4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Contains functions related to writing back dirty pages at the
10 * 10Apr2002 Andrew Morton
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
40 * Sleep at most 200ms at a time in balance_dirty_pages().
42 #define MAX_PAUSE max(HZ/5, 1)
45 * Try to keep balance_dirty_pages() call intervals higher than this many pages
46 * by raising pause time to max_pause when falls below it.
48 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
51 * Estimate write bandwidth at 200ms intervals.
53 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
55 #define RATELIMIT_CALC_SHIFT 10
58 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
59 * will look to see if it needs to force writeback or throttling.
61 static long ratelimit_pages
= 32;
63 /* The following parameters are exported via /proc/sys/vm */
66 * Start background writeback (via writeback threads) at this percentage
68 int dirty_background_ratio
= 10;
71 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
72 * dirty_background_ratio * the amount of dirtyable memory
74 unsigned long dirty_background_bytes
;
77 * free highmem will not be subtracted from the total free memory
78 * for calculating free ratios if vm_highmem_is_dirtyable is true
80 int vm_highmem_is_dirtyable
;
83 * The generator of dirty data starts writeback at this percentage
85 int vm_dirty_ratio
= 20;
88 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
89 * vm_dirty_ratio * the amount of dirtyable memory
91 unsigned long vm_dirty_bytes
;
94 * The interval between `kupdate'-style writebacks
96 unsigned int dirty_writeback_interval
= 5 * 100; /* centiseconds */
99 * The longest time for which data is allowed to remain dirty
101 unsigned int dirty_expire_interval
= 30 * 100; /* centiseconds */
104 * Flag that makes the machine dump writes/reads and block dirtyings.
109 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
110 * a full sync is triggered after this time elapses without any disk activity.
114 EXPORT_SYMBOL(laptop_mode
);
116 /* End of sysctl-exported parameters */
118 unsigned long global_dirty_limit
;
121 * Scale the writeback cache size proportional to the relative writeout speeds.
123 * We do this by keeping a floating proportion between BDIs, based on page
124 * writeback completions [end_page_writeback()]. Those devices that write out
125 * pages fastest will get the larger share, while the slower will get a smaller
128 * We use page writeout completions because we are interested in getting rid of
129 * dirty pages. Having them written out is the primary goal.
131 * We introduce a concept of time, a period over which we measure these events,
132 * because demand can/will vary over time. The length of this period itself is
133 * measured in page writeback completions.
136 static struct prop_descriptor vm_completions
;
139 * Work out the current dirty-memory clamping and background writeout
142 * The main aim here is to lower them aggressively if there is a lot of mapped
143 * memory around. To avoid stressing page reclaim with lots of unreclaimable
144 * pages. It is better to clamp down on writers than to start swapping, and
145 * performing lots of scanning.
147 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
149 * We don't permit the clamping level to fall below 5% - that is getting rather
152 * We make sure that the background writeout level is below the adjusted
157 * In a memory zone, there is a certain amount of pages we consider
158 * available for the page cache, which is essentially the number of
159 * free and reclaimable pages, minus some zone reserves to protect
160 * lowmem and the ability to uphold the zone's watermarks without
161 * requiring writeback.
163 * This number of dirtyable pages is the base value of which the
164 * user-configurable dirty ratio is the effictive number of pages that
165 * are allowed to be actually dirtied. Per individual zone, or
166 * globally by using the sum of dirtyable pages over all zones.
168 * Because the user is allowed to specify the dirty limit globally as
169 * absolute number of bytes, calculating the per-zone dirty limit can
170 * require translating the configured limit into a percentage of
171 * global dirtyable memory first.
174 static unsigned long highmem_dirtyable_memory(unsigned long total
)
176 #ifdef CONFIG_HIGHMEM
180 for_each_node_state(node
, N_HIGH_MEMORY
) {
182 &NODE_DATA(node
)->node_zones
[ZONE_HIGHMEM
];
184 x
+= zone_page_state(z
, NR_FREE_PAGES
) +
185 zone_reclaimable_pages(z
) - z
->dirty_balance_reserve
;
188 * Make sure that the number of highmem pages is never larger
189 * than the number of the total dirtyable memory. This can only
190 * occur in very strange VM situations but we want to make sure
191 * that this does not occur.
193 return min(x
, total
);
200 * global_dirtyable_memory - number of globally dirtyable pages
202 * Returns the global number of pages potentially available for dirty
203 * page cache. This is the base value for the global dirty limits.
205 unsigned long global_dirtyable_memory(void)
209 x
= global_page_state(NR_FREE_PAGES
) + global_reclaimable_pages() -
210 dirty_balance_reserve
;
212 if (!vm_highmem_is_dirtyable
)
213 x
-= highmem_dirtyable_memory(x
);
215 return x
+ 1; /* Ensure that we never return 0 */
219 * global_dirty_limits - background-writeback and dirty-throttling thresholds
221 * Calculate the dirty thresholds based on sysctl parameters
222 * - vm.dirty_background_ratio or vm.dirty_background_bytes
223 * - vm.dirty_ratio or vm.dirty_bytes
224 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
227 void global_dirty_limits(unsigned long *pbackground
, unsigned long *pdirty
)
229 unsigned long background
;
231 unsigned long uninitialized_var(available_memory
);
232 struct task_struct
*tsk
;
234 if (!vm_dirty_bytes
|| !dirty_background_bytes
)
235 available_memory
= global_dirtyable_memory();
238 dirty
= DIV_ROUND_UP(vm_dirty_bytes
, PAGE_SIZE
);
240 dirty
= (vm_dirty_ratio
* available_memory
) / 100;
242 if (dirty_background_bytes
)
243 background
= DIV_ROUND_UP(dirty_background_bytes
, PAGE_SIZE
);
245 background
= (dirty_background_ratio
* available_memory
) / 100;
247 if (background
>= dirty
)
248 background
= dirty
/ 2;
250 if (tsk
->flags
& PF_LESS_THROTTLE
|| rt_task(tsk
)) {
251 background
+= background
/ 4;
254 *pbackground
= background
;
256 trace_global_dirty_state(background
, dirty
);
260 * zone_dirtyable_memory - number of dirtyable pages in a zone
263 * Returns the zone's number of pages potentially available for dirty
264 * page cache. This is the base value for the per-zone dirty limits.
266 static unsigned long zone_dirtyable_memory(struct zone
*zone
)
269 * The effective global number of dirtyable pages may exclude
270 * highmem as a big-picture measure to keep the ratio between
271 * dirty memory and lowmem reasonable.
273 * But this function is purely about the individual zone and a
274 * highmem zone can hold its share of dirty pages, so we don't
275 * care about vm_highmem_is_dirtyable here.
277 return zone_page_state(zone
, NR_FREE_PAGES
) +
278 zone_reclaimable_pages(zone
) -
279 zone
->dirty_balance_reserve
;
283 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
286 * Returns the maximum number of dirty pages allowed in a zone, based
287 * on the zone's dirtyable memory.
289 static unsigned long zone_dirty_limit(struct zone
*zone
)
291 unsigned long zone_memory
= zone_dirtyable_memory(zone
);
292 struct task_struct
*tsk
= current
;
296 dirty
= DIV_ROUND_UP(vm_dirty_bytes
, PAGE_SIZE
) *
297 zone_memory
/ global_dirtyable_memory();
299 dirty
= vm_dirty_ratio
* zone_memory
/ 100;
301 if (tsk
->flags
& PF_LESS_THROTTLE
|| rt_task(tsk
))
308 * zone_dirty_ok - tells whether a zone is within its dirty limits
309 * @zone: the zone to check
311 * Returns %true when the dirty pages in @zone are within the zone's
312 * dirty limit, %false if the limit is exceeded.
314 bool zone_dirty_ok(struct zone
*zone
)
316 unsigned long limit
= zone_dirty_limit(zone
);
318 return zone_page_state(zone
, NR_FILE_DIRTY
) +
319 zone_page_state(zone
, NR_UNSTABLE_NFS
) +
320 zone_page_state(zone
, NR_WRITEBACK
) <= limit
;
324 * couple the period to the dirty_ratio:
326 * period/2 ~ roundup_pow_of_two(dirty limit)
328 static int calc_period_shift(void)
330 unsigned long dirty_total
;
333 dirty_total
= vm_dirty_bytes
/ PAGE_SIZE
;
335 dirty_total
= (vm_dirty_ratio
* global_dirtyable_memory()) /
337 return 2 + ilog2(dirty_total
- 1);
341 * update the period when the dirty threshold changes.
