2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/smp_lock.h>
19 #include <linux/mempool.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/hdreg.h>
23 #include <linux/delay.h>
25 #include <trace/events/block.h>
27 #define DM_MSG_PREFIX "core"
30 * Cookies are numeric values sent with CHANGE and REMOVE
31 * uevents while resuming, removing or renaming the device.
33 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
34 #define DM_COOKIE_LENGTH 24
36 static const char *_name
= DM_NAME
;
38 static unsigned int major
= 0;
39 static unsigned int _major
= 0;
41 static DEFINE_SPINLOCK(_minor_lock
);
44 * One of these is allocated per bio.
47 struct mapped_device
*md
;
51 unsigned long start_time
;
52 spinlock_t endio_lock
;
57 * One of these is allocated per target within a bio. Hopefully
58 * this will be simplified out one day.
67 * For request-based dm.
68 * One of these is allocated per request.
70 struct dm_rq_target_io
{
71 struct mapped_device
*md
;
73 struct request
*orig
, clone
;
79 * For request-based dm.
80 * One of these is allocated per bio.
82 struct dm_rq_clone_bio_info
{
84 struct dm_rq_target_io
*tio
;
87 union map_info
*dm_get_mapinfo(struct bio
*bio
)
89 if (bio
&& bio
->bi_private
)
90 return &((struct dm_target_io
*)bio
->bi_private
)->info
;
94 union map_info
*dm_get_rq_mapinfo(struct request
*rq
)
96 if (rq
&& rq
->end_io_data
)
97 return &((struct dm_rq_target_io
*)rq
->end_io_data
)->info
;
100 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo
);
102 #define MINOR_ALLOCED ((void *)-1)
105 * Bits for the md->flags field.
107 #define DMF_BLOCK_IO_FOR_SUSPEND 0
108 #define DMF_SUSPENDED 1
110 #define DMF_FREEING 3
111 #define DMF_DELETING 4
112 #define DMF_NOFLUSH_SUSPENDING 5
113 #define DMF_QUEUE_IO_TO_THREAD 6
116 * Work processed by per-device workqueue.
118 struct mapped_device
{
119 struct rw_semaphore io_lock
;
120 struct mutex suspend_lock
;
127 struct request_queue
*queue
;
129 /* Protect queue and type against concurrent access. */
130 struct mutex type_lock
;
132 struct gendisk
*disk
;
138 * A list of ios that arrived while we were suspended.
141 wait_queue_head_t wait
;
142 struct work_struct work
;
143 struct bio_list deferred
;
144 spinlock_t deferred_lock
;
147 * An error from the barrier request currently being processed.
152 * Protect barrier_error from concurrent endio processing
153 * in request-based dm.
155 spinlock_t barrier_error_lock
;
158 * Processing queue (flush/barriers)
160 struct workqueue_struct
*wq
;
161 struct work_struct barrier_work
;
163 /* A pointer to the currently processing pre/post flush request */
164 struct request
*flush_request
;
167 * The current mapping.
169 struct dm_table
*map
;
172 * io objects are allocated from here.
183 wait_queue_head_t eventq
;
185 struct list_head uevent_list
;
186 spinlock_t uevent_lock
; /* Protect access to uevent_list */
189 * freeze/thaw support require holding onto a super block
191 struct super_block
*frozen_sb
;
192 struct block_device
*bdev
;
194 /* forced geometry settings */
195 struct hd_geometry geometry
;
197 /* For saving the address of __make_request for request based dm */
198 make_request_fn
*saved_make_request_fn
;
203 /* zero-length barrier that will be cloned and submitted to targets */
204 struct bio barrier_bio
;
208 * For mempools pre-allocation at the table loading time.
210 struct dm_md_mempools
{
217 static struct kmem_cache
*_io_cache
;
218 static struct kmem_cache
*_tio_cache
;
219 static struct kmem_cache
*_rq_tio_cache
;
220 static struct kmem_cache
*_rq_bio_info_cache
;
222 static int __init
local_init(void)
226 /* allocate a slab for the dm_ios */
227 _io_cache
= KMEM_CACHE(dm_io
, 0);
231 /* allocate a slab for the target ios */
232 _tio_cache
= KMEM_CACHE(dm_target_io
, 0);
234 goto out_free_io_cache
;
236 _rq_tio_cache
= KMEM_CACHE(dm_rq_target_io
, 0);
238 goto out_free_tio_cache
;
240 _rq_bio_info_cache
= KMEM_CACHE(dm_rq_clone_bio_info
, 0);
241 if (!_rq_bio_info_cache
)
242 goto out_free_rq_tio_cache
;
244 r
= dm_uevent_init();
246 goto out_free_rq_bio_info_cache
;
249 r
= register_blkdev(_major
, _name
);
251 goto out_uevent_exit
;
260 out_free_rq_bio_info_cache
:
261 kmem_cache_destroy(_rq_bio_info_cache
);
262 out_free_rq_tio_cache
:
263 kmem_cache_destroy(_rq_tio_cache
);
265 kmem_cache_destroy(_tio_cache
);
267 kmem_cache_destroy(_io_cache
);
272 static void local_exit(void)
274 kmem_cache_destroy(_rq_bio_info_cache
);
275 kmem_cache_destroy(_rq_tio_cache
);
276 kmem_cache_destroy(_tio_cache
);
277 kmem_cache_destroy(_io_cache
);
278 unregister_blkdev(_major
, _name
);
283 DMINFO("cleaned up");
286 static int (*_inits
[])(void) __initdata
= {
296 static void (*_exits
[])(void) = {
306 static int __init
dm_init(void)
308 const int count
= ARRAY_SIZE(_inits
);
312 for (i
= 0; i
< count
; i
++) {
327 static void __exit
dm_exit(void)
329 int i
= ARRAY_SIZE(_exits
);
336 * Block device functions
338 int dm_deleting_md(struct mapped_device
*md
)
340 return test_bit(DMF_DELETING
, &md
->flags
);
343 static int dm_blk_open(struct block_device
*bdev
, fmode_t mode
)
345 struct mapped_device
*md
;
348 spin_lock(&_minor_lock
);
350 md
= bdev
->bd_disk
->private_data
;
354 if (test_bit(DMF_FREEING
, &md
->flags
) ||
355 dm_deleting_md(md
)) {
361 atomic_inc(&md
->open_count
);
364 spin_unlock(&_minor_lock
);
367 return md
? 0 : -ENXIO
;
370 static int dm_blk_close(struct gendisk
*disk
, fmode_t mode
)
372 struct mapped_device
*md
= disk
->private_data
;
375 atomic_dec(&md
->open_count
);
382 int dm_open_count(struct mapped_device
*md
)
384 return atomic_read(&md
->open_count
);
388 * Guarantees nothing is using the device before it's deleted.
390 int dm_lock_for_deletion(struct mapped_device
*md
)
394 spin_lock(&_minor_lock
);
396 if (dm_open_count(md
))
399 set_bit(DMF_DELETING
, &md
->flags
);
401 spin_unlock(&_minor_lock
);
406 static int dm_blk_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
408 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
410 return dm_get_geometry(md
, geo
);
413 static int dm_blk_ioctl(struct block_device
*bdev
, fmode_t mode
,
414 unsigned int cmd
, unsigned long arg
)
416 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
417 struct dm_table
*map
= dm_get_live_table(md
);
418 struct dm_target
*tgt
;
421 if (!map
|| !dm_table_get_size(map
))
424 /* We only support devices that have a single target */
425 if (dm_table_get_num_targets(map
) != 1)
428 tgt
= dm_table_get_target(map
, 0);
430 if (dm_suspended_md(md
)) {
435 if (tgt
->type
->ioctl
)
436 r
= tgt
->type
->ioctl(tgt
, cmd
, arg
);
444 static struct dm_io
*alloc_io(struct mapped_device
*md
)
446 return mempool_alloc(md
->io_pool
, GFP_NOIO
);
449 static void free_io(struct mapped_device
*md
, struct dm_io
*io
)
451 mempool_free(io
, md
->io_pool
);
454 static void free_tio(struct mapped_device
*md
, struct dm_target_io
*tio
)
456 mempool_free(tio
, md
->tio_pool
);
459 static struct dm_rq_target_io
*alloc_rq_tio(struct mapped_device
*md
,
462 return mempool_alloc(md
->tio_pool
, gfp_mask
);
465 static void free_rq_tio(struct dm_rq_target_io
*tio
)
467 mempool_free(tio
, tio
->md
->tio_pool
);
470 static struct dm_rq_clone_bio_info
*alloc_bio_info(struct mapped_device
*md
)
472 return mempool_alloc(md
->io_pool
, GFP_ATOMIC
);
475 static void free_bio_info(struct dm_rq_clone_bio_info
*info
)
477 mempool_free(info
, info
->tio
->md
->io_pool
);
480 static int md_in_flight(struct mapped_device
*md
)
482 return atomic_read(&md
->pending
[READ
]) +
483 atomic_read(&md
->pending
[WRITE
]);
486 static void start_io_acct(struct dm_io
*io
)
488 struct mapped_device
*md
= io
->md
;
490 int rw
= bio_data_dir(io
->bio
);
492 io
->start_time
= jiffies
;
494 cpu
= part_stat_lock();
495 part_round_stats(cpu
, &dm_disk(md
)->part0
);
497 dm_disk(md
)->part0
.in_flight
[rw
] = atomic_inc_return(&md
->pending
[rw
]);
500 static void end_io_acct(struct dm_io
*io
)
502 struct mapped_device
*md
= io
->md
;
503 struct bio
*bio
= io
->bio
;
504 unsigned long duration
= jiffies
- io
->start_time
;
506 int rw
= bio_data_dir(bio
);
508 cpu
= part_stat_lock();
509 part_round_stats(cpu
, &dm_disk(md
)->part0
);
510 part_stat_add(cpu
, &dm_disk(md
)->part0
, ticks
[rw
], duration
);
514 * After this is decremented the bio must not be touched if it is
517 dm_disk(md
)->part0
.in_flight
[rw
] = pending
=
518 atomic_dec_return(&md
->pending
[rw
]);
519 pending
+= atomic_read(&md
->pending
[rw
^0x1]);
521 /* nudge anyone waiting on suspend queue */
527 * Add the bio to the list of deferred io.
