Merge master.kernel.org:/pub/scm/linux/kernel/git/davem/sparc-2.6
[linux-2.6.git] / mm / mempolicy.c
blob67af4cea1e23173dd918de5813bd591eb68423b3
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 could replace all the switch()es with a mempolicy_ops structure.
69 #include <linux/mempolicy.h>
70 #include <linux/mm.h>
71 #include <linux/highmem.h>
72 #include <linux/hugetlb.h>
73 #include <linux/kernel.h>
74 #include <linux/sched.h>
75 #include <linux/mm.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/gfp.h>
79 #include <linux/slab.h>
80 #include <linux/string.h>
81 #include <linux/module.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/mempolicy.h>
86 #include <linux/swap.h>
87 #include <linux/seq_file.h>
88 #include <linux/proc_fs.h>
90 #include <asm/tlbflush.h>
91 #include <asm/uaccess.h>
93 /* Internal flags */
94 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
95 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
96 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */
98 /* The number of pages to migrate per call to migrate_pages() */
99 #define MIGRATE_CHUNK_SIZE 256
101 static kmem_cache_t *policy_cache;
102 static kmem_cache_t *sn_cache;
104 #define PDprintk(fmt...)
106 /* Highest zone. An specific allocation for a zone below that is not
107 policied. */
108 int policy_zone = ZONE_DMA;
110 struct mempolicy default_policy = {
111 .refcnt = ATOMIC_INIT(1), /* never free it */
112 .policy = MPOL_DEFAULT,
115 /* Do sanity checking on a policy */
116 static int mpol_check_policy(int mode, nodemask_t *nodes)
118 int empty = nodes_empty(*nodes);
120 switch (mode) {
121 case MPOL_DEFAULT:
122 if (!empty)
123 return -EINVAL;
124 break;
125 case MPOL_BIND:
126 case MPOL_INTERLEAVE:
127 /* Preferred will only use the first bit, but allow
128 more for now. */
129 if (empty)
130 return -EINVAL;
131 break;
133 return nodes_subset(*nodes, node_online_map) ? 0 : -EINVAL;
136 /* Generate a custom zonelist for the BIND policy. */
137 static struct zonelist *bind_zonelist(nodemask_t *nodes)
139 struct zonelist *zl;
140 int num, max, nd, k;
142 max = 1 + MAX_NR_ZONES * nodes_weight(*nodes);
143 zl = kmalloc(sizeof(struct zone *) * max, GFP_KERNEL);
144 if (!zl)
145 return NULL;
146 num = 0;
147 /* First put in the highest zones from all nodes, then all the next
148 lower zones etc. Avoid empty zones because the memory allocator
149 doesn't like them. If you implement node hot removal you
150 have to fix that. */
151 for (k = policy_zone; k >= 0; k--) {
152 for_each_node_mask(nd, *nodes) {
153 struct zone *z = &NODE_DATA(nd)->node_zones[k];
154 if (z->present_pages > 0)
155 zl->zones[num++] = z;
158 zl->zones[num] = NULL;
159 return zl;
162 /* Create a new policy */
163 static struct mempolicy *mpol_new(int mode, nodemask_t *nodes)
165 struct mempolicy *policy;
167 PDprintk("setting mode %d nodes[0] %lx\n", mode, nodes_addr(*nodes)[0]);
168 if (mode == MPOL_DEFAULT)
169 return NULL;
170 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
171 if (!policy)
172 return ERR_PTR(-ENOMEM);
173 atomic_set(&policy->refcnt, 1);
174 switch (mode) {
175 case MPOL_INTERLEAVE:
176 policy->v.nodes = *nodes;
177 if (nodes_weight(*nodes) == 0) {
178 kmem_cache_free(policy_cache, policy);
179 return ERR_PTR(-EINVAL);
181 break;
182 case MPOL_PREFERRED:
183 policy->v.preferred_node = first_node(*nodes);
184 if (policy->v.preferred_node >= MAX_NUMNODES)
185 policy->v.preferred_node = -1;
186 break;
187 case MPOL_BIND:
188 policy->v.zonelist = bind_zonelist(nodes);
189 if (policy->v.zonelist == NULL) {
190 kmem_cache_free(policy_cache, policy);
191 return ERR_PTR(-ENOMEM);
193 break;
195 policy->policy = mode;
196 policy->cpuset_mems_allowed = cpuset_mems_allowed(current);
197 return policy;
200 static void gather_stats(struct page *, void *);
201 static void migrate_page_add(struct page *page, struct list_head *pagelist,
202 unsigned long flags);
204 /* Scan through pages checking if pages follow certain conditions. */
205 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
206 unsigned long addr, unsigned long end,
207 const nodemask_t *nodes, unsigned long flags,
208 void *private)
210 pte_t *orig_pte;
211 pte_t *pte;
212 spinlock_t *ptl;
214 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
215 do {
216 struct page *page;
217 unsigned int nid;
219 if (!pte_present(*pte))
220 continue;
221 page = vm_normal_page(vma, addr, *pte);
222 if (!page)
223 continue;
225 * The check for PageReserved here is important to avoid
226 * handling zero pages and other pages that may have been
227 * marked special by the system.
229 * If the PageReserved would not be checked here then f.e.
230 * the location of the zero page could have an influence
231 * on MPOL_MF_STRICT, zero pages would be counted for
232 * the per node stats, and there would be useless attempts
233 * to put zero pages on the migration list.
