2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
63 #define NR_STRIPES 256
64 #define STRIPE_SIZE PAGE_SIZE
65 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
66 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
67 #define IO_THRESHOLD 1
68 #define BYPASS_THRESHOLD 1
69 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
70 #define HASH_MASK (NR_HASH - 1)
72 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
74 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
75 * order without overlap. There may be several bio's per stripe+device, and
76 * a bio could span several devices.
77 * When walking this list for a particular stripe+device, we must never proceed
78 * beyond a bio that extends past this device, as the next bio might no longer
80 * This macro is used to determine the 'next' bio in the list, given the sector
81 * of the current stripe+device
83 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
85 * The following can be used to debug the driver
87 #define RAID5_PARANOIA 1
88 #if RAID5_PARANOIA && defined(CONFIG_SMP)
89 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
91 # define CHECK_DEVLOCK()
99 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
102 * We maintain a biased count of active stripes in the bottom 16 bits of
103 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
105 static inline int raid5_bi_phys_segments(struct bio
*bio
)
107 return bio
->bi_phys_segments
& 0xffff;
110 static inline int raid5_bi_hw_segments(struct bio
*bio
)
112 return (bio
->bi_phys_segments
>> 16) & 0xffff;
115 static inline int raid5_dec_bi_phys_segments(struct bio
*bio
)
117 --bio
->bi_phys_segments
;
118 return raid5_bi_phys_segments(bio
);
121 static inline int raid5_dec_bi_hw_segments(struct bio
*bio
)
123 unsigned short val
= raid5_bi_hw_segments(bio
);
126 bio
->bi_phys_segments
= (val
<< 16) | raid5_bi_phys_segments(bio
);
130 static inline void raid5_set_bi_hw_segments(struct bio
*bio
, unsigned int cnt
)
132 bio
->bi_phys_segments
= raid5_bi_phys_segments(bio
) || (cnt
<< 16);
135 /* Find first data disk in a raid6 stripe */
136 static inline int raid6_d0(struct stripe_head
*sh
)
139 /* ddf always start from first device */
141 /* md starts just after Q block */
142 if (sh
->qd_idx
== sh
->disks
- 1)
145 return sh
->qd_idx
+ 1;
147 static inline int raid6_next_disk(int disk
, int raid_disks
)
150 return (disk
< raid_disks
) ? disk
: 0;
153 /* When walking through the disks in a raid5, starting at raid6_d0,
154 * We need to map each disk to a 'slot', where the data disks are slot
155 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
156 * is raid_disks-1. This help does that mapping.
158 static int raid6_idx_to_slot(int idx
, struct stripe_head
*sh
,
159 int *count
, int syndrome_disks
)
165 if (idx
== sh
->pd_idx
)
166 return syndrome_disks
;
167 if (idx
== sh
->qd_idx
)
168 return syndrome_disks
+ 1;
174 static void return_io(struct bio
*return_bi
)
176 struct bio
*bi
= return_bi
;
179 return_bi
= bi
->bi_next
;
187 static void print_raid5_conf (raid5_conf_t
*conf
);
189 static int stripe_operations_active(struct stripe_head
*sh
)
191 return sh
->check_state
|| sh
->reconstruct_state
||
192 test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
) ||
193 test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
196 static void __release_stripe(raid5_conf_t
*conf
, struct stripe_head
*sh
)
198 if (atomic_dec_and_test(&sh
->count
)) {
199 BUG_ON(!list_empty(&sh
->lru
));
200 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
201 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
202 if (test_bit(STRIPE_DELAYED
, &sh
->state
)) {
203 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
204 plugger_set_plug(&conf
->plug
);
205 } else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
206 sh
->bm_seq
- conf
->seq_write
> 0) {
207 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
208 plugger_set_plug(&conf
->plug
);
210 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
211 list_add_tail(&sh
->lru
, &conf
->handle_list
);
213 md_wakeup_thread(conf
->mddev
->thread
);
215 BUG_ON(stripe_operations_active(sh
));
216 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
217 atomic_dec(&conf
->preread_active_stripes
);
218 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
)
219 md_wakeup_thread(conf
->mddev
->thread
);
221 atomic_dec(&conf
->active_stripes
);
222 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
223 list_add_tail(&sh
->lru
, &conf
->inactive_list
);
224 wake_up(&conf
->wait_for_stripe
);
225 if (conf
->retry_read_aligned
)
226 md_wakeup_thread(conf
->mddev
->thread
);
232 static void release_stripe(struct stripe_head
*sh
)
234 raid5_conf_t
*conf
= sh
->raid_conf
;
237 spin_lock_irqsave(&conf
->device_lock
, flags
);
238 __release_stripe(conf
, sh
);
239 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
242 static inline void remove_hash(struct stripe_head
*sh
)
244 pr_debug("remove_hash(), stripe %llu\n",
245 (unsigned long long)sh
->sector
);
247 hlist_del_init(&sh
->hash
);
250 static inline void insert_hash(raid5_conf_t
*conf
, struct stripe_head
*sh
)
252 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
254 pr_debug("insert_hash(), stripe %llu\n",
255 (unsigned long long)sh
->sector
);
258 hlist_add_head(&sh
->hash
, hp
);
262 /* find an idle stripe, make sure it is unhashed, and return it. */
263 static struct stripe_head
*get_free_stripe(raid5_conf_t
*conf
)
265 struct stripe_head
*sh
= NULL
;
266 struct list_head
*first
;
269 if (list_empty(&conf
->inactive_list
))
271 first
= conf
->inactive_list
.next
;
272 sh
= list_entry(first
, struct stripe_head
, lru
);
273 list_del_init(first
);
275 atomic_inc(&conf
->active_stripes
);
280 static void shrink_buffers(struct stripe_head
*sh
)
284 int num
= sh
->raid_conf
->pool_size
;
286 for (i
= 0; i
< num
; i
++) {
290 sh
->dev
[i
].page
= NULL
;
295 static int grow_buffers(struct stripe_head
*sh
)
298 int num
= sh
->raid_conf
->pool_size
;
300 for (i
= 0; i
< num
; i
++) {
303 if (!(page
= alloc_page(GFP_KERNEL
))) {
306 sh
->dev
[i
].page
= page
;
311 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
);
312 static void stripe_set_idx(sector_t stripe
, raid5_conf_t
*conf
, int previous
,
313 struct stripe_head
*sh
);
315 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int previous
)
317 raid5_conf_t
*conf
= sh
->raid_conf
;
320 BUG_ON(atomic_read(&sh
->count
) != 0);
321 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
322 BUG_ON(stripe_operations_active(sh
));
325 pr_debug("init_stripe called, stripe %llu\n",
326 (unsigned long long)sh
->sector
);
330 sh
->generation
= conf
->generation
- previous
;
331 sh
->disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
333 stripe_set_idx(sector
, conf
, previous
, sh
);
337 for (i
= sh
->disks
; i
--; ) {
338 struct r5dev
*dev
= &sh
->dev
[i
];
340 if (dev
->toread
|| dev
->read
|| dev
->towrite
|| dev
->written
||
341 test_bit(R5_LOCKED
, &dev
->flags
)) {
342 printk(KERN_ERR
"sector=%llx i=%d %p %p %p %p %d\n",
343 (unsigned long long)sh
->sector
, i
, dev
->toread
,
344 dev
->read
, dev
->towrite
, dev
->written
,
345 test_bit(R5_LOCKED
, &dev
->flags
));
349 raid5_build_block(sh
, i
, previous
);
351 insert_hash(conf
, sh
);
354 static struct stripe_head
*__find_stripe(raid5_conf_t
*conf
, sector_t sector
,
357 struct stripe_head
*sh
;
358 struct hlist_node
*hn
;
361 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector
);
362 hlist_for_each_entry(sh
, hn
, stripe_hash(conf
, sector
), hash
)
363 if (sh
->sector
== sector
&& sh
->generation
== generation
)
365 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector
);
370 * Need to check if array has failed when deciding whether to:
372 * - remove non-faulty devices
375 * This determination is simple when no reshape is happening.
376 * However if there is a reshape, we need to carefully check
377 * both the before and after sections.
378 * This is because some failed devices may only affect one
379 * of the two sections, and some non-in_sync devices may
380 * be insync in the section most affected by failed devices.
382 static int has_failed(raid5_conf_t
*conf
)
386 if (conf
->mddev
->reshape_position
== MaxSector
)
387 return conf
->mddev
->degraded
> conf
->max_degraded
;
391 for (i
= 0; i
< conf
->previous_raid_disks
; i
++) {
392 mdk_rdev_t
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
393 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
395 else if (test_bit(In_sync
, &rdev
->flags
))
398 /* not in-sync or faulty.
399 * If the reshape increases the number of devices,
400 * this is being recovered by the reshape, so
401 * this 'previous' section is not in_sync.
402 * If the number of devices is being reduced however,
403 * the device can only be part of the array if
404 * we are reverting a reshape, so this section will
407 if (conf
->raid_disks
>= conf
->previous_raid_disks
)
411 if (degraded
> conf
->max_degraded
)
415 for (i
= 0; i
< conf
->raid_disks
; i
++) {
416 mdk_rdev_t
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
417 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
419 else if (test_bit(In_sync
, &rdev
->flags
))
422 /* not in-sync or faulty.
423 * If reshape increases the number of devices, this
424 * section has already been recovered, else it
425 * almost certainly hasn't.
427 if (conf
->raid_disks
<= conf
->previous_raid_disks
)
431 if (degraded
> conf
->max_degraded
)
436 static void unplug_slaves(mddev_t
*mddev
);
438 static struct stripe_head
*
439 get_active_stripe(raid5_conf_t
*conf
, sector_t sector
,
440 int previous
, int noblock
, int noquiesce
)
442 struct stripe_head
*sh
;
444 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector
);
446 spin_lock_irq(&conf
->device_lock
);
449 wait_event_lock_irq(conf
->wait_for_stripe
,
450 conf
->quiesce
== 0 || noquiesce
,
451 conf
->device_lock
, /* nothing */);
452 sh
= __find_stripe(conf
, sector
, conf
->generation
- previous
);
454 if (!conf
->inactive_blocked
)
455 sh
= get_free_stripe(conf
);
456 if (noblock
&& sh
== NULL
)
459 conf
->inactive_blocked
= 1;
460 wait_event_lock_irq(conf
->wait_for_stripe
,
461 !list_empty(&conf
->inactive_list
) &&
462 (atomic_read(&conf
->active_stripes
)
463 < (conf
->max_nr_stripes
*3/4)
464 || !conf
->inactive_blocked
),
466 md_raid5_unplug_device(conf
)
468 conf
->inactive_blocked
= 0;
470 init_stripe(sh
, sector
, previous
);
472 if (atomic_read(&sh
->count
)) {
473 BUG_ON(!list_empty(&sh
->lru
)
474 && !test_bit(STRIPE_EXPANDING
, &sh
->state
));
476 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
477 atomic_inc(&conf
->active_stripes
);
478 if (list_empty(&sh
->lru
) &&
479 !test_bit(STRIPE_EXPANDING
, &sh
->state
))
481 list_del_init(&sh
->lru
);
484 } while (sh
== NULL
);
487 atomic_inc(&sh
->count
);
489 spin_unlock_irq(&conf
->device_lock
);
494 raid5_end_read_request(struct bio
*bi
, int error
);
496 raid5_end_write_request(struct bio
*bi
, int error
);
498 static void ops_run_io(struct stripe_head
*sh
, struct stripe_head_state
*s
)
500 raid5_conf_t
*conf
= sh
->raid_conf
;
501 int i
, disks
= sh
->disks
;
505 for (i
= disks
; i
--; ) {
509 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
511 else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
516 bi
= &sh
->dev
[i
].req
;
520 bi
->bi_end_io
= raid5_end_write_request
;
522 bi
->bi_end_io
= raid5_end_read_request
;
525 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
526 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
529 atomic_inc(&rdev
->nr_pending
);
533 if (s
->syncing
|| s
->expanding
|| s
->expanded
)
534 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
536 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
538 bi
->bi_bdev
= rdev
->bdev
;
539 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
540 __func__
, (unsigned long long)sh
->sector
,
542 atomic_inc(&sh
->count
);
543 bi
->bi_sector
= sh
->sector
+ rdev
->data_offset
;
544 bi
->bi_flags
= 1 << BIO_UPTODATE
;
548 bi
->bi_io_vec
= &sh
->dev
[i
].vec
;
549 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
550 bi
->bi_io_vec
[0].bv_offset
= 0;
551 bi
->bi_size
= STRIPE_SIZE
;
554 test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
555 atomic_add(STRIPE_SECTORS
,
556 &rdev
->corrected_errors
);
557 generic_make_request(bi
);
560 set_bit(STRIPE_DEGRADED
, &sh
->state
);
561 pr_debug("skip op %ld on disc %d for sector %llu\n",
562 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
563 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
564 set_bit(STRIPE_HANDLE
, &sh
->state
);
569 static struct dma_async_tx_descriptor
*
570 async_copy_data(int frombio
, struct bio
*bio
, struct page
*page
,
571 sector_t sector
, struct dma_async_tx_descriptor
*tx
)
574 struct page
*bio_page
;
577 struct async_submit_ctl submit
;
578 enum async_tx_flags flags
= 0;
580 if (bio
->bi_sector
>= sector
)
581 page_offset
= (signed)(bio
->bi_sector
- sector
) * 512;
583 page_offset
= (signed)(sector
- bio
->bi_sector
) * -512;
586 flags
|= ASYNC_TX_FENCE
;
587 init_async_submit(&submit
, flags
, tx
, NULL
, NULL
, NULL
);
589 bio_for_each_segment(bvl
, bio
, i
) {
590 int len
= bio_iovec_idx(bio
, i
)->bv_len
;
594 if (page_offset
< 0) {
595 b_offset
= -page_offset
;
596 page_offset
+= b_offset
;
600 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
601 clen
= STRIPE_SIZE
- page_offset
;
606 b_offset
+= bio_iovec_idx(bio
, i
)->bv_offset
;
607 bio_page
= bio_iovec_idx(bio
, i
)->bv_page
;
609 tx
= async_memcpy(page
, bio_page
, page_offset
,
610 b_offset
, clen
, &submit
);
612 tx
= async_memcpy(bio_page
, page
, b_offset
,
613 page_offset
, clen
, &submit
);
615 /* chain the operations */
616 submit
.depend_tx
= tx
;
618 if (clen
< len
) /* hit end of page */
626 static void ops_complete_biofill(void *stripe_head_ref
)
628 struct stripe_head
*sh
= stripe_head_ref
;
629 struct bio
*return_bi
= NULL
;
630 raid5_conf_t
*conf
= sh
->raid_conf
;
633 pr_debug("%s: stripe %llu\n", __func__
,
634 (unsigned long long)sh
->sector
);
636 /* clear completed biofills */
637 spin_lock_irq(&conf
->device_lock
);
638 for (i
= sh
->disks
; i
--; ) {
639 struct r5dev
*dev
= &sh
->dev
[i
];
641 /* acknowledge completion of a biofill operation */
642 /* and check if we need to reply to a read request,
643 * new R5_Wantfill requests are held off until
644 * !STRIPE_BIOFILL_RUN
646 if (test_and_clear_bit(R5_Wantfill
, &dev
->flags
)) {
647 struct bio
*rbi
, *rbi2
;
652 while (rbi
&& rbi
->bi_sector
<
653 dev
->sector
+ STRIPE_SECTORS
) {
654 rbi2
= r5_next_bio(rbi
, dev
->sector
);
655 if (!raid5_dec_bi_phys_segments(rbi
)) {
656 rbi
->bi_next
= return_bi
;
663 spin_unlock_irq(&conf
->device_lock
);
664 clear_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
666 return_io(return_bi
);
668 set_bit(STRIPE_HANDLE
, &sh
->state
);
672 static void ops_run_biofill(struct stripe_head
*sh
)
674 struct dma_async_tx_descriptor
*tx
= NULL
;
675 raid5_conf_t
*conf
= sh
->raid_conf
;
676 struct async_submit_ctl submit
;
679 pr_debug("%s: stripe %llu\n", __func__
,
680 (unsigned long long)sh
->sector
);
682 for (i
= sh
->disks
; i
--; ) {
683 struct r5dev
*dev
= &sh
->dev
[i
];
684 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
686 spin_lock_irq(&conf
->device_lock
);
687 dev
->read
= rbi
= dev
->toread
;
689 spin_unlock_irq(&conf
->device_lock
);
690 while (rbi
&& rbi
->bi_sector
<
691 dev
->sector
+ STRIPE_SECTORS
) {
692 tx
= async_copy_data(0, rbi
, dev
->page
,
694 rbi
= r5_next_bio(rbi
, dev
->sector
);
699 atomic_inc(&sh
->count
);
700 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_biofill
, sh
, NULL
);
701 async_trigger_callback(&submit
);
704 static void mark_target_uptodate(struct stripe_head
*sh
, int target
)
711 tgt
= &sh
->dev
[target
];
712 set_bit(R5_UPTODATE
, &tgt
->flags
);
713 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
714 clear_bit(R5_Wantcompute
, &tgt
->flags
);
717 static void ops_complete_compute(void *stripe_head_ref
)
719 struct stripe_head
*sh
= stripe_head_ref
;
721 pr_debug("%s: stripe %llu\n", __func__
,
722 (unsigned long long)sh
->sector
);
724 /* mark the computed target(s) as uptodate */
725 mark_target_uptodate(sh
, sh
->ops
.target
);
726 mark_target_uptodate(sh
, sh
->ops
.target2
);
728 clear_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
729 if (sh
->check_state
== check_state_compute_run
)
730 sh
->check_state
= check_state_compute_result
;
731 set_bit(STRIPE_HANDLE
, &sh
->state
);
735 /* return a pointer to the address conversion region of the scribble buffer */
736 static addr_conv_t
*to_addr_conv(struct stripe_head
*sh
,
737 struct raid5_percpu
*percpu
)
739 return percpu
->scribble
+ sizeof(struct page
*) * (sh
->disks
+ 2);
742 static struct dma_async_tx_descriptor
*
743 ops_run_compute5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
745 int disks
= sh
->disks
;
746 struct page
**xor_srcs
= percpu
->scribble
;
747 int target
= sh
->ops
.target
;
748 struct r5dev
*tgt
= &sh
->dev
[target
];
749 struct page
*xor_dest
= tgt
->page
;
751 struct dma_async_tx_descriptor
*tx
;
752 struct async_submit_ctl submit
;
755 pr_debug("%s: stripe %llu block: %d\n",
756 __func__
, (unsigned long long)sh
->sector
, target
);
757 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
759 for (i
= disks
; i
--; )
761 xor_srcs
[count
++] = sh
->dev
[i
].page
;
763 atomic_inc(&sh
->count
);
765 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
, NULL
,
766 ops_complete_compute
, sh
, to_addr_conv(sh
, percpu
));
767 if (unlikely(count
== 1))
768 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
770 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
775 /* set_syndrome_sources - populate source buffers for gen_syndrome
776 * @srcs - (struct page *) array of size sh->disks
777 * @sh - stripe_head to parse
779 * Populates srcs in proper layout order for the stripe and returns the
780 * 'count' of sources to be used in a call to async_gen_syndrome. The P
781 * destination buffer is recorded in srcs[count] and the Q destination
782 * is recorded in srcs[count+1]].
