shift;
568 DEFINE_PER_CPU(unsigned, mce_poll_count);
571 * Poll for corrected events or events that happened before reset.
572 * Those are just logged through /dev/mcelog.
574 * This is executed in standard interrupt context.
576 * Note: spec recommends to panic for fatal unsignalled
577 * errors here. However this would be quite problematic --
578 * we would need to reimplement the Monarch handling and
579 * it would mess up the exclusion between exception handler
580 * and poll hander -- * so we skip this for now.
581 * These cases should not happen anyways, or only when the CPU
582 * is already totally * confused. In this case it's likely it will
583 * not fully execute the machine check handler either.
585 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
587 struct mce m;
588 int i;
590 this_cpu_inc(mce_poll_count);
592 mce_gather_info(&m, NULL);
594 for (i = 0; i < mca_cfg.banks; i++) {
595 if (!mce_banks[i].ctl || !test_bit(i, *b))
596 continue;
598 m.misc = 0;
599 m.addr = 0;
600 m.bank = i;
601 m.tsc = 0;
603 barrier();
604 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
605 if (!(m.status & MCI_STATUS_VAL))
606 continue;
609 * Uncorrected or signalled events are handled by the exception
610 * handler when it is enabled, so don't process those here.
612 * TBD do the same check for MCI_STATUS_EN here?
614 if (!(flags & MCP_UC) &&
615 (m.status & (mca_cfg.ser ? MCI_STATUS_S : MCI_STATUS_UC)))
616 continue;
618 mce_read_aux(&m, i);
620 if (!(flags & MCP_TIMESTAMP))
621 m.tsc = 0;
623 * Don't get the IP here because it's unlikely to
624 * have anything to do with the actual error location.
626 if (!(flags & MCP_DONTLOG) && !mca_cfg.dont_log_ce)
627 mce_log(&m);
630 * Clear state for this bank.
632 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
636 * Don't clear MCG_STATUS here because it's only defined for
637 * exceptions.
640 sync_core();
642 EXPORT_SYMBOL_GPL(machine_check_poll);
645 * Do a quick check if any of the events requires a panic.
646 * This decides if we keep the events around or clear them.
648 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
649 struct pt_regs *regs)
651 int i, ret = 0;
653 for (i = 0; i < mca_cfg.banks; i++) {
654 m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
655 if (m->status & MCI_STATUS_VAL) {
656 __set_bit(i, validp);
657 if (quirk_no_way_out)
658 quirk_no_way_out(i, m, regs);
660 if (mce_severity(m, mca_cfg.tolerant, msg) >= MCE_PANIC_SEVERITY)
661 ret = 1;
663 return ret;
667 * Variable to establish order between CPUs while scanning.
668 * Each CPU spins initially until executing is equal its number.
670 static atomic_t mce_executing;
673 * Defines order of CPUs on entry. First CPU becomes Monarch.
675 static atomic_t mce_callin;
678 * Check if a timeout waiting for other CPUs happened.
680 static int mce_timed_out(u64 *t)
683 * The others already did panic for some reason.
684 * Bail out like in a timeout.
685 * rmb() to tell the compiler that system_state
686 * might have been modified by someone else.
688 rmb();
689 if (atomic_read(&mce_paniced))
690 wait_for_panic();
691 if (!mca_cfg.monarch_timeout)
692 goto out;
693 if ((s64)*t < SPINUNIT) {
694 /* CHECKME: Make panic default for 1 too? */
695 if (mca_cfg.tolerant < 1)
696 mce_panic("Timeout synchronizing machine check over CPUs",
697 NULL, NULL);
698 cpu_missing = 1;
699 return 1;
701 *t -= SPINUNIT;
702 out:
703 touch_nmi_watchdog();
704 return 0;
708 * The Monarch's reign. The Monarch is the CPU who entered
709 * the machine check handler first. It waits for the others to
710 * raise the exception too and then grades them. When any
711 * error is fatal panic. Only then let the others continue.
713 * The other CPUs entering the MCE handler will be controlled by the
714 * Monarch. They are called Subjects.
716 * This way we prevent any potential data corruption in a unrecoverable case
717 * and also makes sure always all CPU's errors are examined.
719 * Also this detects the case of a machine check event coming from outer
720 * space (not detected by any CPUs) In this case some external agent wants
721 * us to shut down, so panic too.
723 * The other CPUs might still decide to panic if the handler happens
724 * in a unrecoverable place, but in this case the system is in a semi-stable
725 * state and won't corrupt anything by itself. It's ok to let the others
726 * continue for a bit first.
728 * All the spin loops have timeouts; when a timeout happens a CPU
729 * typically elects itself to be Monarch.
731 static void mce_reign(void)
733 int cpu;
734 struct mce *m = NULL;
735 int global_worst = 0;
736 char *msg = NULL;
737 char *nmsg = NULL;
740 * This CPU is the Monarch and the other CPUs have run
741 * through their handlers.
742 * Grade the severity of the errors of all the CPUs.
744 for_each_possible_cpu(cpu) {
745 int severity = mce_severity(&per_cpu(mces_seen, cpu),
746 mca_cfg.tolerant,
747 &nmsg);
748 if (severity > global_worst) {
749 msg = nmsg;
750 global_worst = severity;
751 m = &per_cpu(mces_seen, cpu);
756 * Cannot recover? Panic here then.
757 * This dumps all the mces in the log buffer and stops the
758 * other CPUs.
760 if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
761 mce_panic("Fatal Machine check", m, msg);
764 * For UC somewhere we let the CPU who detects it handle it.
765 * Also must let continue the others, otherwise the handling
766 * CPU could deadlock on a lock.
770 * No machine check event found. Must be some external
771 * source or one CPU is hung. Panic.
773 if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
774 mce_panic("Machine check from unknown source", NULL, NULL);
777 * Now clear all the mces_seen so that they don't reappear on
778 * the next mce.
780 for_each_possible_cpu(cpu)
781 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
784 static atomic_t global_nwo;
787 * Start of Monarch synchronization. This waits until all CPUs have
788 * entered the exception handler and then determines if any of them
789 * saw a fatal event that requires panic. Then it executes them
790 * in the entry order.
791 * TBD double check parallel CPU hotunplug
793 static int mce_start(int *no_way_out)
795 int order;
796 int cpus = num_online_cpus();
797 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
799 if (!timeout)
800 return -1;
802 atomic_add(*no_way_out, &global_nwo);
804 * global_nwo should be updated before mce_callin
806 smp_wmb();
807 order = atomic_inc_return(&mce_callin);
810 * Wait for everyone.