235 if (PageReserved(page))
236 continue;
237 nid = page_to_nid(page);
238 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
239 continue;
241 if (flags & MPOL_MF_STATS)
242 gather_stats(page, private);
243 else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
244 migrate_page_add(page, private, flags);
245 else
246 break;
247 } while (pte++, addr += PAGE_SIZE, addr != end);
248 pte_unmap_unlock(orig_pte, ptl);
249 return addr != end;
252 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
253 unsigned long addr, unsigned long end,
254 const nodemask_t *nodes, unsigned long flags,
255 void *private)
257 pmd_t *pmd;
258 unsigned long next;
260 pmd = pmd_offset(pud, addr);
261 do {
262 next = pmd_addr_end(addr, end);
263 if (pmd_none_or_clear_bad(pmd))
264 continue;
265 if (check_pte_range(vma, pmd, addr, next, nodes,
266 flags, private))
267 return -EIO;
268 } while (pmd++, addr = next, addr != end);
269 return 0;
272 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
273 unsigned long addr, unsigned long end,
274 const nodemask_t *nodes, unsigned long flags,
275 void *private)
277 pud_t *pud;
278 unsigned long next;
280 pud = pud_offset(pgd, addr);
281 do {
282 next = pud_addr_end(addr, end);
283 if (pud_none_or_clear_bad(pud))
284 continue;
285 if (check_pmd_range(vma, pud, addr, next, nodes,
286 flags, private))
287 return -EIO;
288 } while (pud++, addr = next, addr != end);
289 return 0;
292 static inline int check_pgd_range(struct vm_area_struct *vma,
293 unsigned long addr, unsigned long end,
294 const nodemask_t *nodes, unsigned long flags,
295 void *private)
297 pgd_t *pgd;
298 unsigned long next;
300 pgd = pgd_offset(vma->vm_mm, addr);
301 do {
302 next = pgd_addr_end(addr, end);
303 if (pgd_none_or_clear_bad(pgd))
304 continue;
305 if (check_pud_range(vma, pgd, addr, next, nodes,
306 flags, private))
307 return -EIO;
308 } while (pgd++, addr = next, addr != end);
309 return 0;
312 /* Check if a vma is migratable */
313 static inline int vma_migratable(struct vm_area_struct *vma)
315 if (vma->vm_flags & (
316 VM_LOCKED|VM_IO|VM_HUGETLB|VM_PFNMAP|VM_RESERVED))
317 return 0;
318 return 1;
322 * Check if all pages in a range are on a set of nodes.
323 * If pagelist != NULL then isolate pages from the LRU and
324 * put them on the pagelist.
326 static struct vm_area_struct *
327 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
328 const nodemask_t *nodes, unsigned long flags, void *private)
330 int err;
331 struct vm_area_struct *first, *vma, *prev;
333 /* Clear the LRU lists so pages can be isolated */
334 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
335 lru_add_drain_all();
337 first = find_vma(mm, start);
338 if (!first)
339 return ERR_PTR(-EFAULT);
340 prev = NULL;
341 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
342 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
343 if (!vma->vm_next && vma->vm_end < end)
344 return ERR_PTR(-EFAULT);
345 if (prev && prev->vm_end < vma->vm_start)
346 return ERR_PTR(-EFAULT);
348 if (!is_vm_hugetlb_page(vma) &&
349 ((flags & MPOL_MF_STRICT) ||
350 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
351 vma_migratable(vma)))) {
352 unsigned long endvma = vma->vm_end;
354 if (endvma > end)
355 endvma = end;
356 if (vma->vm_start > start)
357 start = vma->vm_start;
358 err = check_pgd_range(vma, start, endvma, nodes,
359 flags, private);
360 if (err) {
361 first = ERR_PTR(err);
362 break;
365 prev = vma;
367 return first;
370 /* Apply policy to a single VMA */
371 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
373 int err = 0;
374 struct mempolicy *old = vma->vm_policy;
376 PDprintk("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
377 vma->vm_start, vma->vm_end, vma->vm_pgoff,
378 vma->vm_ops, vma->vm_file,
379 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
381 if (vma->vm_ops && vma->vm_ops->set_policy)
382 err = vma->vm_ops->set_policy(vma, new);
383 if (!err) {
384 mpol_get(new);
385 vma->vm_policy = new;
386 mpol_free(old);
388 return err;
391 /* Step 2: apply policy to a range and do splits. */
392 static int mbind_range(struct vm_area_struct *vma, unsigned long start,
393 unsigned long end, struct mempolicy *new)
395 struct vm_area_struct *next;
396 int err;
398 err = 0;
399 for (; vma && vma->vm_start < end; vma = next) {
400 next = vma->vm_next;
401 if (vma->vm_start < start)
402 err = split_vma(vma->vm_mm, vma, start, 1);
403 if (!err && vma->vm_end > end)
404 err = split_vma(vma->vm_mm, vma, end, 0);
405 if (!err)
406 err = policy_vma(vma, new);
407 if (err)
408 break;
410 return err;
413 static int contextualize_policy(int mode, nodemask_t *nodes)
415 if (!nodes)
416 return 0;
418 cpuset_update_task_memory_state();
419 if (!cpuset_nodes_subset_current_mems_allowed(*nodes))
420 return -EINVAL;
421 return mpol_check_policy(mode, nodes);
424 /* Set the process memory policy */
425 long do_set_mempolicy(int mode, nodemask_t *nodes)
427 struct mempolicy *new;
429 if (contextualize_policy(mode, nodes))
430 return -EINVAL;
431 new = mpol_new(mode, nodes);
432 if (IS_ERR(new))
433 return PTR_ERR(new);
434 mpol_free(current->mempolicy);
435 current->mempolicy = new;
436 if (new && new->policy == MPOL_INTERLEAVE)
437 current->il_next = first_node(new->v.nodes);
438 return 0;
441 /* Fill a zone bitmap for a policy */
442 static void get_zonemask(struct mempolicy *p, nodemask_t *nodes)
444 int i;
446 nodes_clear(*nodes);
447 switch (p->policy) {
448 case MPOL_BIND:
449 for (i = 0; p->v.zonelist->zones[i]; i++)
450 node_set(p->v.zonelist->zones[i]->zone_pgdat->node_id,
451 *nodes);
452 break;
453 case MPOL_DEFAULT:
454 break;
455 case MPOL_INTERLEAVE:
456 *nodes = p->v.nodes;
457 break;
458 case MPOL_PREFERRED:
459 /* or use current node instead of online map? */
460 if (p->v.preferred_node < 0)
461 *nodes = node_online_map;
462 else
463 node_set(p->v.preferred_node, *nodes);
464 break;
465 default:
466 BUG();
470 static int lookup_node(struct mm_struct *mm, unsigned long addr)
472 struct page *p;
473 int err;
475 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
476 if (err >= 0) {
477 err = page_to_nid(p);
478 put_page(p);
480 return err;
483 /* Retrieve NUMA policy */
484 long do_get_mempolicy(int *policy, nodemask_t *nmask,
485 unsigned long addr, unsigned long flags)
487 int err;
488 struct mm_struct *mm = current->mm;
489 struct vm_area_struct *vma = NULL;
490 struct mempolicy *pol = current->mempolicy;
492 cpuset_update_task_memory_state();
493 if (flags & ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR))
494 return -EINVAL;
495 if (flags & MPOL_F_ADDR) {
496 down_read(&mm->mmap_sem);
497 vma = find_vma_intersection(mm, addr, addr+1);
498 if (!vma) {
499 up_read(&mm->mmap_sem);
500 return -EFAULT;
502 if (vma->vm_ops && vma->vm_ops->get_policy)
503 pol = vma->vm_ops->get_policy(vma, addr);
504 else
505 pol = vma->vm_policy;
506 } else if (addr)
507 return -EINVAL;
509 if (!pol)
510 pol = &default_policy;
512 if (flags & MPOL_F_NODE) {
513 if (flags & MPOL_F_ADDR) {
514 err = lookup_node(mm, addr);
515 if (err < 0)
516 goto out;
517 *policy = err;
518 } else if (pol == current->mempolicy &&
519 pol->policy == MPOL_INTERLEAVE) {
520 *policy = current->il_next;
521 } else {
522 err = -EINVAL;
523 goto out;
525 } else
526 *policy = pol->policy;
528 if (vma) {
529 up_read(&current->mm->mmap_sem);
530 vma = NULL;
533 err = 0;
534 if (nmask)
535 get_zonemask(pol, nmask);
537 out:
538 if (vma)
539 up_read(&current->mm->mmap_sem);
540 return err;
544 * page migration
547 static void migrate_page_add(struct page *page, struct list_head *pagelist,
548 unsigned long flags)
551 * Avoid migrating a page that is shared with others.