343 static void update_completion_period(void)
345 int shift
= calc_period_shift();
346 prop_change_shift(&vm_completions
, shift
);
348 writeback_set_ratelimit();
351 int dirty_background_ratio_handler(struct ctl_table
*table
, int write
,
352 void __user
*buffer
, size_t *lenp
,
357 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
358 if (ret
== 0 && write
)
359 dirty_background_bytes
= 0;
363 int dirty_background_bytes_handler(struct ctl_table
*table
, int write
,
364 void __user
*buffer
, size_t *lenp
,
369 ret
= proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
370 if (ret
== 0 && write
)
371 dirty_background_ratio
= 0;
375 int dirty_ratio_handler(struct ctl_table
*table
, int write
,
376 void __user
*buffer
, size_t *lenp
,
379 int old_ratio
= vm_dirty_ratio
;
382 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
383 if (ret
== 0 && write
&& vm_dirty_ratio
!= old_ratio
) {
384 update_completion_period();
390 int dirty_bytes_handler(struct ctl_table
*table
, int write
,
391 void __user
*buffer
, size_t *lenp
,
394 unsigned long old_bytes
= vm_dirty_bytes
;
397 ret
= proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
398 if (ret
== 0 && write
&& vm_dirty_bytes
!= old_bytes
) {
399 update_completion_period();
406 * Increment the BDI's writeout completion count and the global writeout
407 * completion count. Called from test_clear_page_writeback().
409 static inline void __bdi_writeout_inc(struct backing_dev_info
*bdi
)
411 __inc_bdi_stat(bdi
, BDI_WRITTEN
);
412 __prop_inc_percpu_max(&vm_completions
, &bdi
->completions
,
416 void bdi_writeout_inc(struct backing_dev_info
*bdi
)
420 local_irq_save(flags
);
421 __bdi_writeout_inc(bdi
);
422 local_irq_restore(flags
);
424 EXPORT_SYMBOL_GPL(bdi_writeout_inc
);
427 * Obtain an accurate fraction of the BDI's portion.
429 static void bdi_writeout_fraction(struct backing_dev_info
*bdi
,
430 long *numerator
, long *denominator
)
432 prop_fraction_percpu(&vm_completions
, &bdi
->completions
,
433 numerator
, denominator
);
437 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
438 * registered backing devices, which, for obvious reasons, can not
441 static unsigned int bdi_min_ratio
;
443 int bdi_set_min_ratio(struct backing_dev_info
*bdi
, unsigned int min_ratio
)
447 spin_lock_bh(&bdi_lock
);
448 if (min_ratio
> bdi
->max_ratio
) {
451 min_ratio
-= bdi
->min_ratio
;
452 if (bdi_min_ratio
+ min_ratio
< 100) {
453 bdi_min_ratio
+= min_ratio
;
454 bdi
->min_ratio
+= min_ratio
;
459 spin_unlock_bh(&bdi_lock
);
464 int bdi_set_max_ratio(struct backing_dev_info
*bdi
, unsigned max_ratio
)
471 spin_lock_bh(&bdi_lock
);
472 if (bdi
->min_ratio
> max_ratio
) {
475 bdi
->max_ratio
= max_ratio
;
476 bdi
->max_prop_frac
= (PROP_FRAC_BASE
* max_ratio
) / 100;
478 spin_unlock_bh(&bdi_lock
);
482 EXPORT_SYMBOL(bdi_set_max_ratio
);
484 static unsigned long dirty_freerun_ceiling(unsigned long thresh
,
485 unsigned long bg_thresh
)
487 return (thresh
+ bg_thresh
) / 2;
490 static unsigned long hard_dirty_limit(unsigned long thresh
)
492 return max(thresh
, global_dirty_limit
);
496 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
497 * @bdi: the backing_dev_info to query
498 * @dirty: global dirty limit in pages
500 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
501 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
503 * Note that balance_dirty_pages() will only seriously take it as a hard limit
504 * when sleeping max_pause per page is not enough to keep the dirty pages under
505 * control. For example, when the device is completely stalled due to some error
506 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
507 * In the other normal situations, it acts more gently by throttling the tasks
508 * more (rather than completely block them) when the bdi dirty pages go high.
510 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
511 * - starving fast devices
512 * - piling up dirty pages (that will take long time to sync) on slow devices
514 * The bdi's share of dirty limit will be adapting to its throughput and
515 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
517 unsigned long bdi_dirty_limit(struct backing_dev_info
*bdi
, unsigned long dirty
)
520 long numerator
, denominator
;
523 * Calculate this BDI's share of the dirty ratio.
525 bdi_writeout_fraction(bdi
, &numerator
, &denominator
);
527 bdi_dirty
= (dirty
* (100 - bdi_min_ratio
)) / 100;
528 bdi_dirty
*= numerator
;
529 do_div(bdi_dirty
, denominator
);
531 bdi_dirty
+= (dirty
* bdi
->min_ratio
) / 100;
532 if (bdi_dirty
> (dirty
* bdi
->max_ratio
) / 100)
533 bdi_dirty
= dirty
* bdi
->max_ratio
/ 100;
539 * Dirty position control.
541 * (o) global/bdi setpoints
543 * We want the dirty pages be balanced around the global/bdi setpoints.
544 * When the number of dirty pages is higher/lower than the setpoint, the
545 * dirty position control ratio (and hence task dirty ratelimit) will be
546 * decreased/increased to bring the dirty pages back to the setpoint.
548 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
550 * if (dirty < setpoint) scale up pos_ratio
551 * if (dirty > setpoint) scale down pos_ratio
553 * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
554 * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
556 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
558 * (o) global control line
562 * | |<===== global dirty control scope ======>|
570 * 1.0 ................................*
576 * 0 +------------.------------------.----------------------*------------->
577 * freerun^ setpoint^ limit^ dirty pages
579 * (o) bdi control line
587 * | * |<=========== span ============>|
588 * 1.0 .......................*
600 * 1/4 ...............................................* * * * * * * * * * * *
604 * 0 +----------------------.-------------------------------.------------->
605 * bdi_setpoint^ x_intercept^
607 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
608 * be smoothly throttled down to normal if it starts high in situations like
609 * - start writing to a slow SD card and a fast disk at the same time. The SD
610 * card's bdi_dirty may rush to many times higher than bdi_setpoint.
611 * - the bdi dirty thresh drops quickly due to change of JBOD workload
613 static unsigned long bdi_position_ratio(struct backing_dev_info
*bdi
,
614 unsigned long thresh
,
615 unsigned long bg_thresh
,
617 unsigned long bdi_thresh
,
618 unsigned long bdi_dirty
)
620 unsigned long write_bw
= bdi
->avg_write_bandwidth
;
621 unsigned long freerun
= dirty_freerun_ceiling(thresh
, bg_thresh
);
622 unsigned long limit
= hard_dirty_limit(thresh
);
623 unsigned long x_intercept
;
624 unsigned long setpoint
; /* dirty pages' target balance point */
625 unsigned long bdi_setpoint
;
627 long long pos_ratio
; /* for scaling up/down the rate limit */
630 if (unlikely(dirty
>= limit
))
637 * f(dirty) := 1.0 + (----------------)
640 * it's a 3rd order polynomial that subjects to
642 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
643 * (2) f(setpoint) = 1.0 => the balance point
644 * (3) f(limit) = 0 => the hard limit
645 * (4) df/dx <= 0 => negative feedback control
646 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
647 * => fast response on large errors; small oscillation near setpoint
649 setpoint
= (freerun
+ limit
) / 2;
650 x
= div_s64((setpoint
- dirty
) << RATELIMIT_CALC_SHIFT
,
651 limit
- setpoint
+ 1);
653 pos_ratio
= pos_ratio
* x
>> RATELIMIT_CALC_SHIFT
;
654 pos_ratio
= pos_ratio
* x
>> RATELIMIT_CALC_SHIFT
;
655 pos_ratio
+= 1 << RATELIMIT_CALC_SHIFT
;
658 * We have computed basic pos_ratio above based on global situation. If
659 * the bdi is over/under its share of dirty pages, we want to scale
660 * pos_ratio further down/up. That is done by the following mechanism.