812 while (atomic_read(&mce_callin) != cpus) {
813 if (mce_timed_out(&timeout)) {
814 atomic_set(&global_nwo, 0);
815 return -1;
817 ndelay(SPINUNIT);
821 * mce_callin should be read before global_nwo
823 smp_rmb();
825 if (order == 1) {
827 * Monarch: Starts executing now, the others wait.
829 atomic_set(&mce_executing, 1);
830 } else {
832 * Subject: Now start the scanning loop one by one in
833 * the original callin order.
834 * This way when there are any shared banks it will be
835 * only seen by one CPU before cleared, avoiding duplicates.
837 while (atomic_read(&mce_executing) < order) {
838 if (mce_timed_out(&timeout)) {
839 atomic_set(&global_nwo, 0);
840 return -1;
842 ndelay(SPINUNIT);
847 * Cache the global no_way_out state.
849 *no_way_out = atomic_read(&global_nwo);
851 return order;
855 * Synchronize between CPUs after main scanning loop.
856 * This invokes the bulk of the Monarch processing.
858 static int mce_end(int order)
860 int ret = -1;
861 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
863 if (!timeout)
864 goto reset;
865 if (order < 0)
866 goto reset;
869 * Allow others to run.
871 atomic_inc(&mce_executing);
873 if (order == 1) {
874 /* CHECKME: Can this race with a parallel hotplug? */
875 int cpus = num_online_cpus();
878 * Monarch: Wait for everyone to go through their scanning
879 * loops.
881 while (atomic_read(&mce_executing) <= cpus) {
882 if (mce_timed_out(&timeout))
883 goto reset;
884 ndelay(SPINUNIT);
887 mce_reign();
888 barrier();
889 ret = 0;
890 } else {
892 * Subject: Wait for Monarch to finish.
894 while (atomic_read(&mce_executing) != 0) {
895 if (mce_timed_out(&timeout))
896 goto reset;
897 ndelay(SPINUNIT);
901 * Don't reset anything. That's done by the Monarch.
903 return 0;
907 * Reset all global state.
909 reset:
910 atomic_set(&global_nwo, 0);
911 atomic_set(&mce_callin, 0);
912 barrier();
915 * Let others run again.
917 atomic_set(&mce_executing, 0);
918 return ret;
922 * Check if the address reported by the CPU is in a format we can parse.
923 * It would be possible to add code for most other cases, but all would
924 * be somewhat complicated (e.g. segment offset would require an instruction
925 * parser). So only support physical addresses up to page granuality for now.
927 static int mce_usable_address(struct mce *m)
929 if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
930 return 0;
931 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
932 return 0;
933 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
934 return 0;
935 return 1;
938 static void mce_clear_state(unsigned long *toclear)
940 int i;
942 for (i = 0; i < mca_cfg.banks; i++) {
943 if (test_bit(i, toclear))
944 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
949 * Need to save faulting physical address associated with a process
950 * in the machine check handler some place where we can grab it back
951 * later in mce_notify_process()
953 #define MCE_INFO_MAX 16
955 struct mce_info {
956 atomic_t inuse;
957 struct task_struct *t;
958 __u64 paddr;
959 int restartable;
960 } mce_info[MCE_INFO_MAX];
962 static void mce_save_info(__u64 addr, int c)
964 struct mce_info *mi;
966 for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++) {
967 if (atomic_cmpxchg(&mi->inuse, 0, 1) == 0) {
968 mi->t = current;
969 mi->paddr = addr;
970 mi->restartable = c;
971 return;
975 mce_panic("Too many concurrent recoverable errors", NULL, NULL);
978 static struct mce_info *mce_find_info(void)
980 struct mce_info *mi;
982 for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++)
983 if (atomic_read(&mi->inuse) && mi->t == current)
984 return mi;
985 return NULL;
988 static void mce_clear_info(struct mce_info *mi)
990 atomic_set(&mi->inuse, 0);
994 * The actual machine check handler. This only handles real
995 * exceptions when something got corrupted coming in through int 18.
997 * This is executed in NMI context not subject to normal locking rules. This
998 * implies that most kernel services cannot be safely used. Don't even
999 * think about putting a printk in there!
1001 * On Intel systems this is entered on all CPUs in parallel through
1002 * MCE broadcast. However some CPUs might be broken beyond repair,
1003 * so be always careful when synchronizing with others.
1005 void do_machine_check(struct pt_regs *regs, long error_code)
1007 struct mca_config *cfg = &mca_cfg;
1008 struct mce m, *final;
1009 int i;
1010 int worst = 0;
1011 int severity;
1013 * Establish sequential order between the CPUs entering the machine
1014 * check handler.
1016 int order;
1018 * If no_way_out gets set, there is no safe way to recover from this
1019 * MCE. If mca_cfg.tolerant is cranked up, we'll try anyway.
1021 int no_way_out = 0;
1023 * If kill_it gets set, there might be a way to recover from this
1024 * error.
1026 int kill_it = 0;
1027 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1028 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1029 char *msg = "Unknown";
1031 atomic_inc(&mce_entry);
1033 this_cpu_inc(mce_exception_count);
1035 if (!cfg->banks)
1036 goto out;
1038 mce_gather_info(&m, regs);
1040 final = &__get_cpu_var(mces_seen);
1041 *final = m;
1043 memset(valid_banks, 0, sizeof(valid_banks));
1044 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1046 barrier();
1049 * When no restart IP might need to kill or panic.
1050 * Assume the worst for now, but if we find the
1051 * severity is MCE_AR_SEVERITY we have other options.
1053 if (!(m.mcgstatus & MCG_STATUS_RIPV))
1054 kill_it = 1;
1057 * Go through all the banks in exclusion of the other CPUs.
1058 * This way we don't report duplicated events on shared banks
1059 * because the first one to see it will clear it.
1061 order = mce_start(&no_way_out);
1062 for (i = 0; i < cfg->banks; i++) {
1063 __clear_bit(i, toclear);
1064 if (!test_bit(i, valid_banks))
1065 continue;
1066 if (!mce_banks[i].ctl)
1067 continue;
1069 m.misc = 0;
1070 m.addr = 0;
1071 m.bank = i;
1073 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
1074 if ((m.status & MCI_STATUS_VAL) == 0)
1075 continue;
1078 * Non uncorrected or non signaled errors are handled by
1079 * machine_check_poll. Leave them alone, unless this panics.
1081 if (!(m.status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1082 !no_way_out)
1083 continue;
1086 * Set taint even when machine check was not enabled.