553 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
554 if (isolate_lru_page(page))
555 list_add_tail(&page->lru, pagelist);
560 * Migrate the list 'pagelist' of pages to a certain destination.
562 * Specify destination with either non-NULL vma or dest_node >= 0
563 * Return the number of pages not migrated or error code
565 static int migrate_pages_to(struct list_head *pagelist,
566 struct vm_area_struct *vma, int dest)
568 LIST_HEAD(newlist);
569 LIST_HEAD(moved);
570 LIST_HEAD(failed);
571 int err = 0;
572 unsigned long offset = 0;
573 int nr_pages;
574 struct page *page;
575 struct list_head *p;
577 redo:
578 nr_pages = 0;
579 list_for_each(p, pagelist) {
580 if (vma) {
582 * The address passed to alloc_page_vma is used to
583 * generate the proper interleave behavior. We fake
584 * the address here by an increasing offset in order
585 * to get the proper distribution of pages.
587 * No decision has been made as to which page
588 * a certain old page is moved to so we cannot
589 * specify the correct address.
591 page = alloc_page_vma(GFP_HIGHUSER, vma,
592 offset + vma->vm_start);
593 offset += PAGE_SIZE;
595 else
596 page = alloc_pages_node(dest, GFP_HIGHUSER, 0);
598 if (!page) {
599 err = -ENOMEM;
600 goto out;
602 list_add_tail(&page->lru, &newlist);
603 nr_pages++;
604 if (nr_pages > MIGRATE_CHUNK_SIZE)
605 break;
607 err = migrate_pages(pagelist, &newlist, &moved, &failed);
609 putback_lru_pages(&moved); /* Call release pages instead ?? */
611 if (err >= 0 && list_empty(&newlist) && !list_empty(pagelist))
612 goto redo;
613 out:
614 /* Return leftover allocated pages */
615 while (!list_empty(&newlist)) {
616 page = list_entry(newlist.next, struct page, lru);
617 list_del(&page->lru);
618 __free_page(page);
620 list_splice(&failed, pagelist);
621 if (err < 0)
622 return err;
624 /* Calculate number of leftover pages */
625 nr_pages = 0;
626 list_for_each(p, pagelist)
627 nr_pages++;
628 return nr_pages;
632 * Migrate pages from one node to a target node.
633 * Returns error or the number of pages not migrated.
635 int migrate_to_node(struct mm_struct *mm, int source, int dest, int flags)
637 nodemask_t nmask;
638 LIST_HEAD(pagelist);
639 int err = 0;
641 nodes_clear(nmask);
642 node_set(source, nmask);
644 check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
645 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
647 if (!list_empty(&pagelist)) {
648 err = migrate_pages_to(&pagelist, NULL, dest);
649 if (!list_empty(&pagelist))
650 putback_lru_pages(&pagelist);
652 return err;
656 * Move pages between the two nodesets so as to preserve the physical
657 * layout as much as possible.
659 * Returns the number of page that could not be moved.
661 int do_migrate_pages(struct mm_struct *mm,
662 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
664 LIST_HEAD(pagelist);
665 int busy = 0;
666 int err = 0;
667 nodemask_t tmp;
669 down_read(&mm->mmap_sem);
672 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
673 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
674 * bit in 'tmp', and return that <source, dest> pair for migration.
675 * The pair of nodemasks 'to' and 'from' define the map.
677 * If no pair of bits is found that way, fallback to picking some
678 * pair of 'source' and 'dest' bits that are not the same. If the
679 * 'source' and 'dest' bits are the same, this represents a node
680 * that will be migrating to itself, so no pages need move.
682 * If no bits are left in 'tmp', or if all remaining bits left
683 * in 'tmp' correspond to the same bit in 'to', return false
684 * (nothing left to migrate).
686 * This lets us pick a pair of nodes to migrate between, such that
687 * if possible the dest node is not already occupied by some other
688 * source node, minimizing the risk of overloading the memory on a
689 * node that would happen if we migrated incoming memory to a node
690 * before migrating outgoing memory source that same node.
692 * A single scan of tmp is sufficient. As we go, we remember the
693 * most recent <s, d> pair that moved (s != d). If we find a pair
694 * that not only moved, but what's better, moved to an empty slot
695 * (d is not set in tmp), then we break out then, with that pair.
696 * Otherwise when we finish scannng from_tmp, we at least have the
697 * most recent <s, d> pair that moved. If we get all the way through
698 * the scan of tmp without finding any node that moved, much less
699 * moved to an empty node, then there is nothing left worth migrating.