666 * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
668 * x_intercept - bdi_dirty
669 * := --------------------------
670 * x_intercept - bdi_setpoint
672 * The main bdi control line is a linear function that subjects to
674 * (1) f(bdi_setpoint) = 1.0
675 * (2) k = - 1 / (8 * write_bw) (in single bdi case)
676 * or equally: x_intercept = bdi_setpoint + 8 * write_bw
678 * For single bdi case, the dirty pages are observed to fluctuate
679 * regularly within range
680 * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
681 * for various filesystems, where (2) can yield in a reasonable 12.5%
682 * fluctuation range for pos_ratio.
684 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
685 * own size, so move the slope over accordingly and choose a slope that
686 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
688 if (unlikely(bdi_thresh
> thresh
))
691 * It's very possible that bdi_thresh is close to 0 not because the
692 * device is slow, but that it has remained inactive for long time.
693 * Honour such devices a reasonable good (hopefully IO efficient)
694 * threshold, so that the occasional writes won't be blocked and active
695 * writes can rampup the threshold quickly.
697 bdi_thresh
= max(bdi_thresh
, (limit
- dirty
) / 8);
699 * scale global setpoint to bdi's:
700 * bdi_setpoint = setpoint * bdi_thresh / thresh
702 x
= div_u64((u64
)bdi_thresh
<< 16, thresh
+ 1);
703 bdi_setpoint
= setpoint
* (u64
)x
>> 16;
705 * Use span=(8*write_bw) in single bdi case as indicated by
706 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
708 * bdi_thresh thresh - bdi_thresh
709 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
712 span
= (thresh
- bdi_thresh
+ 8 * write_bw
) * (u64
)x
>> 16;
713 x_intercept
= bdi_setpoint
+ span
;
715 if (bdi_dirty
< x_intercept
- span
/ 4) {
716 pos_ratio
= div_u64(pos_ratio
* (x_intercept
- bdi_dirty
),
717 x_intercept
- bdi_setpoint
+ 1);
722 * bdi reserve area, safeguard against dirty pool underrun and disk idle
723 * It may push the desired control point of global dirty pages higher
726 x_intercept
= bdi_thresh
/ 2;
727 if (bdi_dirty
< x_intercept
) {
728 if (bdi_dirty
> x_intercept
/ 8)
729 pos_ratio
= div_u64(pos_ratio
* x_intercept
, bdi_dirty
);
737 static void bdi_update_write_bandwidth(struct backing_dev_info
*bdi
,
738 unsigned long elapsed
,
739 unsigned long written
)
741 const unsigned long period
= roundup_pow_of_two(3 * HZ
);
742 unsigned long avg
= bdi
->avg_write_bandwidth
;
743 unsigned long old
= bdi
->write_bandwidth
;
747 * bw = written * HZ / elapsed
749 * bw * elapsed + write_bandwidth * (period - elapsed)
750 * write_bandwidth = ---------------------------------------------------
753 bw
= written
- bdi
->written_stamp
;
755 if (unlikely(elapsed
> period
)) {
760 bw
+= (u64
)bdi
->write_bandwidth
* (period
- elapsed
);
761 bw
>>= ilog2(period
);
764 * one more level of smoothing, for filtering out sudden spikes
766 if (avg
> old
&& old
>= (unsigned long)bw
)
767 avg
-= (avg
- old
) >> 3;
769 if (avg
< old
&& old
<= (unsigned long)bw
)
770 avg
+= (old
- avg
) >> 3;
773 bdi
->write_bandwidth
= bw
;
774 bdi
->avg_write_bandwidth
= avg
;
778 * The global dirtyable memory and dirty threshold could be suddenly knocked
779 * down by a large amount (eg. on the startup of KVM in a swapless system).
780 * This may throw the system into deep dirty exceeded state and throttle
781 * heavy/light dirtiers alike. To retain good responsiveness, maintain
782 * global_dirty_limit for tracking slowly down to the knocked down dirty
785 static void update_dirty_limit(unsigned long thresh
, unsigned long dirty
)
787 unsigned long limit
= global_dirty_limit
;
790 * Follow up in one step.
792 if (limit
< thresh
) {
798 * Follow down slowly. Use the higher one as the target, because thresh
799 * may drop below dirty. This is exactly the reason to introduce
800 * global_dirty_limit which is guaranteed to lie above the dirty pages.
802 thresh
= max(thresh
, dirty
);
803 if (limit
> thresh
) {
804 limit
-= (limit
- thresh
) >> 5;
809 global_dirty_limit
= limit
;
812 static void global_update_bandwidth(unsigned long thresh
,
816 static DEFINE_SPINLOCK(dirty_lock
);
817 static unsigned long update_time
;
820 * check locklessly first to optimize away locking for the most time
822 if (time_before(now
, update_time
+ BANDWIDTH_INTERVAL
))
825 spin_lock(&dirty_lock
);
826 if (time_after_eq(now
, update_time
+ BANDWIDTH_INTERVAL
)) {
827 update_dirty_limit(thresh
, dirty
);
830 spin_unlock(&dirty_lock
);
834 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
836 * Normal bdi tasks will be curbed at or below it in long term.
837 * Obviously it should be around (write_bw / N) when there are N dd tasks.
839 static void bdi_update_dirty_ratelimit(struct backing_dev_info
*bdi
,
840 unsigned long thresh
,
841 unsigned long bg_thresh
,
843 unsigned long bdi_thresh
,
844 unsigned long bdi_dirty
,
845 unsigned long dirtied
,
846 unsigned long elapsed
)
848 unsigned long freerun
= dirty_freerun_ceiling(thresh
, bg_thresh
);
849 unsigned long limit
= hard_dirty_limit(thresh
);
850 unsigned long setpoint
= (freerun
+ limit
) / 2;
851 unsigned long write_bw
= bdi
->avg_write_bandwidth
;
852 unsigned long dirty_ratelimit
= bdi
->dirty_ratelimit
;
853 unsigned long dirty_rate
;
854 unsigned long task_ratelimit
;
855 unsigned long balanced_dirty_ratelimit
;
856 unsigned long pos_ratio
;
861 * The dirty rate will match the writeout rate in long term, except
862 * when dirty pages are truncated by userspace or re-dirtied by FS.
864 dirty_rate
= (dirtied
- bdi
->dirtied_stamp
) * HZ
/ elapsed
;
866 pos_ratio
= bdi_position_ratio(bdi
, thresh
, bg_thresh
, dirty
,
867 bdi_thresh
, bdi_dirty
);
869 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
871 task_ratelimit
= (u64
)dirty_ratelimit
*
872 pos_ratio
>> RATELIMIT_CALC_SHIFT
;
873 task_ratelimit
++; /* it helps rampup dirty_ratelimit from tiny values */
876 * A linear estimation of the "balanced" throttle rate. The theory is,
877 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
878 * dirty_rate will be measured to be (N * task_ratelimit). So the below
879 * formula will yield the balanced rate limit (write_bw / N).
881 * Note that the expanded form is not a pure rate feedback:
882 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
883 * but also takes pos_ratio into account:
884 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
886 * (1) is not realistic because pos_ratio also takes part in balancing
887 * the dirty rate. Consider the state
888 * pos_ratio = 0.5 (3)
889 * rate = 2 * (write_bw / N) (4)
890 * If (1) is used, it will stuck in that state! Because each dd will
892 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
894 * dirty_rate = N * task_ratelimit = write_bw (6)
895 * put (6) into (1) we get
896 * rate_(i+1) = rate_(i) (7)
898 * So we end up using (2) to always keep
899 * rate_(i+1) ~= (write_bw / N) (8)
900 * regardless of the value of pos_ratio. As long as (8) is satisfied,
901 * pos_ratio is able to drive itself to 1.0, which is not only where
902 * the dirty count meet the setpoint, but also where the slope of
903 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
905 balanced_dirty_ratelimit
= div_u64((u64
)task_ratelimit
* write_bw
,
908 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
910 if (unlikely(balanced_dirty_ratelimit
> write_bw
))
911 balanced_dirty_ratelimit
= write_bw
;
914 * We could safely do this and return immediately:
916 * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
918 * However to get a more stable dirty_ratelimit, the below elaborated
919 * code makes use of task_ratelimit to filter out sigular points and
920 * limit the step size.