1088 add_taint(TAINT_MACHINE_CHECK);
1090 severity = mce_severity(&m, cfg->tolerant, NULL);
1093 * When machine check was for corrected handler don't touch,
1094 * unless we're panicing.
1096 if (severity == MCE_KEEP_SEVERITY && !no_way_out)
1097 continue;
1098 __set_bit(i, toclear);
1099 if (severity == MCE_NO_SEVERITY) {
1101 * Machine check event was not enabled. Clear, but
1102 * ignore.
1104 continue;
1107 mce_read_aux(&m, i);
1110 * Action optional error. Queue address for later processing.
1111 * When the ring overflows we just ignore the AO error.
1112 * RED-PEN add some logging mechanism when
1113 * usable_address or mce_add_ring fails.
1114 * RED-PEN don't ignore overflow for mca_cfg.tolerant == 0
1116 if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
1117 mce_ring_add(m.addr >> PAGE_SHIFT);
1119 mce_log(&m);
1121 if (severity > worst) {
1122 *final = m;
1123 worst = severity;
1127 /* mce_clear_state will clear *final, save locally for use later */
1128 m = *final;
1130 if (!no_way_out)
1131 mce_clear_state(toclear);
1134 * Do most of the synchronization with other CPUs.
1135 * When there's any problem use only local no_way_out state.
1137 if (mce_end(order) < 0)
1138 no_way_out = worst >= MCE_PANIC_SEVERITY;
1141 * At insane "tolerant" levels we take no action. Otherwise
1142 * we only die if we have no other choice. For less serious
1143 * issues we try to recover, or limit damage to the current
1144 * process.
1146 if (cfg->tolerant < 3) {
1147 if (no_way_out)
1148 mce_panic("Fatal machine check on current CPU", &m, msg);
1149 if (worst == MCE_AR_SEVERITY) {
1150 /* schedule action before return to userland */
1151 mce_save_info(m.addr, m.mcgstatus & MCG_STATUS_RIPV);
1152 set_thread_flag(TIF_MCE_NOTIFY);
1153 } else if (kill_it) {
1154 force_sig(SIGBUS, current);
1158 if (worst > 0)
1159 mce_report_event(regs);
1160 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1161 out:
1162 atomic_dec(&mce_entry);
1163 sync_core();
1165 EXPORT_SYMBOL_GPL(do_machine_check);
1167 #ifndef CONFIG_MEMORY_FAILURE
1168 int memory_failure(unsigned long pfn, int vector, int flags)
1170 /* mce_severity() should not hand us an ACTION_REQUIRED error */
1171 BUG_ON(flags & MF_ACTION_REQUIRED);
1172 pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1173 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1174 pfn);
1176 return 0;
1178 #endif
1181 * Called in process context that interrupted by MCE and marked with
1182 * TIF_MCE_NOTIFY, just before returning to erroneous userland.
1183 * This code is allowed to sleep.
1184 * Attempt possible recovery such as calling the high level VM handler to
1185 * process any corrupted pages, and kill/signal current process if required.
1186 * Action required errors are handled here.
1188 void mce_notify_process(void)
1190 unsigned long pfn;
1191 struct mce_info *mi = mce_find_info();
1192 int flags = MF_ACTION_REQUIRED;
1194 if (!mi)
1195 mce_panic("Lost physical address for unconsumed uncorrectable error", NULL, NULL);
1196 pfn = mi->paddr >> PAGE_SHIFT;
1198 clear_thread_flag(TIF_MCE_NOTIFY);
1200 pr_err("Uncorrected hardware memory error in user-access at %llx",
1201 mi->paddr);
1203 * We must call memory_failure() here even if the current process is
1204 * doomed. We still need to mark the page as poisoned and alert any
1205 * other users of the page.
1207 if (!mi->restartable)
1208 flags |= MF_MUST_KILL;
1209 if (memory_failure(pfn, MCE_VECTOR, flags) < 0) {
1210 pr_err("Memory error not recovered");
1211 force_sig(SIGBUS, current);
1213 mce_clear_info(mi);
1217 * Action optional processing happens here (picking up
1218 * from the list of faulting pages that do_machine_check()
1219 * placed into the "ring").
1221 static void mce_process_work(struct work_struct *dummy)
1223 unsigned long pfn;
1225 while (mce_ring_get(&pfn))
1226 memory_failure(pfn, MCE_VECTOR, 0);
1229 #ifdef CONFIG_X86_MCE_INTEL
1230 /***
1231 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1232 * @cpu: The CPU on which the event occurred.
1233 * @status: Event status information
1235 * This function should be called by the thermal interrupt after the
1236 * event has been processed and the decision was made to log the event
1237 * further.
1239 * The status parameter will be saved to the 'status' field of 'struct mce'
1240 * and historically has been the register value of the
1241 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1243 void mce_log_therm_throt_event(__u64 status)
1245 struct mce m;
1247 mce_setup(&m);
1248 m.bank = MCE_THERMAL_BANK;
1249 m.status = status;
1250 mce_log(&m);
1252 #endif /* CONFIG_X86_MCE_INTEL */
1255 * Periodic polling timer for "silent" machine check errors. If the
1256 * poller finds an MCE, poll 2x faster. When the poller finds no more
1257 * errors, poll 2x slower (up to check_interval seconds).
1259 static unsigned long check_interval = 5 * 60; /* 5 minutes */
1261 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1262 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1264 static unsigned long mce_adjust_timer_default(unsigned long interval)
1266 return interval;
1269 static unsigned long (*mce_adjust_timer)(unsigned long interval) =
1270 mce_adjust_timer_default;
1272 static void mce_timer_fn(unsigned long data)
1274 struct timer_list *t = &__get_cpu_var(mce_timer);
1275 unsigned long iv;
1277 WARN_ON(smp_processor_id() != data);
1279 if (mce_available(__this_cpu_ptr(&cpu_info))) {
1280 machine_check_poll(MCP_TIMESTAMP,
1281 &__get_cpu_var(mce_poll_banks));
1282 mce_intel_cmci_poll();
1286 * Alert userspace if needed. If we logged an MCE, reduce the
1287 * polling interval, otherwise increase the polling interval.
1289 iv = __this_cpu_read(mce_next_interval);
1290 if (mce_notify_irq()) {
1291 iv = max(iv / 2, (unsigned long) HZ/100);
1292 } else {
1293 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1294 iv = mce_adjust_timer(iv);
1296 __this_cpu_write(mce_next_interval, iv);
1297 /* Might have become 0 after CMCI storm subsided */
1298 if (iv) {
1299 t->expires = jiffies + iv;
1300 add_timer_on(t, smp_processor_id());
1305 * Ensure that the timer is firing in @interval from now.