784 static int set_syndrome_sources(struct page
**srcs
, struct stripe_head
*sh
)
786 int disks
= sh
->disks
;
787 int syndrome_disks
= sh
->ddf_layout
? disks
: (disks
- 2);
788 int d0_idx
= raid6_d0(sh
);
792 for (i
= 0; i
< disks
; i
++)
798 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
800 srcs
[slot
] = sh
->dev
[i
].page
;
801 i
= raid6_next_disk(i
, disks
);
802 } while (i
!= d0_idx
);
804 return syndrome_disks
;
807 static struct dma_async_tx_descriptor
*
808 ops_run_compute6_1(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
810 int disks
= sh
->disks
;
811 struct page
**blocks
= percpu
->scribble
;
813 int qd_idx
= sh
->qd_idx
;
814 struct dma_async_tx_descriptor
*tx
;
815 struct async_submit_ctl submit
;
821 if (sh
->ops
.target
< 0)
822 target
= sh
->ops
.target2
;
823 else if (sh
->ops
.target2
< 0)
824 target
= sh
->ops
.target
;
826 /* we should only have one valid target */
829 pr_debug("%s: stripe %llu block: %d\n",
830 __func__
, (unsigned long long)sh
->sector
, target
);
832 tgt
= &sh
->dev
[target
];
833 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
836 atomic_inc(&sh
->count
);
838 if (target
== qd_idx
) {
839 count
= set_syndrome_sources(blocks
, sh
);
840 blocks
[count
] = NULL
; /* regenerating p is not necessary */
841 BUG_ON(blocks
[count
+1] != dest
); /* q should already be set */
842 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
843 ops_complete_compute
, sh
,
844 to_addr_conv(sh
, percpu
));
845 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
847 /* Compute any data- or p-drive using XOR */
849 for (i
= disks
; i
-- ; ) {
850 if (i
== target
|| i
== qd_idx
)
852 blocks
[count
++] = sh
->dev
[i
].page
;
855 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
856 NULL
, ops_complete_compute
, sh
,
857 to_addr_conv(sh
, percpu
));
858 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
, &submit
);
864 static struct dma_async_tx_descriptor
*
865 ops_run_compute6_2(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
867 int i
, count
, disks
= sh
->disks
;
868 int syndrome_disks
= sh
->ddf_layout
? disks
: disks
-2;
869 int d0_idx
= raid6_d0(sh
);
870 int faila
= -1, failb
= -1;
871 int target
= sh
->ops
.target
;
872 int target2
= sh
->ops
.target2
;
873 struct r5dev
*tgt
= &sh
->dev
[target
];
874 struct r5dev
*tgt2
= &sh
->dev
[target2
];
875 struct dma_async_tx_descriptor
*tx
;
876 struct page
**blocks
= percpu
->scribble
;
877 struct async_submit_ctl submit
;
879 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
880 __func__
, (unsigned long long)sh
->sector
, target
, target2
);
881 BUG_ON(target
< 0 || target2
< 0);
882 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
883 BUG_ON(!test_bit(R5_Wantcompute
, &tgt2
->flags
));
885 /* we need to open-code set_syndrome_sources to handle the
886 * slot number conversion for 'faila' and 'failb'
888 for (i
= 0; i
< disks
; i
++)
893 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
895 blocks
[slot
] = sh
->dev
[i
].page
;
901 i
= raid6_next_disk(i
, disks
);
902 } while (i
!= d0_idx
);
904 BUG_ON(faila
== failb
);
907 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
908 __func__
, (unsigned long long)sh
->sector
, faila
, failb
);
910 atomic_inc(&sh
->count
);
912 if (failb
== syndrome_disks
+1) {
913 /* Q disk is one of the missing disks */
914 if (faila
== syndrome_disks
) {
915 /* Missing P+Q, just recompute */
916 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
917 ops_complete_compute
, sh
,
918 to_addr_conv(sh
, percpu
));
919 return async_gen_syndrome(blocks
, 0, syndrome_disks
+2,
920 STRIPE_SIZE
, &submit
);
924 int qd_idx
= sh
->qd_idx
;
926 /* Missing D+Q: recompute D from P, then recompute Q */
927 if (target
== qd_idx
)
928 data_target
= target2
;
930 data_target
= target
;
933 for (i
= disks
; i
-- ; ) {
934 if (i
== data_target
|| i
== qd_idx
)
936 blocks
[count
++] = sh
->dev
[i
].page
;
938 dest
= sh
->dev
[data_target
].page
;
939 init_async_submit(&submit
,
940 ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
942 to_addr_conv(sh
, percpu
));
943 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
,
946 count
= set_syndrome_sources(blocks
, sh
);
947 init_async_submit(&submit
, ASYNC_TX_FENCE
, tx
,
948 ops_complete_compute
, sh
,
949 to_addr_conv(sh
, percpu
));
950 return async_gen_syndrome(blocks
, 0, count
+2,
951 STRIPE_SIZE
, &submit
);
954 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
955 ops_complete_compute
, sh
,
956 to_addr_conv(sh
, percpu
));
957 if (failb
== syndrome_disks
) {
958 /* We're missing D+P. */
959 return async_raid6_datap_recov(syndrome_disks
+2,
963 /* We're missing D+D. */
964 return async_raid6_2data_recov(syndrome_disks
+2,
965 STRIPE_SIZE
, faila
, failb
,
972 static void ops_complete_prexor(void *stripe_head_ref
)
974 struct stripe_head
*sh
= stripe_head_ref
;
976 pr_debug("%s: stripe %llu\n", __func__
,
977 (unsigned long long)sh
->sector
);
980 static struct dma_async_tx_descriptor
*
981 ops_run_prexor(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
982 struct dma_async_tx_descriptor
*tx
)
984 int disks
= sh
->disks
;
985 struct page
**xor_srcs
= percpu
->scribble
;
986 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
987 struct async_submit_ctl submit
;
989 /* existing parity data subtracted */
990 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
992 pr_debug("%s: stripe %llu\n", __func__
,
993 (unsigned long long)sh
->sector
);
995 for (i
= disks
; i
--; ) {
996 struct r5dev
*dev
= &sh
->dev
[i
];
997 /* Only process blocks that are known to be uptodate */
998 if (test_bit(R5_Wantdrain
, &dev
->flags
))
999 xor_srcs
[count
++] = dev
->page
;
1002 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_DROP_DST
, tx
,
1003 ops_complete_prexor
, sh
, to_addr_conv(sh
, percpu
));
1004 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1009 static struct dma_async_tx_descriptor
*
1010 ops_run_biodrain(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
1012 int disks
= sh
->disks
;
1015 pr_debug("%s: stripe %llu\n", __func__
,
1016 (unsigned long long)sh
->sector
);
1018 for (i
= disks
; i
--; ) {
1019 struct r5dev
*dev
= &sh
->dev
[i
];
1022 if (test_and_clear_bit(R5_Wantdrain
, &dev
->flags
)) {
1025 spin_lock(&sh
->lock
);
1026 chosen
= dev
->towrite
;
1027 dev
->towrite
= NULL
;
1028 BUG_ON(dev
->written
);
1029 wbi
= dev
->written
= chosen
;
1030 spin_unlock(&sh
->lock
);
1032 while (wbi
&& wbi
->bi_sector
<
1033 dev
->sector
+ STRIPE_SECTORS
) {
1034 tx
= async_copy_data(1, wbi
, dev
->page
,
1036 wbi
= r5_next_bio(wbi
, dev
->sector
);
1044 static void ops_complete_reconstruct(void *stripe_head_ref
)
1046 struct stripe_head
*sh
= stripe_head_ref
;
1047 int disks
= sh
->disks
;
1048 int pd_idx
= sh
->pd_idx
;
1049 int qd_idx
= sh
->qd_idx
;
1052 pr_debug("%s: stripe %llu\n", __func__
,
1053 (unsigned long long)sh
->sector
);
1055 for (i
= disks
; i
--; ) {
1056 struct r5dev
*dev
= &sh
->dev
[i
];
1058 if (dev
->written
|| i
== pd_idx
|| i
== qd_idx
)
1059 set_bit(R5_UPTODATE
, &dev
->flags
);
1062 if (sh
->reconstruct_state
== reconstruct_state_drain_run
)
1063 sh
->reconstruct_state
= reconstruct_state_drain_result
;
1064 else if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
)
1065 sh
->reconstruct_state
= reconstruct_state_prexor_drain_result
;
1067 BUG_ON(sh
->reconstruct_state
!= reconstruct_state_run
);
1068 sh
->reconstruct_state
= reconstruct_state_result
;
1071 set_bit(STRIPE_HANDLE
, &sh
->state
);
1076 ops_run_reconstruct5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1077 struct dma_async_tx_descriptor
*tx
)
1079 int disks
= sh
->disks
;
1080 struct page
**xor_srcs
= percpu
->scribble
;
1081 struct async_submit_ctl submit
;
1082 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
1083 struct page
*xor_dest
;
1085 unsigned long flags
;
1087 pr_debug("%s: stripe %llu\n", __func__
,
1088 (unsigned long long)sh
->sector
);
1090 /* check if prexor is active which means only process blocks
1091 * that are part of a read-modify-write (written)
1093 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
1095 xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1096 for (i
= disks
; i
--; ) {
1097 struct r5dev
*dev
= &sh
->dev
[i
];
1099 xor_srcs
[count
++] = dev
->page
;
1102 xor_dest
= sh
->dev
[pd_idx
].page
;
1103 for (i
= disks
; i
--; ) {
1104 struct r5dev
*dev
= &sh
->dev
[i
];
1106 xor_srcs
[count
++] = dev
->page
;
1110 /* 1/ if we prexor'd then the dest is reused as a source
1111 * 2/ if we did not prexor then we are redoing the parity
1112 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1113 * for the synchronous xor case
1115 flags
= ASYNC_TX_ACK
|
1116 (prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
);
1118 atomic_inc(&sh
->count
);
1120 init_async_submit(&submit
, flags
, tx
, ops_complete_reconstruct
, sh
,
1121 to_addr_conv(sh
, percpu
));
1122 if (unlikely(count
== 1))
1123 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
1125 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1129 ops_run_reconstruct6(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1130 struct dma_async_tx_descriptor
*tx
)
1132 struct async_submit_ctl submit
;
1133 struct page
**blocks
= percpu
->scribble
;
1136 pr_debug("%s: stripe %llu\n", __func__
, (unsigned long long)sh
->sector
);
1138 count
= set_syndrome_sources(blocks
, sh
);
1140 atomic_inc(&sh
->count
);
1142 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_reconstruct
,
1143 sh
, to_addr_conv(sh
, percpu
));
1144 async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1147 static void ops_complete_check(void *stripe_head_ref
)
1149 struct stripe_head
*sh
= stripe_head_ref
;
1151 pr_debug("%s: stripe %llu\n", __func__
,
1152 (unsigned long long)sh
->sector
);
1154 sh
->check_state
= check_state_check_result
;
1155 set_bit(STRIPE_HANDLE
, &sh
->state
);
1159 static void ops_run_check_p(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1161 int disks
= sh
->disks
;
1162 int pd_idx
= sh
->pd_idx
;
1163 int qd_idx
= sh
->qd_idx
;
1164 struct page
*xor_dest
;
1165 struct page
**xor_srcs
= percpu
->scribble
;
1166 struct dma_async_tx_descriptor
*tx
;
1167 struct async_submit_ctl submit
;
1171 pr_debug("%s: stripe %llu\n", __func__
,
1172 (unsigned long long)sh
->sector
);
1175 xor_dest
= sh
->dev
[pd_idx
].page
;
1176 xor_srcs
[count
++] = xor_dest
;
1177 for (i
= disks
; i
--; ) {
1178 if (i
== pd_idx
|| i
== qd_idx
)
1180 xor_srcs
[count
++] = sh
->dev
[i
].page
;
1183 init_async_submit(&submit
, 0, NULL
, NULL
, NULL
,
1184 to_addr_conv(sh
, percpu
));
1185 tx
= async_xor_val(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
1186 &sh
->ops
.zero_sum_result
, &submit
);
1188 atomic_inc(&sh
->count
);
1189 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_check
, sh
, NULL
);
1190 tx
= async_trigger_callback(&submit
);
1193 static void ops_run_check_pq(struct stripe_head
*sh
, struct raid5_percpu
*percpu
, int checkp
)
1195 struct page
**srcs
= percpu
->scribble
;
1196 struct async_submit_ctl submit
;
1199 pr_debug("%s: stripe %llu checkp: %d\n", __func__
,
1200 (unsigned long long)sh
->sector
, checkp
);
1202 count
= set_syndrome_sources(srcs
, sh
);
1206 atomic_inc(&sh
->count
);
1207 init_async_submit(&submit
, ASYNC_TX_ACK
, NULL
, ops_complete_check
,
1208 sh
, to_addr_conv(sh
, percpu
));
1209 async_syndrome_val(srcs
, 0, count
+2, STRIPE_SIZE
,
1210 &sh
->ops
.zero_sum_result
, percpu
->spare_page
, &submit
);
1213 static void __raid_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
1215 int overlap_clear
= 0, i
, disks
= sh
->disks
;
1216 struct dma_async_tx_descriptor
*tx
= NULL
;
1217 raid5_conf_t
*conf
= sh
->raid_conf
;
1218 int level
= conf
->level
;
1219 struct raid5_percpu
*percpu
;
1223 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
1224 if (test_bit(STRIPE_OP_BIOFILL
, &ops_request
)) {
1225 ops_run_biofill(sh
);
1229 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &ops_request
)) {
1231 tx
= ops_run_compute5(sh
, percpu
);
1233 if (sh
->ops
.target2
< 0 || sh
->ops
.target
< 0)
1234 tx
= ops_run_compute6_1(sh
, percpu
);
1236 tx
= ops_run_compute6_2(sh
, percpu
);
1238 /* terminate the chain if reconstruct is not set to be run */
1239 if (tx
&& !test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
))
1243 if (test_bit(STRIPE_OP_PREXOR
, &ops_request
))
1244 tx
= ops_run_prexor(sh
, percpu
, tx
);
1246 if (test_bit(STRIPE_OP_BIODRAIN
, &ops_request
)) {
1247 tx
= ops_run_biodrain(sh
, tx
);
1251 if (test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
)) {
1253 ops_run_reconstruct5(sh
, percpu
, tx
);
1255 ops_run_reconstruct6(sh
, percpu
, tx
);
1258 if (test_bit(STRIPE_OP_CHECK
, &ops_request
)) {
1259 if (sh
->check_state
== check_state_run
)
1260 ops_run_check_p(sh
, percpu
);
1261 else if (sh
->check_state
== check_state_run_q
)
1262 ops_run_check_pq(sh
, percpu
, 0);
1263 else if (sh
->check_state
== check_state_run_pq
)
1264 ops_run_check_pq(sh
, percpu
, 1);
1270 for (i
= disks
; i
--; ) {
1271 struct r5dev
*dev
= &sh
->dev
[i
];
1272 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
1273 wake_up(&sh
->raid_conf
->wait_for_overlap
);
1278 #ifdef CONFIG_MULTICORE_RAID456
1279 static void async_run_ops(void *param
, async_cookie_t cookie
)
1281 struct stripe_head
*sh
= param
;
1282 unsigned long ops_request
= sh
->ops
.request
;
1284 clear_bit_unlock(STRIPE_OPS_REQ_PENDING
, &sh
->state
);
1285 wake_up(&sh
->ops
.wait_for_ops
);
1287 __raid_run_ops(sh
, ops_request
);
1291 static void raid_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
1293 /* since handle_stripe can be called outside of raid5d context
1294 * we need to ensure sh->ops.request is de-staged before another
1297 wait_event(sh
->ops
.wait_for_ops
,
1298 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING
, &sh
->state
));
1299 sh
->ops
.request
= ops_request
;
1301 atomic_inc(&sh
->count
);
1302 async_schedule(async_run_ops
, sh
);
1305 #define raid_run_ops __raid_run_ops
1308 static int grow_one_stripe(raid5_conf_t
*conf
)
1310 struct stripe_head
*sh
;
1311 sh
= kmem_cache_alloc(conf
->slab_cache
, GFP_KERNEL
);
1314 memset(sh
, 0, sizeof(*sh
) + (conf
->pool_size
-1)*sizeof(struct r5dev
));
1315 sh
->raid_conf
= conf
;
1316 spin_lock_init(&sh
->lock
);
1317 #ifdef CONFIG_MULTICORE_RAID456
1318 init_waitqueue_head(&sh
->ops
.wait_for_ops
);
1321 if (grow_buffers(sh
)) {
1323 kmem_cache_free(conf
->slab_cache
, sh
);
1326 /* we just created an active stripe so... */
1327 atomic_set(&sh
->count
, 1);
1328 atomic_inc(&conf
->active_stripes
);
1329 INIT_LIST_HEAD(&sh
->lru
);
1334 static int grow_stripes(raid5_conf_t
*conf
, int num
)
1336 struct kmem_cache
*sc
;
1337 int devs
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
1339 if (conf
->mddev
->gendisk
)
1340 sprintf(conf
->cache_name
[0],
1341 "raid%d-%s", conf
->level
, mdname(conf
->mddev
));
1343 sprintf(conf
->cache_name
[0],
1344 "raid%d-%p", conf
->level
, conf
->mddev
);
1345 sprintf(conf
->cache_name
[1], "%s-alt", conf
->cache_name
[0]);
1347 conf
->active_name
= 0;
1348 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
1349 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
1353 conf
->slab_cache
= sc
;
1354 conf
->pool_size
= devs
;
1356 if (!grow_one_stripe(conf
))
1362 * scribble_len - return the required size of the scribble region
1363 * @num - total number of disks in the array
1365 * The size must be enough to contain:
1366 * 1/ a struct page pointer for each device in the array +2
1367 * 2/ room to convert each entry in (1) to its corresponding dma
1368 * (dma_map_page()) or page (page_address()) address.
1370 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1371 * calculate over all devices (not just the data blocks), using zeros in place
1372 * of the P and Q blocks.
1374 static size_t scribble_len(int num
)
1378 len
= sizeof(struct page
*) * (num
+2) + sizeof(addr_conv_t
) * (num
+2);
1383 static int resize_stripes(raid5_conf_t
*conf
, int newsize
)
1385 /* Make all the stripes able to hold 'newsize' devices.
1386 * New slots in each stripe get 'page' set to a new page.
1388 * This happens in stages:
1389 * 1/ create a new kmem_cache and allocate the required number of
1391 * 2/ gather all the old stripe_heads and tranfer the pages across
1392 * to the new stripe_heads. This will have the side effect of
1393 * freezing the array as once all stripe_heads have been collected,
1394 * no IO will be possible. Old stripe heads are freed once their
1395 * pages have been transferred over, and the old kmem_cache is
1396 * freed when all stripes are done.
1397 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1398 * we simple return a failre status - no need to clean anything up.
1399 * 4/ allocate new pages for the new slots in the new stripe_heads.
1400 * If this fails, we don't bother trying the shrink the
1401 * stripe_heads down again, we just leave them as they are.
1402 * As each stripe_head is processed the new one is released into
1405 * Once step2 is started, we cannot afford to wait for a write,
1406 * so we use GFP_NOIO allocations.
1408 struct stripe_head
*osh
, *nsh
;
1409 LIST_HEAD(newstripes
);
1410 struct disk_info
*ndisks
;
1413 struct kmem_cache
*sc
;
1416 if (newsize
<= conf
->pool_size
)
1417 return 0; /* never bother to shrink */
1419 err
= md_allow_write(conf
->mddev
);
1424 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
1425 sizeof(struct stripe_head
)+(newsize
-1)*sizeof(struct r5dev
),
1430 for (i
= conf
->max_nr_stripes
; i
; i
--) {
1431 nsh
= kmem_cache_alloc(sc
, GFP_KERNEL
);
1435 memset(nsh
, 0, sizeof(*nsh
) + (newsize
-1)*sizeof(struct r5dev
));
1437 nsh
->raid_conf
= conf
;
1438 spin_lock_init(&nsh
->lock
);
1439 #ifdef CONFIG_MULTICORE_RAID456
1440 init_waitqueue_head(&nsh
->ops
.wait_for_ops
);
1443 list_add(&nsh
->lru
, &newstripes
);
1446 /* didn't get enough, give up */
1447 while (!list_empty(&newstripes
)) {
1448 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1449 list_del(&nsh
->lru
);
1450 kmem_cache_free(sc
, nsh
);
1452 kmem_cache_destroy(sc
);
1455 /* Step 2 - Must use GFP_NOIO now.
1456 * OK, we have enough stripes, start collecting inactive
1457 * stripes and copying them over
1459 list_for_each_entry(nsh
, &newstripes
, lru
) {
1460 spin_lock_irq(&conf
->device_lock
);
1461 wait_event_lock_irq(conf
->wait_for_stripe
,
1462 !list_empty(&conf
->inactive_list
),
1464 unplug_slaves(conf
->mddev
)
1466 osh
= get_free_stripe(conf
);
1467 spin_unlock_irq(&conf
->device_lock
);
1468 atomic_set(&nsh
->count
, 1);
1469 for(i
=0; i
<conf
->pool_size
; i
++)
1470 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
1471 for( ; i
<newsize
; i
++)
1472 nsh
->dev
[i
].page
= NULL
;
1473 kmem_cache_free(conf
->slab_cache
, osh
);
1475 kmem_cache_destroy(conf
->slab_cache
);
1478 * At this point, we are holding all the stripes so the array
1479 * is completely stalled, so now is a good time to resize
1480 * conf->disks and the scribble region
1482 ndisks
= kzalloc(newsize
* sizeof(struct disk_info
), GFP_NOIO
);
1484 for (i
=0; i
<conf
->raid_disks
; i
++)
1485 ndisks
[i
] = conf
->disks
[i
];
1487 conf
->disks
= ndisks
;
1492 conf
->scribble_len
= scribble_len(newsize
);
1493 for_each_present_cpu(cpu
) {
1494 struct raid5_percpu
*percpu
;
1497 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
1498 scribble
= kmalloc(conf
->scribble_len
, GFP_NOIO
);
1501 kfree(percpu
->scribble
);
1502 percpu
->scribble
= scribble
;
1510 /* Step 4, return new stripes to service */
1511 while(!list_empty(&newstripes
)) {
1512 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1513 list_del_init(&nsh
->lru
);
1515 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
1516 if (nsh
->dev
[i
].page
== NULL
) {
1517 struct page
*p
= alloc_page(GFP_NOIO
);
1518 nsh
->dev
[i
].page
= p
;
1522 release_stripe(nsh
);
1524 /* critical section pass, GFP_NOIO no longer needed */
1526 conf
->slab_cache
= sc
;
1527 conf
->active_name
= 1-conf
->active_name
;
1528 conf
->pool_size
= newsize
;
1532 static int drop_one_stripe(raid5_conf_t
*conf
)
1534 struct stripe_head
*sh
;
1536 spin_lock_irq(&conf
->device_lock
);
1537 sh
= get_free_stripe(conf
);
1538 spin_unlock_irq(&conf
->device_lock
);
1541 BUG_ON(atomic_read(&sh
->count
));
1543 kmem_cache_free(conf
->slab_cache
, sh
);
1544 atomic_dec(&conf
->active_stripes
);
1548 static void shrink_stripes(raid5_conf_t
*conf
)
1550 while (drop_one_stripe(conf
))
1553 if (conf
->slab_cache
)
1554 kmem_cache_destroy(conf
->slab_cache
);
1555 conf
->slab_cache
= NULL
;
1558 static void raid5_end_read_request(struct bio
* bi
, int error
)
1560 struct stripe_head
*sh
= bi
->bi_private
;
1561 raid5_conf_t
*conf
= sh
->raid_conf
;
1562 int disks
= sh
->disks
, i
;
1563 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1564 char b
[BDEVNAME_SIZE
];
1568 for (i
=0 ; i
<disks
; i
++)
1569 if (bi
== &sh
->dev
[i
].req
)
1572 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1573 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1581 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1582 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
1583 rdev
= conf
->disks
[i
].rdev
;
1584 printk_rl(KERN_INFO
"md/raid:%s: read error corrected"
1585 " (%lu sectors at %llu on %s)\n",
1586 mdname(conf
->mddev
), STRIPE_SECTORS
,
1587 (unsigned long long)(sh
->sector
1588 + rdev
->data_offset
),
1589 bdevname(rdev
->bdev
, b
));
1590 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1591 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1593 if (atomic_read(&conf
->disks
[i
].rdev
->read_errors
))
1594 atomic_set(&conf
->disks
[i
].rdev
->read_errors
, 0);
1596 const char *bdn
= bdevname(conf
->disks
[i
].rdev
->bdev
, b
);
1598 rdev
= conf
->disks
[i
].rdev
;
1600 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1601 atomic_inc(&rdev
->read_errors
);
1602 if (conf
->mddev
->degraded
>= conf
->max_degraded
)
1603 printk_rl(KERN_WARNING
1604 "md/raid:%s: read error not correctable "
1605 "(sector %llu on %s).\n",
1606 mdname(conf
->mddev
),
1607 (unsigned long long)(sh
->sector
1608 + rdev
->data_offset
),
1610 else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
1612 printk_rl(KERN_WARNING
1613 "md/raid:%s: read error NOT corrected!! "
1614 "(sector %llu on %s).\n",
1615 mdname(conf
->mddev
),
1616 (unsigned long long)(sh
->sector
1617 + rdev
->data_offset
),
1619 else if (atomic_read(&rdev
->read_errors
)
1620 > conf
->max_nr_stripes
)
1622 "md/raid:%s: Too many read errors, failing device %s.\n",
1623 mdname(conf
->mddev
), bdn
);
1627 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1629 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1630 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1631 md_error(conf
->mddev
, rdev
);
1634 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1635 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1636 set_bit(STRIPE_HANDLE
, &sh
->state
);
1640 static void raid5_end_write_request(struct bio
*bi
, int error
)
1642 struct stripe_head
*sh
= bi
->bi_private
;
1643 raid5_conf_t
*conf
= sh
->raid_conf
;
1644 int disks
= sh
->disks
, i
;
1645 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1647 for (i
=0 ; i
<disks
; i
++)
1648 if (bi
== &sh
->dev
[i
].req
)
1651 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1652 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1660 md_error(conf
->mddev
, conf
->disks
[i
].rdev
);
1662 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1664 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1665 set_bit(STRIPE_HANDLE
, &sh
->state
);
1670 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
, int previous
);
1672 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
)
1674 struct r5dev
*dev
= &sh
->dev
[i
];
1676 bio_init(&dev
->req
);
1677 dev
->req
.bi_io_vec
= &dev
->vec
;
1679 dev
->req
.bi_max_vecs
++;
1680 dev
->vec
.bv_page
= dev
->page
;
1681 dev
->vec
.bv_len
= STRIPE_SIZE
;
1682 dev
->vec
.bv_offset
= 0;
1684 dev
->req
.bi_sector
= sh
->sector
;
1685 dev
->req
.bi_private
= sh
;
1688 dev
->sector
= compute_blocknr(sh
, i
, previous
);
1691 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1693 char b
[BDEVNAME_SIZE
];
1694 raid5_conf_t
*conf
= mddev
->private;
1695 pr_debug("raid456: error called\n");
1697 if (!test_bit(Faulty
, &rdev
->flags
)) {
1698 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1699 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1700 unsigned long flags
;
1701 spin_lock_irqsave(&conf
->device_lock
, flags
);
1703 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1705 * if recovery was running, make sure it aborts.