529 static void queue_io(struct mapped_device
*md
, struct bio
*bio
)
531 down_write(&md
->io_lock
);
533 spin_lock_irq(&md
->deferred_lock
);
534 bio_list_add(&md
->deferred
, bio
);
535 spin_unlock_irq(&md
->deferred_lock
);
537 if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD
, &md
->flags
))
538 queue_work(md
->wq
, &md
->work
);
540 up_write(&md
->io_lock
);
544 * Everyone (including functions in this file), should use this
545 * function to access the md->map field, and make sure they call
546 * dm_table_put() when finished.
548 struct dm_table
*dm_get_live_table(struct mapped_device
*md
)
553 read_lock_irqsave(&md
->map_lock
, flags
);
557 read_unlock_irqrestore(&md
->map_lock
, flags
);
563 * Get the geometry associated with a dm device
565 int dm_get_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
573 * Set the geometry of a device.
575 int dm_set_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
577 sector_t sz
= (sector_t
)geo
->cylinders
* geo
->heads
* geo
->sectors
;
579 if (geo
->start
> sz
) {
580 DMWARN("Start sector is beyond the geometry limits.");
589 /*-----------------------------------------------------------------
591 * A more elegant soln is in the works that uses the queue
592 * merge fn, unfortunately there are a couple of changes to
593 * the block layer that I want to make for this. So in the
594 * interests of getting something for people to use I give
595 * you this clearly demarcated crap.
596 *---------------------------------------------------------------*/
598 static int __noflush_suspending(struct mapped_device
*md
)
600 return test_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
604 * Decrements the number of outstanding ios that a bio has been
605 * cloned into, completing the original io if necc.
607 static void dec_pending(struct dm_io
*io
, int error
)
612 struct mapped_device
*md
= io
->md
;
614 /* Push-back supersedes any I/O errors */
615 if (unlikely(error
)) {
616 spin_lock_irqsave(&io
->endio_lock
, flags
);
617 if (!(io
->error
> 0 && __noflush_suspending(md
)))
619 spin_unlock_irqrestore(&io
->endio_lock
, flags
);
622 if (atomic_dec_and_test(&io
->io_count
)) {
623 if (io
->error
== DM_ENDIO_REQUEUE
) {
625 * Target requested pushing back the I/O.
627 spin_lock_irqsave(&md
->deferred_lock
, flags
);
628 if (__noflush_suspending(md
)) {
629 if (!(io
->bio
->bi_rw
& REQ_HARDBARRIER
))
630 bio_list_add_head(&md
->deferred
,
633 /* noflush suspend was interrupted. */
635 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
638 io_error
= io
->error
;
641 if (bio
->bi_rw
& REQ_HARDBARRIER
) {
643 * There can be just one barrier request so we use
644 * a per-device variable for error reporting.
645 * Note that you can't touch the bio after end_io_acct
647 * We ignore -EOPNOTSUPP for empty flush reported by
648 * underlying devices. We assume that if the device
649 * doesn't support empty barriers, it doesn't need
650 * cache flushing commands.
652 if (!md
->barrier_error
&&
653 !(bio_empty_barrier(bio
) && io_error
== -EOPNOTSUPP
))
654 md
->barrier_error
= io_error
;
661 if (io_error
!= DM_ENDIO_REQUEUE
) {
662 trace_block_bio_complete(md
->queue
, bio
);
664 bio_endio(bio
, io_error
);
670 static void clone_endio(struct bio
*bio
, int error
)
673 struct dm_target_io
*tio
= bio
->bi_private
;
674 struct dm_io
*io
= tio
->io
;
675 struct mapped_device
*md
= tio
->io
->md
;
676 dm_endio_fn endio
= tio
->ti
->type
->end_io
;
678 if (!bio_flagged(bio
, BIO_UPTODATE
) && !error
)
682 r
= endio(tio
->ti
, bio
, error
, &tio
->info
);
683 if (r
< 0 || r
== DM_ENDIO_REQUEUE
)
685 * error and requeue request are handled
689 else if (r
== DM_ENDIO_INCOMPLETE
)
690 /* The target will handle the io */
693 DMWARN("unimplemented target endio return value: %d", r
);
699 * Store md for cleanup instead of tio which is about to get freed.
701 bio
->bi_private
= md
->bs
;
705 dec_pending(io
, error
);
709 * Partial completion handling for request-based dm
711 static void end_clone_bio(struct bio
*clone
, int error
)
713 struct dm_rq_clone_bio_info
*info
= clone
->bi_private
;
714 struct dm_rq_target_io
*tio
= info
->tio
;
715 struct bio
*bio
= info
->orig
;
716 unsigned int nr_bytes
= info
->orig
->bi_size
;
722 * An error has already been detected on the request.
723 * Once error occurred, just let clone->end_io() handle
729 * Don't notice the error to the upper layer yet.
730 * The error handling decision is made by the target driver,
731 * when the request is completed.
738 * I/O for the bio successfully completed.
739 * Notice the data completion to the upper layer.
743 * bios are processed from the head of the list.
744 * So the completing bio should always be rq->bio.
745 * If it's not, something wrong is happening.
747 if (tio
->orig
->bio
!= bio
)
748 DMERR("bio completion is going in the middle of the request");
751 * Update the original request.
752 * Do not use blk_end_request() here, because it may complete
753 * the original request before the clone, and break the ordering.
755 blk_update_request(tio
->orig
, 0, nr_bytes
);
758 static void store_barrier_error(struct mapped_device
*md
, int error
)
762 spin_lock_irqsave(&md
->barrier_error_lock
, flags
);
764 * Basically, the first error is taken, but:
765 * -EOPNOTSUPP supersedes any I/O error.
766 * Requeue request supersedes any I/O error but -EOPNOTSUPP.
768 if (!md
->barrier_error
|| error
== -EOPNOTSUPP
||
769 (md
->barrier_error
!= -EOPNOTSUPP
&&
770 error
== DM_ENDIO_REQUEUE
))
771 md
->barrier_error
= error
;
772 spin_unlock_irqrestore(&md
->barrier_error_lock
, flags
);
776 * Don't touch any member of the md after calling this function because
777 * the md may be freed in dm_put() at the end of this function.
778 * Or do dm_get() before calling this function and dm_put() later.
780 static void rq_completed(struct mapped_device
*md
, int rw
, int run_queue
)
782 atomic_dec(&md
->pending
[rw
]);
784 /* nudge anyone waiting on suspend queue */
785 if (!md_in_flight(md
))
789 blk_run_queue(md
->queue
);
792 * dm_put() must be at the end of this function. See the comment above
797 static void free_rq_clone(struct request
*clone
)
799 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
801 blk_rq_unprep_clone(clone
);
806 * Complete the clone and the original request.
807 * Must be called without queue lock.
809 static void dm_end_request(struct request
*clone
, int error
)
811 int rw
= rq_data_dir(clone
);
813 bool is_barrier
= clone
->cmd_flags
& REQ_HARDBARRIER
;
814 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
815 struct mapped_device
*md
= tio
->md
;
816 struct request
*rq
= tio
->orig
;
818 if (rq
->cmd_type
== REQ_TYPE_BLOCK_PC
&& !is_barrier
) {
819 rq
->errors
= clone
->errors
;
820 rq
->resid_len
= clone
->resid_len
;
824 * We are using the sense buffer of the original
826 * So setting the length of the sense data is enough.
828 rq
->sense_len
= clone
->sense_len
;
831 free_rq_clone(clone
);
833 if (unlikely(is_barrier
)) {
835 store_barrier_error(md
, error
);
838 blk_end_request_all(rq
, error
);
840 rq_completed(md
, rw
, run_queue
);
843 static void dm_unprep_request(struct request
*rq
)
845 struct request
*clone
= rq
->special
;
848 rq
->cmd_flags
&= ~REQ_DONTPREP
;
850 free_rq_clone(clone
);
854 * Requeue the original request of a clone.
856 void dm_requeue_unmapped_request(struct request
*clone
)
858 int rw
= rq_data_dir(clone
);
859 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
860 struct mapped_device
*md
= tio
->md
;
861 struct request
*rq
= tio
->orig
;
862 struct request_queue
*q
= rq
->q
;
865 if (unlikely(clone
->cmd_flags
& REQ_HARDBARRIER
)) {
867 * Barrier clones share an original request.