1307 void mce_timer_kick(unsigned long interval)
1309 struct timer_list *t = &__get_cpu_var(mce_timer);
1310 unsigned long when = jiffies + interval;
1311 unsigned long iv = __this_cpu_read(mce_next_interval);
1313 if (timer_pending(t)) {
1314 if (time_before(when, t->expires))
1315 mod_timer_pinned(t, when);
1316 } else {
1317 t->expires = round_jiffies(when);
1318 add_timer_on(t, smp_processor_id());
1320 if (interval < iv)
1321 __this_cpu_write(mce_next_interval, interval);
1324 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1325 static void mce_timer_delete_all(void)
1327 int cpu;
1329 for_each_online_cpu(cpu)
1330 del_timer_sync(&per_cpu(mce_timer, cpu));
1333 static void mce_do_trigger(struct work_struct *work)
1335 call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1338 static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1341 * Notify the user(s) about new machine check events.
1342 * Can be called from interrupt context, but not from machine check/NMI
1343 * context.
1345 int mce_notify_irq(void)
1347 /* Not more than two messages every minute */
1348 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1350 if (test_and_clear_bit(0, &mce_need_notify)) {
1351 /* wake processes polling /dev/mcelog */
1352 wake_up_interruptible(&mce_chrdev_wait);
1355 * There is no risk of missing notifications because
1356 * work_pending is always cleared before the function is
1357 * executed.
1359 if (mce_helper[0] && !work_pending(&mce_trigger_work))
1360 schedule_work(&mce_trigger_work);
1362 if (__ratelimit(&ratelimit))
1363 pr_info(HW_ERR "Machine check events logged\n");
1365 return 1;
1367 return 0;
1369 EXPORT_SYMBOL_GPL(mce_notify_irq);
1371 static int __cpuinit __mcheck_cpu_mce_banks_init(void)
1373 int i;
1374 u8 num_banks = mca_cfg.banks;
1376 mce_banks = kzalloc(num_banks * sizeof(struct mce_bank), GFP_KERNEL);
1377 if (!mce_banks)
1378 return -ENOMEM;
1380 for (i = 0; i < num_banks; i++) {
1381 struct mce_bank *b = &mce_banks[i];
1383 b->ctl = -1ULL;
1384 b->init = 1;
1386 return 0;
1390 * Initialize Machine Checks for a CPU.
1392 static int __cpuinit __mcheck_cpu_cap_init(void)
1394 unsigned b;
1395 u64 cap;
1397 rdmsrl(MSR_IA32_MCG_CAP, cap);
1399 b = cap & MCG_BANKCNT_MASK;
1400 if (!mca_cfg.banks)
1401 pr_info("CPU supports %d MCE banks\n", b);
1403 if (b > MAX_NR_BANKS) {
1404 pr_warn("Using only %u machine check banks out of %u\n",
1405 MAX_NR_BANKS, b);
1406 b = MAX_NR_BANKS;
1409 /* Don't support asymmetric configurations today */
1410 WARN_ON(mca_cfg.banks != 0 && b != mca_cfg.banks);
1411 mca_cfg.banks = b;
1413 if (!mce_banks) {
1414 int err = __mcheck_cpu_mce_banks_init();
1416 if (err)
1417 return err;
1420 /* Use accurate RIP reporting if available. */
1421 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1422 mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1424 if (cap & MCG_SER_P)
1425 mca_cfg.ser = true;
1427 return 0;
1430 static void __mcheck_cpu_init_generic(void)
1432 enum mcp_flags m_fl = 0;
1433 mce_banks_t all_banks;
1434 u64 cap;
1435 int i;
1437 if (!mca_cfg.bootlog)
1438 m_fl = MCP_DONTLOG;
1441 * Log the machine checks left over from the previous reset.
1443 bitmap_fill(all_banks, MAX_NR_BANKS);
1444 machine_check_poll(MCP_UC | m_fl, &all_banks);
1446 set_in_cr4(X86_CR4_MCE);
1448 rdmsrl(MSR_IA32_MCG_CAP, cap);
1449 if (cap & MCG_CTL_P)
1450 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1452 for (i = 0; i < mca_cfg.banks; i++) {
1453 struct mce_bank *b = &mce_banks[i];
1455 if (!b->init)
1456 continue;
1457 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1458 wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1463 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1464 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1465 * Vol 3B Table 15-20). But this confuses both the code that determines
1466 * whether the machine check occurred in kernel or user mode, and also
1467 * the severity assessment code. Pretend that EIPV was set, and take the
1468 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1470 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1472 if (bank != 0)
1473 return;
1474 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1475 return;
1476 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1477 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1478 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1479 MCACOD)) !=
1480 (MCI_STATUS_UC|MCI_STATUS_EN|
1481 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1482 MCI_STATUS_AR|MCACOD_INSTR))
1483 return;
1485 m->mcgstatus |= MCG_STATUS_EIPV;
1486 m->ip = regs->ip;
1487 m->cs = regs->cs;
1490 /* Add per CPU specific workarounds here */
1491 static int __cpuinit __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1493 struct mca_config *cfg = &mca_cfg;
1495 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1496 pr_info("unknown CPU type - not enabling MCE support\n");
1497 return -EOPNOTSUPP;
1500 /* This should be disabled by the BIOS, but isn't always */
1501 if (c->x86_vendor == X86_VENDOR_AMD) {
1502 if (c->x86 == 15 && cfg->banks > 4) {
1504 * disable GART TBL walk error reporting, which
1505 * trips off incorrectly with the IOMMU & 3ware
1506 * & Cerberus:
1508 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1510 if (c->x86 <= 17 && cfg->bootlog < 0) {
1512 * Lots of broken BIOS around that don't clear them
1513 * by default and leave crap in there. Don't log:
1515 cfg->bootlog = 0;
1518 * Various K7s with broken bank 0 around. Always disable
1519 * by default.
1521 if (c->x86 == 6 && cfg->banks > 0)
1522 mce_banks[0].ctl = 0;
1525 * Turn off MC4_MISC thresholding banks on those models since
1526 * they're not supported there.