1707 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1709 set_bit(Faulty
, &rdev
->flags
);
1711 "md/raid:%s: Disk failure on %s, disabling device.\n"
1713 "md/raid:%s: Operation continuing on %d devices.\n",
1715 bdevname(rdev
->bdev
, b
),
1717 conf
->raid_disks
- mddev
->degraded
);
1722 * Input: a 'big' sector number,
1723 * Output: index of the data and parity disk, and the sector # in them.
1725 static sector_t
raid5_compute_sector(raid5_conf_t
*conf
, sector_t r_sector
,
1726 int previous
, int *dd_idx
,
1727 struct stripe_head
*sh
)
1729 sector_t stripe
, stripe2
;
1730 sector_t chunk_number
;
1731 unsigned int chunk_offset
;
1734 sector_t new_sector
;
1735 int algorithm
= previous
? conf
->prev_algo
1737 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
1738 : conf
->chunk_sectors
;
1739 int raid_disks
= previous
? conf
->previous_raid_disks
1741 int data_disks
= raid_disks
- conf
->max_degraded
;
1743 /* First compute the information on this sector */
1746 * Compute the chunk number and the sector offset inside the chunk
1748 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
1749 chunk_number
= r_sector
;
1752 * Compute the stripe number
1754 stripe
= chunk_number
;
1755 *dd_idx
= sector_div(stripe
, data_disks
);
1758 * Select the parity disk based on the user selected algorithm.
1760 pd_idx
= qd_idx
= ~0;
1761 switch(conf
->level
) {
1763 pd_idx
= data_disks
;
1766 switch (algorithm
) {
1767 case ALGORITHM_LEFT_ASYMMETRIC
:
1768 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
1769 if (*dd_idx
>= pd_idx
)
1772 case ALGORITHM_RIGHT_ASYMMETRIC
:
1773 pd_idx
= sector_div(stripe2
, raid_disks
);
1774 if (*dd_idx
>= pd_idx
)
1777 case ALGORITHM_LEFT_SYMMETRIC
:
1778 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
1779 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1781 case ALGORITHM_RIGHT_SYMMETRIC
:
1782 pd_idx
= sector_div(stripe2
, raid_disks
);
1783 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1785 case ALGORITHM_PARITY_0
:
1789 case ALGORITHM_PARITY_N
:
1790 pd_idx
= data_disks
;
1798 switch (algorithm
) {
1799 case ALGORITHM_LEFT_ASYMMETRIC
:
1800 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
1801 qd_idx
= pd_idx
+ 1;
1802 if (pd_idx
== raid_disks
-1) {
1803 (*dd_idx
)++; /* Q D D D P */
1805 } else if (*dd_idx
>= pd_idx
)
1806 (*dd_idx
) += 2; /* D D P Q D */
1808 case ALGORITHM_RIGHT_ASYMMETRIC
:
1809 pd_idx
= sector_div(stripe2
, raid_disks
);
1810 qd_idx
= pd_idx
+ 1;
1811 if (pd_idx
== raid_disks
-1) {
1812 (*dd_idx
)++; /* Q D D D P */
1814 } else if (*dd_idx
>= pd_idx
)
1815 (*dd_idx
) += 2; /* D D P Q D */
1817 case ALGORITHM_LEFT_SYMMETRIC
:
1818 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
1819 qd_idx
= (pd_idx
+ 1) % raid_disks
;
1820 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1822 case ALGORITHM_RIGHT_SYMMETRIC
:
1823 pd_idx
= sector_div(stripe2
, raid_disks
);
1824 qd_idx
= (pd_idx
+ 1) % raid_disks
;
1825 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1828 case ALGORITHM_PARITY_0
:
1833 case ALGORITHM_PARITY_N
:
1834 pd_idx
= data_disks
;
1835 qd_idx
= data_disks
+ 1;
1838 case ALGORITHM_ROTATING_ZERO_RESTART
:
1839 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1840 * of blocks for computing Q is different.
1842 pd_idx
= sector_div(stripe2
, raid_disks
);
1843 qd_idx
= pd_idx
+ 1;
1844 if (pd_idx
== raid_disks
-1) {
1845 (*dd_idx
)++; /* Q D D D P */
1847 } else if (*dd_idx
>= pd_idx
)
1848 (*dd_idx
) += 2; /* D D P Q D */
1852 case ALGORITHM_ROTATING_N_RESTART
:
1853 /* Same a left_asymmetric, by first stripe is
1854 * D D D P Q rather than
1858 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
1859 qd_idx
= pd_idx
+ 1;
1860 if (pd_idx
== raid_disks
-1) {
1861 (*dd_idx
)++; /* Q D D D P */
1863 } else if (*dd_idx
>= pd_idx
)
1864 (*dd_idx
) += 2; /* D D P Q D */
1868 case ALGORITHM_ROTATING_N_CONTINUE
:
1869 /* Same as left_symmetric but Q is before P */
1870 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
1871 qd_idx
= (pd_idx
+ raid_disks
- 1) % raid_disks
;
1872 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1876 case ALGORITHM_LEFT_ASYMMETRIC_6
:
1877 /* RAID5 left_asymmetric, with Q on last device */
1878 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
1879 if (*dd_idx
>= pd_idx
)
1881 qd_idx
= raid_disks
- 1;
1884 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
1885 pd_idx
= sector_div(stripe2
, raid_disks
-1);
1886 if (*dd_idx
>= pd_idx
)
1888 qd_idx
= raid_disks
- 1;
1891 case ALGORITHM_LEFT_SYMMETRIC_6
:
1892 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
1893 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
1894 qd_idx
= raid_disks
- 1;
1897 case ALGORITHM_RIGHT_SYMMETRIC_6
:
1898 pd_idx
= sector_div(stripe2
, raid_disks
-1);
1899 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
1900 qd_idx
= raid_disks
- 1;
1903 case ALGORITHM_PARITY_0_6
:
1906 qd_idx
= raid_disks
- 1;
1916 sh
->pd_idx
= pd_idx
;
1917 sh
->qd_idx
= qd_idx
;
1918 sh
->ddf_layout
= ddf_layout
;
1921 * Finally, compute the new sector number
1923 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
1928 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
, int previous
)
1930 raid5_conf_t
*conf
= sh
->raid_conf
;
1931 int raid_disks
= sh
->disks
;
1932 int data_disks
= raid_disks
- conf
->max_degraded
;
1933 sector_t new_sector
= sh
->sector
, check
;
1934 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
1935 : conf
->chunk_sectors
;
1936 int algorithm
= previous
? conf
->prev_algo
1940 sector_t chunk_number
;
1941 int dummy1
, dd_idx
= i
;
1943 struct stripe_head sh2
;
1946 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
1947 stripe
= new_sector
;
1949 if (i
== sh
->pd_idx
)
1951 switch(conf
->level
) {
1954 switch (algorithm
) {
1955 case ALGORITHM_LEFT_ASYMMETRIC
:
1956 case ALGORITHM_RIGHT_ASYMMETRIC
:
1960 case ALGORITHM_LEFT_SYMMETRIC
:
1961 case ALGORITHM_RIGHT_SYMMETRIC
:
1964 i
-= (sh
->pd_idx
+ 1);
1966 case ALGORITHM_PARITY_0
:
1969 case ALGORITHM_PARITY_N
:
1976 if (i
== sh
->qd_idx
)
1977 return 0; /* It is the Q disk */
1978 switch (algorithm
) {
1979 case ALGORITHM_LEFT_ASYMMETRIC
:
1980 case ALGORITHM_RIGHT_ASYMMETRIC
:
1981 case ALGORITHM_ROTATING_ZERO_RESTART
:
1982 case ALGORITHM_ROTATING_N_RESTART
:
1983 if (sh
->pd_idx
== raid_disks
-1)
1984 i
--; /* Q D D D P */
1985 else if (i
> sh
->pd_idx
)
1986 i
-= 2; /* D D P Q D */
1988 case ALGORITHM_LEFT_SYMMETRIC
:
1989 case ALGORITHM_RIGHT_SYMMETRIC
:
1990 if (sh
->pd_idx
== raid_disks
-1)
1991 i
--; /* Q D D D P */
1996 i
-= (sh
->pd_idx
+ 2);
1999 case ALGORITHM_PARITY_0
:
2002 case ALGORITHM_PARITY_N
:
2004 case ALGORITHM_ROTATING_N_CONTINUE
:
2005 /* Like left_symmetric, but P is before Q */
2006 if (sh
->pd_idx
== 0)
2007 i
--; /* P D D D Q */
2012 i
-= (sh
->pd_idx
+ 1);
2015 case ALGORITHM_LEFT_ASYMMETRIC_6
:
2016 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
2020 case ALGORITHM_LEFT_SYMMETRIC_6
:
2021 case ALGORITHM_RIGHT_SYMMETRIC_6
:
2023 i
+= data_disks
+ 1;
2024 i
-= (sh
->pd_idx
+ 1);
2026 case ALGORITHM_PARITY_0_6
:
2035 chunk_number
= stripe
* data_disks
+ i
;
2036 r_sector
= chunk_number
* sectors_per_chunk
+ chunk_offset
;
2038 check
= raid5_compute_sector(conf
, r_sector
,
2039 previous
, &dummy1
, &sh2
);
2040 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| sh2
.pd_idx
!= sh
->pd_idx
2041 || sh2
.qd_idx
!= sh
->qd_idx
) {
2042 printk(KERN_ERR
"md/raid:%s: compute_blocknr: map not correct\n",
2043 mdname(conf
->mddev
));
2051 schedule_reconstruction(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2052 int rcw
, int expand
)
2054 int i
, pd_idx
= sh
->pd_idx
, disks
= sh
->disks
;
2055 raid5_conf_t
*conf
= sh
->raid_conf
;
2056 int level
= conf
->level
;
2059 /* if we are not expanding this is a proper write request, and
2060 * there will be bios with new data to be drained into the
2064 sh
->reconstruct_state
= reconstruct_state_drain_run
;
2065 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2067 sh
->reconstruct_state
= reconstruct_state_run
;
2069 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2071 for (i
= disks
; i
--; ) {
2072 struct r5dev
*dev
= &sh
->dev
[i
];
2075 set_bit(R5_LOCKED
, &dev
->flags
);
2076 set_bit(R5_Wantdrain
, &dev
->flags
);
2078 clear_bit(R5_UPTODATE
, &dev
->flags
);
2082 if (s
->locked
+ conf
->max_degraded
== disks
)
2083 if (!test_and_set_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2084 atomic_inc(&conf
->pending_full_writes
);
2087 BUG_ON(!(test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
) ||
2088 test_bit(R5_Wantcompute
, &sh
->dev
[pd_idx
].flags
)));
2090 sh
->reconstruct_state
= reconstruct_state_prexor_drain_run
;
2091 set_bit(STRIPE_OP_PREXOR
, &s
->ops_request
);
2092 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2093 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2095 for (i
= disks
; i
--; ) {
2096 struct r5dev
*dev
= &sh
->dev
[i
];
2101 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
2102 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2103 set_bit(R5_Wantdrain
, &dev
->flags
);
2104 set_bit(R5_LOCKED
, &dev
->flags
);
2105 clear_bit(R5_UPTODATE
, &dev
->flags
);
2111 /* keep the parity disk(s) locked while asynchronous operations
2114 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
2115 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
2119 int qd_idx
= sh
->qd_idx
;
2120 struct r5dev
*dev
= &sh
->dev
[qd_idx
];
2122 set_bit(R5_LOCKED
, &dev
->flags
);
2123 clear_bit(R5_UPTODATE
, &dev
->flags
);
2127 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2128 __func__
, (unsigned long long)sh
->sector
,
2129 s
->locked
, s
->ops_request
);
2133 * Each stripe/dev can have one or more bion attached.
2134 * toread/towrite point to the first in a chain.
2135 * The bi_next chain must be in order.
2137 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
, int forwrite
)
2140 raid5_conf_t
*conf
= sh
->raid_conf
;
2143 pr_debug("adding bh b#%llu to stripe s#%llu\n",
2144 (unsigned long long)bi
->bi_sector
,
2145 (unsigned long long)sh
->sector
);
2148 spin_lock(&sh
->lock
);
2149 spin_lock_irq(&conf
->device_lock
);
2151 bip
= &sh
->dev
[dd_idx
].towrite
;
2152 if (*bip
== NULL
&& sh
->dev
[dd_idx
].written
== NULL
)
2155 bip
= &sh
->dev
[dd_idx
].toread
;
2156 while (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
) {
2157 if ((*bip
)->bi_sector
+ ((*bip
)->bi_size
>> 9) > bi
->bi_sector
)
2159 bip
= & (*bip
)->bi_next
;
2161 if (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
+ ((bi
->bi_size
)>>9))
2164 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
2168 bi
->bi_phys_segments
++;
2169 spin_unlock_irq(&conf
->device_lock
);
2170 spin_unlock(&sh
->lock
);
2172 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2173 (unsigned long long)bi
->bi_sector
,
2174 (unsigned long long)sh
->sector
, dd_idx
);
2176 if (conf
->mddev
->bitmap
&& firstwrite
) {
2177 bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
2179 sh
->bm_seq
= conf
->seq_flush
+1;
2180 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
2184 /* check if page is covered */
2185 sector_t sector
= sh
->dev
[dd_idx
].sector
;
2186 for (bi
=sh
->dev
[dd_idx
].towrite
;
2187 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
2188 bi
&& bi
->bi_sector
<= sector
;
2189 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
2190 if (bi
->bi_sector
+ (bi
->bi_size
>>9) >= sector
)
2191 sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
2193 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
2194 set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
);
2199 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
2200 spin_unlock_irq(&conf
->device_lock
);
2201 spin_unlock(&sh
->lock
);
2205 static void end_reshape(raid5_conf_t
*conf
);
2207 static void stripe_set_idx(sector_t stripe
, raid5_conf_t
*conf
, int previous
,
2208 struct stripe_head
*sh
)
2210 int sectors_per_chunk
=
2211 previous
? conf
->prev_chunk_sectors
: conf
->chunk_sectors
;
2213 int chunk_offset
= sector_div(stripe
, sectors_per_chunk
);
2214 int disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
2216 raid5_compute_sector(conf
,
2217 stripe
* (disks
- conf
->max_degraded
)
2218 *sectors_per_chunk
+ chunk_offset
,
2224 handle_failed_stripe(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2225 struct stripe_head_state
*s
, int disks
,
2226 struct bio
**return_bi
)
2229 for (i
= disks
; i
--; ) {
2233 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
2236 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2237 if (rdev
&& test_bit(In_sync
, &rdev
->flags
))
2238 /* multiple read failures in one stripe */
2239 md_error(conf
->mddev
, rdev
);
2242 spin_lock_irq(&conf
->device_lock
);
2243 /* fail all writes first */
2244 bi
= sh
->dev
[i
].towrite
;
2245 sh
->dev
[i
].towrite
= NULL
;
2251 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2252 wake_up(&conf
->wait_for_overlap
);
2254 while (bi
&& bi
->bi_sector
<
2255 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2256 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2257 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2258 if (!raid5_dec_bi_phys_segments(bi
)) {
2259 md_write_end(conf
->mddev
);
2260 bi
->bi_next
= *return_bi
;
2265 /* and fail all 'written' */
2266 bi
= sh
->dev
[i
].written
;
2267 sh
->dev
[i
].written
= NULL
;
2268 if (bi
) bitmap_end
= 1;
2269 while (bi
&& bi
->bi_sector
<
2270 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2271 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2272 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2273 if (!raid5_dec_bi_phys_segments(bi
)) {
2274 md_write_end(conf
->mddev
);
2275 bi
->bi_next
= *return_bi
;
2281 /* fail any reads if this device is non-operational and
2282 * the data has not reached the cache yet.
2284 if (!test_bit(R5_Wantfill
, &sh
->dev
[i
].flags
) &&
2285 (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
2286 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))) {
2287 bi
= sh
->dev
[i
].toread
;
2288 sh
->dev
[i
].toread
= NULL
;
2289 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2290 wake_up(&conf
->wait_for_overlap
);
2291 if (bi
) s
->to_read
--;
2292 while (bi
&& bi
->bi_sector
<
2293 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2294 struct bio
*nextbi
=
2295 r5_next_bio(bi
, sh
->dev
[i
].sector
);
2296 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2297 if (!raid5_dec_bi_phys_segments(bi
)) {
2298 bi
->bi_next
= *return_bi
;
2304 spin_unlock_irq(&conf
->device_lock
);
2306 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
2307 STRIPE_SECTORS
, 0, 0);
2310 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2311 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2312 md_wakeup_thread(conf
->mddev
->thread
);
2315 /* fetch_block5 - checks the given member device to see if its data needs
2316 * to be read or computed to satisfy a request.
2318 * Returns 1 when no more member devices need to be checked, otherwise returns
2319 * 0 to tell the loop in handle_stripe_fill5 to continue
2321 static int fetch_block5(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2322 int disk_idx
, int disks
)
2324 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
2325 struct r5dev
*failed_dev
= &sh
->dev
[s
->failed_num
];
2327 /* is the data in this block needed, and can we get it? */
2328 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2329 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2331 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
2332 s
->syncing
|| s
->expanding
||
2334 (failed_dev
->toread
||
2335 (failed_dev
->towrite
&&
2336 !test_bit(R5_OVERWRITE
, &failed_dev
->flags
)))))) {
2337 /* We would like to get this block, possibly by computing it,
2338 * otherwise read it if the backing disk is insync
2340 if ((s
->uptodate
== disks
- 1) &&
2341 (s
->failed
&& disk_idx
== s
->failed_num
)) {
2342 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2343 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2344 set_bit(R5_Wantcompute
, &dev
->flags
);
2345 sh
->ops
.target
= disk_idx
;
2346 sh
->ops
.target2
= -1;
2348 /* Careful: from this point on 'uptodate' is in the eye
2349 * of raid_run_ops which services 'compute' operations
2350 * before writes. R5_Wantcompute flags a block that will
2351 * be R5_UPTODATE by the time it is needed for a
2352 * subsequent operation.
2355 return 1; /* uptodate + compute == disks */
2356 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
2357 set_bit(R5_LOCKED
, &dev
->flags
);
2358 set_bit(R5_Wantread
, &dev
->flags
);
2360 pr_debug("Reading block %d (sync=%d)\n", disk_idx
,
2369 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2371 static void handle_stripe_fill5(struct stripe_head
*sh
,
2372 struct stripe_head_state
*s
, int disks
)
2376 /* look for blocks to read/compute, skip this if a compute
2377 * is already in flight, or if the stripe contents are in the
2378 * midst of changing due to a write
2380 if (!test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) && !sh
->check_state
&&
2381 !sh
->reconstruct_state
)
2382 for (i
= disks
; i
--; )
2383 if (fetch_block5(sh
, s
, i
, disks
))
2385 set_bit(STRIPE_HANDLE
, &sh
->state
);
2388 /* fetch_block6 - checks the given member device to see if its data needs
2389 * to be read or computed to satisfy a request.
2391 * Returns 1 when no more member devices need to be checked, otherwise returns
2392 * 0 to tell the loop in handle_stripe_fill6 to continue
2394 static int fetch_block6(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2395 struct r6_state
*r6s
, int disk_idx
, int disks
)
2397 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
2398 struct r5dev
*fdev
[2] = { &sh
->dev
[r6s
->failed_num
[0]],
2399 &sh
->dev
[r6s
->failed_num
[1]] };
2401 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2402 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2404 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
2405 s
->syncing
|| s
->expanding
||
2407 (fdev
[0]->toread
|| s
->to_write
)) ||
2409 (fdev
[1]->toread
|| s
->to_write
)))) {
2410 /* we would like to get this block, possibly by computing it,
2411 * otherwise read it if the backing disk is insync
2413 BUG_ON(test_bit(R5_Wantcompute
, &dev
->flags
));
2414 BUG_ON(test_bit(R5_Wantread
, &dev
->flags
));
2415 if ((s
->uptodate
== disks
- 1) &&
2416 (s
->failed
&& (disk_idx
== r6s
->failed_num
[0] ||
2417 disk_idx
== r6s
->failed_num
[1]))) {
2418 /* have disk failed, and we're requested to fetch it;
2421 pr_debug("Computing stripe %llu block %d\n",
2422 (unsigned long long)sh
->sector
, disk_idx
);
2423 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2424 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2425 set_bit(R5_Wantcompute
, &dev
->flags
);
2426 sh
->ops
.target
= disk_idx
;
2427 sh
->ops
.target2
= -1; /* no 2nd target */
2431 } else if (s
->uptodate
== disks
-2 && s
->failed
>= 2) {
2432 /* Computing 2-failure is *very* expensive; only
2433 * do it if failed >= 2
2436 for (other
= disks
; other
--; ) {
2437 if (other
== disk_idx
)
2439 if (!test_bit(R5_UPTODATE
,
2440 &sh
->dev
[other
].flags
))
2444 pr_debug("Computing stripe %llu blocks %d,%d\n",
2445 (unsigned long long)sh
->sector
,
2447 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2448 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2449 set_bit(R5_Wantcompute
, &sh
->dev
[disk_idx
].flags
);
2450 set_bit(R5_Wantcompute
, &sh
->dev
[other
].flags
);
2451 sh
->ops
.target
= disk_idx
;
2452 sh
->ops
.target2
= other
;
2456 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
2457 set_bit(R5_LOCKED
, &dev
->flags
);
2458 set_bit(R5_Wantread
, &dev
->flags
);
2460 pr_debug("Reading block %d (sync=%d)\n",
2461 disk_idx
, s
->syncing
);
2469 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2471 static void handle_stripe_fill6(struct stripe_head
*sh
,
2472 struct stripe_head_state
*s
, struct r6_state
*r6s
,
2477 /* look for blocks to read/compute, skip this if a compute
2478 * is already in flight, or if the stripe contents are in the
2479 * midst of changing due to a write
2481 if (!test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) && !sh
->check_state
&&
2482 !sh
->reconstruct_state
)
2483 for (i
= disks
; i
--; )
2484 if (fetch_block6(sh
, s
, r6s
, i
, disks
))
2486 set_bit(STRIPE_HANDLE
, &sh
->state
);
2490 /* handle_stripe_clean_event
2491 * any written block on an uptodate or failed drive can be returned.