868 * Leave it to dm_end_request(), which handles this special
871 dm_end_request(clone
, DM_ENDIO_REQUEUE
);
875 dm_unprep_request(rq
);
877 spin_lock_irqsave(q
->queue_lock
, flags
);
878 if (elv_queue_empty(q
))
880 blk_requeue_request(q
, rq
);
881 spin_unlock_irqrestore(q
->queue_lock
, flags
);
883 rq_completed(md
, rw
, 0);
885 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request
);
887 static void __stop_queue(struct request_queue
*q
)
892 static void stop_queue(struct request_queue
*q
)
896 spin_lock_irqsave(q
->queue_lock
, flags
);
898 spin_unlock_irqrestore(q
->queue_lock
, flags
);
901 static void __start_queue(struct request_queue
*q
)
903 if (blk_queue_stopped(q
))
907 static void start_queue(struct request_queue
*q
)
911 spin_lock_irqsave(q
->queue_lock
, flags
);
913 spin_unlock_irqrestore(q
->queue_lock
, flags
);
916 static void dm_done(struct request
*clone
, int error
, bool mapped
)
919 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
920 dm_request_endio_fn rq_end_io
= tio
->ti
->type
->rq_end_io
;
922 if (mapped
&& rq_end_io
)
923 r
= rq_end_io(tio
->ti
, clone
, error
, &tio
->info
);
926 /* The target wants to complete the I/O */
927 dm_end_request(clone
, r
);
928 else if (r
== DM_ENDIO_INCOMPLETE
)
929 /* The target will handle the I/O */
931 else if (r
== DM_ENDIO_REQUEUE
)
932 /* The target wants to requeue the I/O */
933 dm_requeue_unmapped_request(clone
);
935 DMWARN("unimplemented target endio return value: %d", r
);
941 * Request completion handler for request-based dm
943 static void dm_softirq_done(struct request
*rq
)
946 struct request
*clone
= rq
->completion_data
;
947 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
949 if (rq
->cmd_flags
& REQ_FAILED
)
952 dm_done(clone
, tio
->error
, mapped
);
956 * Complete the clone and the original request with the error status
957 * through softirq context.
959 static void dm_complete_request(struct request
*clone
, int error
)
961 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
962 struct request
*rq
= tio
->orig
;
964 if (unlikely(clone
->cmd_flags
& REQ_HARDBARRIER
)) {
966 * Barrier clones share an original request. So can't use
967 * softirq_done with the original.
968 * Pass the clone to dm_done() directly in this special case.
969 * It is safe (even if clone->q->queue_lock is held here)
970 * because there is no I/O dispatching during the completion
973 dm_done(clone
, error
, true);
978 rq
->completion_data
= clone
;
979 blk_complete_request(rq
);
983 * Complete the not-mapped clone and the original request with the error status
984 * through softirq context.
985 * Target's rq_end_io() function isn't called.
986 * This may be used when the target's map_rq() function fails.
988 void dm_kill_unmapped_request(struct request
*clone
, int error
)
990 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
991 struct request
*rq
= tio
->orig
;
993 if (unlikely(clone
->cmd_flags
& REQ_HARDBARRIER
)) {
995 * Barrier clones share an original request.
996 * Leave it to dm_end_request(), which handles this special
1000 dm_end_request(clone
, error
);
1004 rq
->cmd_flags
|= REQ_FAILED
;
1005 dm_complete_request(clone
, error
);
1007 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request
);
1010 * Called with the queue lock held
1012 static void end_clone_request(struct request
*clone
, int error
)
1015 * For just cleaning up the information of the queue in which
1016 * the clone was dispatched.
1017 * The clone is *NOT* freed actually here because it is alloced from
1018 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
1020 __blk_put_request(clone
->q
, clone
);
1023 * Actual request completion is done in a softirq context which doesn't
1024 * hold the queue lock. Otherwise, deadlock could occur because:
1025 * - another request may be submitted by the upper level driver
1026 * of the stacking during the completion
1027 * - the submission which requires queue lock may be done
1028 * against this queue
1030 dm_complete_request(clone
, error
);
1034 * Return maximum size of I/O possible at the supplied sector up to the current
1037 static sector_t
max_io_len_target_boundary(sector_t sector
, struct dm_target
*ti
)
1039 sector_t target_offset
= dm_target_offset(ti
, sector
);
1041 return ti
->len
- target_offset
;
1044 static sector_t
max_io_len(sector_t sector
, struct dm_target
*ti
)
1046 sector_t len
= max_io_len_target_boundary(sector
, ti
);
1049 * Does the target need to split even further ?
1053 sector_t offset
= dm_target_offset(ti
, sector
);
1054 boundary
= ((offset
+ ti
->split_io
) & ~(ti
->split_io
- 1))
1063 static void __map_bio(struct dm_target
*ti
, struct bio
*clone
,
1064 struct dm_target_io
*tio
)
1068 struct mapped_device
*md
;
1070 clone
->bi_end_io
= clone_endio
;
1071 clone
->bi_private
= tio
;
1074 * Map the clone. If r == 0 we don't need to do
1075 * anything, the target has assumed ownership of
1078 atomic_inc(&tio
->io
->io_count
);
1079 sector
= clone
->bi_sector
;
1080 r
= ti
->type
->map(ti
, clone
, &tio
->info
);
1081 if (r
== DM_MAPIO_REMAPPED
) {
1082 /* the bio has been remapped so dispatch it */
1084 trace_block_remap(bdev_get_queue(clone
->bi_bdev
), clone
,
1085 tio
->io
->bio
->bi_bdev
->bd_dev
, sector
);
1087 generic_make_request(clone
);
1088 } else if (r
< 0 || r
== DM_MAPIO_REQUEUE
) {
1089 /* error the io and bail out, or requeue it if needed */
1091 dec_pending(tio
->io
, r
);
1093 * Store bio_set for cleanup.
1095 clone
->bi_private
= md
->bs
;
1099 DMWARN("unimplemented target map return value: %d", r
);
1105 struct mapped_device
*md
;
1106 struct dm_table
*map
;
1110 sector_t sector_count
;
1114 static void dm_bio_destructor(struct bio
*bio
)
1116 struct bio_set
*bs
= bio
->bi_private
;
1122 * Creates a little bio that is just does part of a bvec.
1124 static struct bio
*split_bvec(struct bio
*bio
, sector_t sector
,
1125 unsigned short idx
, unsigned int offset
,
1126 unsigned int len
, struct bio_set
*bs
)
1129 struct bio_vec
*bv
= bio
->bi_io_vec
+ idx
;
1131 clone
= bio_alloc_bioset(GFP_NOIO
, 1, bs
);
1132 clone
->bi_destructor
= dm_bio_destructor
;
1133 *clone
->bi_io_vec
= *bv
;
1135 clone
->bi_sector
= sector
;
1136 clone
->bi_bdev
= bio
->bi_bdev
;
1137 clone
->bi_rw
= bio
->bi_rw
& ~REQ_HARDBARRIER
;
1139 clone
->bi_size
= to_bytes(len
);
1140 clone
->bi_io_vec
->bv_offset
= offset
;
1141 clone
->bi_io_vec
->bv_len
= clone
->bi_size
;
1142 clone
->bi_flags
|= 1 << BIO_CLONED
;
1144 if (bio_integrity(bio
)) {
1145 bio_integrity_clone(clone
, bio
, GFP_NOIO
, bs
);
1146 bio_integrity_trim(clone
,
1147 bio_sector_offset(bio
, idx
, offset
), len
);
1154 * Creates a bio that consists of range of complete bvecs.
1156 static struct bio
*clone_bio(struct bio
*bio
, sector_t sector
,
1157 unsigned short idx
, unsigned short bv_count
,
1158 unsigned int len
, struct bio_set
*bs
)
1162 clone
= bio_alloc_bioset(GFP_NOIO
, bio
->bi_max_vecs
, bs
);
1163 __bio_clone(clone
, bio
);
1164 clone
->bi_rw
&= ~REQ_HARDBARRIER
;
1165 clone
->bi_destructor
= dm_bio_destructor
;
1166 clone
->bi_sector
= sector
;
1167 clone
->bi_idx
= idx
;
1168 clone
->bi_vcnt
= idx
+ bv_count
;
1169 clone
->bi_size
= to_bytes(len
);
1170 clone
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
1172 if (bio_integrity(bio
)) {
1173 bio_integrity_clone(clone
, bio
, GFP_NOIO
, bs
);
1175 if (idx
!= bio
->bi_idx
|| clone
->bi_size
< bio
->bi_size
)
1176 bio_integrity_trim(clone
,
1177 bio_sector_offset(bio
, idx
, 0), len
);
1183 static struct dm_target_io
*alloc_tio(struct clone_info
*ci
,
1184 struct dm_target
*ti
)
1186 struct dm_target_io
*tio
= mempool_alloc(ci
->md
->tio_pool
, GFP_NOIO
);
1190 memset(&tio
->info
, 0, sizeof(tio
->info
));
1195 static void __issue_target_request(struct clone_info
*ci
, struct dm_target
*ti
,
1196 unsigned request_nr
, sector_t len
)
1198 struct dm_target_io
*tio
= alloc_tio(ci
, ti
);
1201 tio
->info
.target_request_nr
= request_nr
;
1204 * Discard requests require the bio's inline iovecs be initialized.