1528 if (c->x86 == 0x15 &&
1529 (c->x86_model >= 0x10 && c->x86_model <= 0x1f)) {
1530 int i;
1531 u64 val, hwcr;
1532 bool need_toggle;
1533 u32 msrs[] = {
1534 0x00000413, /* MC4_MISC0 */
1535 0xc0000408, /* MC4_MISC1 */
1538 rdmsrl(MSR_K7_HWCR, hwcr);
1540 /* McStatusWrEn has to be set */
1541 need_toggle = !(hwcr & BIT(18));
1543 if (need_toggle)
1544 wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
1546 for (i = 0; i < ARRAY_SIZE(msrs); i++) {
1547 rdmsrl(msrs[i], val);
1549 /* CntP bit set? */
1550 if (val & BIT_64(62)) {
1551 val &= ~BIT_64(62);
1552 wrmsrl(msrs[i], val);
1556 /* restore old settings */
1557 if (need_toggle)
1558 wrmsrl(MSR_K7_HWCR, hwcr);
1562 if (c->x86_vendor == X86_VENDOR_INTEL) {
1564 * SDM documents that on family 6 bank 0 should not be written
1565 * because it aliases to another special BIOS controlled
1566 * register.
1567 * But it's not aliased anymore on model 0x1a+
1568 * Don't ignore bank 0 completely because there could be a
1569 * valid event later, merely don't write CTL0.
1572 if (c->x86 == 6 && c->x86_model < 0x1A && cfg->banks > 0)
1573 mce_banks[0].init = 0;
1576 * All newer Intel systems support MCE broadcasting. Enable
1577 * synchronization with a one second timeout.
1579 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1580 cfg->monarch_timeout < 0)
1581 cfg->monarch_timeout = USEC_PER_SEC;
1584 * There are also broken BIOSes on some Pentium M and
1585 * earlier systems:
1587 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1588 cfg->bootlog = 0;
1590 if (c->x86 == 6 && c->x86_model == 45)
1591 quirk_no_way_out = quirk_sandybridge_ifu;
1593 if (cfg->monarch_timeout < 0)
1594 cfg->monarch_timeout = 0;
1595 if (cfg->bootlog != 0)
1596 cfg->panic_timeout = 30;
1598 return 0;
1601 static int __cpuinit __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1603 if (c->x86 != 5)
1604 return 0;
1606 switch (c->x86_vendor) {
1607 case X86_VENDOR_INTEL:
1608 intel_p5_mcheck_init(c);
1609 return 1;
1610 break;
1611 case X86_VENDOR_CENTAUR:
1612 winchip_mcheck_init(c);
1613 return 1;
1614 break;
1617 return 0;
1620 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1622 switch (c->x86_vendor) {
1623 case X86_VENDOR_INTEL:
1624 mce_intel_feature_init(c);
1625 mce_adjust_timer = mce_intel_adjust_timer;
1626 break;
1627 case X86_VENDOR_AMD:
1628 mce_amd_feature_init(c);
1629 break;
1630 default:
1631 break;
1635 static void mce_start_timer(unsigned int cpu, struct timer_list *t)
1637 unsigned long iv = mce_adjust_timer(check_interval * HZ);
1639 __this_cpu_write(mce_next_interval, iv);
1641 if (mca_cfg.ignore_ce || !iv)
1642 return;
1644 t->expires = round_jiffies(jiffies + iv);
1645 add_timer_on(t, smp_processor_id());
1648 static void __mcheck_cpu_init_timer(void)
1650 struct timer_list *t = &__get_cpu_var(mce_timer);
1651 unsigned int cpu = smp_processor_id();
1653 setup_timer(t, mce_timer_fn, cpu);
1654 mce_start_timer(cpu, t);
1657 /* Handle unconfigured int18 (should never happen) */
1658 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1660 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1661 smp_processor_id());
1664 /* Call the installed machine check handler for this CPU setup. */
1665 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1666 unexpected_machine_check;
1669 * Called for each booted CPU to set up machine checks.
1670 * Must be called with preempt off:
1672 void __cpuinit mcheck_cpu_init(struct cpuinfo_x86 *c)
1674 if (mca_cfg.disabled)
1675 return;
1677 if (__mcheck_cpu_ancient_init(c))
1678 return;
1680 if (!mce_available(c))
1681 return;
1683 if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1684 mca_cfg.disabled = true;
1685 return;
1688 machine_check_vector = do_machine_check;
1690 __mcheck_cpu_init_generic();
1691 __mcheck_cpu_init_vendor(c);
1692 __mcheck_cpu_init_timer();
1693 INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1694 init_irq_work(&__get_cpu_var(mce_irq_work), &mce_irq_work_cb);
1698 * mce_chrdev: Character device /dev/mcelog to read and clear the MCE log.
1701 static DEFINE_SPINLOCK(mce_chrdev_state_lock);
1702 static int mce_chrdev_open_count; /* #times opened */
1703 static int mce_chrdev_open_exclu; /* already open exclusive? */
1705 static int mce_chrdev_open(struct inode *inode, struct file *file)
1707 spin_lock(&mce_chrdev_state_lock);
1709 if (mce_chrdev_open_exclu ||
1710 (mce_chrdev_open_count && (file->f_flags & O_EXCL))) {
1711 spin_unlock(&mce_chrdev_state_lock);
1713 return -EBUSY;
1716 if (file->f_flags & O_EXCL)
1717 mce_chrdev_open_exclu = 1;
1718 mce_chrdev_open_count++;
1720 spin_unlock(&mce_chrdev_state_lock);
1722 return nonseekable_open(inode, file);
1725 static int mce_chrdev_release(struct inode *inode, struct file *file)
1727 spin_lock(&mce_chrdev_state_lock);
1729 mce_chrdev_open_count--;
1730 mce_chrdev_open_exclu = 0;
1732 spin_unlock(&mce_chrdev_state_lock);
1734 return 0;
1737 static void collect_tscs(void *data)
1739 unsigned long *cpu_tsc = (unsigned long *)data;
1741 rdtscll(cpu_tsc[smp_processor_id()]);
1744 static int mce_apei_read_done;
1746 /* Collect MCE record of previous boot in persistent storage via APEI ERST. */
1747 static int __mce_read_apei(char __user **ubuf, size_t usize)
1749 int rc;
1750 u64 record_id;
1751 struct mce m;
1753 if (usize < sizeof(struct mce))
1754 return -EINVAL;
1756 rc = apei_read_mce(&m, &record_id);
1757 /* Error or no more MCE record */
1758 if (rc <= 0) {
1759 mce_apei_read_done = 1;
1761 * When ERST is disabled, mce_chrdev_read() should return
1762 * "no record" instead of "no device."