702 tmp = *from_nodes;
703 while (!nodes_empty(tmp)) {
704 int s,d;
705 int source = -1;
706 int dest = 0;
708 for_each_node_mask(s, tmp) {
709 d = node_remap(s, *from_nodes, *to_nodes);
710 if (s == d)
711 continue;
713 source = s; /* Node moved. Memorize */
714 dest = d;
716 /* dest not in remaining from nodes? */
717 if (!node_isset(dest, tmp))
718 break;
720 if (source == -1)
721 break;
723 node_clear(source, tmp);
724 err = migrate_to_node(mm, source, dest, flags);
725 if (err > 0)
726 busy += err;
727 if (err < 0)
728 break;
731 up_read(&mm->mmap_sem);
732 if (err < 0)
733 return err;
734 return busy;
737 long do_mbind(unsigned long start, unsigned long len,
738 unsigned long mode, nodemask_t *nmask, unsigned long flags)
740 struct vm_area_struct *vma;
741 struct mm_struct *mm = current->mm;
742 struct mempolicy *new;
743 unsigned long end;
744 int err;
745 LIST_HEAD(pagelist);
747 if ((flags & ~(unsigned long)(MPOL_MF_STRICT |
748 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
749 || mode > MPOL_MAX)
750 return -EINVAL;
751 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_RESOURCE))
752 return -EPERM;
754 if (start & ~PAGE_MASK)
755 return -EINVAL;
757 if (mode == MPOL_DEFAULT)
758 flags &= ~MPOL_MF_STRICT;
760 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
761 end = start + len;
763 if (end < start)
764 return -EINVAL;
765 if (end == start)
766 return 0;
768 if (mpol_check_policy(mode, nmask))
769 return -EINVAL;
771 new = mpol_new(mode, nmask);
772 if (IS_ERR(new))
773 return PTR_ERR(new);
776 * If we are using the default policy then operation
777 * on discontinuous address spaces is okay after all
779 if (!new)
780 flags |= MPOL_MF_DISCONTIG_OK;
782 PDprintk("mbind %lx-%lx mode:%ld nodes:%lx\n",start,start+len,
783 mode,nodes_addr(nodes)[0]);
785 down_write(&mm->mmap_sem);
786 vma = check_range(mm, start, end, nmask,
787 flags | MPOL_MF_INVERT, &pagelist);
789 err = PTR_ERR(vma);
790 if (!IS_ERR(vma)) {
791 int nr_failed = 0;
793 err = mbind_range(vma, start, end, new);
795 if (!list_empty(&pagelist))
796 nr_failed = migrate_pages_to(&pagelist, vma, -1);
798 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
799 err = -EIO;
801 if (!list_empty(&pagelist))
802 putback_lru_pages(&pagelist);
804 up_write(&mm->mmap_sem);
805 mpol_free(new);
806 return err;
810 * User space interface with variable sized bitmaps for nodelists.
813 /* Copy a node mask from user space. */
814 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
815 unsigned long maxnode)
817 unsigned long k;
818 unsigned long nlongs;
819 unsigned long endmask;
821 --maxnode;
822 nodes_clear(*nodes);
823 if (maxnode == 0 || !nmask)
824 return 0;
825 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
826 return -EINVAL;
828 nlongs = BITS_TO_LONGS(maxnode);
829 if ((maxnode % BITS_PER_LONG) == 0)
830 endmask = ~0UL;
831 else
832 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
834 /* When the user specified more nodes than supported just check
835 if the non supported part is all zero. */
836 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
837 if (nlongs > PAGE_SIZE/sizeof(long))
838 return -EINVAL;
839 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
840 unsigned long t;
841 if (get_user(t, nmask + k))
842 return -EFAULT;
843 if (k == nlongs - 1) {
844 if (t & endmask)
845 return -EINVAL;
846 } else if (t)
847 return -EINVAL;
849 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
850 endmask = ~0UL;
853 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
854 return -EFAULT;
855 nodes_addr(*nodes)[nlongs-1] &= endmask;
856 return 0;
859 /* Copy a kernel node mask to user space */
860 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
861 nodemask_t *nodes)
863 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
864 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
866 if (copy > nbytes) {
867 if (copy > PAGE_SIZE)
868 return -EINVAL;
869 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
870 return -EFAULT;
871 copy = nbytes;
873 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
876 asmlinkage long sys_mbind(unsigned long start, unsigned long len,
877 unsigned long mode,
878 unsigned long __user *nmask, unsigned long maxnode,
879 unsigned flags)
881 nodemask_t nodes;
882 int err;
884 err = get_nodes(&nodes, nmask, maxnode);
885 if (err)
886 return err;
887 return do_mbind(start, len, mode, &nodes, flags);
890 /* Set the process memory policy */
891 asmlinkage long sys_set_mempolicy(int mode, unsigned long __user *nmask,
892 unsigned long maxnode)
894 int err;
895 nodemask_t nodes;
897 if (mode < 0 || mode > MPOL_MAX)
898 return -EINVAL;
899 err = get_nodes(&nodes, nmask, maxnode);
900 if (err)
901 return err;
902 return do_set_mempolicy(mode, &nodes);
905 asmlinkage long sys_migrate_pages(pid_t pid, unsigned long maxnode,
906 const unsigned long __user *old_nodes,
907 const unsigned long __user *new_nodes)
909 struct mm_struct *mm;
910 struct task_struct *task;
911 nodemask_t old;
912 nodemask_t new;
913 nodemask_t task_nodes;
914 int err;
916 err = get_nodes(&old, old_nodes, maxnode);
917 if (err)
918 return err;
920 err = get_nodes(&new, new_nodes, maxnode);
921 if (err)
922 return err;
924 /* Find the mm_struct */
925 read_lock(&tasklist_lock);
926 task = pid ? find_task_by_pid(pid) : current;
927 if (!task) {
928 read_unlock(&tasklist_lock);
929 return -ESRCH;
931 mm = get_task_mm(task);
932 read_unlock(&tasklist_lock);
934 if (!mm)
935 return -EINVAL;
938 * Check if this process has the right to modify the specified
939 * process. The right exists if the process has administrative
940 * capabilities, superuser priviledges or the same
941 * userid as the target process.