1205 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1206 * and discard, so no need for concern about wasted bvec allocations.
1208 clone
= bio_alloc_bioset(GFP_NOIO
, ci
->bio
->bi_max_vecs
, ci
->md
->bs
);
1209 __bio_clone(clone
, ci
->bio
);
1210 clone
->bi_destructor
= dm_bio_destructor
;
1212 clone
->bi_sector
= ci
->sector
;
1213 clone
->bi_size
= to_bytes(len
);
1216 __map_bio(ti
, clone
, tio
);
1219 static void __issue_target_requests(struct clone_info
*ci
, struct dm_target
*ti
,
1220 unsigned num_requests
, sector_t len
)
1222 unsigned request_nr
;
1224 for (request_nr
= 0; request_nr
< num_requests
; request_nr
++)
1225 __issue_target_request(ci
, ti
, request_nr
, len
);
1228 static int __clone_and_map_empty_barrier(struct clone_info
*ci
)
1230 unsigned target_nr
= 0;
1231 struct dm_target
*ti
;
1233 while ((ti
= dm_table_get_target(ci
->map
, target_nr
++)))
1234 __issue_target_requests(ci
, ti
, ti
->num_flush_requests
, 0);
1236 ci
->sector_count
= 0;
1242 * Perform all io with a single clone.
1244 static void __clone_and_map_simple(struct clone_info
*ci
, struct dm_target
*ti
)
1246 struct bio
*clone
, *bio
= ci
->bio
;
1247 struct dm_target_io
*tio
;
1249 tio
= alloc_tio(ci
, ti
);
1250 clone
= clone_bio(bio
, ci
->sector
, ci
->idx
,
1251 bio
->bi_vcnt
- ci
->idx
, ci
->sector_count
,
1253 __map_bio(ti
, clone
, tio
);
1254 ci
->sector_count
= 0;
1257 static int __clone_and_map_discard(struct clone_info
*ci
)
1259 struct dm_target
*ti
;
1263 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1264 if (!dm_target_is_valid(ti
))
1268 * Even though the device advertised discard support,
1269 * reconfiguration might have changed that since the
1270 * check was performed.
1272 if (!ti
->num_discard_requests
)
1275 len
= min(ci
->sector_count
, max_io_len_target_boundary(ci
->sector
, ti
));
1277 __issue_target_requests(ci
, ti
, ti
->num_discard_requests
, len
);
1280 } while (ci
->sector_count
-= len
);
1285 static int __clone_and_map(struct clone_info
*ci
)
1287 struct bio
*clone
, *bio
= ci
->bio
;
1288 struct dm_target
*ti
;
1289 sector_t len
= 0, max
;
1290 struct dm_target_io
*tio
;
1292 if (unlikely(bio_empty_barrier(bio
)))
1293 return __clone_and_map_empty_barrier(ci
);
1295 if (unlikely(bio
->bi_rw
& REQ_DISCARD
))
1296 return __clone_and_map_discard(ci
);
1298 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1299 if (!dm_target_is_valid(ti
))
1302 max
= max_io_len(ci
->sector
, ti
);
1304 if (ci
->sector_count
<= max
) {
1306 * Optimise for the simple case where we can do all of
1307 * the remaining io with a single clone.
1309 __clone_and_map_simple(ci
, ti
);
1311 } else if (to_sector(bio
->bi_io_vec
[ci
->idx
].bv_len
) <= max
) {
1313 * There are some bvecs that don't span targets.
1314 * Do as many of these as possible.
1317 sector_t remaining
= max
;
1320 for (i
= ci
->idx
; remaining
&& (i
< bio
->bi_vcnt
); i
++) {
1321 bv_len
= to_sector(bio
->bi_io_vec
[i
].bv_len
);
1323 if (bv_len
> remaining
)
1326 remaining
-= bv_len
;
1330 tio
= alloc_tio(ci
, ti
);
1331 clone
= clone_bio(bio
, ci
->sector
, ci
->idx
, i
- ci
->idx
, len
,
1333 __map_bio(ti
, clone
, tio
);
1336 ci
->sector_count
-= len
;
1341 * Handle a bvec that must be split between two or more targets.
1343 struct bio_vec
*bv
= bio
->bi_io_vec
+ ci
->idx
;
1344 sector_t remaining
= to_sector(bv
->bv_len
);
1345 unsigned int offset
= 0;
1349 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1350 if (!dm_target_is_valid(ti
))
1353 max
= max_io_len(ci
->sector
, ti
);
1356 len
= min(remaining
, max
);
1358 tio
= alloc_tio(ci
, ti
);
1359 clone
= split_bvec(bio
, ci
->sector
, ci
->idx
,
1360 bv
->bv_offset
+ offset
, len
,
1363 __map_bio(ti
, clone
, tio
);
1366 ci
->sector_count
-= len
;
1367 offset
+= to_bytes(len
);
1368 } while (remaining
-= len
);
1377 * Split the bio into several clones and submit it to targets.
1379 static void __split_and_process_bio(struct mapped_device
*md
, struct bio
*bio
)
1381 struct clone_info ci
;
1384 ci
.map
= dm_get_live_table(md
);
1385 if (unlikely(!ci
.map
)) {
1386 if (!(bio
->bi_rw
& REQ_HARDBARRIER
))
1389 if (!md
->barrier_error
)
1390 md
->barrier_error
= -EIO
;
1396 ci
.io
= alloc_io(md
);
1398 atomic_set(&ci
.io
->io_count
, 1);
1401 spin_lock_init(&ci
.io
->endio_lock
);
1402 ci
.sector
= bio
->bi_sector
;
1403 ci
.sector_count
= bio_sectors(bio
);
1404 if (unlikely(bio_empty_barrier(bio
)))
1405 ci
.sector_count
= 1;
1406 ci
.idx
= bio
->bi_idx
;
1408 start_io_acct(ci
.io
);
1409 while (ci
.sector_count
&& !error
)
1410 error
= __clone_and_map(&ci
);
1412 /* drop the extra reference count */
1413 dec_pending(ci
.io
, error
);
1414 dm_table_put(ci
.map
);
1416 /*-----------------------------------------------------------------
1418 *---------------------------------------------------------------*/
1420 static int dm_merge_bvec(struct request_queue
*q
,
1421 struct bvec_merge_data
*bvm
,
1422 struct bio_vec
*biovec
)
1424 struct mapped_device
*md
= q
->queuedata
;
1425 struct dm_table
*map
= dm_get_live_table(md
);
1426 struct dm_target
*ti
;
1427 sector_t max_sectors
;
1433 ti
= dm_table_find_target(map
, bvm
->bi_sector
);
1434 if (!dm_target_is_valid(ti
))
1438 * Find maximum amount of I/O that won't need splitting
1440 max_sectors
= min(max_io_len(bvm
->bi_sector
, ti
),
1441 (sector_t
) BIO_MAX_SECTORS
);
1442 max_size
= (max_sectors
<< SECTOR_SHIFT
) - bvm
->bi_size
;
1447 * merge_bvec_fn() returns number of bytes
1448 * it can accept at this offset
1449 * max is precomputed maximal io size
1451 if (max_size
&& ti
->type
->merge
)
1452 max_size
= ti
->type
->merge(ti
, bvm
, biovec
, max_size
);
1454 * If the target doesn't support merge method and some of the devices
1455 * provided their merge_bvec method (we know this by looking at
1456 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1457 * entries. So always set max_size to 0, and the code below allows
1460 else if (queue_max_hw_sectors(q
) <= PAGE_SIZE
>> 9)
1469 * Always allow an entire first page
1471 if (max_size
<= biovec
->bv_len
&& !(bvm
->bi_size
>> SECTOR_SHIFT
))
1472 max_size
= biovec
->bv_len
;
1478 * The request function that just remaps the bio built up by
1481 static int _dm_request(struct request_queue
*q
, struct bio
*bio
)
1483 int rw
= bio_data_dir(bio
);
1484 struct mapped_device
*md
= q
->queuedata
;
1487 down_read(&md
->io_lock
);
1489 cpu
= part_stat_lock();
1490 part_stat_inc(cpu
, &dm_disk(md
)->part0
, ios
[rw
]);
1491 part_stat_add(cpu
, &dm_disk(md
)->part0
, sectors
[rw
], bio_sectors(bio
));
1495 * If we're suspended or the thread is processing barriers
1496 * we have to queue this io for later.