922 * The below code essentially only uses the relative value of
924 * task_ratelimit - dirty_ratelimit
925 * = (pos_ratio - 1) * dirty_ratelimit
927 * which reflects the direction and size of dirty position error.
931 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
932 * task_ratelimit is on the same side of dirty_ratelimit, too.
934 * - dirty_ratelimit > balanced_dirty_ratelimit
935 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
936 * lowering dirty_ratelimit will help meet both the position and rate
937 * control targets. Otherwise, don't update dirty_ratelimit if it will
938 * only help meet the rate target. After all, what the users ultimately
939 * feel and care are stable dirty rate and small position error.
941 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
942 * and filter out the sigular points of balanced_dirty_ratelimit. Which
943 * keeps jumping around randomly and can even leap far away at times
944 * due to the small 200ms estimation period of dirty_rate (we want to
945 * keep that period small to reduce time lags).
948 if (dirty
< setpoint
) {
949 x
= min(bdi
->balanced_dirty_ratelimit
,
950 min(balanced_dirty_ratelimit
, task_ratelimit
));
951 if (dirty_ratelimit
< x
)
952 step
= x
- dirty_ratelimit
;
954 x
= max(bdi
->balanced_dirty_ratelimit
,
955 max(balanced_dirty_ratelimit
, task_ratelimit
));
956 if (dirty_ratelimit
> x
)
957 step
= dirty_ratelimit
- x
;
961 * Don't pursue 100% rate matching. It's impossible since the balanced
962 * rate itself is constantly fluctuating. So decrease the track speed
963 * when it gets close to the target. Helps eliminate pointless tremors.
965 step
>>= dirty_ratelimit
/ (2 * step
+ 1);
967 * Limit the tracking speed to avoid overshooting.
969 step
= (step
+ 7) / 8;
971 if (dirty_ratelimit
< balanced_dirty_ratelimit
)
972 dirty_ratelimit
+= step
;
974 dirty_ratelimit
-= step
;
976 bdi
->dirty_ratelimit
= max(dirty_ratelimit
, 1UL);
977 bdi
->balanced_dirty_ratelimit
= balanced_dirty_ratelimit
;
979 trace_bdi_dirty_ratelimit(bdi
, dirty_rate
, task_ratelimit
);
982 void __bdi_update_bandwidth(struct backing_dev_info
*bdi
,
983 unsigned long thresh
,
984 unsigned long bg_thresh
,
986 unsigned long bdi_thresh
,
987 unsigned long bdi_dirty
,
988 unsigned long start_time
)
990 unsigned long now
= jiffies
;
991 unsigned long elapsed
= now
- bdi
->bw_time_stamp
;
992 unsigned long dirtied
;
993 unsigned long written
;
996 * rate-limit, only update once every 200ms.
998 if (elapsed
< BANDWIDTH_INTERVAL
)
1001 dirtied
= percpu_counter_read(&bdi
->bdi_stat
[BDI_DIRTIED
]);
1002 written
= percpu_counter_read(&bdi
->bdi_stat
[BDI_WRITTEN
]);
1005 * Skip quiet periods when disk bandwidth is under-utilized.
1006 * (at least 1s idle time between two flusher runs)
1008 if (elapsed
> HZ
&& time_before(bdi
->bw_time_stamp
, start_time
))
1012 global_update_bandwidth(thresh
, dirty
, now
);
1013 bdi_update_dirty_ratelimit(bdi
, thresh
, bg_thresh
, dirty
,
1014 bdi_thresh
, bdi_dirty
,
1017 bdi_update_write_bandwidth(bdi
, elapsed
, written
);
1020 bdi
->dirtied_stamp
= dirtied
;
1021 bdi
->written_stamp
= written
;
1022 bdi
->bw_time_stamp
= now
;
1025 static void bdi_update_bandwidth(struct backing_dev_info
*bdi
,
1026 unsigned long thresh
,
1027 unsigned long bg_thresh
,
1028 unsigned long dirty
,
1029 unsigned long bdi_thresh
,
1030 unsigned long bdi_dirty
,
1031 unsigned long start_time
)
1033 if (time_is_after_eq_jiffies(bdi
->bw_time_stamp
+ BANDWIDTH_INTERVAL
))
1035 spin_lock(&bdi
->wb
.list_lock
);
1036 __bdi_update_bandwidth(bdi
, thresh
, bg_thresh
, dirty
,
1037 bdi_thresh
, bdi_dirty
, start_time
);
1038 spin_unlock(&bdi
->wb
.list_lock
);
1042 * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
1043 * will look to see if it needs to start dirty throttling.
1045 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1046 * global_page_state() too often. So scale it near-sqrt to the safety margin
1047 * (the number of pages we may dirty without exceeding the dirty limits).
1049 static unsigned long dirty_poll_interval(unsigned long dirty
,
1050 unsigned long thresh
)
1053 return 1UL << (ilog2(thresh
- dirty
) >> 1);
1058 static long bdi_max_pause(struct backing_dev_info
*bdi
,
1059 unsigned long bdi_dirty
)
1061 long bw
= bdi
->avg_write_bandwidth
;
1065 * Limit pause time for small memory systems. If sleeping for too long
1066 * time, a small pool of dirty/writeback pages may go empty and disk go
1069 * 8 serves as the safety ratio.
1071 t
= bdi_dirty
/ (1 + bw
/ roundup_pow_of_two(1 + HZ
/ 8));
1074 return min_t(long, t
, MAX_PAUSE
);
1077 static long bdi_min_pause(struct backing_dev_info
*bdi
,
1079 unsigned long task_ratelimit
,
1080 unsigned long dirty_ratelimit
,
1081 int *nr_dirtied_pause
)
1083 long hi
= ilog2(bdi
->avg_write_bandwidth
);
1084 long lo
= ilog2(bdi
->dirty_ratelimit
);
1085 long t
; /* target pause */
1086 long pause
; /* estimated next pause */
1087 int pages
; /* target nr_dirtied_pause */
1089 /* target for 10ms pause on 1-dd case */
1090 t
= max(1, HZ
/ 100);
1093 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1096 * (N * 10ms) on 2^N concurrent tasks.
1099 t
+= (hi
- lo
) * (10 * HZ
) / 1024;
1102 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1103 * on the much more stable dirty_ratelimit. However the next pause time
1104 * will be computed based on task_ratelimit and the two rate limits may
1105 * depart considerably at some time. Especially if task_ratelimit goes
1106 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1107 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1108 * result task_ratelimit won't be executed faithfully, which could
1109 * eventually bring down dirty_ratelimit.
1111 * We apply two rules to fix it up:
1112 * 1) try to estimate the next pause time and if necessary, use a lower
1113 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1114 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1115 * 2) limit the target pause time to max_pause/2, so that the normal
1116 * small fluctuations of task_ratelimit won't trigger rule (1) and
1117 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1119 t
= min(t
, 1 + max_pause
/ 2);
1120 pages
= dirty_ratelimit
* t
/ roundup_pow_of_two(HZ
);
1123 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1124 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1125 * When the 16 consecutive reads are often interrupted by some dirty
1126 * throttling pause during the async writes, cfq will go into idles
1127 * (deadline is fine). So push nr_dirtied_pause as high as possible
1128 * until reaches DIRTY_POLL_THRESH=32 pages.
1130 if (pages
< DIRTY_POLL_THRESH
) {
1132 pages
= dirty_ratelimit
* t
/ roundup_pow_of_two(HZ
);
1133 if (pages
> DIRTY_POLL_THRESH
) {
1134 pages
= DIRTY_POLL_THRESH
;
1135 t
= HZ
* DIRTY_POLL_THRESH
/ dirty_ratelimit
;
1139 pause
= HZ
* pages
/ (task_ratelimit
+ 1);
1140 if (pause
> max_pause
) {
1142 pages
= task_ratelimit
* t
/ roundup_pow_of_two(HZ
);
1145 *nr_dirtied_pause
= pages
;
1147 * The minimal pause time will normally be half the target pause time.
1149 return pages
>= DIRTY_POLL_THRESH
? 1 + t
/ 2 : t
;
1153 * balance_dirty_pages() must be called by processes which are generating dirty
1154 * data. It looks at the number of dirty pages in the machine and will force
1155 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1156 * If we're over `background_thresh' then the writeback threads are woken to
1157 * perform some writeout.