943 if ((current->euid != task->suid) && (current->euid != task->uid) &&
944 (current->uid != task->suid) && (current->uid != task->uid) &&
945 !capable(CAP_SYS_ADMIN)) {
946 err = -EPERM;
947 goto out;
950 task_nodes = cpuset_mems_allowed(task);
951 /* Is the user allowed to access the target nodes? */
952 if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_ADMIN)) {
953 err = -EPERM;
954 goto out;
957 err = do_migrate_pages(mm, &old, &new, MPOL_MF_MOVE);
958 out:
959 mmput(mm);
960 return err;
964 /* Retrieve NUMA policy */
965 asmlinkage long sys_get_mempolicy(int __user *policy,
966 unsigned long __user *nmask,
967 unsigned long maxnode,
968 unsigned long addr, unsigned long flags)
970 int err, pval;
971 nodemask_t nodes;
973 if (nmask != NULL && maxnode < MAX_NUMNODES)
974 return -EINVAL;
976 err = do_get_mempolicy(&pval, &nodes, addr, flags);
978 if (err)
979 return err;
981 if (policy && put_user(pval, policy))
982 return -EFAULT;
984 if (nmask)
985 err = copy_nodes_to_user(nmask, maxnode, &nodes);
987 return err;
990 #ifdef CONFIG_COMPAT
992 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
993 compat_ulong_t __user *nmask,
994 compat_ulong_t maxnode,
995 compat_ulong_t addr, compat_ulong_t flags)
997 long err;
998 unsigned long __user *nm = NULL;
999 unsigned long nr_bits, alloc_size;
1000 DECLARE_BITMAP(bm, MAX_NUMNODES);
1002 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1003 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1005 if (nmask)
1006 nm = compat_alloc_user_space(alloc_size);
1008 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1010 if (!err && nmask) {
1011 err = copy_from_user(bm, nm, alloc_size);
1012 /* ensure entire bitmap is zeroed */
1013 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1014 err |= compat_put_bitmap(nmask, bm, nr_bits);
1017 return err;
1020 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1021 compat_ulong_t maxnode)
1023 long err = 0;
1024 unsigned long __user *nm = NULL;
1025 unsigned long nr_bits, alloc_size;
1026 DECLARE_BITMAP(bm, MAX_NUMNODES);
1028 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1029 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1031 if (nmask) {
1032 err = compat_get_bitmap(bm, nmask, nr_bits);
1033 nm = compat_alloc_user_space(alloc_size);
1034 err |= copy_to_user(nm, bm, alloc_size);
1037 if (err)
1038 return -EFAULT;
1040 return sys_set_mempolicy(mode, nm, nr_bits+1);
1043 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1044 compat_ulong_t mode, compat_ulong_t __user *nmask,
1045 compat_ulong_t maxnode, compat_ulong_t flags)
1047 long err = 0;
1048 unsigned long __user *nm = NULL;
1049 unsigned long nr_bits, alloc_size;
1050 nodemask_t bm;
1052 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1053 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1055 if (nmask) {
1056 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1057 nm = compat_alloc_user_space(alloc_size);
1058 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1061 if (err)
1062 return -EFAULT;
1064 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1067 #endif
1069 /* Return effective policy for a VMA */
1070 static struct mempolicy * get_vma_policy(struct task_struct *task,
1071 struct vm_area_struct *vma, unsigned long addr)
1073 struct mempolicy *pol = task->mempolicy;
1075 if (vma) {
1076 if (vma->vm_ops && vma->vm_ops->get_policy)
1077 pol = vma->vm_ops->get_policy(vma, addr);
1078 else if (vma->vm_policy &&
1079 vma->vm_policy->policy != MPOL_DEFAULT)
1080 pol = vma->vm_policy;
1082 if (!pol)
1083 pol = &default_policy;
1084 return pol;
1087 /* Return a zonelist representing a mempolicy */
1088 static struct zonelist *zonelist_policy(gfp_t gfp, struct mempolicy *policy)
1090 int nd;
1092 switch (policy->policy) {
1093 case MPOL_PREFERRED:
1094 nd = policy->v.preferred_node;
1095 if (nd < 0)
1096 nd = numa_node_id();
1097 break;
1098 case MPOL_BIND:
1099 /* Lower zones don't get a policy applied */
1100 /* Careful: current->mems_allowed might have moved */
1101 if (gfp_zone(gfp) >= policy_zone)
1102 if (cpuset_zonelist_valid_mems_allowed(policy->v.zonelist))
1103 return policy->v.zonelist;
1104 /*FALL THROUGH*/
1105 case MPOL_INTERLEAVE: /* should not happen */
1106 case MPOL_DEFAULT:
1107 nd = numa_node_id();
1108 break;
1109 default:
1110 nd = 0;
1111 BUG();
1113 return NODE_DATA(nd)->node_zonelists + gfp_zone(gfp);
1116 /* Do dynamic interleaving for a process */
1117 static unsigned interleave_nodes(struct mempolicy *policy)
1119 unsigned nid, next;
1120 struct task_struct *me = current;
1122 nid = me->il_next;
1123 next = next_node(nid, policy->v.nodes);
1124 if (next >= MAX_NUMNODES)
1125 next = first_node(policy->v.nodes);
1126 me->il_next = next;
1127 return nid;
1131 * Depending on the memory policy provide a node from which to allocate the
1132 * next slab entry.
1134 unsigned slab_node(struct mempolicy *policy)
1136 switch (policy->policy) {
1137 case MPOL_INTERLEAVE:
1138 return interleave_nodes(policy);
1140 case MPOL_BIND:
1142 * Follow bind policy behavior and start allocation at the
1143 * first node.
1145 return policy->v.zonelist->zones[0]->zone_pgdat->node_id;
1147 case MPOL_PREFERRED:
1148 if (policy->v.preferred_node >= 0)
1149 return policy->v.preferred_node;
1150 /* Fall through */
1152 default:
1153 return numa_node_id();
1157 /* Do static interleaving for a VMA with known offset. */
1158 static unsigned offset_il_node(struct mempolicy *pol,
1159 struct vm_area_struct *vma, unsigned long off)
1161 unsigned nnodes = nodes_weight(pol->v.nodes);
1162 unsigned target = (unsigned)off % nnodes;
1163 int c;
1164 int nid = -1;
1166 c = 0;
1167 do {
1168 nid = next_node(nid, pol->v.nodes);
1169 c++;
1170 } while (c <= target);
1171 return nid;
1174 /* Determine a node number for interleave */
1175 static inline unsigned interleave_nid(struct mempolicy *pol,
1176 struct vm_area_struct *vma, unsigned long addr, int shift)
1178 if (vma) {
1179 unsigned long off;
1181 off = vma->vm_pgoff;
1182 off += (addr - vma->vm_start) >> shift;
1183 return offset_il_node(pol, vma, off);
1184 } else
1185 return interleave_nodes(pol);
1188 #ifdef CONFIG_HUGETLBFS
1189 /* Return a zonelist suitable for a huge page allocation. */
1190 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr)
1192 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1194 if (pol->policy == MPOL_INTERLEAVE) {
1195 unsigned nid;
1197 nid = interleave_nid(pol, vma, addr, HPAGE_SHIFT);
1198 return NODE_DATA(nid)->node_zonelists + gfp_zone(GFP_HIGHUSER);
1200 return zonelist_policy(GFP_HIGHUSER, pol);
1202 #endif
1204 /* Allocate a page in interleaved policy.