1498 if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD
, &md
->flags
)) ||
1499 unlikely(bio
->bi_rw
& REQ_HARDBARRIER
)) {
1500 up_read(&md
->io_lock
);
1502 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) &&
1503 bio_rw(bio
) == READA
) {
1513 __split_and_process_bio(md
, bio
);
1514 up_read(&md
->io_lock
);
1518 static int dm_make_request(struct request_queue
*q
, struct bio
*bio
)
1520 struct mapped_device
*md
= q
->queuedata
;
1522 return md
->saved_make_request_fn(q
, bio
); /* call __make_request() */
1525 static int dm_request_based(struct mapped_device
*md
)
1527 return blk_queue_stackable(md
->queue
);
1530 static int dm_request(struct request_queue
*q
, struct bio
*bio
)
1532 struct mapped_device
*md
= q
->queuedata
;
1534 if (dm_request_based(md
))
1535 return dm_make_request(q
, bio
);
1537 return _dm_request(q
, bio
);
1540 static bool dm_rq_is_flush_request(struct request
*rq
)
1542 if (rq
->cmd_flags
& REQ_FLUSH
)
1548 void dm_dispatch_request(struct request
*rq
)
1552 if (blk_queue_io_stat(rq
->q
))
1553 rq
->cmd_flags
|= REQ_IO_STAT
;
1555 rq
->start_time
= jiffies
;
1556 r
= blk_insert_cloned_request(rq
->q
, rq
);
1558 dm_complete_request(rq
, r
);
1560 EXPORT_SYMBOL_GPL(dm_dispatch_request
);
1562 static void dm_rq_bio_destructor(struct bio
*bio
)
1564 struct dm_rq_clone_bio_info
*info
= bio
->bi_private
;
1565 struct mapped_device
*md
= info
->tio
->md
;
1567 free_bio_info(info
);
1568 bio_free(bio
, md
->bs
);
1571 static int dm_rq_bio_constructor(struct bio
*bio
, struct bio
*bio_orig
,
1574 struct dm_rq_target_io
*tio
= data
;
1575 struct mapped_device
*md
= tio
->md
;
1576 struct dm_rq_clone_bio_info
*info
= alloc_bio_info(md
);
1581 info
->orig
= bio_orig
;
1583 bio
->bi_end_io
= end_clone_bio
;
1584 bio
->bi_private
= info
;
1585 bio
->bi_destructor
= dm_rq_bio_destructor
;
1590 static int setup_clone(struct request
*clone
, struct request
*rq
,
1591 struct dm_rq_target_io
*tio
)
1595 if (dm_rq_is_flush_request(rq
)) {
1596 blk_rq_init(NULL
, clone
);
1597 clone
->cmd_type
= REQ_TYPE_FS
;
1598 clone
->cmd_flags
|= (REQ_HARDBARRIER
| WRITE
);
1600 r
= blk_rq_prep_clone(clone
, rq
, tio
->md
->bs
, GFP_ATOMIC
,
1601 dm_rq_bio_constructor
, tio
);
1605 clone
->cmd
= rq
->cmd
;
1606 clone
->cmd_len
= rq
->cmd_len
;
1607 clone
->sense
= rq
->sense
;
1608 clone
->buffer
= rq
->buffer
;
1611 clone
->end_io
= end_clone_request
;
1612 clone
->end_io_data
= tio
;
1617 static struct request
*clone_rq(struct request
*rq
, struct mapped_device
*md
,
1620 struct request
*clone
;
1621 struct dm_rq_target_io
*tio
;
1623 tio
= alloc_rq_tio(md
, gfp_mask
);
1631 memset(&tio
->info
, 0, sizeof(tio
->info
));
1633 clone
= &tio
->clone
;
1634 if (setup_clone(clone
, rq
, tio
)) {
1644 * Called with the queue lock held.
1646 static int dm_prep_fn(struct request_queue
*q
, struct request
*rq
)
1648 struct mapped_device
*md
= q
->queuedata
;
1649 struct request
*clone
;
1651 if (unlikely(dm_rq_is_flush_request(rq
)))
1654 if (unlikely(rq
->special
)) {
1655 DMWARN("Already has something in rq->special.");
1656 return BLKPREP_KILL
;
1659 clone
= clone_rq(rq
, md
, GFP_ATOMIC
);
1661 return BLKPREP_DEFER
;
1663 rq
->special
= clone
;
1664 rq
->cmd_flags
|= REQ_DONTPREP
;
1671 * 0 : the request has been processed (not requeued)
1672 * !0 : the request has been requeued
1674 static int map_request(struct dm_target
*ti
, struct request
*clone
,
1675 struct mapped_device
*md
)
1677 int r
, requeued
= 0;
1678 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
1681 * Hold the md reference here for the in-flight I/O.
1682 * We can't rely on the reference count by device opener,
1683 * because the device may be closed during the request completion
1684 * when all bios are completed.
1685 * See the comment in rq_completed() too.
1690 r
= ti
->type
->map_rq(ti
, clone
, &tio
->info
);
1692 case DM_MAPIO_SUBMITTED
:
1693 /* The target has taken the I/O to submit by itself later */
1695 case DM_MAPIO_REMAPPED
:
1696 /* The target has remapped the I/O so dispatch it */
1697 trace_block_rq_remap(clone
->q
, clone
, disk_devt(dm_disk(md
)),
1698 blk_rq_pos(tio
->orig
));
1699 dm_dispatch_request(clone
);
1701 case DM_MAPIO_REQUEUE
:
1702 /* The target wants to requeue the I/O */
1703 dm_requeue_unmapped_request(clone
);
1708 DMWARN("unimplemented target map return value: %d", r
);
1712 /* The target wants to complete the I/O */
1713 dm_kill_unmapped_request(clone
, r
);
1721 * q->request_fn for request-based dm.
1722 * Called with the queue lock held.
1724 static void dm_request_fn(struct request_queue
*q
)
1726 struct mapped_device
*md
= q
->queuedata
;
1727 struct dm_table
*map
= dm_get_live_table(md
);
1728 struct dm_target
*ti
;
1729 struct request
*rq
, *clone
;
1732 * For suspend, check blk_queue_stopped() and increment
1733 * ->pending within a single queue_lock not to increment the
1734 * number of in-flight I/Os after the queue is stopped in
1737 while (!blk_queue_plugged(q
) && !blk_queue_stopped(q
)) {
1738 rq
= blk_peek_request(q
);
1742 if (unlikely(dm_rq_is_flush_request(rq
))) {
1743 BUG_ON(md
->flush_request
);
1744 md
->flush_request
= rq
;
1745 blk_start_request(rq
);
1746 queue_work(md
->wq
, &md
->barrier_work
);
1750 ti
= dm_table_find_target(map
, blk_rq_pos(rq
));
1751 if (ti
->type
->busy
&& ti
->type
->busy(ti
))
1754 blk_start_request(rq
);
1755 clone
= rq
->special
;
1756 atomic_inc(&md
->pending
[rq_data_dir(clone
)]);
1758 spin_unlock(q
->queue_lock
);
1759 if (map_request(ti
, clone
, md
))
1762 spin_lock_irq(q
->queue_lock
);
1768 spin_lock_irq(q
->queue_lock
);
1771 if (!elv_queue_empty(q
))
1772 /* Some requests still remain, retry later */
1781 int dm_underlying_device_busy(struct request_queue
*q
)
1783 return blk_lld_busy(q
);
1785 EXPORT_SYMBOL_GPL(dm_underlying_device_busy
);
1787 static int dm_lld_busy(struct request_queue
*q
)
1790 struct mapped_device
*md
= q
->queuedata
;
1791 struct dm_table
*map
= dm_get_live_table(md
);
1793 if (!map
|| test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))
1796 r
= dm_table_any_busy_target(map
);
1803 static void dm_unplug_all(struct request_queue
*q
)
1805 struct mapped_device
*md
= q
->queuedata
;
1806 struct dm_table
*map
= dm_get_live_table(md
);
1809 if (dm_request_based(md
))
1810 generic_unplug_device(q
);
1812 dm_table_unplug_all(map
);
1817 static int dm_any_congested(void *congested_data
, int bdi_bits
)
1820 struct mapped_device
*md
= congested_data
;
1821 struct dm_table
*map
;
1823 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
1824 map
= dm_get_live_table(md
);
1827 * Request-based dm cares about only own queue for
1828 * the query about congestion status of request_queue
1830 if (dm_request_based(md
))
1831 r
= md
->queue
->backing_dev_info
.state
&
1834 r
= dm_table_any_congested(map
, bdi_bits
);
1843 /*-----------------------------------------------------------------
1844 * An IDR is used to keep track of allocated minor numbers.
1845 *---------------------------------------------------------------*/
1846 static DEFINE_IDR(_minor_idr
);
1848 static void free_minor(int minor
)
1850 spin_lock(&_minor_lock
);
1851 idr_remove(&_minor_idr
, minor
);
1852 spin_unlock(&_minor_lock
);
1856 * See if the device with a specific minor # is free.
1858 static int specific_minor(int minor
)
1862 if (minor
>= (1 << MINORBITS
))
1865 r
= idr_pre_get(&_minor_idr
, GFP_KERNEL
);
1869 spin_lock(&_minor_lock
);
1871 if (idr_find(&_minor_idr
, minor
)) {
1876 r
= idr_get_new_above(&_minor_idr
, MINOR_ALLOCED
, minor
, &m
);
1881 idr_remove(&_minor_idr
, m
);
1887 spin_unlock(&_minor_lock
);
1891 static int next_free_minor(int *minor
)
1895 r
= idr_pre_get(&_minor_idr
, GFP_KERNEL
);
1899 spin_lock(&_minor_lock
);
1901 r
= idr_get_new(&_minor_idr
, MINOR_ALLOCED
, &m
);
1905 if (m
>= (1 << MINORBITS
)) {
1906 idr_remove(&_minor_idr
, m
);
1914 spin_unlock(&_minor_lock
);
1918 static const struct block_device_operations dm_blk_dops
;
1920 static void dm_wq_work(struct work_struct
*work
);
1921 static void dm_rq_barrier_work(struct work_struct
*work
);
1923 static void dm_init_md_queue(struct mapped_device
*md
)
1926 * Request-based dm devices cannot be stacked on top of bio-based dm
1927 * devices. The type of this dm device has not been decided yet.