1159 static void balance_dirty_pages(struct address_space
*mapping
,
1160 unsigned long pages_dirtied
)
1162 unsigned long nr_reclaimable
; /* = file_dirty + unstable_nfs */
1163 unsigned long bdi_reclaimable
;
1164 unsigned long nr_dirty
; /* = file_dirty + writeback + unstable_nfs */
1165 unsigned long bdi_dirty
;
1166 unsigned long freerun
;
1167 unsigned long background_thresh
;
1168 unsigned long dirty_thresh
;
1169 unsigned long bdi_thresh
;
1174 int nr_dirtied_pause
;
1175 bool dirty_exceeded
= false;
1176 unsigned long task_ratelimit
;
1177 unsigned long dirty_ratelimit
;
1178 unsigned long pos_ratio
;
1179 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
1180 unsigned long start_time
= jiffies
;
1183 unsigned long now
= jiffies
;
1186 * Unstable writes are a feature of certain networked
1187 * filesystems (i.e. NFS) in which data may have been
1188 * written to the server's write cache, but has not yet
1189 * been flushed to permanent storage.
1191 nr_reclaimable
= global_page_state(NR_FILE_DIRTY
) +
1192 global_page_state(NR_UNSTABLE_NFS
);
1193 nr_dirty
= nr_reclaimable
+ global_page_state(NR_WRITEBACK
);
1195 global_dirty_limits(&background_thresh
, &dirty_thresh
);
1198 * Throttle it only when the background writeback cannot
1199 * catch-up. This avoids (excessively) small writeouts
1200 * when the bdi limits are ramping up.
1202 freerun
= dirty_freerun_ceiling(dirty_thresh
,
1204 if (nr_dirty
<= freerun
) {
1205 current
->dirty_paused_when
= now
;
1206 current
->nr_dirtied
= 0;
1207 current
->nr_dirtied_pause
=
1208 dirty_poll_interval(nr_dirty
, dirty_thresh
);
1212 if (unlikely(!writeback_in_progress(bdi
)))
1213 bdi_start_background_writeback(bdi
);
1216 * bdi_thresh is not treated as some limiting factor as
1217 * dirty_thresh, due to reasons
1218 * - in JBOD setup, bdi_thresh can fluctuate a lot
1219 * - in a system with HDD and USB key, the USB key may somehow
1220 * go into state (bdi_dirty >> bdi_thresh) either because
1221 * bdi_dirty starts high, or because bdi_thresh drops low.
1222 * In this case we don't want to hard throttle the USB key
1223 * dirtiers for 100 seconds until bdi_dirty drops under
1224 * bdi_thresh. Instead the auxiliary bdi control line in
1225 * bdi_position_ratio() will let the dirtier task progress
1226 * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1228 bdi_thresh
= bdi_dirty_limit(bdi
, dirty_thresh
);
1231 * In order to avoid the stacked BDI deadlock we need
1232 * to ensure we accurately count the 'dirty' pages when
1233 * the threshold is low.
1235 * Otherwise it would be possible to get thresh+n pages
1236 * reported dirty, even though there are thresh-m pages
1237 * actually dirty; with m+n sitting in the percpu
1240 if (bdi_thresh
< 2 * bdi_stat_error(bdi
)) {
1241 bdi_reclaimable
= bdi_stat_sum(bdi
, BDI_RECLAIMABLE
);
1242 bdi_dirty
= bdi_reclaimable
+
1243 bdi_stat_sum(bdi
, BDI_WRITEBACK
);
1245 bdi_reclaimable
= bdi_stat(bdi
, BDI_RECLAIMABLE
);
1246 bdi_dirty
= bdi_reclaimable
+
1247 bdi_stat(bdi
, BDI_WRITEBACK
);
1250 dirty_exceeded
= (bdi_dirty
> bdi_thresh
) &&
1251 (nr_dirty
> dirty_thresh
);
1252 if (dirty_exceeded
&& !bdi
->dirty_exceeded
)
1253 bdi
->dirty_exceeded
= 1;
1255 bdi_update_bandwidth(bdi
, dirty_thresh
, background_thresh
,
1256 nr_dirty
, bdi_thresh
, bdi_dirty
,
1259 dirty_ratelimit
= bdi
->dirty_ratelimit
;
1260 pos_ratio
= bdi_position_ratio(bdi
, dirty_thresh
,
1261 background_thresh
, nr_dirty
,
1262 bdi_thresh
, bdi_dirty
);
1263 task_ratelimit
= ((u64
)dirty_ratelimit
* pos_ratio
) >>
1264 RATELIMIT_CALC_SHIFT
;
1265 max_pause
= bdi_max_pause(bdi
, bdi_dirty
);
1266 min_pause
= bdi_min_pause(bdi
, max_pause
,
1267 task_ratelimit
, dirty_ratelimit
,
1270 if (unlikely(task_ratelimit
== 0)) {
1275 period
= HZ
* pages_dirtied
/ task_ratelimit
;
1277 if (current
->dirty_paused_when
)
1278 pause
-= now
- current
->dirty_paused_when
;
1280 * For less than 1s think time (ext3/4 may block the dirtier
1281 * for up to 800ms from time to time on 1-HDD; so does xfs,
1282 * however at much less frequency), try to compensate it in
1283 * future periods by updating the virtual time; otherwise just
1284 * do a reset, as it may be a light dirtier.
1286 if (pause
< min_pause
) {
1287 trace_balance_dirty_pages(bdi
,
1300 current
->dirty_paused_when
= now
;
1301 current
->nr_dirtied
= 0;
1302 } else if (period
) {
1303 current
->dirty_paused_when
+= period
;
1304 current
->nr_dirtied
= 0;
1305 } else if (current
->nr_dirtied_pause
<= pages_dirtied
)
1306 current
->nr_dirtied_pause
+= pages_dirtied
;
1309 if (unlikely(pause
> max_pause
)) {
1310 /* for occasional dropped task_ratelimit */
1311 now
+= min(pause
- max_pause
, max_pause
);
1316 trace_balance_dirty_pages(bdi
,
1328 __set_current_state(TASK_KILLABLE
);
1329 io_schedule_timeout(pause
);
1331 current
->dirty_paused_when
= now
+ pause
;
1332 current
->nr_dirtied
= 0;
1333 current
->nr_dirtied_pause
= nr_dirtied_pause
;
1336 * This is typically equal to (nr_dirty < dirty_thresh) and can
1337 * also keep "1000+ dd on a slow USB stick" under control.
1343 * In the case of an unresponding NFS server and the NFS dirty
1344 * pages exceeds dirty_thresh, give the other good bdi's a pipe
1345 * to go through, so that tasks on them still remain responsive.
1347 * In theory 1 page is enough to keep the comsumer-producer
1348 * pipe going: the flusher cleans 1 page => the task dirties 1
1349 * more page. However bdi_dirty has accounting errors. So use
1350 * the larger and more IO friendly bdi_stat_error.
1352 if (bdi_dirty
<= bdi_stat_error(bdi
))
1355 if (fatal_signal_pending(current
))
1359 if (!dirty_exceeded
&& bdi
->dirty_exceeded
)
1360 bdi
->dirty_exceeded
= 0;
1362 if (writeback_in_progress(bdi
))
1366 * In laptop mode, we wait until hitting the higher threshold before
1367 * starting background writeout, and then write out all the way down
1368 * to the lower threshold. So slow writers cause minimal disk activity.
1370 * In normal mode, we start background writeout at the lower
1371 * background_thresh, to keep the amount of dirty memory low.
1376 if (nr_reclaimable
> background_thresh
)
1377 bdi_start_background_writeback(bdi
);
1380 void set_page_dirty_balance(struct page
*page
, int page_mkwrite
)
1382 if (set_page_dirty(page
) || page_mkwrite
) {
1383 struct address_space
*mapping
= page_mapping(page
);
1386 balance_dirty_pages_ratelimited(mapping
);
1390 static DEFINE_PER_CPU(int, bdp_ratelimits
);
1393 * Normal tasks are throttled by
1395 * dirty tsk->nr_dirtied_pause pages;
1396 * take a snap in balance_dirty_pages();
1398 * However there is a worst case. If every task exit immediately when dirtied
1399 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1400 * called to throttle the page dirties. The solution is to save the not yet
1401 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1402 * randomly into the running tasks. This works well for the above worst case,
1403 * as the new task will pick up and accumulate the old task's leaked dirty
1404 * count and eventually get throttled.