1205 Own path because it needs to do special accounting. */
1206 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1207 unsigned nid)
1209 struct zonelist *zl;
1210 struct page *page;
1212 zl = NODE_DATA(nid)->node_zonelists + gfp_zone(gfp);
1213 page = __alloc_pages(gfp, order, zl);
1214 if (page && page_zone(page) == zl->zones[0]) {
1215 zone_pcp(zl->zones[0],get_cpu())->interleave_hit++;
1216 put_cpu();
1218 return page;
1222 * alloc_page_vma - Allocate a page for a VMA.
1224 * @gfp:
1225 * %GFP_USER user allocation.
1226 * %GFP_KERNEL kernel allocations,
1227 * %GFP_HIGHMEM highmem/user allocations,
1228 * %GFP_FS allocation should not call back into a file system.
1229 * %GFP_ATOMIC don't sleep.
1231 * @vma: Pointer to VMA or NULL if not available.
1232 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1234 * This function allocates a page from the kernel page pool and applies
1235 * a NUMA policy associated with the VMA or the current process.
1236 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1237 * mm_struct of the VMA to prevent it from going away. Should be used for
1238 * all allocations for pages that will be mapped into
1239 * user space. Returns NULL when no page can be allocated.
1241 * Should be called with the mm_sem of the vma hold.
1243 struct page *
1244 alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1246 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1248 cpuset_update_task_memory_state();
1250 if (unlikely(pol->policy == MPOL_INTERLEAVE)) {
1251 unsigned nid;
1253 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1254 return alloc_page_interleave(gfp, 0, nid);
1256 return __alloc_pages(gfp, 0, zonelist_policy(gfp, pol));
1260 * alloc_pages_current - Allocate pages.
1262 * @gfp:
1263 * %GFP_USER user allocation,
1264 * %GFP_KERNEL kernel allocation,
1265 * %GFP_HIGHMEM highmem allocation,
1266 * %GFP_FS don't call back into a file system.
1267 * %GFP_ATOMIC don't sleep.
1268 * @order: Power of two of allocation size in pages. 0 is a single page.
1270 * Allocate a page from the kernel page pool. When not in
1271 * interrupt context and apply the current process NUMA policy.
1272 * Returns NULL when no page can be allocated.
1274 * Don't call cpuset_update_task_memory_state() unless
1275 * 1) it's ok to take cpuset_sem (can WAIT), and
1276 * 2) allocating for current task (not interrupt).
1278 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1280 struct mempolicy *pol = current->mempolicy;
1282 if ((gfp & __GFP_WAIT) && !in_interrupt())
1283 cpuset_update_task_memory_state();
1284 if (!pol || in_interrupt())
1285 pol = &default_policy;
1286 if (pol->policy == MPOL_INTERLEAVE)
1287 return alloc_page_interleave(gfp, order, interleave_nodes(pol));
1288 return __alloc_pages(gfp, order, zonelist_policy(gfp, pol));
1290 EXPORT_SYMBOL(alloc_pages_current);
1293 * If mpol_copy() sees current->cpuset == cpuset_being_rebound, then it
1294 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1295 * with the mems_allowed returned by cpuset_mems_allowed(). This
1296 * keeps mempolicies cpuset relative after its cpuset moves. See
1297 * further kernel/cpuset.c update_nodemask().
1299 void *cpuset_being_rebound;
1301 /* Slow path of a mempolicy copy */
1302 struct mempolicy *__mpol_copy(struct mempolicy *old)
1304 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1306 if (!new)
1307 return ERR_PTR(-ENOMEM);
1308 if (current_cpuset_is_being_rebound()) {
1309 nodemask_t mems = cpuset_mems_allowed(current);
1310 mpol_rebind_policy(old, &mems);
1312 *new = *old;
1313 atomic_set(&new->refcnt, 1);
1314 if (new->policy == MPOL_BIND) {
1315 int sz = ksize(old->v.zonelist);
1316 new->v.zonelist = kmalloc(sz, SLAB_KERNEL);
1317 if (!new->v.zonelist) {
1318 kmem_cache_free(policy_cache, new);
1319 return ERR_PTR(-ENOMEM);
1321 memcpy(new->v.zonelist, old->v.zonelist, sz);
1323 return new;
1326 /* Slow path of a mempolicy comparison */
1327 int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1329 if (!a || !b)
1330 return 0;
1331 if (a->policy != b->policy)
1332 return 0;
1333 switch (a->policy) {
1334 case MPOL_DEFAULT:
1335 return 1;
1336 case MPOL_INTERLEAVE:
1337 return nodes_equal(a->v.nodes, b->v.nodes);
1338 case MPOL_PREFERRED:
1339 return a->v.preferred_node == b->v.preferred_node;
1340 case MPOL_BIND: {
1341 int i;
1342 for (i = 0; a->v.zonelist->zones[i]; i++)
1343 if (a->v.zonelist->zones[i] != b->v.zonelist->zones[i])
1344 return 0;
1345 return b->v.zonelist->zones[i] == NULL;
1347 default:
1348 BUG();
1349 return 0;
1353 /* Slow path of a mpol destructor. */
1354 void __mpol_free(struct mempolicy *p)
1356 if (!atomic_dec_and_test(&p->refcnt))
1357 return;
1358 if (p->policy == MPOL_BIND)
1359 kfree(p->v.zonelist);
1360 p->policy = MPOL_DEFAULT;
1361 kmem_cache_free(policy_cache, p);
1365 * Shared memory backing store policy support.
1367 * Remember policies even when nobody has shared memory mapped.
1368 * The policies are kept in Red-Black tree linked from the inode.
1369 * They are protected by the sp->lock spinlock, which should be held
1370 * for any accesses to the tree.