1928 * The type is decided at the first table loading time.
1929 * To prevent problematic device stacking, clear the queue flag
1930 * for request stacking support until then.
1932 * This queue is new, so no concurrency on the queue_flags.
1934 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE
, md
->queue
);
1936 md
->queue
->queuedata
= md
;
1937 md
->queue
->backing_dev_info
.congested_fn
= dm_any_congested
;
1938 md
->queue
->backing_dev_info
.congested_data
= md
;
1939 blk_queue_make_request(md
->queue
, dm_request
);
1940 blk_queue_bounce_limit(md
->queue
, BLK_BOUNCE_ANY
);
1941 md
->queue
->unplug_fn
= dm_unplug_all
;
1942 blk_queue_merge_bvec(md
->queue
, dm_merge_bvec
);
1946 * Allocate and initialise a blank device with a given minor.
1948 static struct mapped_device
*alloc_dev(int minor
)
1951 struct mapped_device
*md
= kzalloc(sizeof(*md
), GFP_KERNEL
);
1955 DMWARN("unable to allocate device, out of memory.");
1959 if (!try_module_get(THIS_MODULE
))
1960 goto bad_module_get
;
1962 /* get a minor number for the dev */
1963 if (minor
== DM_ANY_MINOR
)
1964 r
= next_free_minor(&minor
);
1966 r
= specific_minor(minor
);
1970 md
->type
= DM_TYPE_NONE
;
1971 init_rwsem(&md
->io_lock
);
1972 mutex_init(&md
->suspend_lock
);
1973 mutex_init(&md
->type_lock
);
1974 spin_lock_init(&md
->deferred_lock
);
1975 spin_lock_init(&md
->barrier_error_lock
);
1976 rwlock_init(&md
->map_lock
);
1977 atomic_set(&md
->holders
, 1);
1978 atomic_set(&md
->open_count
, 0);
1979 atomic_set(&md
->event_nr
, 0);
1980 atomic_set(&md
->uevent_seq
, 0);
1981 INIT_LIST_HEAD(&md
->uevent_list
);
1982 spin_lock_init(&md
->uevent_lock
);
1984 md
->queue
= blk_alloc_queue(GFP_KERNEL
);
1988 dm_init_md_queue(md
);
1990 md
->disk
= alloc_disk(1);
1994 atomic_set(&md
->pending
[0], 0);
1995 atomic_set(&md
->pending
[1], 0);
1996 init_waitqueue_head(&md
->wait
);
1997 INIT_WORK(&md
->work
, dm_wq_work
);
1998 INIT_WORK(&md
->barrier_work
, dm_rq_barrier_work
);
1999 init_waitqueue_head(&md
->eventq
);
2001 md
->disk
->major
= _major
;
2002 md
->disk
->first_minor
= minor
;
2003 md
->disk
->fops
= &dm_blk_dops
;
2004 md
->disk
->queue
= md
->queue
;
2005 md
->disk
->private_data
= md
;
2006 sprintf(md
->disk
->disk_name
, "dm-%d", minor
);
2008 format_dev_t(md
->name
, MKDEV(_major
, minor
));
2010 md
->wq
= create_singlethread_workqueue("kdmflush");
2014 md
->bdev
= bdget_disk(md
->disk
, 0);
2018 /* Populate the mapping, nobody knows we exist yet */
2019 spin_lock(&_minor_lock
);
2020 old_md
= idr_replace(&_minor_idr
, md
, minor
);
2021 spin_unlock(&_minor_lock
);
2023 BUG_ON(old_md
!= MINOR_ALLOCED
);
2028 destroy_workqueue(md
->wq
);
2030 del_gendisk(md
->disk
);
2033 blk_cleanup_queue(md
->queue
);
2037 module_put(THIS_MODULE
);
2043 static void unlock_fs(struct mapped_device
*md
);
2045 static void free_dev(struct mapped_device
*md
)
2047 int minor
= MINOR(disk_devt(md
->disk
));
2051 destroy_workqueue(md
->wq
);
2053 mempool_destroy(md
->tio_pool
);
2055 mempool_destroy(md
->io_pool
);
2057 bioset_free(md
->bs
);
2058 blk_integrity_unregister(md
->disk
);
2059 del_gendisk(md
->disk
);
2062 spin_lock(&_minor_lock
);
2063 md
->disk
->private_data
= NULL
;
2064 spin_unlock(&_minor_lock
);
2067 blk_cleanup_queue(md
->queue
);
2068 module_put(THIS_MODULE
);
2072 static void __bind_mempools(struct mapped_device
*md
, struct dm_table
*t
)
2074 struct dm_md_mempools
*p
;
2076 if (md
->io_pool
&& md
->tio_pool
&& md
->bs
)
2077 /* the md already has necessary mempools */
2080 p
= dm_table_get_md_mempools(t
);
2081 BUG_ON(!p
|| md
->io_pool
|| md
->tio_pool
|| md
->bs
);
2083 md
->io_pool
= p
->io_pool
;
2085 md
->tio_pool
= p
->tio_pool
;
2091 /* mempool bind completed, now no need any mempools in the table */
2092 dm_table_free_md_mempools(t
);
2096 * Bind a table to the device.
2098 static void event_callback(void *context
)
2100 unsigned long flags
;
2102 struct mapped_device
*md
= (struct mapped_device
*) context
;
2104 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2105 list_splice_init(&md
->uevent_list
, &uevents
);
2106 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2108 dm_send_uevents(&uevents
, &disk_to_dev(md
->disk
)->kobj
);
2110 atomic_inc(&md
->event_nr
);
2111 wake_up(&md
->eventq
);
2114 static void __set_size(struct mapped_device
*md
, sector_t size
)
2116 set_capacity(md
->disk
, size
);
2118 mutex_lock(&md
->bdev
->bd_inode
->i_mutex
);
2119 i_size_write(md
->bdev
->bd_inode
, (loff_t
)size
<< SECTOR_SHIFT
);
2120 mutex_unlock(&md
->bdev
->bd_inode
->i_mutex
);
2124 * Returns old map, which caller must destroy.
2126 static struct dm_table
*__bind(struct mapped_device
*md
, struct dm_table
*t
,
2127 struct queue_limits
*limits
)
2129 struct dm_table
*old_map
;
2130 struct request_queue
*q
= md
->queue
;
2132 unsigned long flags
;
2134 size
= dm_table_get_size(t
);
2137 * Wipe any geometry if the size of the table changed.
2139 if (size
!= get_capacity(md
->disk
))
2140 memset(&md
->geometry
, 0, sizeof(md
->geometry
));
2142 __set_size(md
, size
);
2144 dm_table_event_callback(t
, event_callback
, md
);
2147 * The queue hasn't been stopped yet, if the old table type wasn't
2148 * for request-based during suspension. So stop it to prevent
2149 * I/O mapping before resume.
2150 * This must be done before setting the queue restrictions,
2151 * because request-based dm may be run just after the setting.
2153 if (dm_table_request_based(t
) && !blk_queue_stopped(q
))
2156 __bind_mempools(md
, t
);
2158 write_lock_irqsave(&md
->map_lock
, flags
);
2161 dm_table_set_restrictions(t
, q
, limits
);
2162 write_unlock_irqrestore(&md
->map_lock
, flags
);
2168 * Returns unbound table for the caller to free.
2170 static struct dm_table
*__unbind(struct mapped_device
*md
)
2172 struct dm_table
*map
= md
->map
;
2173 unsigned long flags
;
2178 dm_table_event_callback(map
, NULL
, NULL
);
2179 write_lock_irqsave(&md
->map_lock
, flags
);
2181 write_unlock_irqrestore(&md
->map_lock
, flags
);
2187 * Constructor for a new device.
2189 int dm_create(int minor
, struct mapped_device
**result
)
2191 struct mapped_device
*md
;
2193 md
= alloc_dev(minor
);
2204 * Functions to manage md->type.
2205 * All are required to hold md->type_lock.