1406 DEFINE_PER_CPU(int, dirty_throttle_leaks
) = 0;
1409 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
1410 * @mapping: address_space which was dirtied
1411 * @nr_pages_dirtied: number of pages which the caller has just dirtied
1413 * Processes which are dirtying memory should call in here once for each page
1414 * which was newly dirtied. The function will periodically check the system's
1415 * dirty state and will initiate writeback if needed.
1417 * On really big machines, get_writeback_state is expensive, so try to avoid
1418 * calling it too often (ratelimiting). But once we're over the dirty memory
1419 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1420 * from overshooting the limit by (ratelimit_pages) each.
1422 void balance_dirty_pages_ratelimited_nr(struct address_space
*mapping
,
1423 unsigned long nr_pages_dirtied
)
1425 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
1429 if (!bdi_cap_account_dirty(bdi
))
1432 ratelimit
= current
->nr_dirtied_pause
;
1433 if (bdi
->dirty_exceeded
)
1434 ratelimit
= min(ratelimit
, 32 >> (PAGE_SHIFT
- 10));
1438 * This prevents one CPU to accumulate too many dirtied pages without
1439 * calling into balance_dirty_pages(), which can happen when there are
1440 * 1000+ tasks, all of them start dirtying pages at exactly the same
1441 * time, hence all honoured too large initial task->nr_dirtied_pause.
1443 p
= &__get_cpu_var(bdp_ratelimits
);
1444 if (unlikely(current
->nr_dirtied
>= ratelimit
))
1446 else if (unlikely(*p
>= ratelimit_pages
)) {
1451 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1452 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1453 * the dirty throttling and livelock other long-run dirtiers.
1455 p
= &__get_cpu_var(dirty_throttle_leaks
);
1456 if (*p
> 0 && current
->nr_dirtied
< ratelimit
) {
1457 nr_pages_dirtied
= min(*p
, ratelimit
- current
->nr_dirtied
);
1458 *p
-= nr_pages_dirtied
;
1459 current
->nr_dirtied
+= nr_pages_dirtied
;
1463 if (unlikely(current
->nr_dirtied
>= ratelimit
))
1464 balance_dirty_pages(mapping
, current
->nr_dirtied
);
1466 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr
);
1468 void throttle_vm_writeout(gfp_t gfp_mask
)
1470 unsigned long background_thresh
;
1471 unsigned long dirty_thresh
;
1474 global_dirty_limits(&background_thresh
, &dirty_thresh
);
1477 * Boost the allowable dirty threshold a bit for page
1478 * allocators so they don't get DoS'ed by heavy writers
1480 dirty_thresh
+= dirty_thresh
/ 10; /* wheeee... */
1482 if (global_page_state(NR_UNSTABLE_NFS
) +
1483 global_page_state(NR_WRITEBACK
) <= dirty_thresh
)
1485 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1488 * The caller might hold locks which can prevent IO completion
1489 * or progress in the filesystem. So we cannot just sit here
1490 * waiting for IO to complete.
1492 if ((gfp_mask
& (__GFP_FS
|__GFP_IO
)) != (__GFP_FS
|__GFP_IO
))
1498 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1500 int dirty_writeback_centisecs_handler(ctl_table
*table
, int write
,
1501 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1503 proc_dointvec(table
, write
, buffer
, length
, ppos
);
1504 bdi_arm_supers_timer();
1509 void laptop_mode_timer_fn(unsigned long data
)
1511 struct request_queue
*q
= (struct request_queue
*)data
;
1512 int nr_pages
= global_page_state(NR_FILE_DIRTY
) +
1513 global_page_state(NR_UNSTABLE_NFS
);
1516 * We want to write everything out, not just down to the dirty
1519 if (bdi_has_dirty_io(&q
->backing_dev_info
))
1520 bdi_start_writeback(&q
->backing_dev_info
, nr_pages
,
1521 WB_REASON_LAPTOP_TIMER
);
1525 * We've spun up the disk and we're in laptop mode: schedule writeback
1526 * of all dirty data a few seconds from now. If the flush is already scheduled
1527 * then push it back - the user is still using the disk.
1529 void laptop_io_completion(struct backing_dev_info
*info
)
1531 mod_timer(&info
->laptop_mode_wb_timer
, jiffies
+ laptop_mode
);
1535 * We're in laptop mode and we've just synced. The sync's writes will have
1536 * caused another writeback to be scheduled by laptop_io_completion.
1537 * Nothing needs to be written back anymore, so we unschedule the writeback.
1539 void laptop_sync_completion(void)
1541 struct backing_dev_info
*bdi
;
1545 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
)
1546 del_timer(&bdi
->laptop_mode_wb_timer
);
1553 * If ratelimit_pages is too high then we can get into dirty-data overload
1554 * if a large number of processes all perform writes at the same time.
1555 * If it is too low then SMP machines will call the (expensive)
1556 * get_writeback_state too often.
1558 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1559 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1563 void writeback_set_ratelimit(void)
1565 unsigned long background_thresh
;
1566 unsigned long dirty_thresh
;
1567 global_dirty_limits(&background_thresh
, &dirty_thresh
);
1568 ratelimit_pages
= dirty_thresh
/ (num_online_cpus() * 32);
1569 if (ratelimit_pages
< 16)
1570 ratelimit_pages
= 16;
1573 static int __cpuinit
1574 ratelimit_handler(struct notifier_block
*self
, unsigned long u
, void *v
)
1576 writeback_set_ratelimit();
1580 static struct notifier_block __cpuinitdata ratelimit_nb
= {
1581 .notifier_call
= ratelimit_handler
,
1586 * Called early on to tune the page writeback dirty limits.
1588 * We used to scale dirty pages according to how total memory
1589 * related to pages that could be allocated for buffers (by
1590 * comparing nr_free_buffer_pages() to vm_total_pages.
1592 * However, that was when we used "dirty_ratio" to scale with
1593 * all memory, and we don't do that any more. "dirty_ratio"
1594 * is now applied to total non-HIGHPAGE memory (by subtracting
1595 * totalhigh_pages from vm_total_pages), and as such we can't
1596 * get into the old insane situation any more where we had
1597 * large amounts of dirty pages compared to a small amount of
1598 * non-HIGHMEM memory.
1600 * But we might still want to scale the dirty_ratio by how
1601 * much memory the box has..
1603 void __init
page_writeback_init(void)
1607 writeback_set_ratelimit();
1608 register_cpu_notifier(&ratelimit_nb
);
1610 shift
= calc_period_shift();
1611 prop_descriptor_init(&vm_completions
, shift
);
1615 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1616 * @mapping: address space structure to write
1617 * @start: starting page index
1618 * @end: ending page index (inclusive)
1620 * This function scans the page range from @start to @end (inclusive) and tags
1621 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1622 * that write_cache_pages (or whoever calls this function) will then use
1623 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1624 * used to avoid livelocking of writeback by a process steadily creating new
1625 * dirty pages in the file (thus it is important for this function to be quick
1626 * so that it can tag pages faster than a dirtying process can create them).
1629 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1631 void tag_pages_for_writeback(struct address_space
*mapping
,
1632 pgoff_t start
, pgoff_t end
)
1634 #define WRITEBACK_TAG_BATCH 4096
1635 unsigned long tagged
;
1638 spin_lock_irq(&mapping
->tree_lock
);
1639 tagged
= radix_tree_range_tag_if_tagged(&mapping
->page_tree
,
1640 &start
, end
, WRITEBACK_TAG_BATCH
,
1641 PAGECACHE_TAG_DIRTY
, PAGECACHE_TAG_TOWRITE
);
1642 spin_unlock_irq(&mapping
->tree_lock
);
1643 WARN_ON_ONCE(tagged
> WRITEBACK_TAG_BATCH
);
1645 /* We check 'start' to handle wrapping when end == ~0UL */
1646 } while (tagged
>= WRITEBACK_TAG_BATCH
&& start
);
1648 EXPORT_SYMBOL(tag_pages_for_writeback
);
1651 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1652 * @mapping: address space structure to write
1653 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1654 * @writepage: function called for each page
1655 * @data: data passed to writepage function
1657 * If a page is already under I/O, write_cache_pages() skips it, even
1658 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1659 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1660 * and msync() need to guarantee that all the data which was dirty at the time
1661 * the call was made get new I/O started against them. If wbc->sync_mode is
1662 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1663 * existing IO to complete.