2492 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2493 * never LOCKED, so we don't need to test 'failed' directly.
2495 static void handle_stripe_clean_event(raid5_conf_t
*conf
,
2496 struct stripe_head
*sh
, int disks
, struct bio
**return_bi
)
2501 for (i
= disks
; i
--; )
2502 if (sh
->dev
[i
].written
) {
2504 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2505 test_bit(R5_UPTODATE
, &dev
->flags
)) {
2506 /* We can return any write requests */
2507 struct bio
*wbi
, *wbi2
;
2509 pr_debug("Return write for disc %d\n", i
);
2510 spin_lock_irq(&conf
->device_lock
);
2512 dev
->written
= NULL
;
2513 while (wbi
&& wbi
->bi_sector
<
2514 dev
->sector
+ STRIPE_SECTORS
) {
2515 wbi2
= r5_next_bio(wbi
, dev
->sector
);
2516 if (!raid5_dec_bi_phys_segments(wbi
)) {
2517 md_write_end(conf
->mddev
);
2518 wbi
->bi_next
= *return_bi
;
2523 if (dev
->towrite
== NULL
)
2525 spin_unlock_irq(&conf
->device_lock
);
2527 bitmap_endwrite(conf
->mddev
->bitmap
,
2530 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
2535 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2536 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2537 md_wakeup_thread(conf
->mddev
->thread
);
2540 static void handle_stripe_dirtying5(raid5_conf_t
*conf
,
2541 struct stripe_head
*sh
, struct stripe_head_state
*s
, int disks
)
2543 int rmw
= 0, rcw
= 0, i
;
2544 for (i
= disks
; i
--; ) {
2545 /* would I have to read this buffer for read_modify_write */
2546 struct r5dev
*dev
= &sh
->dev
[i
];
2547 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2548 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2549 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2550 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2551 if (test_bit(R5_Insync
, &dev
->flags
))
2554 rmw
+= 2*disks
; /* cannot read it */
2556 /* Would I have to read this buffer for reconstruct_write */
2557 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) && i
!= sh
->pd_idx
&&
2558 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2559 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2560 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2561 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
2566 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2567 (unsigned long long)sh
->sector
, rmw
, rcw
);
2568 set_bit(STRIPE_HANDLE
, &sh
->state
);
2569 if (rmw
< rcw
&& rmw
> 0)
2570 /* prefer read-modify-write, but need to get some data */
2571 for (i
= disks
; i
--; ) {
2572 struct r5dev
*dev
= &sh
->dev
[i
];
2573 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2574 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2575 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2576 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2577 test_bit(R5_Insync
, &dev
->flags
)) {
2579 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2580 pr_debug("Read_old block "
2581 "%d for r-m-w\n", i
);
2582 set_bit(R5_LOCKED
, &dev
->flags
);
2583 set_bit(R5_Wantread
, &dev
->flags
);
2586 set_bit(STRIPE_DELAYED
, &sh
->state
);
2587 set_bit(STRIPE_HANDLE
, &sh
->state
);
2591 if (rcw
<= rmw
&& rcw
> 0)
2592 /* want reconstruct write, but need to get some data */
2593 for (i
= disks
; i
--; ) {
2594 struct r5dev
*dev
= &sh
->dev
[i
];
2595 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
2597 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2598 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2599 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2600 test_bit(R5_Insync
, &dev
->flags
)) {
2602 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2603 pr_debug("Read_old block "
2604 "%d for Reconstruct\n", i
);
2605 set_bit(R5_LOCKED
, &dev
->flags
);
2606 set_bit(R5_Wantread
, &dev
->flags
);
2609 set_bit(STRIPE_DELAYED
, &sh
->state
);
2610 set_bit(STRIPE_HANDLE
, &sh
->state
);
2614 /* now if nothing is locked, and if we have enough data,
2615 * we can start a write request
2617 /* since handle_stripe can be called at any time we need to handle the
2618 * case where a compute block operation has been submitted and then a
2619 * subsequent call wants to start a write request. raid_run_ops only
2620 * handles the case where compute block and reconstruct are requested
2621 * simultaneously. If this is not the case then new writes need to be
2622 * held off until the compute completes.
2624 if ((s
->req_compute
|| !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)) &&
2625 (s
->locked
== 0 && (rcw
== 0 || rmw
== 0) &&
2626 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)))
2627 schedule_reconstruction(sh
, s
, rcw
== 0, 0);
2630 static void handle_stripe_dirtying6(raid5_conf_t
*conf
,
2631 struct stripe_head
*sh
, struct stripe_head_state
*s
,
2632 struct r6_state
*r6s
, int disks
)
2634 int rcw
= 0, pd_idx
= sh
->pd_idx
, i
;
2635 int qd_idx
= sh
->qd_idx
;
2637 set_bit(STRIPE_HANDLE
, &sh
->state
);
2638 for (i
= disks
; i
--; ) {
2639 struct r5dev
*dev
= &sh
->dev
[i
];
2640 /* check if we haven't enough data */
2641 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
2642 i
!= pd_idx
&& i
!= qd_idx
&&
2643 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2644 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2645 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2647 if (!test_bit(R5_Insync
, &dev
->flags
))
2648 continue; /* it's a failed drive */
2651 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2652 pr_debug("Read_old stripe %llu "
2653 "block %d for Reconstruct\n",
2654 (unsigned long long)sh
->sector
, i
);
2655 set_bit(R5_LOCKED
, &dev
->flags
);
2656 set_bit(R5_Wantread
, &dev
->flags
);
2659 pr_debug("Request delayed stripe %llu "
2660 "block %d for Reconstruct\n",
2661 (unsigned long long)sh
->sector
, i
);
2662 set_bit(STRIPE_DELAYED
, &sh
->state
);
2663 set_bit(STRIPE_HANDLE
, &sh
->state
);
2667 /* now if nothing is locked, and if we have enough data, we can start a
2670 if ((s
->req_compute
|| !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)) &&
2671 s
->locked
== 0 && rcw
== 0 &&
2672 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)) {
2673 schedule_reconstruction(sh
, s
, 1, 0);
2677 static void handle_parity_checks5(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2678 struct stripe_head_state
*s
, int disks
)
2680 struct r5dev
*dev
= NULL
;
2682 set_bit(STRIPE_HANDLE
, &sh
->state
);
2684 switch (sh
->check_state
) {
2685 case check_state_idle
:
2686 /* start a new check operation if there are no failures */
2687 if (s
->failed
== 0) {
2688 BUG_ON(s
->uptodate
!= disks
);
2689 sh
->check_state
= check_state_run
;
2690 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
2691 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
2695 dev
= &sh
->dev
[s
->failed_num
];
2697 case check_state_compute_result
:
2698 sh
->check_state
= check_state_idle
;
2700 dev
= &sh
->dev
[sh
->pd_idx
];
2702 /* check that a write has not made the stripe insync */
2703 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
2706 /* either failed parity check, or recovery is happening */
2707 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
2708 BUG_ON(s
->uptodate
!= disks
);
2710 set_bit(R5_LOCKED
, &dev
->flags
);
2712 set_bit(R5_Wantwrite
, &dev
->flags
);
2714 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2715 set_bit(STRIPE_INSYNC
, &sh
->state
);
2717 case check_state_run
:
2718 break; /* we will be called again upon completion */
2719 case check_state_check_result
:
2720 sh
->check_state
= check_state_idle
;
2722 /* if a failure occurred during the check operation, leave
2723 * STRIPE_INSYNC not set and let the stripe be handled again
2728 /* handle a successful check operation, if parity is correct
2729 * we are done. Otherwise update the mismatch count and repair
2730 * parity if !MD_RECOVERY_CHECK
2732 if ((sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) == 0)
2733 /* parity is correct (on disc,
2734 * not in buffer any more)
2736 set_bit(STRIPE_INSYNC
, &sh
->state
);
2738 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
2739 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2740 /* don't try to repair!! */
2741 set_bit(STRIPE_INSYNC
, &sh
->state
);
2743 sh
->check_state
= check_state_compute_run
;
2744 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2745 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2746 set_bit(R5_Wantcompute
,
2747 &sh
->dev
[sh
->pd_idx
].flags
);
2748 sh
->ops
.target
= sh
->pd_idx
;
2749 sh
->ops
.target2
= -1;
2754 case check_state_compute_run
:
2757 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
2758 __func__
, sh
->check_state
,
2759 (unsigned long long) sh
->sector
);
2765 static void handle_parity_checks6(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2766 struct stripe_head_state
*s
,
2767 struct r6_state
*r6s
, int disks
)
2769 int pd_idx
= sh
->pd_idx
;
2770 int qd_idx
= sh
->qd_idx
;
2773 set_bit(STRIPE_HANDLE
, &sh
->state
);
2775 BUG_ON(s
->failed
> 2);
2777 /* Want to check and possibly repair P and Q.
2778 * However there could be one 'failed' device, in which
2779 * case we can only check one of them, possibly using the
2780 * other to generate missing data
2783 switch (sh
->check_state
) {
2784 case check_state_idle
:
2785 /* start a new check operation if there are < 2 failures */
2786 if (s
->failed
== r6s
->q_failed
) {
2787 /* The only possible failed device holds Q, so it
2788 * makes sense to check P (If anything else were failed,
2789 * we would have used P to recreate it).
2791 sh
->check_state
= check_state_run
;
2793 if (!r6s
->q_failed
&& s
->failed
< 2) {
2794 /* Q is not failed, and we didn't use it to generate
2795 * anything, so it makes sense to check it
2797 if (sh
->check_state
== check_state_run
)
2798 sh
->check_state
= check_state_run_pq
;
2800 sh
->check_state
= check_state_run_q
;
2803 /* discard potentially stale zero_sum_result */
2804 sh
->ops
.zero_sum_result
= 0;
2806 if (sh
->check_state
== check_state_run
) {
2807 /* async_xor_zero_sum destroys the contents of P */
2808 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
2811 if (sh
->check_state
>= check_state_run
&&
2812 sh
->check_state
<= check_state_run_pq
) {
2813 /* async_syndrome_zero_sum preserves P and Q, so
2814 * no need to mark them !uptodate here
2816 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
2820 /* we have 2-disk failure */
2821 BUG_ON(s
->failed
!= 2);
2823 case check_state_compute_result
:
2824 sh
->check_state
= check_state_idle
;
2826 /* check that a write has not made the stripe insync */
2827 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
2830 /* now write out any block on a failed drive,
2831 * or P or Q if they were recomputed
2833 BUG_ON(s
->uptodate
< disks
- 1); /* We don't need Q to recover */
2834 if (s
->failed
== 2) {
2835 dev
= &sh
->dev
[r6s
->failed_num
[1]];
2837 set_bit(R5_LOCKED
, &dev
->flags
);
2838 set_bit(R5_Wantwrite
, &dev
->flags
);
2840 if (s
->failed
>= 1) {
2841 dev
= &sh
->dev
[r6s
->failed_num
[0]];
2843 set_bit(R5_LOCKED
, &dev
->flags
);
2844 set_bit(R5_Wantwrite
, &dev
->flags
);
2846 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
2847 dev
= &sh
->dev
[pd_idx
];
2849 set_bit(R5_LOCKED
, &dev
->flags
);
2850 set_bit(R5_Wantwrite
, &dev
->flags
);
2852 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
2853 dev
= &sh
->dev
[qd_idx
];
2855 set_bit(R5_LOCKED
, &dev
->flags
);
2856 set_bit(R5_Wantwrite
, &dev
->flags
);
2858 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2860 set_bit(STRIPE_INSYNC
, &sh
->state
);
2862 case check_state_run
:
2863 case check_state_run_q
:
2864 case check_state_run_pq
:
2865 break; /* we will be called again upon completion */
2866 case check_state_check_result
:
2867 sh
->check_state
= check_state_idle
;
2869 /* handle a successful check operation, if parity is correct
2870 * we are done. Otherwise update the mismatch count and repair
2871 * parity if !MD_RECOVERY_CHECK
2873 if (sh
->ops
.zero_sum_result
== 0) {
2874 /* both parities are correct */
2876 set_bit(STRIPE_INSYNC
, &sh
->state
);
2878 /* in contrast to the raid5 case we can validate
2879 * parity, but still have a failure to write
2882 sh
->check_state
= check_state_compute_result
;
2883 /* Returning at this point means that we may go
2884 * off and bring p and/or q uptodate again so
2885 * we make sure to check zero_sum_result again
2886 * to verify if p or q need writeback
2890 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
2891 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2892 /* don't try to repair!! */
2893 set_bit(STRIPE_INSYNC
, &sh
->state
);
2895 int *target
= &sh
->ops
.target
;
2897 sh
->ops
.target
= -1;
2898 sh
->ops
.target2
= -1;
2899 sh
->check_state
= check_state_compute_run
;
2900 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2901 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2902 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
2903 set_bit(R5_Wantcompute
,
2904 &sh
->dev
[pd_idx
].flags
);
2906 target
= &sh
->ops
.target2
;
2909 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
2910 set_bit(R5_Wantcompute
,
2911 &sh
->dev
[qd_idx
].flags
);
2918 case check_state_compute_run
:
2921 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
2922 __func__
, sh
->check_state
,
2923 (unsigned long long) sh
->sector
);
2928 static void handle_stripe_expansion(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2929 struct r6_state
*r6s
)
2933 /* We have read all the blocks in this stripe and now we need to
2934 * copy some of them into a target stripe for expand.
2936 struct dma_async_tx_descriptor
*tx
= NULL
;
2937 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2938 for (i
= 0; i
< sh
->disks
; i
++)
2939 if (i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
) {
2941 struct stripe_head
*sh2
;
2942 struct async_submit_ctl submit
;
2944 sector_t bn
= compute_blocknr(sh
, i
, 1);
2945 sector_t s
= raid5_compute_sector(conf
, bn
, 0,
2947 sh2
= get_active_stripe(conf
, s
, 0, 1, 1);
2949 /* so far only the early blocks of this stripe
2950 * have been requested. When later blocks
2951 * get requested, we will try again
2954 if (!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
2955 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
2956 /* must have already done this block */
2957 release_stripe(sh2
);
2961 /* place all the copies on one channel */
2962 init_async_submit(&submit
, 0, tx
, NULL
, NULL
, NULL
);
2963 tx
= async_memcpy(sh2
->dev
[dd_idx
].page
,
2964 sh
->dev
[i
].page
, 0, 0, STRIPE_SIZE
,
2967 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
2968 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
2969 for (j
= 0; j
< conf
->raid_disks
; j
++)
2970 if (j
!= sh2
->pd_idx
&&
2971 (!r6s
|| j
!= sh2
->qd_idx
) &&
2972 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
2974 if (j
== conf
->raid_disks
) {
2975 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
2976 set_bit(STRIPE_HANDLE
, &sh2
->state
);
2978 release_stripe(sh2
);
2981 /* done submitting copies, wait for them to complete */
2984 dma_wait_for_async_tx(tx
);
2990 * handle_stripe - do things to a stripe.
2992 * We lock the stripe and then examine the state of various bits
2993 * to see what needs to be done.
2995 * return some read request which now have data
2996 * return some write requests which are safely on disc
2997 * schedule a read on some buffers
2998 * schedule a write of some buffers
2999 * return confirmation of parity correctness
3001 * buffers are taken off read_list or write_list, and bh_cache buffers
3002 * get BH_Lock set before the stripe lock is released.
3006 static void handle_stripe5(struct stripe_head
*sh
)
3008 raid5_conf_t
*conf
= sh
->raid_conf
;
3009 int disks
= sh
->disks
, i
;
3010 struct bio
*return_bi
= NULL
;
3011 struct stripe_head_state s
;
3013 mdk_rdev_t
*blocked_rdev
= NULL
;
3015 int dec_preread_active
= 0;
3017 memset(&s
, 0, sizeof(s
));
3018 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
3019 "reconstruct:%d\n", (unsigned long long)sh
->sector
, sh
->state
,
3020 atomic_read(&sh
->count
), sh
->pd_idx
, sh
->check_state
,
3021 sh
->reconstruct_state
);
3023 spin_lock(&sh
->lock
);
3024 clear_bit(STRIPE_HANDLE
, &sh
->state
);
3025 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3027 s
.syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
3028 s
.expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
3029 s
.expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3031 /* Now to look around and see what can be done */
3033 for (i
=disks
; i
--; ) {
3038 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
3039 "written %p\n", i
, dev
->flags
, dev
->toread
, dev
->read
,
3040 dev
->towrite
, dev
->written
);
3042 /* maybe we can request a biofill operation
3044 * new wantfill requests are only permitted while
3045 * ops_complete_biofill is guaranteed to be inactive
3047 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
3048 !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
))
3049 set_bit(R5_Wantfill
, &dev
->flags
);
3051 /* now count some things */
3052 if (test_bit(R5_LOCKED
, &dev
->flags
)) s
.locked
++;
3053 if (test_bit(R5_UPTODATE
, &dev
->flags
)) s
.uptodate
++;
3054 if (test_bit(R5_Wantcompute
, &dev
->flags
)) s
.compute
++;
3056 if (test_bit(R5_Wantfill
, &dev
->flags
))
3058 else if (dev
->toread
)
3062 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
3067 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3068 if (blocked_rdev
== NULL
&&
3069 rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
3070 blocked_rdev
= rdev
;
3071 atomic_inc(&rdev
->nr_pending
);
3073 clear_bit(R5_Insync
, &dev
->flags
);
3076 else if (test_bit(In_sync
, &rdev
->flags
))
3077 set_bit(R5_Insync
, &dev
->flags
);
3079 /* could be in-sync depending on recovery/reshape status */
3080 if (sh
->sector
+ STRIPE_SECTORS
<= rdev
->recovery_offset
)
3081 set_bit(R5_Insync
, &dev
->flags
);
3083 if (!test_bit(R5_Insync
, &dev
->flags
)) {
3084 /* The ReadError flag will just be confusing now */
3085 clear_bit(R5_ReadError
, &dev
->flags
);
3086 clear_bit(R5_ReWrite
, &dev
->flags
);
3088 if (test_bit(R5_ReadError
, &dev
->flags
))
3089 clear_bit(R5_Insync
, &dev
->flags
);
3090 if (!test_bit(R5_Insync
, &dev
->flags
)) {
3097 if (unlikely(blocked_rdev
)) {
3098 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
3099 s
.to_write
|| s
.written
) {
3100 set_bit(STRIPE_HANDLE
, &sh
->state
);
3103 /* There is nothing for the blocked_rdev to block */
3104 rdev_dec_pending(blocked_rdev
, conf
->mddev
);
3105 blocked_rdev
= NULL
;
3108 if (s
.to_fill
&& !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
)) {
3109 set_bit(STRIPE_OP_BIOFILL
, &s
.ops_request
);
3110 set_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
3113 pr_debug("locked=%d uptodate=%d to_read=%d"
3114 " to_write=%d failed=%d failed_num=%d\n",
3115 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
,
3116 s
.failed
, s
.failed_num
);
3117 /* check if the array has lost two devices and, if so, some requests might
3120 if (s
.failed
> 1 && s
.to_read
+s
.to_write
+s
.written
)
3121 handle_failed_stripe(conf
, sh
, &s
, disks
, &return_bi
);
3122 if (s
.failed
> 1 && s
.syncing
) {
3123 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
3124 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3128 /* might be able to return some write requests if the parity block
3129 * is safe, or on a failed drive
3131 dev
= &sh
->dev
[sh
->pd_idx
];
3133 ((test_bit(R5_Insync
, &dev
->flags
) &&
3134 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3135 test_bit(R5_UPTODATE
, &dev
->flags
)) ||
3136 (s
.failed
== 1 && s
.failed_num
== sh
->pd_idx
)))
3137 handle_stripe_clean_event(conf
, sh
, disks
, &return_bi
);
3139 /* Now we might consider reading some blocks, either to check/generate
3140 * parity, or to satisfy requests
3141 * or to load a block that is being partially written.
3143 if (s
.to_read
|| s
.non_overwrite
||
3144 (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
)) || s
.expanding
)
3145 handle_stripe_fill5(sh
, &s
, disks
);
3147 /* Now we check to see if any write operations have recently
3151 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
)
3153 if (sh
->reconstruct_state
== reconstruct_state_drain_result
||
3154 sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
) {
3155 sh
->reconstruct_state
= reconstruct_state_idle
;
3157 /* All the 'written' buffers and the parity block are ready to
3158 * be written back to disk
3160 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
));
3161 for (i
= disks
; i
--; ) {
3163 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
3164 (i
== sh
->pd_idx
|| dev
->written
)) {
3165 pr_debug("Writing block %d\n", i
);
3166 set_bit(R5_Wantwrite
, &dev
->flags
);
3169 if (!test_bit(R5_Insync
, &dev
->flags
) ||
3170 (i
== sh
->pd_idx
&& s
.failed
== 0))
3171 set_bit(STRIPE_INSYNC
, &sh
->state
);
3174 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3175 dec_preread_active
= 1;
3178 /* Now to consider new write requests and what else, if anything
3179 * should be read. We do not handle new writes when:
3180 * 1/ A 'write' operation (copy+xor) is already in flight.
3181 * 2/ A 'check' operation is in flight, as it may clobber the parity
3184 if (s
.to_write
&& !sh
->reconstruct_state
&& !sh
->check_state
)
3185 handle_stripe_dirtying5(conf
, sh
, &s
, disks
);
3187 /* maybe we need to check and possibly fix the parity for this stripe
3188 * Any reads will already have been scheduled, so we just see if enough
3189 * data is available. The parity check is held off while parity
3190 * dependent operations are in flight.