2207 void dm_lock_md_type(struct mapped_device
*md
)
2209 mutex_lock(&md
->type_lock
);
2212 void dm_unlock_md_type(struct mapped_device
*md
)
2214 mutex_unlock(&md
->type_lock
);
2217 void dm_set_md_type(struct mapped_device
*md
, unsigned type
)
2222 unsigned dm_get_md_type(struct mapped_device
*md
)
2228 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2230 static int dm_init_request_based_queue(struct mapped_device
*md
)
2232 struct request_queue
*q
= NULL
;
2234 if (md
->queue
->elevator
)
2237 /* Fully initialize the queue */
2238 q
= blk_init_allocated_queue(md
->queue
, dm_request_fn
, NULL
);
2243 md
->saved_make_request_fn
= md
->queue
->make_request_fn
;
2244 dm_init_md_queue(md
);
2245 blk_queue_softirq_done(md
->queue
, dm_softirq_done
);
2246 blk_queue_prep_rq(md
->queue
, dm_prep_fn
);
2247 blk_queue_lld_busy(md
->queue
, dm_lld_busy
);
2248 blk_queue_ordered(md
->queue
, QUEUE_ORDERED_DRAIN_FLUSH
);
2250 elv_register_queue(md
->queue
);
2256 * Setup the DM device's queue based on md's type
2258 int dm_setup_md_queue(struct mapped_device
*md
)
2260 if ((dm_get_md_type(md
) == DM_TYPE_REQUEST_BASED
) &&
2261 !dm_init_request_based_queue(md
)) {
2262 DMWARN("Cannot initialize queue for request-based mapped device");
2269 static struct mapped_device
*dm_find_md(dev_t dev
)
2271 struct mapped_device
*md
;
2272 unsigned minor
= MINOR(dev
);
2274 if (MAJOR(dev
) != _major
|| minor
>= (1 << MINORBITS
))
2277 spin_lock(&_minor_lock
);
2279 md
= idr_find(&_minor_idr
, minor
);
2280 if (md
&& (md
== MINOR_ALLOCED
||
2281 (MINOR(disk_devt(dm_disk(md
))) != minor
) ||
2282 dm_deleting_md(md
) ||
2283 test_bit(DMF_FREEING
, &md
->flags
))) {
2289 spin_unlock(&_minor_lock
);
2294 struct mapped_device
*dm_get_md(dev_t dev
)
2296 struct mapped_device
*md
= dm_find_md(dev
);
2304 void *dm_get_mdptr(struct mapped_device
*md
)
2306 return md
->interface_ptr
;
2309 void dm_set_mdptr(struct mapped_device
*md
, void *ptr
)
2311 md
->interface_ptr
= ptr
;
2314 void dm_get(struct mapped_device
*md
)
2316 atomic_inc(&md
->holders
);
2317 BUG_ON(test_bit(DMF_FREEING
, &md
->flags
));
2320 const char *dm_device_name(struct mapped_device
*md
)
2324 EXPORT_SYMBOL_GPL(dm_device_name
);
2326 static void __dm_destroy(struct mapped_device
*md
, bool wait
)
2328 struct dm_table
*map
;
2332 spin_lock(&_minor_lock
);
2333 map
= dm_get_live_table(md
);
2334 idr_replace(&_minor_idr
, MINOR_ALLOCED
, MINOR(disk_devt(dm_disk(md
))));
2335 set_bit(DMF_FREEING
, &md
->flags
);
2336 spin_unlock(&_minor_lock
);
2338 if (!dm_suspended_md(md
)) {
2339 dm_table_presuspend_targets(map
);
2340 dm_table_postsuspend_targets(map
);
2344 * Rare, but there may be I/O requests still going to complete,
2345 * for example. Wait for all references to disappear.
2346 * No one should increment the reference count of the mapped_device,
2347 * after the mapped_device state becomes DMF_FREEING.
2350 while (atomic_read(&md
->holders
))
2352 else if (atomic_read(&md
->holders
))
2353 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2354 dm_device_name(md
), atomic_read(&md
->holders
));
2358 dm_table_destroy(__unbind(md
));
2362 void dm_destroy(struct mapped_device
*md
)
2364 __dm_destroy(md
, true);
2367 void dm_destroy_immediate(struct mapped_device
*md
)
2369 __dm_destroy(md
, false);
2372 void dm_put(struct mapped_device
*md
)
2374 atomic_dec(&md
->holders
);
2376 EXPORT_SYMBOL_GPL(dm_put
);
2378 static int dm_wait_for_completion(struct mapped_device
*md
, int interruptible
)
2381 DECLARE_WAITQUEUE(wait
, current
);
2383 dm_unplug_all(md
->queue
);
2385 add_wait_queue(&md
->wait
, &wait
);
2388 set_current_state(interruptible
);
2391 if (!md_in_flight(md
))
2394 if (interruptible
== TASK_INTERRUPTIBLE
&&
2395 signal_pending(current
)) {
2402 set_current_state(TASK_RUNNING
);
2404 remove_wait_queue(&md
->wait
, &wait
);
2409 static void dm_flush(struct mapped_device
*md
)
2411 dm_wait_for_completion(md
, TASK_UNINTERRUPTIBLE
);
2413 bio_init(&md
->barrier_bio
);
2414 md
->barrier_bio
.bi_bdev
= md
->bdev
;
2415 md
->barrier_bio
.bi_rw
= WRITE_BARRIER
;
2416 __split_and_process_bio(md
, &md
->barrier_bio
);
2418 dm_wait_for_completion(md
, TASK_UNINTERRUPTIBLE
);
2421 static void process_barrier(struct mapped_device
*md
, struct bio
*bio
)
2423 md
->barrier_error
= 0;
2427 if (!bio_empty_barrier(bio
)) {
2428 __split_and_process_bio(md
, bio
);
2430 * If the request isn't supported, don't waste time with
2433 if (md
->barrier_error
!= -EOPNOTSUPP
)
2437 if (md
->barrier_error
!= DM_ENDIO_REQUEUE
)
2438 bio_endio(bio
, md
->barrier_error
);
2440 spin_lock_irq(&md
->deferred_lock
);
2441 bio_list_add_head(&md
->deferred
, bio
);
2442 spin_unlock_irq(&md
->deferred_lock
);
2447 * Process the deferred bios
2449 static void dm_wq_work(struct work_struct
*work
)
2451 struct mapped_device
*md
= container_of(work
, struct mapped_device
,
2455 down_write(&md
->io_lock
);
2457 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
2458 spin_lock_irq(&md
->deferred_lock
);
2459 c
= bio_list_pop(&md
->deferred
);
2460 spin_unlock_irq(&md
->deferred_lock
);
2463 clear_bit(DMF_QUEUE_IO_TO_THREAD
, &md
->flags
);
2467 up_write(&md
->io_lock
);
2469 if (dm_request_based(md
))
2470 generic_make_request(c
);
2472 if (c
->bi_rw
& REQ_HARDBARRIER
)
2473 process_barrier(md
, c
);
2475 __split_and_process_bio(md
, c
);
2478 down_write(&md
->io_lock
);
2481 up_write(&md
->io_lock
);
2484 static void dm_queue_flush(struct mapped_device
*md
)
2486 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2487 smp_mb__after_clear_bit();
2488 queue_work(md
->wq
, &md
->work
);
2491 static void dm_rq_set_target_request_nr(struct request
*clone
, unsigned request_nr
)
2493 struct dm_rq_target_io
*tio
= clone
->end_io_data
;
2495 tio
->info
.target_request_nr
= request_nr
;
2498 /* Issue barrier requests to targets and wait for their completion. */
2499 static int dm_rq_barrier(struct mapped_device
*md
)
2502 struct dm_table
*map
= dm_get_live_table(md
);
2503 unsigned num_targets
= dm_table_get_num_targets(map
);
2504 struct dm_target
*ti
;
2505 struct request
*clone
;
2507 md
->barrier_error
= 0;
2509 for (i
= 0; i
< num_targets
; i
++) {
2510 ti
= dm_table_get_target(map
, i
);
2511 for (j
= 0; j
< ti
->num_flush_requests
; j
++) {
2512 clone
= clone_rq(md
->flush_request
, md
, GFP_NOIO
);
2513 dm_rq_set_target_request_nr(clone
, j
);
2514 atomic_inc(&md
->pending
[rq_data_dir(clone
)]);
2515 map_request(ti
, clone
, md
);
2519 dm_wait_for_completion(md
, TASK_UNINTERRUPTIBLE
);
2522 return md
->barrier_error
;
2525 static void dm_rq_barrier_work(struct work_struct
*work
)
2528 struct mapped_device
*md
= container_of(work
, struct mapped_device
,
2530 struct request_queue
*q
= md
->queue
;
2532 unsigned long flags
;
2535 * Hold the md reference here and leave it at the last part so that
2536 * the md can't be deleted by device opener when the barrier request
2541 error
= dm_rq_barrier(md
);
2543 rq
= md
->flush_request
;
2544 md
->flush_request
= NULL
;
2546 if (error
== DM_ENDIO_REQUEUE
) {
2547 spin_lock_irqsave(q
->queue_lock
, flags
);
2548 blk_requeue_request(q
, rq
);
2549 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2551 blk_end_request_all(rq
, error
);
2559 * Swap in a new table, returning the old one for the caller to destroy.
2561 struct dm_table
*dm_swap_table(struct mapped_device
*md
, struct dm_table
*table
)
2563 struct dm_table
*map
= ERR_PTR(-EINVAL
);
2564 struct queue_limits limits
;
2567 mutex_lock(&md
->suspend_lock
);
2569 /* device must be suspended */
2570 if (!dm_suspended_md(md
))
2573 r
= dm_calculate_queue_limits(table
, &limits
);
2579 map
= __bind(md
, table
, &limits
);
2582 mutex_unlock(&md
->suspend_lock
);
2587 * Functions to lock and unlock any filesystem running on the
2590 static int lock_fs(struct mapped_device
*md
)
2594 WARN_ON(md
->frozen_sb
);
2596 md
->frozen_sb
= freeze_bdev(md
->bdev
);
2597 if (IS_ERR(md
->frozen_sb
)) {
2598 r
= PTR_ERR(md
->frozen_sb
);
2599 md
->frozen_sb
= NULL
;
2603 set_bit(DMF_FROZEN
, &md
->flags
);
2608 static void unlock_fs(struct mapped_device
*md
)
2610 if (!test_bit(DMF_FROZEN
, &md
->flags
))
2613 thaw_bdev(md
->bdev
, md
->frozen_sb
);
2614 md
->frozen_sb
= NULL
;
2615 clear_bit(DMF_FROZEN
, &md
->flags
);
2619 * We need to be able to change a mapping table under a mounted
2620 * filesystem. For example we might want to move some data in
2621 * the background. Before the table can be swapped with
2622 * dm_bind_table, dm_suspend must be called to flush any in
2623 * flight bios and ensure that any further io gets deferred.