1665 * To avoid livelocks (when other process dirties new pages), we first tag
1666 * pages which should be written back with TOWRITE tag and only then start
1667 * writing them. For data-integrity sync we have to be careful so that we do
1668 * not miss some pages (e.g., because some other process has cleared TOWRITE
1669 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1670 * by the process clearing the DIRTY tag (and submitting the page for IO).
1672 int write_cache_pages(struct address_space
*mapping
,
1673 struct writeback_control
*wbc
, writepage_t writepage
,
1678 struct pagevec pvec
;
1680 pgoff_t
uninitialized_var(writeback_index
);
1682 pgoff_t end
; /* Inclusive */
1685 int range_whole
= 0;
1688 pagevec_init(&pvec
, 0);
1689 if (wbc
->range_cyclic
) {
1690 writeback_index
= mapping
->writeback_index
; /* prev offset */
1691 index
= writeback_index
;
1698 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
1699 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
1700 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
1702 cycled
= 1; /* ignore range_cyclic tests */
1704 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
1705 tag
= PAGECACHE_TAG_TOWRITE
;
1707 tag
= PAGECACHE_TAG_DIRTY
;
1709 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
1710 tag_pages_for_writeback(mapping
, index
, end
);
1712 while (!done
&& (index
<= end
)) {
1715 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
1716 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
1720 for (i
= 0; i
< nr_pages
; i
++) {
1721 struct page
*page
= pvec
.pages
[i
];
1724 * At this point, the page may be truncated or
1725 * invalidated (changing page->mapping to NULL), or
1726 * even swizzled back from swapper_space to tmpfs file
1727 * mapping. However, page->index will not change
1728 * because we have a reference on the page.
1730 if (page
->index
> end
) {
1732 * can't be range_cyclic (1st pass) because
1733 * end == -1 in that case.
1739 done_index
= page
->index
;
1744 * Page truncated or invalidated. We can freely skip it
1745 * then, even for data integrity operations: the page
1746 * has disappeared concurrently, so there could be no
1747 * real expectation of this data interity operation
1748 * even if there is now a new, dirty page at the same
1749 * pagecache address.
1751 if (unlikely(page
->mapping
!= mapping
)) {
1757 if (!PageDirty(page
)) {
1758 /* someone wrote it for us */
1759 goto continue_unlock
;
1762 if (PageWriteback(page
)) {
1763 if (wbc
->sync_mode
!= WB_SYNC_NONE
)
1764 wait_on_page_writeback(page
);
1766 goto continue_unlock
;
1769 BUG_ON(PageWriteback(page
));
1770 if (!clear_page_dirty_for_io(page
))
1771 goto continue_unlock
;
1773 trace_wbc_writepage(wbc
, mapping
->backing_dev_info
);
1774 ret
= (*writepage
)(page
, wbc
, data
);
1775 if (unlikely(ret
)) {
1776 if (ret
== AOP_WRITEPAGE_ACTIVATE
) {
1781 * done_index is set past this page,
1782 * so media errors will not choke
1783 * background writeout for the entire
1784 * file. This has consequences for
1785 * range_cyclic semantics (ie. it may
1786 * not be suitable for data integrity
1789 done_index
= page
->index
+ 1;
1796 * We stop writing back only if we are not doing
1797 * integrity sync. In case of integrity sync we have to
1798 * keep going until we have written all the pages
1799 * we tagged for writeback prior to entering this loop.
1801 if (--wbc
->nr_to_write
<= 0 &&
1802 wbc
->sync_mode
== WB_SYNC_NONE
) {
1807 pagevec_release(&pvec
);
1810 if (!cycled
&& !done
) {
1813 * We hit the last page and there is more work to be done: wrap
1814 * back to the start of the file
1818 end
= writeback_index
- 1;
1821 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
1822 mapping
->writeback_index
= done_index
;
1826 EXPORT_SYMBOL(write_cache_pages
);
1829 * Function used by generic_writepages to call the real writepage
1830 * function and set the mapping flags on error
1832 static int __writepage(struct page
*page
, struct writeback_control
*wbc
,
1835 struct address_space
*mapping
= data
;
1836 int ret
= mapping
->a_ops
->writepage(page
, wbc
);
1837 mapping_set_error(mapping
, ret
);
1842 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1843 * @mapping: address space structure to write
1844 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1846 * This is a library function, which implements the writepages()
1847 * address_space_operation.
1849 int generic_writepages(struct address_space
*mapping
,
1850 struct writeback_control
*wbc
)
1852 struct blk_plug plug
;
1855 /* deal with chardevs and other special file */
1856 if (!mapping
->a_ops
->writepage
)
1859 blk_start_plug(&plug
);
1860 ret
= write_cache_pages(mapping
, wbc
, __writepage
, mapping
);
1861 blk_finish_plug(&plug
);
1865 EXPORT_SYMBOL(generic_writepages
);
1867 int do_writepages(struct address_space
*mapping
, struct writeback_control
*wbc
)
1871 if (wbc
->nr_to_write
<= 0)
1873 if (mapping
->a_ops
->writepages
)
1874 ret
= mapping
->a_ops
->writepages(mapping
, wbc
);
1876 ret
= generic_writepages(mapping
, wbc
);
1881 * write_one_page - write out a single page and optionally wait on I/O
1882 * @page: the page to write
1883 * @wait: if true, wait on writeout
1885 * The page must be locked by the caller and will be unlocked upon return.
1887 * write_one_page() returns a negative error code if I/O failed.
1889 int write_one_page(struct page
*page
, int wait
)
1891 struct address_space
*mapping
= page
->mapping
;
1893 struct writeback_control wbc
= {
1894 .sync_mode
= WB_SYNC_ALL
,
1898 BUG_ON(!PageLocked(page
));
1901 wait_on_page_writeback(page
);
1903 if (clear_page_dirty_for_io(page
)) {
1904 page_cache_get(page
);
1905 ret
= mapping
->a_ops
->writepage(page
, &wbc
);
1906 if (ret
== 0 && wait
) {
1907 wait_on_page_writeback(page
);
1908 if (PageError(page
))
1911 page_cache_release(page
);
1917 EXPORT_SYMBOL(write_one_page
);
1920 * For address_spaces which do not use buffers nor write back.
1922 int __set_page_dirty_no_writeback(struct page
*page
)
1924 if (!PageDirty(page
))
1925 return !TestSetPageDirty(page
);
1930 * Helper function for set_page_dirty family.
1931 * NOTE: This relies on being atomic wrt interrupts.
1933 void account_page_dirtied(struct page
*page
, struct address_space
*mapping
)
1935 if (mapping_cap_account_dirty(mapping
)) {
1936 __inc_zone_page_state(page
, NR_FILE_DIRTY
);
1937 __inc_zone_page_state(page
, NR_DIRTIED
);
1938 __inc_bdi_stat(mapping
->backing_dev_info
, BDI_RECLAIMABLE
);
1939 __inc_bdi_stat(mapping
->backing_dev_info
, BDI_DIRTIED
);
1940 task_io_account_write(PAGE_CACHE_SIZE
);
1941 current
->nr_dirtied
++;
1942 this_cpu_inc(bdp_ratelimits
);
1945 EXPORT_SYMBOL(account_page_dirtied
);
1948 * Helper function for set_page_writeback family.
1949 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1952 void account_page_writeback(struct page
*page
)
1954 inc_zone_page_state(page
, NR_WRITEBACK
);
1956 EXPORT_SYMBOL(account_page_writeback
);
1959 * For address_spaces which do not use buffers. Just tag the page as dirty in
1962 * This is also used when a single buffer is being dirtied: we want to set the
1963 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1964 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1966 * Most callers have locked the page, which pins the address_space in memory.
1967 * But zap_pte_range() does not lock the page, however in that case the
1968 * mapping is pinned by the vma's ->vm_file reference.