3192 if (sh
->check_state
||
3193 (s
.syncing
&& s
.locked
== 0 &&
3194 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
3195 !test_bit(STRIPE_INSYNC
, &sh
->state
)))
3196 handle_parity_checks5(conf
, sh
, &s
, disks
);
3198 if (s
.syncing
&& s
.locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
3199 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
3200 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3203 /* If the failed drive is just a ReadError, then we might need to progress
3204 * the repair/check process
3206 if (s
.failed
== 1 && !conf
->mddev
->ro
&&
3207 test_bit(R5_ReadError
, &sh
->dev
[s
.failed_num
].flags
)
3208 && !test_bit(R5_LOCKED
, &sh
->dev
[s
.failed_num
].flags
)
3209 && test_bit(R5_UPTODATE
, &sh
->dev
[s
.failed_num
].flags
)
3211 dev
= &sh
->dev
[s
.failed_num
];
3212 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
3213 set_bit(R5_Wantwrite
, &dev
->flags
);
3214 set_bit(R5_ReWrite
, &dev
->flags
);
3215 set_bit(R5_LOCKED
, &dev
->flags
);
3218 /* let's read it back */
3219 set_bit(R5_Wantread
, &dev
->flags
);
3220 set_bit(R5_LOCKED
, &dev
->flags
);
3225 /* Finish reconstruct operations initiated by the expansion process */
3226 if (sh
->reconstruct_state
== reconstruct_state_result
) {
3227 struct stripe_head
*sh2
3228 = get_active_stripe(conf
, sh
->sector
, 1, 1, 1);
3229 if (sh2
&& test_bit(STRIPE_EXPAND_SOURCE
, &sh2
->state
)) {
3230 /* sh cannot be written until sh2 has been read.
3231 * so arrange for sh to be delayed a little
3233 set_bit(STRIPE_DELAYED
, &sh
->state
);
3234 set_bit(STRIPE_HANDLE
, &sh
->state
);
3235 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
,
3237 atomic_inc(&conf
->preread_active_stripes
);
3238 release_stripe(sh2
);
3242 release_stripe(sh2
);
3244 sh
->reconstruct_state
= reconstruct_state_idle
;
3245 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
3246 for (i
= conf
->raid_disks
; i
--; ) {
3247 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
3248 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3253 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
3254 !sh
->reconstruct_state
) {
3255 /* Need to write out all blocks after computing parity */
3256 sh
->disks
= conf
->raid_disks
;
3257 stripe_set_idx(sh
->sector
, conf
, 0, sh
);
3258 schedule_reconstruction(sh
, &s
, 1, 1);
3259 } else if (s
.expanded
&& !sh
->reconstruct_state
&& s
.locked
== 0) {
3260 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3261 atomic_dec(&conf
->reshape_stripes
);
3262 wake_up(&conf
->wait_for_overlap
);
3263 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
3266 if (s
.expanding
&& s
.locked
== 0 &&
3267 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
3268 handle_stripe_expansion(conf
, sh
, NULL
);
3271 spin_unlock(&sh
->lock
);
3273 /* wait for this device to become unblocked */
3274 if (unlikely(blocked_rdev
))
3275 md_wait_for_blocked_rdev(blocked_rdev
, conf
->mddev
);
3278 raid_run_ops(sh
, s
.ops_request
);
3282 if (dec_preread_active
) {
3283 /* We delay this until after ops_run_io so that if make_request
3284 * is waiting on a barrier, it won't continue until the writes
3285 * have actually been submitted.
3287 atomic_dec(&conf
->preread_active_stripes
);
3288 if (atomic_read(&conf
->preread_active_stripes
) <
3290 md_wakeup_thread(conf
->mddev
->thread
);
3292 return_io(return_bi
);
3295 static void handle_stripe6(struct stripe_head
*sh
)
3297 raid5_conf_t
*conf
= sh
->raid_conf
;
3298 int disks
= sh
->disks
;
3299 struct bio
*return_bi
= NULL
;
3300 int i
, pd_idx
= sh
->pd_idx
, qd_idx
= sh
->qd_idx
;
3301 struct stripe_head_state s
;
3302 struct r6_state r6s
;
3303 struct r5dev
*dev
, *pdev
, *qdev
;
3304 mdk_rdev_t
*blocked_rdev
= NULL
;
3305 int dec_preread_active
= 0;
3307 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3308 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3309 (unsigned long long)sh
->sector
, sh
->state
,
3310 atomic_read(&sh
->count
), pd_idx
, qd_idx
,
3311 sh
->check_state
, sh
->reconstruct_state
);
3312 memset(&s
, 0, sizeof(s
));
3314 spin_lock(&sh
->lock
);
3315 clear_bit(STRIPE_HANDLE
, &sh
->state
);
3316 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3318 s
.syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
3319 s
.expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
3320 s
.expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3321 /* Now to look around and see what can be done */
3324 for (i
=disks
; i
--; ) {
3328 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3329 i
, dev
->flags
, dev
->toread
, dev
->towrite
, dev
->written
);
3330 /* maybe we can reply to a read
3332 * new wantfill requests are only permitted while
3333 * ops_complete_biofill is guaranteed to be inactive
3335 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
3336 !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
))
3337 set_bit(R5_Wantfill
, &dev
->flags
);
3339 /* now count some things */
3340 if (test_bit(R5_LOCKED
, &dev
->flags
)) s
.locked
++;
3341 if (test_bit(R5_UPTODATE
, &dev
->flags
)) s
.uptodate
++;
3342 if (test_bit(R5_Wantcompute
, &dev
->flags
)) {
3344 BUG_ON(s
.compute
> 2);
3347 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
3349 } else if (dev
->toread
)
3353 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
3358 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3359 if (blocked_rdev
== NULL
&&
3360 rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
3361 blocked_rdev
= rdev
;
3362 atomic_inc(&rdev
->nr_pending
);
3364 clear_bit(R5_Insync
, &dev
->flags
);
3367 else if (test_bit(In_sync
, &rdev
->flags
))
3368 set_bit(R5_Insync
, &dev
->flags
);
3370 /* in sync if before recovery_offset */
3371 if (sh
->sector
+ STRIPE_SECTORS
<= rdev
->recovery_offset
)
3372 set_bit(R5_Insync
, &dev
->flags
);
3374 if (!test_bit(R5_Insync
, &dev
->flags
)) {
3375 /* The ReadError flag will just be confusing now */
3376 clear_bit(R5_ReadError
, &dev
->flags
);
3377 clear_bit(R5_ReWrite
, &dev
->flags
);
3379 if (test_bit(R5_ReadError
, &dev
->flags
))
3380 clear_bit(R5_Insync
, &dev
->flags
);
3381 if (!test_bit(R5_Insync
, &dev
->flags
)) {
3383 r6s
.failed_num
[s
.failed
] = i
;
3389 if (unlikely(blocked_rdev
)) {
3390 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
3391 s
.to_write
|| s
.written
) {
3392 set_bit(STRIPE_HANDLE
, &sh
->state
);
3395 /* There is nothing for the blocked_rdev to block */
3396 rdev_dec_pending(blocked_rdev
, conf
->mddev
);
3397 blocked_rdev
= NULL
;
3400 if (s
.to_fill
&& !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
)) {
3401 set_bit(STRIPE_OP_BIOFILL
, &s
.ops_request
);
3402 set_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
3405 pr_debug("locked=%d uptodate=%d to_read=%d"
3406 " to_write=%d failed=%d failed_num=%d,%d\n",
3407 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
, s
.failed
,
3408 r6s
.failed_num
[0], r6s
.failed_num
[1]);
3409 /* check if the array has lost >2 devices and, if so, some requests
3410 * might need to be failed
3412 if (s
.failed
> 2 && s
.to_read
+s
.to_write
+s
.written
)
3413 handle_failed_stripe(conf
, sh
, &s
, disks
, &return_bi
);
3414 if (s
.failed
> 2 && s
.syncing
) {
3415 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
3416 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3421 * might be able to return some write requests if the parity blocks
3422 * are safe, or on a failed drive
3424 pdev
= &sh
->dev
[pd_idx
];
3425 r6s
.p_failed
= (s
.failed
>= 1 && r6s
.failed_num
[0] == pd_idx
)
3426 || (s
.failed
>= 2 && r6s
.failed_num
[1] == pd_idx
);
3427 qdev
= &sh
->dev
[qd_idx
];
3428 r6s
.q_failed
= (s
.failed
>= 1 && r6s
.failed_num
[0] == qd_idx
)
3429 || (s
.failed
>= 2 && r6s
.failed_num
[1] == qd_idx
);
3432 ( r6s
.p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
3433 && !test_bit(R5_LOCKED
, &pdev
->flags
)
3434 && test_bit(R5_UPTODATE
, &pdev
->flags
)))) &&
3435 ( r6s
.q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
3436 && !test_bit(R5_LOCKED
, &qdev
->flags
)
3437 && test_bit(R5_UPTODATE
, &qdev
->flags
)))))
3438 handle_stripe_clean_event(conf
, sh
, disks
, &return_bi
);
3440 /* Now we might consider reading some blocks, either to check/generate
3441 * parity, or to satisfy requests
3442 * or to load a block that is being partially written.
3444 if (s
.to_read
|| s
.non_overwrite
|| (s
.to_write
&& s
.failed
) ||
3445 (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
)) || s
.expanding
)
3446 handle_stripe_fill6(sh
, &s
, &r6s
, disks
);
3448 /* Now we check to see if any write operations have recently
3451 if (sh
->reconstruct_state
== reconstruct_state_drain_result
) {
3453 sh
->reconstruct_state
= reconstruct_state_idle
;
3454 /* All the 'written' buffers and the parity blocks are ready to
3455 * be written back to disk
3457 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
));
3458 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
));
3459 for (i
= disks
; i
--; ) {
3461 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
3462 (i
== sh
->pd_idx
|| i
== qd_idx
||
3464 pr_debug("Writing block %d\n", i
);
3465 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
3466 set_bit(R5_Wantwrite
, &dev
->flags
);
3467 if (!test_bit(R5_Insync
, &dev
->flags
) ||
3468 ((i
== sh
->pd_idx
|| i
== qd_idx
) &&
3470 set_bit(STRIPE_INSYNC
, &sh
->state
);
3473 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3474 dec_preread_active
= 1;
3477 /* Now to consider new write requests and what else, if anything
3478 * should be read. We do not handle new writes when:
3479 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3480 * 2/ A 'check' operation is in flight, as it may clobber the parity
3483 if (s
.to_write
&& !sh
->reconstruct_state
&& !sh
->check_state
)
3484 handle_stripe_dirtying6(conf
, sh
, &s
, &r6s
, disks
);
3486 /* maybe we need to check and possibly fix the parity for this stripe
3487 * Any reads will already have been scheduled, so we just see if enough
3488 * data is available. The parity check is held off while parity
3489 * dependent operations are in flight.
3491 if (sh
->check_state
||
3492 (s
.syncing
&& s
.locked
== 0 &&
3493 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
3494 !test_bit(STRIPE_INSYNC
, &sh
->state
)))
3495 handle_parity_checks6(conf
, sh
, &s
, &r6s
, disks
);
3497 if (s
.syncing
&& s
.locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
3498 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
3499 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3502 /* If the failed drives are just a ReadError, then we might need
3503 * to progress the repair/check process
3505 if (s
.failed
<= 2 && !conf
->mddev
->ro
)
3506 for (i
= 0; i
< s
.failed
; i
++) {
3507 dev
= &sh
->dev
[r6s
.failed_num
[i
]];
3508 if (test_bit(R5_ReadError
, &dev
->flags
)
3509 && !test_bit(R5_LOCKED
, &dev
->flags
)
3510 && test_bit(R5_UPTODATE
, &dev
->flags
)
3512 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
3513 set_bit(R5_Wantwrite
, &dev
->flags
);
3514 set_bit(R5_ReWrite
, &dev
->flags
);
3515 set_bit(R5_LOCKED
, &dev
->flags
);
3518 /* let's read it back */
3519 set_bit(R5_Wantread
, &dev
->flags
);
3520 set_bit(R5_LOCKED
, &dev
->flags
);
3526 /* Finish reconstruct operations initiated by the expansion process */
3527 if (sh
->reconstruct_state
== reconstruct_state_result
) {
3528 sh
->reconstruct_state
= reconstruct_state_idle
;
3529 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
3530 for (i
= conf
->raid_disks
; i
--; ) {
3531 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
3532 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3537 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
3538 !sh
->reconstruct_state
) {
3539 struct stripe_head
*sh2
3540 = get_active_stripe(conf
, sh
->sector
, 1, 1, 1);
3541 if (sh2
&& test_bit(STRIPE_EXPAND_SOURCE
, &sh2
->state
)) {
3542 /* sh cannot be written until sh2 has been read.
3543 * so arrange for sh to be delayed a little
3545 set_bit(STRIPE_DELAYED
, &sh
->state
);
3546 set_bit(STRIPE_HANDLE
, &sh
->state
);
3547 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
,
3549 atomic_inc(&conf
->preread_active_stripes
);
3550 release_stripe(sh2
);
3554 release_stripe(sh2
);
3556 /* Need to write out all blocks after computing P&Q */
3557 sh
->disks
= conf
->raid_disks
;
3558 stripe_set_idx(sh
->sector
, conf
, 0, sh
);
3559 schedule_reconstruction(sh
, &s
, 1, 1);
3560 } else if (s
.expanded
&& !sh
->reconstruct_state
&& s
.locked
== 0) {
3561 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3562 atomic_dec(&conf
->reshape_stripes
);
3563 wake_up(&conf
->wait_for_overlap
);
3564 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
3567 if (s
.expanding
&& s
.locked
== 0 &&
3568 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
3569 handle_stripe_expansion(conf
, sh
, &r6s
);
3572 spin_unlock(&sh
->lock
);
3574 /* wait for this device to become unblocked */
3575 if (unlikely(blocked_rdev
))
3576 md_wait_for_blocked_rdev(blocked_rdev
, conf
->mddev
);
3579 raid_run_ops(sh
, s
.ops_request
);
3584 if (dec_preread_active
) {
3585 /* We delay this until after ops_run_io so that if make_request
3586 * is waiting on a barrier, it won't continue until the writes
3587 * have actually been submitted.
3589 atomic_dec(&conf
->preread_active_stripes
);
3590 if (atomic_read(&conf
->preread_active_stripes
) <
3592 md_wakeup_thread(conf
->mddev
->thread
);
3595 return_io(return_bi
);
3598 static void handle_stripe(struct stripe_head
*sh
)
3600 if (sh
->raid_conf
->level
== 6)
3606 static void raid5_activate_delayed(raid5_conf_t
*conf
)
3608 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
3609 while (!list_empty(&conf
->delayed_list
)) {
3610 struct list_head
*l
= conf
->delayed_list
.next
;
3611 struct stripe_head
*sh
;
3612 sh
= list_entry(l
, struct stripe_head
, lru
);
3614 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3615 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3616 atomic_inc(&conf
->preread_active_stripes
);
3617 list_add_tail(&sh
->lru
, &conf
->hold_list
);
3620 plugger_set_plug(&conf
->plug
);
3623 static void activate_bit_delay(raid5_conf_t
*conf
)
3625 /* device_lock is held */
3626 struct list_head head
;
3627 list_add(&head
, &conf
->bitmap_list
);
3628 list_del_init(&conf
->bitmap_list
);
3629 while (!list_empty(&head
)) {
3630 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
3631 list_del_init(&sh
->lru
);
3632 atomic_inc(&sh
->count
);
3633 __release_stripe(conf
, sh
);
3637 static void unplug_slaves(mddev_t
*mddev
)
3639 raid5_conf_t
*conf
= mddev
->private;
3641 int devs
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
3644 for (i
= 0; i
< devs
; i
++) {
3645 mdk_rdev_t
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3646 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) && atomic_read(&rdev
->nr_pending
)) {
3647 struct request_queue
*r_queue
= bdev_get_queue(rdev
->bdev
);
3649 atomic_inc(&rdev
->nr_pending
);
3652 blk_unplug(r_queue
);
3654 rdev_dec_pending(rdev
, mddev
);
3661 void md_raid5_unplug_device(raid5_conf_t
*conf
)
3663 unsigned long flags
;
3665 spin_lock_irqsave(&conf
->device_lock
, flags
);
3667 if (plugger_remove_plug(&conf
->plug
)) {
3669 raid5_activate_delayed(conf
);
3671 md_wakeup_thread(conf
->mddev
->thread
);
3673 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3675 unplug_slaves(conf
->mddev
);
3677 EXPORT_SYMBOL_GPL(md_raid5_unplug_device
);
3679 static void raid5_unplug(struct plug_handle
*plug
)
3681 raid5_conf_t
*conf
= container_of(plug
, raid5_conf_t
, plug
);
3682 md_raid5_unplug_device(conf
);
3685 static void raid5_unplug_queue(struct request_queue
*q
)
3687 mddev_t
*mddev
= q
->queuedata
;
3688 md_raid5_unplug_device(mddev
->private);
3691 int md_raid5_congested(mddev_t
*mddev
, int bits
)
3693 raid5_conf_t
*conf
= mddev
->private;
3695 /* No difference between reads and writes. Just check
3696 * how busy the stripe_cache is
3699 if (conf
->inactive_blocked
)
3703 if (list_empty_careful(&conf
->inactive_list
))
3708 EXPORT_SYMBOL_GPL(md_raid5_congested
);
3710 static int raid5_congested(void *data
, int bits
)
3712 mddev_t
*mddev
= data
;
3714 return mddev_congested(mddev
, bits
) ||
3715 md_raid5_congested(mddev
, bits
);
3718 /* We want read requests to align with chunks where possible,
3719 * but write requests don't need to.
3721 static int raid5_mergeable_bvec(struct request_queue
*q
,
3722 struct bvec_merge_data
*bvm
,
3723 struct bio_vec
*biovec
)
3725 mddev_t
*mddev
= q
->queuedata
;
3726 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
3728 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
3729 unsigned int bio_sectors
= bvm
->bi_size
>> 9;
3731 if ((bvm
->bi_rw
& 1) == WRITE
)
3732 return biovec
->bv_len
; /* always allow writes to be mergeable */
3734 if (mddev
->new_chunk_sectors
< mddev
->chunk_sectors
)
3735 chunk_sectors
= mddev
->new_chunk_sectors
;
3736 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
3737 if (max
< 0) max
= 0;
3738 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
3739 return biovec
->bv_len
;
3745 static int in_chunk_boundary(mddev_t
*mddev
, struct bio
*bio
)
3747 sector_t sector
= bio
->bi_sector
+ get_start_sect(bio
->bi_bdev
);
3748 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
3749 unsigned int bio_sectors
= bio
->bi_size
>> 9;
3751 if (mddev
->new_chunk_sectors
< mddev
->chunk_sectors
)
3752 chunk_sectors
= mddev
->new_chunk_sectors
;
3753 return chunk_sectors
>=
3754 ((sector
& (chunk_sectors
- 1)) + bio_sectors
);
3758 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3759 * later sampled by raid5d.
3761 static void add_bio_to_retry(struct bio
*bi
,raid5_conf_t
*conf
)
3763 unsigned long flags
;
3765 spin_lock_irqsave(&conf
->device_lock
, flags
);
3767 bi
->bi_next
= conf
->retry_read_aligned_list
;
3768 conf
->retry_read_aligned_list
= bi
;
3770 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3771 md_wakeup_thread(conf
->mddev
->thread
);
3775 static struct bio
*remove_bio_from_retry(raid5_conf_t
*conf
)
3779 bi
= conf
->retry_read_aligned
;
3781 conf
->retry_read_aligned
= NULL
;
3784 bi
= conf
->retry_read_aligned_list
;
3786 conf
->retry_read_aligned_list
= bi
->bi_next
;
3789 * this sets the active strip count to 1 and the processed
3790 * strip count to zero (upper 8 bits)
3792 bi
->bi_phys_segments
= 1; /* biased count of active stripes */
3800 * The "raid5_align_endio" should check if the read succeeded and if it
3801 * did, call bio_endio on the original bio (having bio_put the new bio
3803 * If the read failed..