1373 /* lookup first element intersecting start-end */
1374 /* Caller holds sp->lock */
1375 static struct sp_node *
1376 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1378 struct rb_node *n = sp->root.rb_node;
1380 while (n) {
1381 struct sp_node *p = rb_entry(n, struct sp_node, nd);
1383 if (start >= p->end)
1384 n = n->rb_right;
1385 else if (end <= p->start)
1386 n = n->rb_left;
1387 else
1388 break;
1390 if (!n)
1391 return NULL;
1392 for (;;) {
1393 struct sp_node *w = NULL;
1394 struct rb_node *prev = rb_prev(n);
1395 if (!prev)
1396 break;
1397 w = rb_entry(prev, struct sp_node, nd);
1398 if (w->end <= start)
1399 break;
1400 n = prev;
1402 return rb_entry(n, struct sp_node, nd);
1405 /* Insert a new shared policy into the list. */
1406 /* Caller holds sp->lock */
1407 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
1409 struct rb_node **p = &sp->root.rb_node;
1410 struct rb_node *parent = NULL;
1411 struct sp_node *nd;
1413 while (*p) {
1414 parent = *p;
1415 nd = rb_entry(parent, struct sp_node, nd);
1416 if (new->start < nd->start)
1417 p = &(*p)->rb_left;
1418 else if (new->end > nd->end)
1419 p = &(*p)->rb_right;
1420 else
1421 BUG();
1423 rb_link_node(&new->nd, parent, p);
1424 rb_insert_color(&new->nd, &sp->root);
1425 PDprintk("inserting %lx-%lx: %d\n", new->start, new->end,
1426 new->policy ? new->policy->policy : 0);
1429 /* Find shared policy intersecting idx */
1430 struct mempolicy *
1431 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
1433 struct mempolicy *pol = NULL;
1434 struct sp_node *sn;
1436 if (!sp->root.rb_node)
1437 return NULL;
1438 spin_lock(&sp->lock);
1439 sn = sp_lookup(sp, idx, idx+1);
1440 if (sn) {
1441 mpol_get(sn->policy);
1442 pol = sn->policy;
1444 spin_unlock(&sp->lock);
1445 return pol;
1448 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
1450 PDprintk("deleting %lx-l%x\n", n->start, n->end);
1451 rb_erase(&n->nd, &sp->root);
1452 mpol_free(n->policy);
1453 kmem_cache_free(sn_cache, n);
1456 struct sp_node *
1457 sp_alloc(unsigned long start, unsigned long end, struct mempolicy *pol)
1459 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
1461 if (!n)
1462 return NULL;
1463 n->start = start;
1464 n->end = end;
1465 mpol_get(pol);
1466 n->policy = pol;
1467 return n;
1470 /* Replace a policy range. */
1471 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
1472 unsigned long end, struct sp_node *new)
1474 struct sp_node *n, *new2 = NULL;
1476 restart:
1477 spin_lock(&sp->lock);
1478 n = sp_lookup(sp, start, end);
1479 /* Take care of old policies in the same range. */
1480 while (n && n->start < end) {
1481 struct rb_node *next = rb_next(&n->nd);
1482 if (n->start >= start) {
1483 if (n->end <= end)
1484 sp_delete(sp, n);
1485 else
1486 n->start = end;
1487 } else {
1488 /* Old policy spanning whole new range. */
1489 if (n->end > end) {
1490 if (!new2) {
1491 spin_unlock(&sp->lock);
1492 new2 = sp_alloc(end, n->end, n->policy);
1493 if (!new2)
1494 return -ENOMEM;
1495 goto restart;
1497 n->end = start;
1498 sp_insert(sp, new2);
1499 new2 = NULL;
1500 break;
1501 } else
1502 n->end = start;
1504 if (!next)
1505 break;
1506 n = rb_entry(next, struct sp_node, nd);
1508 if (new)
1509 sp_insert(sp, new);
1510 spin_unlock(&sp->lock);
1511 if (new2) {
1512 mpol_free(new2->policy);
1513 kmem_cache_free(sn_cache, new2);
1515 return 0;
1518 void mpol_shared_policy_init(struct shared_policy *info, int policy,
1519 nodemask_t *policy_nodes)
1521 info->root = RB_ROOT;
1522 spin_lock_init(&info->lock);
1524 if (policy != MPOL_DEFAULT) {
1525 struct mempolicy *newpol;
1527 /* Falls back to MPOL_DEFAULT on any error */
1528 newpol = mpol_new(policy, policy_nodes);
1529 if (!IS_ERR(newpol)) {
1530 /* Create pseudo-vma that contains just the policy */
1531 struct vm_area_struct pvma;
1533 memset(&pvma, 0, sizeof(struct vm_area_struct));
1534 /* Policy covers entire file */
1535 pvma.vm_end = TASK_SIZE;
1536 mpol_set_shared_policy(info, &pvma, newpol);
1537 mpol_free(newpol);
1542 int mpol_set_shared_policy(struct shared_policy *info,
1543 struct vm_area_struct *vma, struct mempolicy *npol)
1545 int err;
1546 struct sp_node *new = NULL;
1547 unsigned long sz = vma_pages(vma);
1549 PDprintk("set_shared_policy %lx sz %lu %d %lx\n",
1550 vma->vm_pgoff,
1551 sz, npol? npol->policy : -1,
1552 npol ? nodes_addr(npol->v.nodes)[0] : -1);
1554 if (npol) {
1555 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
1556 if (!new)
1557 return -ENOMEM;
1559 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
1560 if (err && new)
1561 kmem_cache_free(sn_cache, new);
1562 return err;
1565 /* Free a backing policy store on inode delete. */
1566 void mpol_free_shared_policy(struct shared_policy *p)
1568 struct sp_node *n;
1569 struct rb_node *next;
1571 if (!p->root.rb_node)
1572 return;
1573 spin_lock(&p->lock);
1574 next = rb_first(&p->root);
1575 while (next) {
1576 n = rb_entry(next, struct sp_node, nd);
1577 next = rb_next(&n->nd);
1578 rb_erase(&n->nd, &p->root);
1579 mpol_free(n->policy);
1580 kmem_cache_free(sn_cache, n);
1582 spin_unlock(&p->lock);
1585 /* assumes fs == KERNEL_DS */
1586 void __init numa_policy_init(void)
1588 policy_cache = kmem_cache_create("numa_policy",
1589 sizeof(struct mempolicy),
1590 0, SLAB_PANIC, NULL, NULL);