1764 if (rc == -ENODEV)
1765 return 0;
1766 return rc;
1768 rc = -EFAULT;
1769 if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1770 return rc;
1772 * In fact, we should have cleared the record after that has
1773 * been flushed to the disk or sent to network in
1774 * /sbin/mcelog, but we have no interface to support that now,
1775 * so just clear it to avoid duplication.
1777 rc = apei_clear_mce(record_id);
1778 if (rc) {
1779 mce_apei_read_done = 1;
1780 return rc;
1782 *ubuf += sizeof(struct mce);
1784 return 0;
1787 static ssize_t mce_chrdev_read(struct file *filp, char __user *ubuf,
1788 size_t usize, loff_t *off)
1790 char __user *buf = ubuf;
1791 unsigned long *cpu_tsc;
1792 unsigned prev, next;
1793 int i, err;
1795 cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1796 if (!cpu_tsc)
1797 return -ENOMEM;
1799 mutex_lock(&mce_chrdev_read_mutex);
1801 if (!mce_apei_read_done) {
1802 err = __mce_read_apei(&buf, usize);
1803 if (err || buf != ubuf)
1804 goto out;
1807 next = rcu_dereference_check_mce(mcelog.next);
1809 /* Only supports full reads right now */
1810 err = -EINVAL;
1811 if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1812 goto out;
1814 err = 0;
1815 prev = 0;
1816 do {
1817 for (i = prev; i < next; i++) {
1818 unsigned long start = jiffies;
1819 struct mce *m = &mcelog.entry[i];
1821 while (!m->finished) {
1822 if (time_after_eq(jiffies, start + 2)) {
1823 memset(m, 0, sizeof(*m));
1824 goto timeout;
1826 cpu_relax();
1828 smp_rmb();
1829 err |= copy_to_user(buf, m, sizeof(*m));
1830 buf += sizeof(*m);
1831 timeout:
1835 memset(mcelog.entry + prev, 0,
1836 (next - prev) * sizeof(struct mce));
1837 prev = next;
1838 next = cmpxchg(&mcelog.next, prev, 0);
1839 } while (next != prev);
1841 synchronize_sched();
1844 * Collect entries that were still getting written before the
1845 * synchronize.
1847 on_each_cpu(collect_tscs, cpu_tsc, 1);
1849 for (i = next; i < MCE_LOG_LEN; i++) {
1850 struct mce *m = &mcelog.entry[i];
1852 if (m->finished && m->tsc < cpu_tsc[m->cpu]) {
1853 err |= copy_to_user(buf, m, sizeof(*m));
1854 smp_rmb();
1855 buf += sizeof(*m);
1856 memset(m, 0, sizeof(*m));
1860 if (err)
1861 err = -EFAULT;
1863 out:
1864 mutex_unlock(&mce_chrdev_read_mutex);
1865 kfree(cpu_tsc);
1867 return err ? err : buf - ubuf;
1870 static unsigned int mce_chrdev_poll(struct file *file, poll_table *wait)
1872 poll_wait(file, &mce_chrdev_wait, wait);
1873 if (rcu_access_index(mcelog.next))
1874 return POLLIN | POLLRDNORM;
1875 if (!mce_apei_read_done && apei_check_mce())
1876 return POLLIN | POLLRDNORM;
1877 return 0;
1880 static long mce_chrdev_ioctl(struct file *f, unsigned int cmd,
1881 unsigned long arg)
1883 int __user *p = (int __user *)arg;
1885 if (!capable(CAP_SYS_ADMIN))
1886 return -EPERM;
1888 switch (cmd) {
1889 case MCE_GET_RECORD_LEN:
1890 return put_user(sizeof(struct mce), p);
1891 case MCE_GET_LOG_LEN:
1892 return put_user(MCE_LOG_LEN, p);
1893 case MCE_GETCLEAR_FLAGS: {
1894 unsigned flags;
1896 do {
1897 flags = mcelog.flags;
1898 } while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1900 return put_user(flags, p);
1902 default:
1903 return -ENOTTY;
1907 static ssize_t (*mce_write)(struct file *filp, const char __user *ubuf,
1908 size_t usize, loff_t *off);
1910 void register_mce_write_callback(ssize_t (*fn)(struct file *filp,
1911 const char __user *ubuf,
1912 size_t usize, loff_t *off))
1914 mce_write = fn;
1916 EXPORT_SYMBOL_GPL(register_mce_write_callback);
1918 ssize_t mce_chrdev_write(struct file *filp, const char __user *ubuf,
1919 size_t usize, loff_t *off)
1921 if (mce_write)
1922 return mce_write(filp, ubuf, usize, off);
1923 else
1924 return -EINVAL;
1927 static const struct file_operations mce_chrdev_ops = {
1928 .open = mce_chrdev_open,
1929 .release = mce_chrdev_release,
1930 .read = mce_chrdev_read,
1931 .write = mce_chrdev_write,
1932 .poll = mce_chrdev_poll,
1933 .unlocked_ioctl = mce_chrdev_ioctl,
1934 .llseek = no_llseek,
1937 static struct miscdevice mce_chrdev_device = {
1938 MISC_MCELOG_MINOR,
1939 "mcelog",
1940 &mce_chrdev_ops,
1944 * mce=off Disables machine check
1945 * mce=no_cmci Disables CMCI
1946 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1947 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1948 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1949 * monarchtimeout is how long to wait for other CPUs on machine
1950 * check, or 0 to not wait
1951 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1952 * mce=nobootlog Don't log MCEs from before booting.
1953 * mce=bios_cmci_threshold Don't program the CMCI threshold
1955 static int __init mcheck_enable(char *str)
1957 struct mca_config *cfg = &mca_cfg;
1959 if (*str == 0) {
1960 enable_p5_mce();
1961 return 1;
1963 if (*str == '=')
1964 str++;
1965 if (!strcmp(str, "off"))
1966 cfg->disabled = true;
1967 else if (!strcmp(str, "no_cmci"))
1968 cfg->cmci_disabled = true;
1969 else if (!strcmp(str, "dont_log_ce"))
1970 cfg->dont_log_ce = true;
1971 else if (!strcmp(str, "ignore_ce"))
1972 cfg->ignore_ce = true;
1973 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1974 cfg->bootlog = (str[0] == 'b');
1975 else if (!strcmp(str, "bios_cmci_threshold"))
1976 cfg->bios_cmci_threshold = true;
1977 else if (isdigit(str[0])) {
1978 get_option(&str, &(cfg->tolerant));
1979 if (*str == ',') {
1980 ++str;
1981 get_option(&str, &(cfg->monarch_timeout));
1983 } else {
1984 pr_info("mce argument %s ignored. Please use /sys\n", str);
1985 return 0;
1987 return 1;
1989 __setup("mce", mcheck_enable);
1991 int __init mcheck_init(void)
1993 mcheck_intel_therm_init();
1995 return 0;
1999 * mce_syscore: PM support
2003 * Disable machine checks on suspend and shutdown. We can't really handle
2004 * them later.