3805 static void raid5_align_endio(struct bio
*bi
, int error
)
3807 struct bio
* raid_bi
= bi
->bi_private
;
3810 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3815 rdev
= (void*)raid_bi
->bi_next
;
3816 raid_bi
->bi_next
= NULL
;
3817 mddev
= rdev
->mddev
;
3818 conf
= mddev
->private;
3820 rdev_dec_pending(rdev
, conf
->mddev
);
3822 if (!error
&& uptodate
) {
3823 bio_endio(raid_bi
, 0);
3824 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
3825 wake_up(&conf
->wait_for_stripe
);
3830 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3832 add_bio_to_retry(raid_bi
, conf
);
3835 static int bio_fits_rdev(struct bio
*bi
)
3837 struct request_queue
*q
= bdev_get_queue(bi
->bi_bdev
);
3839 if ((bi
->bi_size
>>9) > queue_max_sectors(q
))
3841 blk_recount_segments(q
, bi
);
3842 if (bi
->bi_phys_segments
> queue_max_segments(q
))
3845 if (q
->merge_bvec_fn
)
3846 /* it's too hard to apply the merge_bvec_fn at this stage,
3855 static int chunk_aligned_read(mddev_t
*mddev
, struct bio
* raid_bio
)
3857 raid5_conf_t
*conf
= mddev
->private;
3859 struct bio
* align_bi
;
3862 if (!in_chunk_boundary(mddev
, raid_bio
)) {
3863 pr_debug("chunk_aligned_read : non aligned\n");
3867 * use bio_clone to make a copy of the bio
3869 align_bi
= bio_clone(raid_bio
, GFP_NOIO
);
3873 * set bi_end_io to a new function, and set bi_private to the
3876 align_bi
->bi_end_io
= raid5_align_endio
;
3877 align_bi
->bi_private
= raid_bio
;
3881 align_bi
->bi_sector
= raid5_compute_sector(conf
, raid_bio
->bi_sector
,
3886 rdev
= rcu_dereference(conf
->disks
[dd_idx
].rdev
);
3887 if (rdev
&& test_bit(In_sync
, &rdev
->flags
)) {
3888 atomic_inc(&rdev
->nr_pending
);
3890 raid_bio
->bi_next
= (void*)rdev
;
3891 align_bi
->bi_bdev
= rdev
->bdev
;
3892 align_bi
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
3893 align_bi
->bi_sector
+= rdev
->data_offset
;
3895 if (!bio_fits_rdev(align_bi
)) {
3896 /* too big in some way */
3898 rdev_dec_pending(rdev
, mddev
);
3902 spin_lock_irq(&conf
->device_lock
);
3903 wait_event_lock_irq(conf
->wait_for_stripe
,
3905 conf
->device_lock
, /* nothing */);
3906 atomic_inc(&conf
->active_aligned_reads
);
3907 spin_unlock_irq(&conf
->device_lock
);
3909 generic_make_request(align_bi
);
3918 /* __get_priority_stripe - get the next stripe to process
3920 * Full stripe writes are allowed to pass preread active stripes up until
3921 * the bypass_threshold is exceeded. In general the bypass_count
3922 * increments when the handle_list is handled before the hold_list; however, it
3923 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3924 * stripe with in flight i/o. The bypass_count will be reset when the
3925 * head of the hold_list has changed, i.e. the head was promoted to the
3928 static struct stripe_head
*__get_priority_stripe(raid5_conf_t
*conf
)
3930 struct stripe_head
*sh
;
3932 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3934 list_empty(&conf
->handle_list
) ? "empty" : "busy",
3935 list_empty(&conf
->hold_list
) ? "empty" : "busy",
3936 atomic_read(&conf
->pending_full_writes
), conf
->bypass_count
);
3938 if (!list_empty(&conf
->handle_list
)) {
3939 sh
= list_entry(conf
->handle_list
.next
, typeof(*sh
), lru
);
3941 if (list_empty(&conf
->hold_list
))
3942 conf
->bypass_count
= 0;
3943 else if (!test_bit(STRIPE_IO_STARTED
, &sh
->state
)) {
3944 if (conf
->hold_list
.next
== conf
->last_hold
)
3945 conf
->bypass_count
++;
3947 conf
->last_hold
= conf
->hold_list
.next
;
3948 conf
->bypass_count
-= conf
->bypass_threshold
;
3949 if (conf
->bypass_count
< 0)
3950 conf
->bypass_count
= 0;
3953 } else if (!list_empty(&conf
->hold_list
) &&
3954 ((conf
->bypass_threshold
&&
3955 conf
->bypass_count
> conf
->bypass_threshold
) ||
3956 atomic_read(&conf
->pending_full_writes
) == 0)) {
3957 sh
= list_entry(conf
->hold_list
.next
,
3959 conf
->bypass_count
-= conf
->bypass_threshold
;
3960 if (conf
->bypass_count
< 0)
3961 conf
->bypass_count
= 0;
3965 list_del_init(&sh
->lru
);
3966 atomic_inc(&sh
->count
);
3967 BUG_ON(atomic_read(&sh
->count
) != 1);
3971 static int make_request(mddev_t
*mddev
, struct bio
* bi
)
3973 raid5_conf_t
*conf
= mddev
->private;
3975 sector_t new_sector
;
3976 sector_t logical_sector
, last_sector
;
3977 struct stripe_head
*sh
;
3978 const int rw
= bio_data_dir(bi
);
3981 if (unlikely(bi
->bi_rw
& REQ_HARDBARRIER
)) {
3982 /* Drain all pending writes. We only really need
3983 * to ensure they have been submitted, but this is
3986 mddev
->pers
->quiesce(mddev
, 1);
3987 mddev
->pers
->quiesce(mddev
, 0);
3988 md_barrier_request(mddev
, bi
);
3992 md_write_start(mddev
, bi
);
3995 mddev
->reshape_position
== MaxSector
&&
3996 chunk_aligned_read(mddev
,bi
))
3999 logical_sector
= bi
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
4000 last_sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
4002 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
4004 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
4006 int disks
, data_disks
;
4011 disks
= conf
->raid_disks
;
4012 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
4013 if (unlikely(conf
->reshape_progress
!= MaxSector
)) {
4014 /* spinlock is needed as reshape_progress may be
4015 * 64bit on a 32bit platform, and so it might be
4016 * possible to see a half-updated value
4017 * Ofcourse reshape_progress could change after
4018 * the lock is dropped, so once we get a reference
4019 * to the stripe that we think it is, we will have
4022 spin_lock_irq(&conf
->device_lock
);
4023 if (mddev
->delta_disks
< 0
4024 ? logical_sector
< conf
->reshape_progress
4025 : logical_sector
>= conf
->reshape_progress
) {
4026 disks
= conf
->previous_raid_disks
;
4029 if (mddev
->delta_disks
< 0
4030 ? logical_sector
< conf
->reshape_safe
4031 : logical_sector
>= conf
->reshape_safe
) {
4032 spin_unlock_irq(&conf
->device_lock
);
4037 spin_unlock_irq(&conf
->device_lock
);
4039 data_disks
= disks
- conf
->max_degraded
;
4041 new_sector
= raid5_compute_sector(conf
, logical_sector
,
4044 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4045 (unsigned long long)new_sector
,
4046 (unsigned long long)logical_sector
);
4048 sh
= get_active_stripe(conf
, new_sector
, previous
,
4049 (bi
->bi_rw
&RWA_MASK
), 0);
4051 if (unlikely(previous
)) {
4052 /* expansion might have moved on while waiting for a
4053 * stripe, so we must do the range check again.
4054 * Expansion could still move past after this
4055 * test, but as we are holding a reference to
4056 * 'sh', we know that if that happens,
4057 * STRIPE_EXPANDING will get set and the expansion
4058 * won't proceed until we finish with the stripe.
4061 spin_lock_irq(&conf
->device_lock
);
4062 if (mddev
->delta_disks
< 0
4063 ? logical_sector
>= conf
->reshape_progress
4064 : logical_sector
< conf
->reshape_progress
)
4065 /* mismatch, need to try again */
4067 spin_unlock_irq(&conf
->device_lock
);
4075 if (bio_data_dir(bi
) == WRITE
&&
4076 logical_sector
>= mddev
->suspend_lo
&&
4077 logical_sector
< mddev
->suspend_hi
) {
4079 /* As the suspend_* range is controlled by
4080 * userspace, we want an interruptible
4083 flush_signals(current
);
4084 prepare_to_wait(&conf
->wait_for_overlap
,
4085 &w
, TASK_INTERRUPTIBLE
);
4086 if (logical_sector
>= mddev
->suspend_lo
&&
4087 logical_sector
< mddev
->suspend_hi
)
4092 if (test_bit(STRIPE_EXPANDING
, &sh
->state
) ||
4093 !add_stripe_bio(sh
, bi
, dd_idx
, (bi
->bi_rw
&RW_MASK
))) {
4094 /* Stripe is busy expanding or
4095 * add failed due to overlap. Flush everything
4098 md_raid5_unplug_device(conf
);
4103 finish_wait(&conf
->wait_for_overlap
, &w
);
4104 set_bit(STRIPE_HANDLE
, &sh
->state
);
4105 clear_bit(STRIPE_DELAYED
, &sh
->state
);
4106 if (mddev
->barrier
&&
4107 !test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
4108 atomic_inc(&conf
->preread_active_stripes
);
4111 /* cannot get stripe for read-ahead, just give-up */
4112 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
4113 finish_wait(&conf
->wait_for_overlap
, &w
);
4118 spin_lock_irq(&conf
->device_lock
);
4119 remaining
= raid5_dec_bi_phys_segments(bi
);
4120 spin_unlock_irq(&conf
->device_lock
);
4121 if (remaining
== 0) {
4124 md_write_end(mddev
);
4129 if (mddev
->barrier
) {
4130 /* We need to wait for the stripes to all be handled.
4131 * So: wait for preread_active_stripes to drop to 0.
4133 wait_event(mddev
->thread
->wqueue
,
4134 atomic_read(&conf
->preread_active_stripes
) == 0);
4139 static sector_t
raid5_size(mddev_t
*mddev
, sector_t sectors
, int raid_disks
);
4141 static sector_t
reshape_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
)
4143 /* reshaping is quite different to recovery/resync so it is
4144 * handled quite separately ... here.
4146 * On each call to sync_request, we gather one chunk worth of
4147 * destination stripes and flag them as expanding.
4148 * Then we find all the source stripes and request reads.
4149 * As the reads complete, handle_stripe will copy the data
4150 * into the destination stripe and release that stripe.
4152 raid5_conf_t
*conf
= mddev
->private;
4153 struct stripe_head
*sh
;
4154 sector_t first_sector
, last_sector
;
4155 int raid_disks
= conf
->previous_raid_disks
;
4156 int data_disks
= raid_disks
- conf
->max_degraded
;
4157 int new_data_disks
= conf
->raid_disks
- conf
->max_degraded
;
4160 sector_t writepos
, readpos
, safepos
;
4161 sector_t stripe_addr
;
4162 int reshape_sectors
;
4163 struct list_head stripes
;
4165 if (sector_nr
== 0) {
4166 /* If restarting in the middle, skip the initial sectors */
4167 if (mddev
->delta_disks
< 0 &&
4168 conf
->reshape_progress
< raid5_size(mddev
, 0, 0)) {
4169 sector_nr
= raid5_size(mddev
, 0, 0)
4170 - conf
->reshape_progress
;
4171 } else if (mddev
->delta_disks
>= 0 &&
4172 conf
->reshape_progress
> 0)
4173 sector_nr
= conf
->reshape_progress
;
4174 sector_div(sector_nr
, new_data_disks
);
4176 mddev
->curr_resync_completed
= sector_nr
;
4177 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4183 /* We need to process a full chunk at a time.
4184 * If old and new chunk sizes differ, we need to process the
4187 if (mddev
->new_chunk_sectors
> mddev
->chunk_sectors
)
4188 reshape_sectors
= mddev
->new_chunk_sectors
;
4190 reshape_sectors
= mddev
->chunk_sectors
;
4192 /* we update the metadata when there is more than 3Meg
4193 * in the block range (that is rather arbitrary, should
4194 * probably be time based) or when the data about to be
4195 * copied would over-write the source of the data at
4196 * the front of the range.
4197 * i.e. one new_stripe along from reshape_progress new_maps
4198 * to after where reshape_safe old_maps to
4200 writepos
= conf
->reshape_progress
;
4201 sector_div(writepos
, new_data_disks
);
4202 readpos
= conf
->reshape_progress
;
4203 sector_div(readpos
, data_disks
);
4204 safepos
= conf
->reshape_safe
;
4205 sector_div(safepos
, data_disks
);
4206 if (mddev
->delta_disks
< 0) {
4207 writepos
-= min_t(sector_t
, reshape_sectors
, writepos
);
4208 readpos
+= reshape_sectors
;
4209 safepos
+= reshape_sectors
;
4211 writepos
+= reshape_sectors
;
4212 readpos
-= min_t(sector_t
, reshape_sectors
, readpos
);
4213 safepos
-= min_t(sector_t
, reshape_sectors
, safepos
);
4216 /* 'writepos' is the most advanced device address we might write.
4217 * 'readpos' is the least advanced device address we might read.
4218 * 'safepos' is the least address recorded in the metadata as having
4220 * If 'readpos' is behind 'writepos', then there is no way that we can
4221 * ensure safety in the face of a crash - that must be done by userspace
4222 * making a backup of the data. So in that case there is no particular
4223 * rush to update metadata.
4224 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4225 * update the metadata to advance 'safepos' to match 'readpos' so that
4226 * we can be safe in the event of a crash.
4227 * So we insist on updating metadata if safepos is behind writepos and
4228 * readpos is beyond writepos.
4229 * In any case, update the metadata every 10 seconds.
4230 * Maybe that number should be configurable, but I'm not sure it is
4231 * worth it.... maybe it could be a multiple of safemode_delay???
4233 if ((mddev
->delta_disks
< 0
4234 ? (safepos
> writepos
&& readpos
< writepos
)
4235 : (safepos
< writepos
&& readpos
> writepos
)) ||
4236 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
4237 /* Cannot proceed until we've updated the superblock... */
4238 wait_event(conf
->wait_for_overlap
,
4239 atomic_read(&conf
->reshape_stripes
)==0);
4240 mddev
->reshape_position
= conf
->reshape_progress
;
4241 mddev
->curr_resync_completed
= mddev
->curr_resync
;
4242 conf
->reshape_checkpoint
= jiffies
;
4243 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4244 md_wakeup_thread(mddev
->thread
);
4245 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
4246 kthread_should_stop());
4247 spin_lock_irq(&conf
->device_lock
);
4248 conf
->reshape_safe
= mddev
->reshape_position
;
4249 spin_unlock_irq(&conf
->device_lock
);
4250 wake_up(&conf
->wait_for_overlap
);
4251 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4254 if (mddev
->delta_disks
< 0) {
4255 BUG_ON(conf
->reshape_progress
== 0);
4256 stripe_addr
= writepos
;
4257 BUG_ON((mddev
->dev_sectors
&
4258 ~((sector_t
)reshape_sectors
- 1))
4259 - reshape_sectors
- stripe_addr
4262 BUG_ON(writepos
!= sector_nr
+ reshape_sectors
);
4263 stripe_addr
= sector_nr
;
4265 INIT_LIST_HEAD(&stripes
);
4266 for (i
= 0; i
< reshape_sectors
; i
+= STRIPE_SECTORS
) {
4268 int skipped_disk
= 0;
4269 sh
= get_active_stripe(conf
, stripe_addr
+i
, 0, 0, 1);
4270 set_bit(STRIPE_EXPANDING
, &sh
->state
);
4271 atomic_inc(&conf
->reshape_stripes
);
4272 /* If any of this stripe is beyond the end of the old
4273 * array, then we need to zero those blocks
4275 for (j
=sh
->disks
; j
--;) {
4277 if (j
== sh
->pd_idx
)
4279 if (conf
->level
== 6 &&
4282 s
= compute_blocknr(sh
, j
, 0);
4283 if (s
< raid5_size(mddev
, 0, 0)) {
4287 memset(page_address(sh
->dev
[j
].page
), 0, STRIPE_SIZE
);
4288 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
4289 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
4291 if (!skipped_disk
) {
4292 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
4293 set_bit(STRIPE_HANDLE
, &sh
->state
);
4295 list_add(&sh
->lru
, &stripes
);
4297 spin_lock_irq(&conf
->device_lock
);
4298 if (mddev
->delta_disks
< 0)
4299 conf
->reshape_progress
-= reshape_sectors
* new_data_disks
;
4301 conf
->reshape_progress
+= reshape_sectors
* new_data_disks
;
4302 spin_unlock_irq(&conf
->device_lock
);
4303 /* Ok, those stripe are ready. We can start scheduling
4304 * reads on the source stripes.
4305 * The source stripes are determined by mapping the first and last
4306 * block on the destination stripes.
4309 raid5_compute_sector(conf
, stripe_addr
*(new_data_disks
),
4312 raid5_compute_sector(conf
, ((stripe_addr
+reshape_sectors
)
4313 * new_data_disks
- 1),
4315 if (last_sector
>= mddev
->dev_sectors
)
4316 last_sector
= mddev
->dev_sectors
- 1;
4317 while (first_sector
<= last_sector
) {
4318 sh
= get_active_stripe(conf
, first_sector
, 1, 0, 1);
4319 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
4320 set_bit(STRIPE_HANDLE
, &sh
->state
);
4322 first_sector
+= STRIPE_SECTORS
;
4324 /* Now that the sources are clearly marked, we can release
4325 * the destination stripes
4327 while (!list_empty(&stripes
)) {
4328 sh
= list_entry(stripes
.next
, struct stripe_head
, lru
);
4329 list_del_init(&sh
->lru
);
4332 /* If this takes us to the resync_max point where we have to pause,
4333 * then we need to write out the superblock.
4335 sector_nr
+= reshape_sectors
;
4336 if ((sector_nr
- mddev
->curr_resync_completed
) * 2
4337 >= mddev
->resync_max
- mddev
->curr_resync_completed
) {
4338 /* Cannot proceed until we've updated the superblock... */
4339 wait_event(conf
->wait_for_overlap
,
4340 atomic_read(&conf
->reshape_stripes
) == 0);
4341 mddev
->reshape_position
= conf
->reshape_progress
;
4342 mddev
->curr_resync_completed
= mddev
->curr_resync
+ reshape_sectors
;
4343 conf
->reshape_checkpoint
= jiffies
;
4344 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4345 md_wakeup_thread(mddev
->thread
);
4346 wait_event(mddev
->sb_wait
,
4347 !test_bit(MD_CHANGE_DEVS
, &mddev
->flags
)
4348 || kthread_should_stop());
4349 spin_lock_irq(&conf
->device_lock
);
4350 conf
->reshape_safe
= mddev
->reshape_position
;
4351 spin_unlock_irq(&conf
->device_lock
);
4352 wake_up(&conf
->wait_for_overlap
);
4353 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4355 return reshape_sectors
;
4358 /* FIXME go_faster isn't used */
4359 static inline sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
4361 raid5_conf_t
*conf
= mddev
->private;
4362 struct stripe_head
*sh
;
4363 sector_t max_sector
= mddev
->dev_sectors
;
4365 int still_degraded
= 0;
4368 if (sector_nr
>= max_sector
) {
4369 /* just being told to finish up .. nothing much to do */
4370 unplug_slaves(mddev
);
4372 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
4377 if (mddev
->curr_resync
< max_sector
) /* aborted */
4378 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
4380 else /* completed sync */
4382 bitmap_close_sync(mddev
->bitmap
);
4387 /* Allow raid5_quiesce to complete */
4388 wait_event(conf
->wait_for_overlap
, conf
->quiesce
!= 2);
4390 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
4391 return reshape_request(mddev
, sector_nr
, skipped
);
4393 /* No need to check resync_max as we never do more than one
4394 * stripe, and as resync_max will always be on a chunk boundary,
4395 * if the check in md_do_sync didn't fire, there is no chance
4396 * of overstepping resync_max here
4399 /* if there is too many failed drives and we are trying
4400 * to resync, then assert that we are finished, because there is
4401 * nothing we can do.
4403 if (mddev
->degraded
>= conf
->max_degraded
&&
4404 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
4405 sector_t rv
= mddev
->dev_sectors
- sector_nr
;
4409 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
4410 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
4411 !conf
->fullsync
&& sync_blocks
>= STRIPE_SECTORS
) {
4412 /* we can skip this block, and probably more */
4413 sync_blocks
/= STRIPE_SECTORS
;
4415 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
4419 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
4421 sh
= get_active_stripe(conf
, sector_nr
, 0, 1, 0);
4423 sh
= get_active_stripe(conf
, sector_nr
, 0, 0, 0);
4424 /* make sure we don't swamp the stripe cache if someone else
4425 * is trying to get access
4427 schedule_timeout_uninterruptible(1);
4429 /* Need to check if array will still be degraded after recovery/resync
4430 * We don't need to check the 'failed' flag as when that gets set,
4433 for (i
= 0; i
< conf
->raid_disks
; i
++)
4434 if (conf
->disks
[i
].rdev
== NULL
)
4437 bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, still_degraded
);
4439 spin_lock(&sh
->lock
);
4440 set_bit(STRIPE_SYNCING
, &sh
->state
);
4441 clear_bit(STRIPE_INSYNC
, &sh
->state
);
4442 spin_unlock(&sh
->lock
);
4447 return STRIPE_SECTORS
;
4450 static int retry_aligned_read(raid5_conf_t
*conf
, struct bio
*raid_bio
)
4452 /* We may not be able to submit a whole bio at once as there
4453 * may not be enough stripe_heads available.
4454 * We cannot pre-allocate enough stripe_heads as we may need
4455 * more than exist in the cache (if we allow ever large chunks).
4456 * So we do one stripe head at a time and record in
4457 * ->bi_hw_segments how many have been done.
4459 * We *know* that this entire raid_bio is in one chunk, so
4460 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4462 struct stripe_head
*sh
;
4464 sector_t sector
, logical_sector
, last_sector
;
4469 logical_sector
= raid_bio
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
4470 sector
= raid5_compute_sector(conf
, logical_sector
,
4472 last_sector
= raid_bio
->bi_sector
+ (raid_bio
->bi_size
>>9);
4474 for (; logical_sector
< last_sector
;
4475 logical_sector
+= STRIPE_SECTORS
,
4476 sector
+= STRIPE_SECTORS
,
4479 if (scnt
< raid5_bi_hw_segments(raid_bio
))
4480 /* already done this stripe */
4483 sh
= get_active_stripe(conf
, sector
, 0, 1, 0);
4486 /* failed to get a stripe - must wait */
4487 raid5_set_bi_hw_segments(raid_bio
, scnt
);
4488 conf
->retry_read_aligned
= raid_bio
;
4492 set_bit(R5_ReadError
, &sh
->dev
[dd_idx
].flags
);
4493 if (!add_stripe_bio(sh
, raid_bio
, dd_idx
, 0)) {
4495 raid5_set_bi_hw_segments(raid_bio
, scnt
);
4496 conf
->retry_read_aligned
= raid_bio
;
4504 spin_lock_irq(&conf
->device_lock
);
4505 remaining
= raid5_dec_bi_phys_segments(raid_bio
);
4506 spin_unlock_irq(&conf
->device_lock
);
4508 bio_endio(raid_bio
, 0);
4509 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
4510 wake_up(&conf
->wait_for_stripe
);
4516 * This is our raid5 kernel thread.
4518 * We scan the hash table for stripes which can be handled now.
4519 * During the scan, completed stripes are saved for us by the interrupt
4520 * handler, so that they will not have to wait for our next wakeup.