2626 * Suspend mechanism in request-based dm.
2628 * 1. Flush all I/Os by lock_fs() if needed.
2629 * 2. Stop dispatching any I/O by stopping the request_queue.
2630 * 3. Wait for all in-flight I/Os to be completed or requeued.
2632 * To abort suspend, start the request_queue.
2634 int dm_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
2636 struct dm_table
*map
= NULL
;
2638 int do_lockfs
= suspend_flags
& DM_SUSPEND_LOCKFS_FLAG
? 1 : 0;
2639 int noflush
= suspend_flags
& DM_SUSPEND_NOFLUSH_FLAG
? 1 : 0;
2641 mutex_lock(&md
->suspend_lock
);
2643 if (dm_suspended_md(md
)) {
2648 map
= dm_get_live_table(md
);
2651 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2652 * This flag is cleared before dm_suspend returns.
2655 set_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2657 /* This does not get reverted if there's an error later. */
2658 dm_table_presuspend_targets(map
);
2661 * Flush I/O to the device.
2662 * Any I/O submitted after lock_fs() may not be flushed.
2663 * noflush takes precedence over do_lockfs.
2664 * (lock_fs() flushes I/Os and waits for them to complete.)
2666 if (!noflush
&& do_lockfs
) {
2673 * Here we must make sure that no processes are submitting requests
2674 * to target drivers i.e. no one may be executing
2675 * __split_and_process_bio. This is called from dm_request and
2678 * To get all processes out of __split_and_process_bio in dm_request,
2679 * we take the write lock. To prevent any process from reentering
2680 * __split_and_process_bio from dm_request, we set
2681 * DMF_QUEUE_IO_TO_THREAD.
2683 * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND
2684 * and call flush_workqueue(md->wq). flush_workqueue will wait until
2685 * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any
2686 * further calls to __split_and_process_bio from dm_wq_work.
2688 down_write(&md
->io_lock
);
2689 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2690 set_bit(DMF_QUEUE_IO_TO_THREAD
, &md
->flags
);
2691 up_write(&md
->io_lock
);
2694 * Request-based dm uses md->wq for barrier (dm_rq_barrier_work) which
2695 * can be kicked until md->queue is stopped. So stop md->queue before
2698 if (dm_request_based(md
))
2699 stop_queue(md
->queue
);
2701 flush_workqueue(md
->wq
);
2704 * At this point no more requests are entering target request routines.
2705 * We call dm_wait_for_completion to wait for all existing requests
2708 r
= dm_wait_for_completion(md
, TASK_INTERRUPTIBLE
);
2710 down_write(&md
->io_lock
);
2712 clear_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2713 up_write(&md
->io_lock
);
2715 /* were we interrupted ? */
2719 if (dm_request_based(md
))
2720 start_queue(md
->queue
);
2723 goto out
; /* pushback list is already flushed, so skip flush */
2727 * If dm_wait_for_completion returned 0, the device is completely
2728 * quiescent now. There is no request-processing activity. All new
2729 * requests are being added to md->deferred list.
2732 set_bit(DMF_SUSPENDED
, &md
->flags
);
2734 dm_table_postsuspend_targets(map
);
2740 mutex_unlock(&md
->suspend_lock
);
2744 int dm_resume(struct mapped_device
*md
)
2747 struct dm_table
*map
= NULL
;
2749 mutex_lock(&md
->suspend_lock
);
2750 if (!dm_suspended_md(md
))
2753 map
= dm_get_live_table(md
);
2754 if (!map
|| !dm_table_get_size(map
))
2757 r
= dm_table_resume_targets(map
);
2764 * Flushing deferred I/Os must be done after targets are resumed
2765 * so that mapping of targets can work correctly.
2766 * Request-based dm is queueing the deferred I/Os in its request_queue.
2768 if (dm_request_based(md
))
2769 start_queue(md
->queue
);
2773 clear_bit(DMF_SUSPENDED
, &md
->flags
);
2775 dm_table_unplug_all(map
);
2779 mutex_unlock(&md
->suspend_lock
);
2784 /*-----------------------------------------------------------------
2785 * Event notification.
2786 *---------------------------------------------------------------*/
2787 int dm_kobject_uevent(struct mapped_device
*md
, enum kobject_action action
,
2790 char udev_cookie
[DM_COOKIE_LENGTH
];
2791 char *envp
[] = { udev_cookie
, NULL
};
2794 return kobject_uevent(&disk_to_dev(md
->disk
)->kobj
, action
);
2796 snprintf(udev_cookie
, DM_COOKIE_LENGTH
, "%s=%u",
2797 DM_COOKIE_ENV_VAR_NAME
, cookie
);
2798 return kobject_uevent_env(&disk_to_dev(md
->disk
)->kobj
,
2803 uint32_t dm_next_uevent_seq(struct mapped_device
*md
)
2805 return atomic_add_return(1, &md
->uevent_seq
);
2808 uint32_t dm_get_event_nr(struct mapped_device
*md
)
2810 return atomic_read(&md
->event_nr
);
2813 int dm_wait_event(struct mapped_device
*md
, int event_nr
)
2815 return wait_event_interruptible(md
->eventq
,
2816 (event_nr
!= atomic_read(&md
->event_nr
)));
2819 void dm_uevent_add(struct mapped_device
*md
, struct list_head
*elist
)
2821 unsigned long flags
;
2823 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2824 list_add(elist
, &md
->uevent_list
);
2825 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2829 * The gendisk is only valid as long as you have a reference
2832 struct gendisk
*dm_disk(struct mapped_device
*md
)
2837 struct kobject
*dm_kobject(struct mapped_device
*md
)
2843 * struct mapped_device should not be exported outside of dm.c
2844 * so use this check to verify that kobj is part of md structure
2846 struct mapped_device
*dm_get_from_kobject(struct kobject
*kobj
)
2848 struct mapped_device
*md
;
2850 md
= container_of(kobj
, struct mapped_device
, kobj
);
2851 if (&md
->kobj
!= kobj
)
2854 if (test_bit(DMF_FREEING
, &md
->flags
) ||
2862 int dm_suspended_md(struct mapped_device
*md
)
2864 return test_bit(DMF_SUSPENDED
, &md
->flags
);
2867 int dm_suspended(struct dm_target
*ti
)
2869 return dm_suspended_md(dm_table_get_md(ti
->table
));
2871 EXPORT_SYMBOL_GPL(dm_suspended
);
2873 int dm_noflush_suspending(struct dm_target
*ti
)
2875 return __noflush_suspending(dm_table_get_md(ti
->table
));
2877 EXPORT_SYMBOL_GPL(dm_noflush_suspending
);
2879 struct dm_md_mempools
*dm_alloc_md_mempools(unsigned type
)
2881 struct dm_md_mempools
*pools
= kmalloc(sizeof(*pools
), GFP_KERNEL
);
2886 pools
->io_pool
= (type
== DM_TYPE_BIO_BASED
) ?
2887 mempool_create_slab_pool(MIN_IOS
, _io_cache
) :
2888 mempool_create_slab_pool(MIN_IOS
, _rq_bio_info_cache
);
2889 if (!pools
->io_pool
)
2890 goto free_pools_and_out
;
2892 pools
->tio_pool
= (type
== DM_TYPE_BIO_BASED
) ?
2893 mempool_create_slab_pool(MIN_IOS
, _tio_cache
) :
2894 mempool_create_slab_pool(MIN_IOS
, _rq_tio_cache
);
2895 if (!pools
->tio_pool
)
2896 goto free_io_pool_and_out
;
2898 pools
->bs
= (type
== DM_TYPE_BIO_BASED
) ?
2899 bioset_create(16, 0) : bioset_create(MIN_IOS
, 0);
2901 goto free_tio_pool_and_out
;
2905 free_tio_pool_and_out
:
2906 mempool_destroy(pools
->tio_pool
);
2908 free_io_pool_and_out
:
2909 mempool_destroy(pools
->io_pool
);
2917 void dm_free_md_mempools(struct dm_md_mempools
*pools
)
2923 mempool_destroy(pools
->io_pool
);
2925 if (pools
->tio_pool
)
2926 mempool_destroy(pools
->tio_pool
);
2929 bioset_free(pools
->bs
);
2934 static const struct block_device_operations dm_blk_dops
= {
2935 .open
= dm_blk_open
,
2936 .release
= dm_blk_close
,
2937 .ioctl
= dm_blk_ioctl
,
2938 .getgeo
= dm_blk_getgeo
,
2939 .owner
= THIS_MODULE
2942 EXPORT_SYMBOL(dm_get_mapinfo
);
2947 module_init(dm_init
);
2948 module_exit(dm_exit
);
2950 module_param(major
, uint
, 0);
2951 MODULE_PARM_DESC(major
, "The major number of the device mapper");
2952 MODULE_DESCRIPTION(DM_NAME
" driver");
2953 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2954 MODULE_LICENSE("GPL");