2006 static int mce_disable_error_reporting(void)
2008 int i;
2010 for (i = 0; i < mca_cfg.banks; i++) {
2011 struct mce_bank *b = &mce_banks[i];
2013 if (b->init)
2014 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2016 return 0;
2019 static int mce_syscore_suspend(void)
2021 return mce_disable_error_reporting();
2024 static void mce_syscore_shutdown(void)
2026 mce_disable_error_reporting();
2030 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2031 * Only one CPU is active at this time, the others get re-added later using
2032 * CPU hotplug:
2034 static void mce_syscore_resume(void)
2036 __mcheck_cpu_init_generic();
2037 __mcheck_cpu_init_vendor(__this_cpu_ptr(&cpu_info));
2040 static struct syscore_ops mce_syscore_ops = {
2041 .suspend = mce_syscore_suspend,
2042 .shutdown = mce_syscore_shutdown,
2043 .resume = mce_syscore_resume,
2047 * mce_device: Sysfs support
2050 static void mce_cpu_restart(void *data)
2052 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2053 return;
2054 __mcheck_cpu_init_generic();
2055 __mcheck_cpu_init_timer();
2058 /* Reinit MCEs after user configuration changes */
2059 static void mce_restart(void)
2061 mce_timer_delete_all();
2062 on_each_cpu(mce_cpu_restart, NULL, 1);
2065 /* Toggle features for corrected errors */
2066 static void mce_disable_cmci(void *data)
2068 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2069 return;
2070 cmci_clear();
2073 static void mce_enable_ce(void *all)
2075 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2076 return;
2077 cmci_reenable();
2078 cmci_recheck();
2079 if (all)
2080 __mcheck_cpu_init_timer();
2083 static struct bus_type mce_subsys = {
2084 .name = "machinecheck",
2085 .dev_name = "machinecheck",
2088 DEFINE_PER_CPU(struct device *, mce_device);
2090 __cpuinitdata
2091 void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
2093 static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
2095 return container_of(attr, struct mce_bank, attr);
2098 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2099 char *buf)
2101 return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
2104 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2105 const char *buf, size_t size)
2107 u64 new;
2109 if (strict_strtoull(buf, 0, &new) < 0)
2110 return -EINVAL;
2112 attr_to_bank(attr)->ctl = new;
2113 mce_restart();
2115 return size;
2118 static ssize_t
2119 show_trigger(struct device *s, struct device_attribute *attr, char *buf)
2121 strcpy(buf, mce_helper);
2122 strcat(buf, "\n");
2123 return strlen(mce_helper) + 1;
2126 static ssize_t set_trigger(struct device *s, struct device_attribute *attr,
2127 const char *buf, size_t siz)
2129 char *p;
2131 strncpy(mce_helper, buf, sizeof(mce_helper));
2132 mce_helper[sizeof(mce_helper)-1] = 0;
2133 p = strchr(mce_helper, '\n');
2135 if (p)
2136 *p = 0;
2138 return strlen(mce_helper) + !!p;
2141 static ssize_t set_ignore_ce(struct device *s,
2142 struct device_attribute *attr,
2143 const char *buf, size_t size)
2145 u64 new;
2147 if (strict_strtoull(buf, 0, &new) < 0)
2148 return -EINVAL;
2150 if (mca_cfg.ignore_ce ^ !!new) {
2151 if (new) {
2152 /* disable ce features */
2153 mce_timer_delete_all();
2154 on_each_cpu(mce_disable_cmci, NULL, 1);
2155 mca_cfg.ignore_ce = true;
2156 } else {
2157 /* enable ce features */
2158 mca_cfg.ignore_ce = false;
2159 on_each_cpu(mce_enable_ce, (void *)1, 1);
2162 return size;
2165 static ssize_t set_cmci_disabled(struct device *s,
2166 struct device_attribute *attr,
2167 const char *buf, size_t size)
2169 u64 new;
2171 if (strict_strtoull(buf, 0, &new) < 0)
2172 return -EINVAL;
2174 if (mca_cfg.cmci_disabled ^ !!new) {
2175 if (new) {
2176 /* disable cmci */
2177 on_each_cpu(mce_disable_cmci, NULL, 1);
2178 mca_cfg.cmci_disabled = true;
2179 } else {
2180 /* enable cmci */
2181 mca_cfg.cmci_disabled = false;
2182 on_each_cpu(mce_enable_ce, NULL, 1);
2185 return size;
2188 static ssize_t store_int_with_restart(struct device *s,
2189 struct device_attribute *attr,
2190 const char *buf, size_t size)
2192 ssize_t ret = device_store_int(s, attr, buf, size);
2193 mce_restart();
2194 return ret;
2197 static DEVICE_ATTR(trigger, 0644, show_trigger, set_trigger);
2198 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2199 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2200 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2202 static struct dev_ext_attribute dev_attr_check_interval = {
2203 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2204 &check_interval
2207 static struct dev_ext_attribute dev_attr_ignore_ce = {
2208 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2209 &mca_cfg.ignore_ce
2212 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2213 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2214 &mca_cfg.cmci_disabled
2217 static struct device_attribute *mce_device_attrs[] = {
2218 &dev_attr_tolerant.attr,
2219 &dev_attr_check_interval.attr,
2220 &dev_attr_trigger,
2221 &dev_attr_monarch_timeout.attr,
2222 &dev_attr_dont_log_ce.attr,
2223 &dev_attr_ignore_ce.attr,
2224 &dev_attr_cmci_disabled.attr,
2225 NULL
2228 static cpumask_var_t mce_device_initialized;
2230 static void mce_device_release(struct device *dev)
2232 kfree(dev);
2235 /* Per cpu device init. All of the cpus still share the same ctrl bank: */
2236 static __cpuinit int mce_device_create(unsigned int cpu)
2238 struct device *dev;
2239 int err;
2240 int i, j;
2242 if (!mce_available(&boot_cpu_data))
2243 return -EIO;
2245 dev = kzalloc(sizeof *dev, GFP_KERNEL);