4522 static void raid5d(mddev_t
*mddev
)
4524 struct stripe_head
*sh
;
4525 raid5_conf_t
*conf
= mddev
->private;
4528 pr_debug("+++ raid5d active\n");
4530 md_check_recovery(mddev
);
4533 spin_lock_irq(&conf
->device_lock
);
4537 if (conf
->seq_flush
!= conf
->seq_write
) {
4538 int seq
= conf
->seq_flush
;
4539 spin_unlock_irq(&conf
->device_lock
);
4540 bitmap_unplug(mddev
->bitmap
);
4541 spin_lock_irq(&conf
->device_lock
);
4542 conf
->seq_write
= seq
;
4543 activate_bit_delay(conf
);
4546 while ((bio
= remove_bio_from_retry(conf
))) {
4548 spin_unlock_irq(&conf
->device_lock
);
4549 ok
= retry_aligned_read(conf
, bio
);
4550 spin_lock_irq(&conf
->device_lock
);
4556 sh
= __get_priority_stripe(conf
);
4560 spin_unlock_irq(&conf
->device_lock
);
4567 spin_lock_irq(&conf
->device_lock
);
4569 pr_debug("%d stripes handled\n", handled
);
4571 spin_unlock_irq(&conf
->device_lock
);
4573 async_tx_issue_pending_all();
4574 unplug_slaves(mddev
);
4576 pr_debug("--- raid5d inactive\n");
4580 raid5_show_stripe_cache_size(mddev_t
*mddev
, char *page
)
4582 raid5_conf_t
*conf
= mddev
->private;
4584 return sprintf(page
, "%d\n", conf
->max_nr_stripes
);
4590 raid5_set_cache_size(mddev_t
*mddev
, int size
)
4592 raid5_conf_t
*conf
= mddev
->private;
4595 if (size
<= 16 || size
> 32768)
4597 while (size
< conf
->max_nr_stripes
) {
4598 if (drop_one_stripe(conf
))
4599 conf
->max_nr_stripes
--;
4603 err
= md_allow_write(mddev
);
4606 while (size
> conf
->max_nr_stripes
) {
4607 if (grow_one_stripe(conf
))
4608 conf
->max_nr_stripes
++;
4613 EXPORT_SYMBOL(raid5_set_cache_size
);
4616 raid5_store_stripe_cache_size(mddev_t
*mddev
, const char *page
, size_t len
)
4618 raid5_conf_t
*conf
= mddev
->private;
4622 if (len
>= PAGE_SIZE
)
4627 if (strict_strtoul(page
, 10, &new))
4629 err
= raid5_set_cache_size(mddev
, new);
4635 static struct md_sysfs_entry
4636 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
4637 raid5_show_stripe_cache_size
,
4638 raid5_store_stripe_cache_size
);
4641 raid5_show_preread_threshold(mddev_t
*mddev
, char *page
)
4643 raid5_conf_t
*conf
= mddev
->private;
4645 return sprintf(page
, "%d\n", conf
->bypass_threshold
);
4651 raid5_store_preread_threshold(mddev_t
*mddev
, const char *page
, size_t len
)
4653 raid5_conf_t
*conf
= mddev
->private;
4655 if (len
>= PAGE_SIZE
)
4660 if (strict_strtoul(page
, 10, &new))
4662 if (new > conf
->max_nr_stripes
)
4664 conf
->bypass_threshold
= new;
4668 static struct md_sysfs_entry
4669 raid5_preread_bypass_threshold
= __ATTR(preread_bypass_threshold
,
4671 raid5_show_preread_threshold
,
4672 raid5_store_preread_threshold
);
4675 stripe_cache_active_show(mddev_t
*mddev
, char *page
)
4677 raid5_conf_t
*conf
= mddev
->private;
4679 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
4684 static struct md_sysfs_entry
4685 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
4687 static struct attribute
*raid5_attrs
[] = {
4688 &raid5_stripecache_size
.attr
,
4689 &raid5_stripecache_active
.attr
,
4690 &raid5_preread_bypass_threshold
.attr
,
4693 static struct attribute_group raid5_attrs_group
= {
4695 .attrs
= raid5_attrs
,
4699 raid5_size(mddev_t
*mddev
, sector_t sectors
, int raid_disks
)
4701 raid5_conf_t
*conf
= mddev
->private;
4704 sectors
= mddev
->dev_sectors
;
4706 /* size is defined by the smallest of previous and new size */
4707 raid_disks
= min(conf
->raid_disks
, conf
->previous_raid_disks
);
4709 sectors
&= ~((sector_t
)mddev
->chunk_sectors
- 1);
4710 sectors
&= ~((sector_t
)mddev
->new_chunk_sectors
- 1);
4711 return sectors
* (raid_disks
- conf
->max_degraded
);
4714 static void raid5_free_percpu(raid5_conf_t
*conf
)
4716 struct raid5_percpu
*percpu
;
4723 for_each_possible_cpu(cpu
) {
4724 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
4725 safe_put_page(percpu
->spare_page
);
4726 kfree(percpu
->scribble
);
4728 #ifdef CONFIG_HOTPLUG_CPU
4729 unregister_cpu_notifier(&conf
->cpu_notify
);
4733 free_percpu(conf
->percpu
);
4736 static void free_conf(raid5_conf_t
*conf
)
4738 shrink_stripes(conf
);
4739 raid5_free_percpu(conf
);
4741 kfree(conf
->stripe_hashtbl
);
4745 #ifdef CONFIG_HOTPLUG_CPU
4746 static int raid456_cpu_notify(struct notifier_block
*nfb
, unsigned long action
,
4749 raid5_conf_t
*conf
= container_of(nfb
, raid5_conf_t
, cpu_notify
);
4750 long cpu
= (long)hcpu
;
4751 struct raid5_percpu
*percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
4754 case CPU_UP_PREPARE
:
4755 case CPU_UP_PREPARE_FROZEN
:
4756 if (conf
->level
== 6 && !percpu
->spare_page
)
4757 percpu
->spare_page
= alloc_page(GFP_KERNEL
);
4758 if (!percpu
->scribble
)
4759 percpu
->scribble
= kmalloc(conf
->scribble_len
, GFP_KERNEL
);
4761 if (!percpu
->scribble
||
4762 (conf
->level
== 6 && !percpu
->spare_page
)) {
4763 safe_put_page(percpu
->spare_page
);
4764 kfree(percpu
->scribble
);
4765 pr_err("%s: failed memory allocation for cpu%ld\n",
4767 return notifier_from_errno(-ENOMEM
);
4771 case CPU_DEAD_FROZEN
:
4772 safe_put_page(percpu
->spare_page
);
4773 kfree(percpu
->scribble
);
4774 percpu
->spare_page
= NULL
;
4775 percpu
->scribble
= NULL
;
4784 static int raid5_alloc_percpu(raid5_conf_t
*conf
)
4787 struct page
*spare_page
;
4788 struct raid5_percpu __percpu
*allcpus
;
4792 allcpus
= alloc_percpu(struct raid5_percpu
);
4795 conf
->percpu
= allcpus
;
4799 for_each_present_cpu(cpu
) {
4800 if (conf
->level
== 6) {
4801 spare_page
= alloc_page(GFP_KERNEL
);
4806 per_cpu_ptr(conf
->percpu
, cpu
)->spare_page
= spare_page
;
4808 scribble
= kmalloc(conf
->scribble_len
, GFP_KERNEL
);
4813 per_cpu_ptr(conf
->percpu
, cpu
)->scribble
= scribble
;
4815 #ifdef CONFIG_HOTPLUG_CPU
4816 conf
->cpu_notify
.notifier_call
= raid456_cpu_notify
;
4817 conf
->cpu_notify
.priority
= 0;
4819 err
= register_cpu_notifier(&conf
->cpu_notify
);
4826 static raid5_conf_t
*setup_conf(mddev_t
*mddev
)
4829 int raid_disk
, memory
, max_disks
;
4831 struct disk_info
*disk
;
4833 if (mddev
->new_level
!= 5
4834 && mddev
->new_level
!= 4
4835 && mddev
->new_level
!= 6) {
4836 printk(KERN_ERR
"md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4837 mdname(mddev
), mddev
->new_level
);
4838 return ERR_PTR(-EIO
);
4840 if ((mddev
->new_level
== 5
4841 && !algorithm_valid_raid5(mddev
->new_layout
)) ||
4842 (mddev
->new_level
== 6
4843 && !algorithm_valid_raid6(mddev
->new_layout
))) {
4844 printk(KERN_ERR
"md/raid:%s: layout %d not supported\n",
4845 mdname(mddev
), mddev
->new_layout
);
4846 return ERR_PTR(-EIO
);
4848 if (mddev
->new_level
== 6 && mddev
->raid_disks
< 4) {
4849 printk(KERN_ERR
"md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4850 mdname(mddev
), mddev
->raid_disks
);
4851 return ERR_PTR(-EINVAL
);
4854 if (!mddev
->new_chunk_sectors
||
4855 (mddev
->new_chunk_sectors
<< 9) % PAGE_SIZE
||
4856 !is_power_of_2(mddev
->new_chunk_sectors
)) {
4857 printk(KERN_ERR
"md/raid:%s: invalid chunk size %d\n",
4858 mdname(mddev
), mddev
->new_chunk_sectors
<< 9);
4859 return ERR_PTR(-EINVAL
);
4862 conf
= kzalloc(sizeof(raid5_conf_t
), GFP_KERNEL
);
4865 spin_lock_init(&conf
->device_lock
);
4866 init_waitqueue_head(&conf
->wait_for_stripe
);
4867 init_waitqueue_head(&conf
->wait_for_overlap
);
4868 INIT_LIST_HEAD(&conf
->handle_list
);
4869 INIT_LIST_HEAD(&conf
->hold_list
);
4870 INIT_LIST_HEAD(&conf
->delayed_list
);
4871 INIT_LIST_HEAD(&conf
->bitmap_list
);
4872 INIT_LIST_HEAD(&conf
->inactive_list
);
4873 atomic_set(&conf
->active_stripes
, 0);
4874 atomic_set(&conf
->preread_active_stripes
, 0);
4875 atomic_set(&conf
->active_aligned_reads
, 0);
4876 conf
->bypass_threshold
= BYPASS_THRESHOLD
;
4878 conf
->raid_disks
= mddev
->raid_disks
;
4879 if (mddev
->reshape_position
== MaxSector
)
4880 conf
->previous_raid_disks
= mddev
->raid_disks
;
4882 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
4883 max_disks
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
4884 conf
->scribble_len
= scribble_len(max_disks
);
4886 conf
->disks
= kzalloc(max_disks
* sizeof(struct disk_info
),
4891 conf
->mddev
= mddev
;
4893 if ((conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
)) == NULL
)
4896 conf
->level
= mddev
->new_level
;
4897 if (raid5_alloc_percpu(conf
) != 0)
4900 pr_debug("raid456: run(%s) called.\n", mdname(mddev
));
4902 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
4903 raid_disk
= rdev
->raid_disk
;
4904 if (raid_disk
>= max_disks
4907 disk
= conf
->disks
+ raid_disk
;
4911 if (test_bit(In_sync
, &rdev
->flags
)) {
4912 char b
[BDEVNAME_SIZE
];
4913 printk(KERN_INFO
"md/raid:%s: device %s operational as raid"
4915 mdname(mddev
), bdevname(rdev
->bdev
, b
), raid_disk
);
4917 /* Cannot rely on bitmap to complete recovery */
4921 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
4922 conf
->level
= mddev
->new_level
;
4923 if (conf
->level
== 6)
4924 conf
->max_degraded
= 2;
4926 conf
->max_degraded
= 1;
4927 conf
->algorithm
= mddev
->new_layout
;
4928 conf
->max_nr_stripes
= NR_STRIPES
;
4929 conf
->reshape_progress
= mddev
->reshape_position
;
4930 if (conf
->reshape_progress
!= MaxSector
) {
4931 conf
->prev_chunk_sectors
= mddev
->chunk_sectors
;
4932 conf
->prev_algo
= mddev
->layout
;
4935 memory
= conf
->max_nr_stripes
* (sizeof(struct stripe_head
) +
4936 max_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
4937 if (grow_stripes(conf
, conf
->max_nr_stripes
)) {
4939 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4940 mdname(mddev
), memory
);
4943 printk(KERN_INFO
"md/raid:%s: allocated %dkB\n",
4944 mdname(mddev
), memory
);
4946 conf
->thread
= md_register_thread(raid5d
, mddev
, NULL
);
4947 if (!conf
->thread
) {
4949 "md/raid:%s: couldn't allocate thread.\n",
4959 return ERR_PTR(-EIO
);
4961 return ERR_PTR(-ENOMEM
);
4965 static int only_parity(int raid_disk
, int algo
, int raid_disks
, int max_degraded
)
4968 case ALGORITHM_PARITY_0
:
4969 if (raid_disk
< max_degraded
)
4972 case ALGORITHM_PARITY_N
:
4973 if (raid_disk
>= raid_disks
- max_degraded
)
4976 case ALGORITHM_PARITY_0_6
:
4977 if (raid_disk
== 0 ||
4978 raid_disk
== raid_disks
- 1)
4981 case ALGORITHM_LEFT_ASYMMETRIC_6
:
4982 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
4983 case ALGORITHM_LEFT_SYMMETRIC_6
:
4984 case ALGORITHM_RIGHT_SYMMETRIC_6
:
4985 if (raid_disk
== raid_disks
- 1)
4991 static int run(mddev_t
*mddev
)
4994 int working_disks
= 0;
4995 int dirty_parity_disks
= 0;
4997 sector_t reshape_offset
= 0;
4999 if (mddev
->recovery_cp
!= MaxSector
)
5000 printk(KERN_NOTICE
"md/raid:%s: not clean"
5001 " -- starting background reconstruction\n",
5003 if (mddev
->reshape_position
!= MaxSector
) {
5004 /* Check that we can continue the reshape.
5005 * Currently only disks can change, it must
5006 * increase, and we must be past the point where
5007 * a stripe over-writes itself
5009 sector_t here_new
, here_old
;
5011 int max_degraded
= (mddev
->level
== 6 ? 2 : 1);
5013 if (mddev
->new_level
!= mddev
->level
) {
5014 printk(KERN_ERR
"md/raid:%s: unsupported reshape "
5015 "required - aborting.\n",
5019 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
5020 /* reshape_position must be on a new-stripe boundary, and one
5021 * further up in new geometry must map after here in old
5024 here_new
= mddev
->reshape_position
;
5025 if (sector_div(here_new
, mddev
->new_chunk_sectors
*
5026 (mddev
->raid_disks
- max_degraded
))) {
5027 printk(KERN_ERR
"md/raid:%s: reshape_position not "
5028 "on a stripe boundary\n", mdname(mddev
));
5031 reshape_offset
= here_new
* mddev
->new_chunk_sectors
;
5032 /* here_new is the stripe we will write to */
5033 here_old
= mddev
->reshape_position
;
5034 sector_div(here_old
, mddev
->chunk_sectors
*
5035 (old_disks
-max_degraded
));
5036 /* here_old is the first stripe that we might need to read
5038 if (mddev
->delta_disks
== 0) {
5039 /* We cannot be sure it is safe to start an in-place
5040 * reshape. It is only safe if user-space if monitoring
5041 * and taking constant backups.
5042 * mdadm always starts a situation like this in
5043 * readonly mode so it can take control before
5044 * allowing any writes. So just check for that.
5046 if ((here_new
* mddev
->new_chunk_sectors
!=
5047 here_old
* mddev
->chunk_sectors
) ||
5049 printk(KERN_ERR
"md/raid:%s: in-place reshape must be started"
5050 " in read-only mode - aborting\n",
5054 } else if (mddev
->delta_disks
< 0
5055 ? (here_new
* mddev
->new_chunk_sectors
<=
5056 here_old
* mddev
->chunk_sectors
)
5057 : (here_new
* mddev
->new_chunk_sectors
>=
5058 here_old
* mddev
->chunk_sectors
)) {
5059 /* Reading from the same stripe as writing to - bad */
5060 printk(KERN_ERR
"md/raid:%s: reshape_position too early for "
5061 "auto-recovery - aborting.\n",
5065 printk(KERN_INFO
"md/raid:%s: reshape will continue\n",
5067 /* OK, we should be able to continue; */
5069 BUG_ON(mddev
->level
!= mddev
->new_level
);
5070 BUG_ON(mddev
->layout
!= mddev
->new_layout
);
5071 BUG_ON(mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
);
5072 BUG_ON(mddev
->delta_disks
!= 0);
5075 if (mddev
->private == NULL
)
5076 conf
= setup_conf(mddev
);
5078 conf
= mddev
->private;
5081 return PTR_ERR(conf
);
5083 mddev
->thread
= conf
->thread
;
5084 conf
->thread
= NULL
;
5085 mddev
->private = conf
;
5088 * 0 for a fully functional array, 1 or 2 for a degraded array.
5090 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
5091 if (rdev
->raid_disk
< 0)
5093 if (test_bit(In_sync
, &rdev
->flags
)) {
5097 /* This disc is not fully in-sync. However if it
5098 * just stored parity (beyond the recovery_offset),
5099 * when we don't need to be concerned about the
5100 * array being dirty.
5101 * When reshape goes 'backwards', we never have
5102 * partially completed devices, so we only need
5103 * to worry about reshape going forwards.
5105 /* Hack because v0.91 doesn't store recovery_offset properly. */
5106 if (mddev
->major_version
== 0 &&
5107 mddev
->minor_version
> 90)
5108 rdev
->recovery_offset
= reshape_offset
;
5110 if (rdev
->recovery_offset
< reshape_offset
) {
5111 /* We need to check old and new layout */
5112 if (!only_parity(rdev
->raid_disk
,
5115 conf
->max_degraded
))
5118 if (!only_parity(rdev
->raid_disk
,
5120 conf
->previous_raid_disks
,
5121 conf
->max_degraded
))
5123 dirty_parity_disks
++;
5126 mddev
->degraded
= (max(conf
->raid_disks
, conf
->previous_raid_disks
)
5129 if (has_failed(conf
)) {
5130 printk(KERN_ERR
"md/raid:%s: not enough operational devices"
5131 " (%d/%d failed)\n",
5132 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
5136 /* device size must be a multiple of chunk size */
5137 mddev
->dev_sectors
&= ~(mddev
->chunk_sectors
- 1);
5138 mddev
->resync_max_sectors
= mddev
->dev_sectors
;
5140 if (mddev
->degraded
> dirty_parity_disks
&&
5141 mddev
->recovery_cp
!= MaxSector
) {
5142 if (mddev
->ok_start_degraded
)
5144 "md/raid:%s: starting dirty degraded array"
5145 " - data corruption possible.\n",
5149 "md/raid:%s: cannot start dirty degraded array.\n",
5155 if (mddev
->degraded
== 0)
5156 printk(KERN_INFO
"md/raid:%s: raid level %d active with %d out of %d"
5157 " devices, algorithm %d\n", mdname(mddev
), conf
->level
,
5158 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
5161 printk(KERN_ALERT
"md/raid:%s: raid level %d active with %d"
5162 " out of %d devices, algorithm %d\n",
5163 mdname(mddev
), conf
->level
,
5164 mddev
->raid_disks
- mddev
->degraded
,
5165 mddev
->raid_disks
, mddev
->new_layout
);
5167 print_raid5_conf(conf
);
5169 if (conf
->reshape_progress
!= MaxSector
) {
5170 conf
->reshape_safe
= conf
->reshape_progress
;
5171 atomic_set(&conf
->reshape_stripes
, 0);
5172 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
5173 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
5174 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
5175 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
5176 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
5181 /* Ok, everything is just fine now */
5182 if (mddev
->to_remove
== &raid5_attrs_group
)
5183 mddev
->to_remove
= NULL
;
5184 else if (mddev
->kobj
.sd
&&
5185 sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
))
5187 "raid5: failed to create sysfs attributes for %s\n",
5189 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
5191 plugger_init(&conf
->plug
, raid5_unplug
);
5192 mddev
->plug
= &conf
->plug
;
5195 /* read-ahead size must cover two whole stripes, which
5196 * is 2 * (datadisks) * chunksize where 'n' is the
5197 * number of raid devices
5199 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
5200 int stripe
= data_disks
*
5201 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
5202 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
5203 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
5205 blk_queue_merge_bvec(mddev
->queue
, raid5_mergeable_bvec
);
5207 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
5208 mddev
->queue
->backing_dev_info
.congested_fn
= raid5_congested
;
5209 mddev
->queue
->queue_lock
= &conf
->device_lock
;
5210 mddev
->queue
->unplug_fn
= raid5_unplug_queue
;
5212 chunk_size
= mddev
->chunk_sectors
<< 9;
5213 blk_queue_io_min(mddev
->queue
, chunk_size
);
5214 blk_queue_io_opt(mddev
->queue
, chunk_size
*
5215 (conf
->raid_disks
- conf
->max_degraded
));
5217 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
5218 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
5219 rdev
->data_offset
<< 9);
5224 md_unregister_thread(mddev
->thread
);
5225 mddev
->thread
= NULL
;
5227 print_raid5_conf(conf
);
5230 mddev
->private = NULL
;
5231 printk(KERN_ALERT
"md/raid:%s: failed to run raid set.\n", mdname(mddev
));
5235 static int stop(mddev_t
*mddev
)
5237 raid5_conf_t
*conf
= mddev
->private;
5239 md_unregister_thread(mddev
->thread
);
5240 mddev
->thread
= NULL
;
5242 mddev
->queue
->backing_dev_info
.congested_fn
= NULL
;
5243 plugger_flush(&conf
->plug
); /* the unplug fn references 'conf'*/
5245 mddev
->private = NULL
;
5246 mddev
->to_remove
= &raid5_attrs_group
;
5251 static void print_sh(struct seq_file
*seq
, struct stripe_head
*sh
)
5255 seq_printf(seq
, "sh %llu, pd_idx %d, state %ld.\n",
5256 (unsigned long long)sh
->sector
, sh
->pd_idx
, sh
->state
);
5257 seq_printf(seq
, "sh %llu, count %d.\n",
5258 (unsigned long long)sh
->sector
, atomic_read(&sh
->count
));
5259 seq_printf(seq
, "sh %llu, ", (unsigned long long)sh
->sector
);
5260 for (i
= 0; i
< sh
->disks
; i
++) {
5261 seq_printf(seq
, "(cache%d: %p %ld) ",
5262 i
, sh
->dev
[i
].page
, sh
->dev
[i
].flags
);
5264 seq_printf(seq
, "\n");
5267 static void printall(struct seq_file
*seq
, raid5_conf_t
*conf
)
5269 struct stripe_head
*sh
;
5270 struct hlist_node
*hn
;
5273 spin_lock_irq(&conf
->device_lock
);
5274 for (i
= 0; i
< NR_HASH
; i
++) {
5275 hlist_for_each_entry(sh
, hn
, &conf
->stripe_hashtbl
[i
], hash
) {
5276 if (sh
->raid_conf
!= conf
)
5281 spin_unlock_irq(&conf
->device_lock
);
5285 static void status(struct seq_file
*seq
, mddev_t
*mddev
)
5287 raid5_conf_t
*conf
= mddev
->private;
5290 seq_printf(seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
,
5291 mddev
->chunk_sectors
/ 2, mddev
->layout
);
5292 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->raid_disks
- mddev
->degraded
);
5293 for (i
= 0; i
< conf
->raid_disks
; i
++)
5294 seq_printf (seq
, "%s",
5295 conf
->disks
[i
].rdev
&&
5296 test_bit(In_sync
, &conf
->disks
[i
].rdev
->flags
) ? "U" : "_");
5297 seq_printf (seq
, "]");
5299 seq_printf (seq
, "\n");
5300 printall(seq
, conf
);
5304 static void print_raid5_conf (raid5_conf_t
*conf
)
5307 struct disk_info
*tmp
;
5309 printk(KERN_DEBUG
"RAID conf printout:\n");
5311 printk("(conf==NULL)\n");
5314 printk(KERN_DEBUG
" --- level:%d rd:%d wd:%d\n", conf
->level
,
5316 conf
->raid_disks
- conf
->mddev
->degraded
);
5318 for (i
= 0; i
< conf
->raid_disks
; i
++) {
5319 char b
[BDEVNAME_SIZE
];
5320 tmp
= conf
->disks
+ i
;
5322 printk(KERN_DEBUG
" disk %d, o:%d, dev:%s\n",
5323 i
, !test_bit(Faulty
, &tmp
->rdev
->flags
),
5324 bdevname(tmp
->rdev
->bdev
, b
));
5328 static int raid5_spare_active(mddev_t
*mddev
)
5331 raid5_conf_t
*conf
= mddev
->private;
5332 struct disk_info
*tmp
;
5334 unsigned long flags
;
5336 for (i
= 0; i
< conf
->raid_disks
; i
++) {
5337 tmp
= conf
->disks
+ i
;
5339 && tmp
->rdev
->recovery_offset
== MaxSector
5340 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
5341 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
5343 sysfs_notify_dirent(tmp
->rdev
->sysfs_state
);
5346 spin_lock_irqsave(&conf
->device_lock
, flags
);
5347 mddev
->degraded
-= count
;
5348 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
5349 print_raid5_conf(conf
);
5353 static int raid5_remove_disk(mddev_t
*mddev
, int number
)
5355 raid5_conf_t
*conf
= mddev
->private;
5358 struct disk_info
*p
= conf
->disks
+ number
;
5360 print_raid5_conf(conf
);
5363 if (number
>= conf
->raid_disks
&&
5364 conf
->reshape_progress
== MaxSector
)
5365 clear_bit(In_sync
, &rdev
->flags
);
5367 if (test_bit(In_sync
, &rdev
->flags
) ||
5368 atomic_read(&rdev
->nr_pending
)) {
5372 /* Only remove non-faulty devices if recovery
5375 if (!test_bit(Faulty
, &rdev
->flags
) &&
5376 !has_failed(conf
) &&
5377 number
< conf
->raid_disks
) {
5383 if (atomic_read(&rdev
->nr_pending
)) {
5384 /* lost the race, try later */
5391 print_raid5_conf(conf
);
5395 static int raid5_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
5397 raid5_conf_t
*conf
= mddev
->private;
5400 struct disk_info
*p
;
5402 int last
= conf
->raid_disks
- 1;
5404 if (has_failed(conf
))
5405 /* no point adding a device */
5408 if (rdev
->raid_disk
>= 0)
5409 first
= last
= rdev
->raid_disk
;
5412 * find the disk ... but prefer rdev->saved_raid_disk
5415 if (rdev
->saved_raid_disk
>= 0 &&
5416 rdev
->saved_raid_disk
>= first
&&
5417 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
5418 disk
= rdev
->saved_raid_disk
;
5421 for ( ; disk
<= last
; disk
++)
5422 if ((p
=conf
->disks
+ disk
)->rdev
== NULL
) {
5423 clear_bit(In_sync
, &rdev
->flags
);
5424 rdev
->raid_disk
= disk
;
5426 if (rdev
->saved_raid_disk
!= disk
)
5428 rcu_assign_pointer(p
->rdev
, rdev
);
5431 print_raid5_conf(conf
);
5435 static int raid5_resize(mddev_t
*mddev
, sector_t sectors
)
5437 /* no resync is happening, and there is enough space
5438 * on all devices, so we can resize.