1592 sn_cache = kmem_cache_create("shared_policy_node",
1593 sizeof(struct sp_node),
1594 0, SLAB_PANIC, NULL, NULL);
1596 /* Set interleaving policy for system init. This way not all
1597 the data structures allocated at system boot end up in node zero. */
1599 if (do_set_mempolicy(MPOL_INTERLEAVE, &node_online_map))
1600 printk("numa_policy_init: interleaving failed\n");
1603 /* Reset policy of current process to default */
1604 void numa_default_policy(void)
1606 do_set_mempolicy(MPOL_DEFAULT, NULL);
1609 /* Migrate a policy to a different set of nodes */
1610 void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
1612 nodemask_t *mpolmask;
1613 nodemask_t tmp;
1615 if (!pol)
1616 return;
1617 mpolmask = &pol->cpuset_mems_allowed;
1618 if (nodes_equal(*mpolmask, *newmask))
1619 return;
1621 switch (pol->policy) {
1622 case MPOL_DEFAULT:
1623 break;
1624 case MPOL_INTERLEAVE:
1625 nodes_remap(tmp, pol->v.nodes, *mpolmask, *newmask);
1626 pol->v.nodes = tmp;
1627 *mpolmask = *newmask;
1628 current->il_next = node_remap(current->il_next,
1629 *mpolmask, *newmask);
1630 break;
1631 case MPOL_PREFERRED:
1632 pol->v.preferred_node = node_remap(pol->v.preferred_node,
1633 *mpolmask, *newmask);
1634 *mpolmask = *newmask;
1635 break;
1636 case MPOL_BIND: {
1637 nodemask_t nodes;
1638 struct zone **z;
1639 struct zonelist *zonelist;
1641 nodes_clear(nodes);
1642 for (z = pol->v.zonelist->zones; *z; z++)
1643 node_set((*z)->zone_pgdat->node_id, nodes);
1644 nodes_remap(tmp, nodes, *mpolmask, *newmask);
1645 nodes = tmp;
1647 zonelist = bind_zonelist(&nodes);
1649 /* If no mem, then zonelist is NULL and we keep old zonelist.
1650 * If that old zonelist has no remaining mems_allowed nodes,
1651 * then zonelist_policy() will "FALL THROUGH" to MPOL_DEFAULT.
1654 if (zonelist) {
1655 /* Good - got mem - substitute new zonelist */
1656 kfree(pol->v.zonelist);
1657 pol->v.zonelist = zonelist;
1659 *mpolmask = *newmask;
1660 break;
1662 default:
1663 BUG();
1664 break;
1669 * Wrapper for mpol_rebind_policy() that just requires task
1670 * pointer, and updates task mempolicy.
1673 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
1675 mpol_rebind_policy(tsk->mempolicy, new);
1679 * Rebind each vma in mm to new nodemask.
1681 * Call holding a reference to mm. Takes mm->mmap_sem during call.
1684 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
1686 struct vm_area_struct *vma;
1688 down_write(&mm->mmap_sem);
1689 for (vma = mm->mmap; vma; vma = vma->vm_next)
1690 mpol_rebind_policy(vma->vm_policy, new);
1691 up_write(&mm->mmap_sem);
1695 * Display pages allocated per node and memory policy via /proc.
1698 static const char *policy_types[] = { "default", "prefer", "bind",
1699 "interleave" };
1702 * Convert a mempolicy into a string.
1703 * Returns the number of characters in buffer (if positive)
1704 * or an error (negative)
1706 static inline int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
1708 char *p = buffer;
1709 int l;
1710 nodemask_t nodes;
1711 int mode = pol ? pol->policy : MPOL_DEFAULT;
1713 switch (mode) {
1714 case MPOL_DEFAULT:
1715 nodes_clear(nodes);
1716 break;
1718 case MPOL_PREFERRED:
1719 nodes_clear(nodes);
1720 node_set(pol->v.preferred_node, nodes);
1721 break;
1723 case MPOL_BIND:
1724 get_zonemask(pol, &nodes);
1725 break;
1727 case MPOL_INTERLEAVE:
1728 nodes = pol->v.nodes;
1729 break;
1731 default:
1732 BUG();
1733 return -EFAULT;
1736 l = strlen(policy_types[mode]);
1737 if (buffer + maxlen < p + l + 1)
1738 return -ENOSPC;
1740 strcpy(p, policy_types[mode]);
1741 p += l;
1743 if (!nodes_empty(nodes)) {
1744 if (buffer + maxlen < p + 2)
1745 return -ENOSPC;
1746 *p++ = '=';
1747 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
1749 return p - buffer;
1752 struct numa_maps {
1753 unsigned long pages;
1754 unsigned long anon;
1755 unsigned long mapped;
1756 unsigned long mapcount_max;
1757 unsigned long node[MAX_NUMNODES];
1760 static void gather_stats(struct page *page, void *private)
1762 struct numa_maps *md = private;
1763 int count = page_mapcount(page);
1765 if (count)
1766 md->mapped++;
1768 if (count > md->mapcount_max)
1769 md->mapcount_max = count;
1771 md->pages++;
1773 if (PageAnon(page))
1774 md->anon++;
1776 md->node[page_to_nid(page)]++;
1777 cond_resched();
1780 int show_numa_map(struct seq_file *m, void *v)
1782 struct task_struct *task = m->private;
1783 struct vm_area_struct *vma = v;
1784 struct numa_maps *md;
1785 int n;
1786 char buffer[50];
1788 if (!vma->vm_mm)
1789 return 0;
1791 md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
1792 if (!md)
1793 return 0;
1795 check_pgd_range(vma, vma->vm_start, vma->vm_end,
1796 &node_online_map, MPOL_MF_STATS, md);
1798 if (md->pages) {
1799 mpol_to_str(buffer, sizeof(buffer),
1800 get_vma_policy(task, vma, vma->vm_start));
1802 seq_printf(m, "%08lx %s pages=%lu mapped=%lu maxref=%lu",
1803 vma->vm_start, buffer, md->pages,
1804 md->mapped, md->mapcount_max);
1806 if (md->anon)
1807 seq_printf(m," anon=%lu",md->anon);
1809 for_each_online_node(n)
1810 if (md->node[n])
1811 seq_printf(m, " N%d=%lu", n, md->node[n]);
1813 seq_putc(m, '\n');
1815 kfree(md);
1817 if (m->count < m->size)
1818 m->version = (vma != get_gate_vma(task)) ? vma->vm_start : 0;
1819 return 0;