2246 if (!dev)
2247 return -ENOMEM;
2248 dev->id = cpu;
2249 dev->bus = &mce_subsys;
2250 dev->release = &mce_device_release;
2252 err = device_register(dev);
2253 if (err)
2254 return err;
2256 for (i = 0; mce_device_attrs[i]; i++) {
2257 err = device_create_file(dev, mce_device_attrs[i]);
2258 if (err)
2259 goto error;
2261 for (j = 0; j < mca_cfg.banks; j++) {
2262 err = device_create_file(dev, &mce_banks[j].attr);
2263 if (err)
2264 goto error2;
2266 cpumask_set_cpu(cpu, mce_device_initialized);
2267 per_cpu(mce_device, cpu) = dev;
2269 return 0;
2270 error2:
2271 while (--j >= 0)
2272 device_remove_file(dev, &mce_banks[j].attr);
2273 error:
2274 while (--i >= 0)
2275 device_remove_file(dev, mce_device_attrs[i]);
2277 device_unregister(dev);
2279 return err;
2282 static __cpuinit void mce_device_remove(unsigned int cpu)
2284 struct device *dev = per_cpu(mce_device, cpu);
2285 int i;
2287 if (!cpumask_test_cpu(cpu, mce_device_initialized))
2288 return;
2290 for (i = 0; mce_device_attrs[i]; i++)
2291 device_remove_file(dev, mce_device_attrs[i]);
2293 for (i = 0; i < mca_cfg.banks; i++)
2294 device_remove_file(dev, &mce_banks[i].attr);
2296 device_unregister(dev);
2297 cpumask_clear_cpu(cpu, mce_device_initialized);
2298 per_cpu(mce_device, cpu) = NULL;
2301 /* Make sure there are no machine checks on offlined CPUs. */
2302 static void __cpuinit mce_disable_cpu(void *h)
2304 unsigned long action = *(unsigned long *)h;
2305 int i;
2307 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2308 return;
2310 if (!(action & CPU_TASKS_FROZEN))
2311 cmci_clear();
2312 for (i = 0; i < mca_cfg.banks; i++) {
2313 struct mce_bank *b = &mce_banks[i];
2315 if (b->init)
2316 wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2320 static void __cpuinit mce_reenable_cpu(void *h)
2322 unsigned long action = *(unsigned long *)h;
2323 int i;
2325 if (!mce_available(__this_cpu_ptr(&cpu_info)))
2326 return;
2328 if (!(action & CPU_TASKS_FROZEN))
2329 cmci_reenable();
2330 for (i = 0; i < mca_cfg.banks; i++) {
2331 struct mce_bank *b = &mce_banks[i];
2333 if (b->init)
2334 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
2338 /* Get notified when a cpu comes on/off. Be hotplug friendly. */
2339 static int __cpuinit
2340 mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2342 unsigned int cpu = (unsigned long)hcpu;
2343 struct timer_list *t = &per_cpu(mce_timer, cpu);
2345 switch (action & ~CPU_TASKS_FROZEN) {
2346 case CPU_ONLINE:
2347 mce_device_create(cpu);
2348 if (threshold_cpu_callback)
2349 threshold_cpu_callback(action, cpu);
2350 break;
2351 case CPU_DEAD:
2352 if (threshold_cpu_callback)
2353 threshold_cpu_callback(action, cpu);
2354 mce_device_remove(cpu);
2355 mce_intel_hcpu_update(cpu);
2356 break;
2357 case CPU_DOWN_PREPARE:
2358 smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2359 del_timer_sync(t);
2360 break;
2361 case CPU_DOWN_FAILED:
2362 smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2363 mce_start_timer(cpu, t);
2364 break;
2367 if (action == CPU_POST_DEAD) {
2368 /* intentionally ignoring frozen here */
2369 cmci_rediscover(cpu);
2372 return NOTIFY_OK;
2375 static struct notifier_block mce_cpu_notifier __cpuinitdata = {
2376 .notifier_call = mce_cpu_callback,
2379 static __init void mce_init_banks(void)
2381 int i;
2383 for (i = 0; i < mca_cfg.banks; i++) {
2384 struct mce_bank *b = &mce_banks[i];
2385 struct device_attribute *a = &b->attr;
2387 sysfs_attr_init(&a->attr);
2388 a->attr.name = b->attrname;
2389 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2391 a->attr.mode = 0644;
2392 a->show = show_bank;
2393 a->store = set_bank;
2397 static __init int mcheck_init_device(void)
2399 int err;
2400 int i = 0;
2402 if (!mce_available(&boot_cpu_data))
2403 return -EIO;
2405 zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL);
2407 mce_init_banks();
2409 err = subsys_system_register(&mce_subsys, NULL);
2410 if (err)
2411 return err;
2413 for_each_online_cpu(i) {
2414 err = mce_device_create(i);
2415 if (err)
2416 return err;
2419 register_syscore_ops(&mce_syscore_ops);
2420 register_hotcpu_notifier(&mce_cpu_notifier);
2422 /* register character device /dev/mcelog */
2423 misc_register(&mce_chrdev_device);
2425 return err;
2427 device_initcall_sync(mcheck_init_device);
2430 * Old style boot options parsing. Only for compatibility.
2432 static int __init mcheck_disable(char *str)
2434 mca_cfg.disabled = true;
2435 return 1;
2437 __setup("nomce", mcheck_disable);
2439 #ifdef CONFIG_DEBUG_FS
2440 struct dentry *mce_get_debugfs_dir(void)
2442 static struct dentry *dmce;
2444 if (!dmce)
2445 dmce = debugfs_create_dir("mce", NULL);
2447 return dmce;
2450 static void mce_reset(void)
2452 cpu_missing = 0;
2453 atomic_set(&mce_fake_paniced, 0);
2454 atomic_set(&mce_executing, 0);
2455 atomic_set(&mce_callin, 0);
2456 atomic_set(&global_nwo, 0);
2459 static int fake_panic_get(void *data, u64 *val)
2461 *val = fake_panic;
2462 return 0;
2465 static int fake_panic_set(void *data, u64 val)
2467 mce_reset();
2468 fake_panic = val;
2469 return 0;
2472 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2473 fake_panic_set, "%llu\n");
2475 static int __init mcheck_debugfs_init(void)
2477 struct dentry *dmce, *ffake_panic;
2479 dmce = mce_get_debugfs_dir();
2480 if (!dmce)
2481 return -ENOMEM;
2482 ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2483 &fake_panic_fops);
2484 if (!ffake_panic)
2485 return -ENOMEM;
2487 return 0;
2489 late_initcall(mcheck_debugfs_init);
2490 #endif