5439 * We need to make sure resync covers any new space.
5440 * If the array is shrinking we should possibly wait until
5441 * any io in the removed space completes, but it hardly seems
5444 sectors
&= ~((sector_t
)mddev
->chunk_sectors
- 1);
5445 md_set_array_sectors(mddev
, raid5_size(mddev
, sectors
,
5446 mddev
->raid_disks
));
5447 if (mddev
->array_sectors
>
5448 raid5_size(mddev
, sectors
, mddev
->raid_disks
))
5450 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
5451 revalidate_disk(mddev
->gendisk
);
5452 if (sectors
> mddev
->dev_sectors
&& mddev
->recovery_cp
== MaxSector
) {
5453 mddev
->recovery_cp
= mddev
->dev_sectors
;
5454 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
5456 mddev
->dev_sectors
= sectors
;
5457 mddev
->resync_max_sectors
= sectors
;
5461 static int check_stripe_cache(mddev_t
*mddev
)
5463 /* Can only proceed if there are plenty of stripe_heads.
5464 * We need a minimum of one full stripe,, and for sensible progress
5465 * it is best to have about 4 times that.
5466 * If we require 4 times, then the default 256 4K stripe_heads will
5467 * allow for chunk sizes up to 256K, which is probably OK.
5468 * If the chunk size is greater, user-space should request more
5469 * stripe_heads first.
5471 raid5_conf_t
*conf
= mddev
->private;
5472 if (((mddev
->chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
5473 > conf
->max_nr_stripes
||
5474 ((mddev
->new_chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
5475 > conf
->max_nr_stripes
) {
5476 printk(KERN_WARNING
"md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5478 ((max(mddev
->chunk_sectors
, mddev
->new_chunk_sectors
) << 9)
5485 static int check_reshape(mddev_t
*mddev
)
5487 raid5_conf_t
*conf
= mddev
->private;
5489 if (mddev
->delta_disks
== 0 &&
5490 mddev
->new_layout
== mddev
->layout
&&
5491 mddev
->new_chunk_sectors
== mddev
->chunk_sectors
)
5492 return 0; /* nothing to do */
5494 /* Cannot grow a bitmap yet */
5496 if (has_failed(conf
))
5498 if (mddev
->delta_disks
< 0) {
5499 /* We might be able to shrink, but the devices must
5500 * be made bigger first.
5501 * For raid6, 4 is the minimum size.
5502 * Otherwise 2 is the minimum
5505 if (mddev
->level
== 6)
5507 if (mddev
->raid_disks
+ mddev
->delta_disks
< min
)
5511 if (!check_stripe_cache(mddev
))
5514 return resize_stripes(conf
, conf
->raid_disks
+ mddev
->delta_disks
);
5517 static int raid5_start_reshape(mddev_t
*mddev
)
5519 raid5_conf_t
*conf
= mddev
->private;
5522 int added_devices
= 0;
5523 unsigned long flags
;
5525 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
5528 if (!check_stripe_cache(mddev
))
5531 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
5532 if (rdev
->raid_disk
< 0 &&
5533 !test_bit(Faulty
, &rdev
->flags
))
5536 if (spares
- mddev
->degraded
< mddev
->delta_disks
- conf
->max_degraded
)
5537 /* Not enough devices even to make a degraded array
5542 /* Refuse to reduce size of the array. Any reductions in
5543 * array size must be through explicit setting of array_size
5546 if (raid5_size(mddev
, 0, conf
->raid_disks
+ mddev
->delta_disks
)
5547 < mddev
->array_sectors
) {
5548 printk(KERN_ERR
"md/raid:%s: array size must be reduced "
5549 "before number of disks\n", mdname(mddev
));
5553 atomic_set(&conf
->reshape_stripes
, 0);
5554 spin_lock_irq(&conf
->device_lock
);
5555 conf
->previous_raid_disks
= conf
->raid_disks
;
5556 conf
->raid_disks
+= mddev
->delta_disks
;
5557 conf
->prev_chunk_sectors
= conf
->chunk_sectors
;
5558 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
5559 conf
->prev_algo
= conf
->algorithm
;
5560 conf
->algorithm
= mddev
->new_layout
;
5561 if (mddev
->delta_disks
< 0)
5562 conf
->reshape_progress
= raid5_size(mddev
, 0, 0);
5564 conf
->reshape_progress
= 0;
5565 conf
->reshape_safe
= conf
->reshape_progress
;
5567 spin_unlock_irq(&conf
->device_lock
);
5569 /* Add some new drives, as many as will fit.
5570 * We know there are enough to make the newly sized array work.
5571 * Don't add devices if we are reducing the number of
5572 * devices in the array. This is because it is not possible
5573 * to correctly record the "partially reconstructed" state of
5574 * such devices during the reshape and confusion could result.
5576 if (mddev
->delta_disks
>= 0)
5577 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
5578 if (rdev
->raid_disk
< 0 &&
5579 !test_bit(Faulty
, &rdev
->flags
)) {
5580 if (raid5_add_disk(mddev
, rdev
) == 0) {
5582 if (rdev
->raid_disk
>= conf
->previous_raid_disks
) {
5583 set_bit(In_sync
, &rdev
->flags
);
5586 rdev
->recovery_offset
= 0;
5587 sprintf(nm
, "rd%d", rdev
->raid_disk
);
5588 if (sysfs_create_link(&mddev
->kobj
,
5590 /* Failure here is OK */;
5595 /* When a reshape changes the number of devices, ->degraded
5596 * is measured against the larger of the pre and post number of
5598 if (mddev
->delta_disks
> 0) {
5599 spin_lock_irqsave(&conf
->device_lock
, flags
);
5600 mddev
->degraded
+= (conf
->raid_disks
- conf
->previous_raid_disks
)
5602 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
5604 mddev
->raid_disks
= conf
->raid_disks
;
5605 mddev
->reshape_position
= conf
->reshape_progress
;
5606 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
5608 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
5609 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
5610 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
5611 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
5612 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
5614 if (!mddev
->sync_thread
) {
5615 mddev
->recovery
= 0;
5616 spin_lock_irq(&conf
->device_lock
);
5617 mddev
->raid_disks
= conf
->raid_disks
= conf
->previous_raid_disks
;
5618 conf
->reshape_progress
= MaxSector
;
5619 spin_unlock_irq(&conf
->device_lock
);
5622 conf
->reshape_checkpoint
= jiffies
;
5623 md_wakeup_thread(mddev
->sync_thread
);
5624 md_new_event(mddev
);
5628 /* This is called from the reshape thread and should make any
5629 * changes needed in 'conf'
5631 static void end_reshape(raid5_conf_t
*conf
)
5634 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
5636 spin_lock_irq(&conf
->device_lock
);
5637 conf
->previous_raid_disks
= conf
->raid_disks
;
5638 conf
->reshape_progress
= MaxSector
;
5639 spin_unlock_irq(&conf
->device_lock
);
5640 wake_up(&conf
->wait_for_overlap
);
5642 /* read-ahead size must cover two whole stripes, which is
5643 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5645 if (conf
->mddev
->queue
) {
5646 int data_disks
= conf
->raid_disks
- conf
->max_degraded
;
5647 int stripe
= data_disks
* ((conf
->chunk_sectors
<< 9)
5649 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
5650 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
5655 /* This is called from the raid5d thread with mddev_lock held.
5656 * It makes config changes to the device.
5658 static void raid5_finish_reshape(mddev_t
*mddev
)
5660 raid5_conf_t
*conf
= mddev
->private;
5662 if (!test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
5664 if (mddev
->delta_disks
> 0) {
5665 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
5666 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
5667 revalidate_disk(mddev
->gendisk
);
5670 mddev
->degraded
= conf
->raid_disks
;
5671 for (d
= 0; d
< conf
->raid_disks
; d
++)
5672 if (conf
->disks
[d
].rdev
&&
5674 &conf
->disks
[d
].rdev
->flags
))
5676 for (d
= conf
->raid_disks
;
5677 d
< conf
->raid_disks
- mddev
->delta_disks
;
5679 mdk_rdev_t
*rdev
= conf
->disks
[d
].rdev
;
5680 if (rdev
&& raid5_remove_disk(mddev
, d
) == 0) {
5682 sprintf(nm
, "rd%d", rdev
->raid_disk
);
5683 sysfs_remove_link(&mddev
->kobj
, nm
);
5684 rdev
->raid_disk
= -1;
5688 mddev
->layout
= conf
->algorithm
;
5689 mddev
->chunk_sectors
= conf
->chunk_sectors
;
5690 mddev
->reshape_position
= MaxSector
;
5691 mddev
->delta_disks
= 0;
5695 static void raid5_quiesce(mddev_t
*mddev
, int state
)
5697 raid5_conf_t
*conf
= mddev
->private;
5700 case 2: /* resume for a suspend */
5701 wake_up(&conf
->wait_for_overlap
);
5704 case 1: /* stop all writes */
5705 spin_lock_irq(&conf
->device_lock
);
5706 /* '2' tells resync/reshape to pause so that all
5707 * active stripes can drain
5710 wait_event_lock_irq(conf
->wait_for_stripe
,
5711 atomic_read(&conf
->active_stripes
) == 0 &&
5712 atomic_read(&conf
->active_aligned_reads
) == 0,
5713 conf
->device_lock
, /* nothing */);
5715 spin_unlock_irq(&conf
->device_lock
);
5716 /* allow reshape to continue */
5717 wake_up(&conf
->wait_for_overlap
);
5720 case 0: /* re-enable writes */
5721 spin_lock_irq(&conf
->device_lock
);
5723 wake_up(&conf
->wait_for_stripe
);
5724 wake_up(&conf
->wait_for_overlap
);
5725 spin_unlock_irq(&conf
->device_lock
);
5731 static void *raid45_takeover_raid0(mddev_t
*mddev
, int level
)
5733 struct raid0_private_data
*raid0_priv
= mddev
->private;
5735 /* for raid0 takeover only one zone is supported */
5736 if (raid0_priv
->nr_strip_zones
> 1) {
5737 printk(KERN_ERR
"md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5739 return ERR_PTR(-EINVAL
);
5742 mddev
->new_level
= level
;
5743 mddev
->new_layout
= ALGORITHM_PARITY_N
;
5744 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
5745 mddev
->raid_disks
+= 1;
5746 mddev
->delta_disks
= 1;
5747 /* make sure it will be not marked as dirty */
5748 mddev
->recovery_cp
= MaxSector
;
5750 return setup_conf(mddev
);
5754 static void *raid5_takeover_raid1(mddev_t
*mddev
)
5758 if (mddev
->raid_disks
!= 2 ||
5759 mddev
->degraded
> 1)
5760 return ERR_PTR(-EINVAL
);
5762 /* Should check if there are write-behind devices? */
5764 chunksect
= 64*2; /* 64K by default */
5766 /* The array must be an exact multiple of chunksize */
5767 while (chunksect
&& (mddev
->array_sectors
& (chunksect
-1)))
5770 if ((chunksect
<<9) < STRIPE_SIZE
)
5771 /* array size does not allow a suitable chunk size */
5772 return ERR_PTR(-EINVAL
);
5774 mddev
->new_level
= 5;
5775 mddev
->new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
5776 mddev
->new_chunk_sectors
= chunksect
;
5778 return setup_conf(mddev
);
5781 static void *raid5_takeover_raid6(mddev_t
*mddev
)
5785 switch (mddev
->layout
) {
5786 case ALGORITHM_LEFT_ASYMMETRIC_6
:
5787 new_layout
= ALGORITHM_LEFT_ASYMMETRIC
;
5789 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
5790 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC
;
5792 case ALGORITHM_LEFT_SYMMETRIC_6
:
5793 new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
5795 case ALGORITHM_RIGHT_SYMMETRIC_6
:
5796 new_layout
= ALGORITHM_RIGHT_SYMMETRIC
;
5798 case ALGORITHM_PARITY_0_6
:
5799 new_layout
= ALGORITHM_PARITY_0
;
5801 case ALGORITHM_PARITY_N
:
5802 new_layout
= ALGORITHM_PARITY_N
;
5805 return ERR_PTR(-EINVAL
);
5807 mddev
->new_level
= 5;
5808 mddev
->new_layout
= new_layout
;
5809 mddev
->delta_disks
= -1;
5810 mddev
->raid_disks
-= 1;
5811 return setup_conf(mddev
);
5815 static int raid5_check_reshape(mddev_t
*mddev
)
5817 /* For a 2-drive array, the layout and chunk size can be changed
5818 * immediately as not restriping is needed.
5819 * For larger arrays we record the new value - after validation
5820 * to be used by a reshape pass.
5822 raid5_conf_t
*conf
= mddev
->private;
5823 int new_chunk
= mddev
->new_chunk_sectors
;
5825 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid5(mddev
->new_layout
))
5827 if (new_chunk
> 0) {
5828 if (!is_power_of_2(new_chunk
))
5830 if (new_chunk
< (PAGE_SIZE
>>9))
5832 if (mddev
->array_sectors
& (new_chunk
-1))
5833 /* not factor of array size */
5837 /* They look valid */
5839 if (mddev
->raid_disks
== 2) {
5840 /* can make the change immediately */
5841 if (mddev
->new_layout
>= 0) {
5842 conf
->algorithm
= mddev
->new_layout
;
5843 mddev
->layout
= mddev
->new_layout
;
5845 if (new_chunk
> 0) {
5846 conf
->chunk_sectors
= new_chunk
;
5847 mddev
->chunk_sectors
= new_chunk
;
5849 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
5850 md_wakeup_thread(mddev
->thread
);
5852 return check_reshape(mddev
);
5855 static int raid6_check_reshape(mddev_t
*mddev
)
5857 int new_chunk
= mddev
->new_chunk_sectors
;
5859 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid6(mddev
->new_layout
))
5861 if (new_chunk
> 0) {
5862 if (!is_power_of_2(new_chunk
))
5864 if (new_chunk
< (PAGE_SIZE
>> 9))
5866 if (mddev
->array_sectors
& (new_chunk
-1))
5867 /* not factor of array size */
5871 /* They look valid */
5872 return check_reshape(mddev
);
5875 static void *raid5_takeover(mddev_t
*mddev
)
5877 /* raid5 can take over:
5878 * raid0 - if there is only one strip zone - make it a raid4 layout
5879 * raid1 - if there are two drives. We need to know the chunk size
5880 * raid4 - trivial - just use a raid4 layout.
5881 * raid6 - Providing it is a *_6 layout
5883 if (mddev
->level
== 0)
5884 return raid45_takeover_raid0(mddev
, 5);
5885 if (mddev
->level
== 1)
5886 return raid5_takeover_raid1(mddev
);
5887 if (mddev
->level
== 4) {
5888 mddev
->new_layout
= ALGORITHM_PARITY_N
;
5889 mddev
->new_level
= 5;
5890 return setup_conf(mddev
);
5892 if (mddev
->level
== 6)
5893 return raid5_takeover_raid6(mddev
);
5895 return ERR_PTR(-EINVAL
);
5898 static void *raid4_takeover(mddev_t
*mddev
)
5900 /* raid4 can take over:
5901 * raid0 - if there is only one strip zone
5902 * raid5 - if layout is right
5904 if (mddev
->level
== 0)
5905 return raid45_takeover_raid0(mddev
, 4);
5906 if (mddev
->level
== 5 &&
5907 mddev
->layout
== ALGORITHM_PARITY_N
) {
5908 mddev
->new_layout
= 0;
5909 mddev
->new_level
= 4;
5910 return setup_conf(mddev
);
5912 return ERR_PTR(-EINVAL
);
5915 static struct mdk_personality raid5_personality
;
5917 static void *raid6_takeover(mddev_t
*mddev
)
5919 /* Currently can only take over a raid5. We map the
5920 * personality to an equivalent raid6 personality
5921 * with the Q block at the end.
5925 if (mddev
->pers
!= &raid5_personality
)
5926 return ERR_PTR(-EINVAL
);
5927 if (mddev
->degraded
> 1)
5928 return ERR_PTR(-EINVAL
);
5929 if (mddev
->raid_disks
> 253)
5930 return ERR_PTR(-EINVAL
);
5931 if (mddev
->raid_disks
< 3)
5932 return ERR_PTR(-EINVAL
);
5934 switch (mddev
->layout
) {
5935 case ALGORITHM_LEFT_ASYMMETRIC
:
5936 new_layout
= ALGORITHM_LEFT_ASYMMETRIC_6
;
5938 case ALGORITHM_RIGHT_ASYMMETRIC
:
5939 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC_6
;
5941 case ALGORITHM_LEFT_SYMMETRIC
:
5942 new_layout
= ALGORITHM_LEFT_SYMMETRIC_6
;
5944 case ALGORITHM_RIGHT_SYMMETRIC
:
5945 new_layout
= ALGORITHM_RIGHT_SYMMETRIC_6
;
5947 case ALGORITHM_PARITY_0
:
5948 new_layout
= ALGORITHM_PARITY_0_6
;
5950 case ALGORITHM_PARITY_N
:
5951 new_layout
= ALGORITHM_PARITY_N
;
5954 return ERR_PTR(-EINVAL
);
5956 mddev
->new_level
= 6;
5957 mddev
->new_layout
= new_layout
;
5958 mddev
->delta_disks
= 1;
5959 mddev
->raid_disks
+= 1;
5960 return setup_conf(mddev
);
5964 static struct mdk_personality raid6_personality
=
5968 .owner
= THIS_MODULE
,
5969 .make_request
= make_request
,
5973 .error_handler
= error
,
5974 .hot_add_disk
= raid5_add_disk
,
5975 .hot_remove_disk
= raid5_remove_disk
,
5976 .spare_active
= raid5_spare_active
,
5977 .sync_request
= sync_request
,
5978 .resize
= raid5_resize
,
5980 .check_reshape
= raid6_check_reshape
,
5981 .start_reshape
= raid5_start_reshape
,
5982 .finish_reshape
= raid5_finish_reshape
,
5983 .quiesce
= raid5_quiesce
,
5984 .takeover
= raid6_takeover
,
5986 static struct mdk_personality raid5_personality
=
5990 .owner
= THIS_MODULE
,
5991 .make_request
= make_request
,
5995 .error_handler
= error
,
5996 .hot_add_disk
= raid5_add_disk
,
5997 .hot_remove_disk
= raid5_remove_disk
,
5998 .spare_active
= raid5_spare_active
,
5999 .sync_request
= sync_request
,
6000 .resize
= raid5_resize
,
6002 .check_reshape
= raid5_check_reshape
,
6003 .start_reshape
= raid5_start_reshape
,
6004 .finish_reshape
= raid5_finish_reshape
,
6005 .quiesce
= raid5_quiesce
,
6006 .takeover
= raid5_takeover
,
6009 static struct mdk_personality raid4_personality
=
6013 .owner
= THIS_MODULE
,
6014 .make_request
= make_request
,
6018 .error_handler
= error
,
6019 .hot_add_disk
= raid5_add_disk
,
6020 .hot_remove_disk
= raid5_remove_disk
,
6021 .spare_active
= raid5_spare_active
,
6022 .sync_request
= sync_request
,
6023 .resize
= raid5_resize
,
6025 .check_reshape
= raid5_check_reshape
,
6026 .start_reshape
= raid5_start_reshape
,
6027 .finish_reshape
= raid5_finish_reshape
,
6028 .quiesce
= raid5_quiesce
,
6029 .takeover
= raid4_takeover
,
6032 static int __init
raid5_init(void)
6034 register_md_personality(&raid6_personality
);
6035 register_md_personality(&raid5_personality
);
6036 register_md_personality(&raid4_personality
);
6040 static void raid5_exit(void)
6042 unregister_md_personality(&raid6_personality
);
6043 unregister_md_personality(&raid5_personality
);
6044 unregister_md_personality(&raid4_personality
);
6047 module_init(raid5_init
);
6048 module_exit(raid5_exit
);
6049 MODULE_LICENSE("GPL");
6050 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6051 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6052 MODULE_ALIAS("md-raid5");
6053 MODULE_ALIAS("md-raid4");
6054 MODULE_ALIAS("md-level-5");
6055 MODULE_ALIAS("md-level-4");
6056 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6057 MODULE_ALIAS("md-raid6");
6058 MODULE_ALIAS("md-level-6");
6060 /* This used to be two separate modules, they were: */
6061 MODULE_ALIAS("raid5");
6062 MODULE_ALIAS("raid6");