1970 * We take care to handle the case where the page was truncated from the
1971 * mapping by re-checking page_mapping() inside tree_lock.
1973 int __set_page_dirty_nobuffers(struct page
*page
)
1975 if (!TestSetPageDirty(page
)) {
1976 struct address_space
*mapping
= page_mapping(page
);
1977 struct address_space
*mapping2
;
1982 spin_lock_irq(&mapping
->tree_lock
);
1983 mapping2
= page_mapping(page
);
1984 if (mapping2
) { /* Race with truncate? */
1985 BUG_ON(mapping2
!= mapping
);
1986 WARN_ON_ONCE(!PagePrivate(page
) && !PageUptodate(page
));
1987 account_page_dirtied(page
, mapping
);
1988 radix_tree_tag_set(&mapping
->page_tree
,
1989 page_index(page
), PAGECACHE_TAG_DIRTY
);
1991 spin_unlock_irq(&mapping
->tree_lock
);
1992 if (mapping
->host
) {
1993 /* !PageAnon && !swapper_space */
1994 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
2000 EXPORT_SYMBOL(__set_page_dirty_nobuffers
);
2003 * Call this whenever redirtying a page, to de-account the dirty counters
2004 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2005 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2006 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2009 void account_page_redirty(struct page
*page
)
2011 struct address_space
*mapping
= page
->mapping
;
2012 if (mapping
&& mapping_cap_account_dirty(mapping
)) {
2013 current
->nr_dirtied
--;
2014 dec_zone_page_state(page
, NR_DIRTIED
);
2015 dec_bdi_stat(mapping
->backing_dev_info
, BDI_DIRTIED
);
2018 EXPORT_SYMBOL(account_page_redirty
);
2021 * When a writepage implementation decides that it doesn't want to write this
2022 * page for some reason, it should redirty the locked page via
2023 * redirty_page_for_writepage() and it should then unlock the page and return 0
2025 int redirty_page_for_writepage(struct writeback_control
*wbc
, struct page
*page
)
2027 wbc
->pages_skipped
++;
2028 account_page_redirty(page
);
2029 return __set_page_dirty_nobuffers(page
);
2031 EXPORT_SYMBOL(redirty_page_for_writepage
);
2036 * For pages with a mapping this should be done under the page lock
2037 * for the benefit of asynchronous memory errors who prefer a consistent
2038 * dirty state. This rule can be broken in some special cases,
2039 * but should be better not to.
2041 * If the mapping doesn't provide a set_page_dirty a_op, then
2042 * just fall through and assume that it wants buffer_heads.
2044 int set_page_dirty(struct page
*page
)
2046 struct address_space
*mapping
= page_mapping(page
);
2048 if (likely(mapping
)) {
2049 int (*spd
)(struct page
*) = mapping
->a_ops
->set_page_dirty
;
2051 * readahead/lru_deactivate_page could remain
2052 * PG_readahead/PG_reclaim due to race with end_page_writeback
2053 * About readahead, if the page is written, the flags would be
2054 * reset. So no problem.
2055 * About lru_deactivate_page, if the page is redirty, the flag
2056 * will be reset. So no problem. but if the page is used by readahead
2057 * it will confuse readahead and make it restart the size rampup
2058 * process. But it's a trivial problem.
2060 ClearPageReclaim(page
);
2063 spd
= __set_page_dirty_buffers
;
2065 return (*spd
)(page
);
2067 if (!PageDirty(page
)) {
2068 if (!TestSetPageDirty(page
))
2073 EXPORT_SYMBOL(set_page_dirty
);
2076 * set_page_dirty() is racy if the caller has no reference against
2077 * page->mapping->host, and if the page is unlocked. This is because another
2078 * CPU could truncate the page off the mapping and then free the mapping.
2080 * Usually, the page _is_ locked, or the caller is a user-space process which
2081 * holds a reference on the inode by having an open file.
2083 * In other cases, the page should be locked before running set_page_dirty().
2085 int set_page_dirty_lock(struct page
*page
)
2090 ret
= set_page_dirty(page
);
2094 EXPORT_SYMBOL(set_page_dirty_lock
);
2097 * Clear a page's dirty flag, while caring for dirty memory accounting.
2098 * Returns true if the page was previously dirty.
2100 * This is for preparing to put the page under writeout. We leave the page
2101 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2102 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2103 * implementation will run either set_page_writeback() or set_page_dirty(),
2104 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2107 * This incoherency between the page's dirty flag and radix-tree tag is
2108 * unfortunate, but it only exists while the page is locked.
2110 int clear_page_dirty_for_io(struct page
*page
)
2112 struct address_space
*mapping
= page_mapping(page
);
2114 BUG_ON(!PageLocked(page
));
2116 if (mapping
&& mapping_cap_account_dirty(mapping
)) {
2118 * Yes, Virginia, this is indeed insane.
2120 * We use this sequence to make sure that
2121 * (a) we account for dirty stats properly
2122 * (b) we tell the low-level filesystem to
2123 * mark the whole page dirty if it was
2124 * dirty in a pagetable. Only to then
2125 * (c) clean the page again and return 1 to
2126 * cause the writeback.
2128 * This way we avoid all nasty races with the
2129 * dirty bit in multiple places and clearing
2130 * them concurrently from different threads.
2132 * Note! Normally the "set_page_dirty(page)"
2133 * has no effect on the actual dirty bit - since
2134 * that will already usually be set. But we
2135 * need the side effects, and it can help us
2138 * We basically use the page "master dirty bit"
2139 * as a serialization point for all the different
2140 * threads doing their things.
2142 if (page_mkclean(page
))
2143 set_page_dirty(page
);
2145 * We carefully synchronise fault handlers against
2146 * installing a dirty pte and marking the page dirty
2147 * at this point. We do this by having them hold the
2148 * page lock at some point after installing their
2149 * pte, but before marking the page dirty.
2150 * Pages are always locked coming in here, so we get
2151 * the desired exclusion. See mm/memory.c:do_wp_page()
2152 * for more comments.
2154 if (TestClearPageDirty(page
)) {
2155 dec_zone_page_state(page
, NR_FILE_DIRTY
);
2156 dec_bdi_stat(mapping
->backing_dev_info
,
2162 return TestClearPageDirty(page
);
2164 EXPORT_SYMBOL(clear_page_dirty_for_io
);
2166 int test_clear_page_writeback(struct page
*page
)
2168 struct address_space
*mapping
= page_mapping(page
);
2172 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
2173 unsigned long flags
;
2175 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
2176 ret
= TestClearPageWriteback(page
);
2178 radix_tree_tag_clear(&mapping
->page_tree
,
2180 PAGECACHE_TAG_WRITEBACK
);
2181 if (bdi_cap_account_writeback(bdi
)) {
2182 __dec_bdi_stat(bdi
, BDI_WRITEBACK
);
2183 __bdi_writeout_inc(bdi
);
2186 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
2188 ret
= TestClearPageWriteback(page
);
2191 dec_zone_page_state(page
, NR_WRITEBACK
);
2192 inc_zone_page_state(page
, NR_WRITTEN
);
2197 int test_set_page_writeback(struct page
*page
)
2199 struct address_space
*mapping
= page_mapping(page
);
2203 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
2204 unsigned long flags
;
2206 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
2207 ret
= TestSetPageWriteback(page
);
2209 radix_tree_tag_set(&mapping
->page_tree
,
2211 PAGECACHE_TAG_WRITEBACK
);
2212 if (bdi_cap_account_writeback(bdi
))
2213 __inc_bdi_stat(bdi
, BDI_WRITEBACK
);
2215 if (!PageDirty(page
))
2216 radix_tree_tag_clear(&mapping
->page_tree
,
2218 PAGECACHE_TAG_DIRTY
);
2219 radix_tree_tag_clear(&mapping
->page_tree
,
2221 PAGECACHE_TAG_TOWRITE
);
2222 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
2224 ret
= TestSetPageWriteback(page
);
2227 account_page_writeback(page
);
2231 EXPORT_SYMBOL(test_set_page_writeback
);
2234 * Return true if any of the pages in the mapping are marked with the
2237 int mapping_tagged(struct address_space
*mapping
, int tag
)
2239 return radix_tree_tagged(&mapping
->page_tree
, tag
);
2241 EXPORT_SYMBOL(mapping_tagged
);