1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <linux/atomic.h>
49 #include <linux/namei.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
70 #include <linux/compat.h>
74 /* flags stating the success for a syscall */
75 #define AUDITSC_INVALID 0
76 #define AUDITSC_SUCCESS 1
77 #define AUDITSC_FAILURE 2
79 /* no execve audit message should be longer than this (userspace limits) */
80 #define MAX_EXECVE_AUDIT_LEN 7500
82 /* number of audit rules */
85 /* determines whether we collect data for signals sent */
88 struct audit_aux_data
{
89 struct audit_aux_data
*next
;
93 #define AUDIT_AUX_IPCPERM 0
95 /* Number of target pids per aux struct. */
96 #define AUDIT_AUX_PIDS 16
98 struct audit_aux_data_execve
{
99 struct audit_aux_data d
;
102 struct mm_struct
*mm
;
105 struct audit_aux_data_pids
{
106 struct audit_aux_data d
;
107 pid_t target_pid
[AUDIT_AUX_PIDS
];
108 kuid_t target_auid
[AUDIT_AUX_PIDS
];
109 kuid_t target_uid
[AUDIT_AUX_PIDS
];
110 unsigned int target_sessionid
[AUDIT_AUX_PIDS
];
111 u32 target_sid
[AUDIT_AUX_PIDS
];
112 char target_comm
[AUDIT_AUX_PIDS
][TASK_COMM_LEN
];
116 struct audit_aux_data_bprm_fcaps
{
117 struct audit_aux_data d
;
118 struct audit_cap_data fcap
;
119 unsigned int fcap_ver
;
120 struct audit_cap_data old_pcap
;
121 struct audit_cap_data new_pcap
;
124 struct audit_aux_data_capset
{
125 struct audit_aux_data d
;
127 struct audit_cap_data cap
;
130 struct audit_tree_refs
{
131 struct audit_tree_refs
*next
;
132 struct audit_chunk
*c
[31];
135 static inline int open_arg(int flags
, int mask
)
137 int n
= ACC_MODE(flags
);
138 if (flags
& (O_TRUNC
| O_CREAT
))
139 n
|= AUDIT_PERM_WRITE
;
143 static int audit_match_perm(struct audit_context
*ctx
, int mask
)
150 switch (audit_classify_syscall(ctx
->arch
, n
)) {
152 if ((mask
& AUDIT_PERM_WRITE
) &&
153 audit_match_class(AUDIT_CLASS_WRITE
, n
))
155 if ((mask
& AUDIT_PERM_READ
) &&
156 audit_match_class(AUDIT_CLASS_READ
, n
))
158 if ((mask
& AUDIT_PERM_ATTR
) &&
159 audit_match_class(AUDIT_CLASS_CHATTR
, n
))
162 case 1: /* 32bit on biarch */
163 if ((mask
& AUDIT_PERM_WRITE
) &&
164 audit_match_class(AUDIT_CLASS_WRITE_32
, n
))
166 if ((mask
& AUDIT_PERM_READ
) &&
167 audit_match_class(AUDIT_CLASS_READ_32
, n
))
169 if ((mask
& AUDIT_PERM_ATTR
) &&
170 audit_match_class(AUDIT_CLASS_CHATTR_32
, n
))
174 return mask
& ACC_MODE(ctx
->argv
[1]);
176 return mask
& ACC_MODE(ctx
->argv
[2]);
177 case 4: /* socketcall */
178 return ((mask
& AUDIT_PERM_WRITE
) && ctx
->argv
[0] == SYS_BIND
);
180 return mask
& AUDIT_PERM_EXEC
;
186 static int audit_match_filetype(struct audit_context
*ctx
, int val
)
188 struct audit_names
*n
;
189 umode_t mode
= (umode_t
)val
;
194 list_for_each_entry(n
, &ctx
->names_list
, list
) {
195 if ((n
->ino
!= -1) &&
196 ((n
->mode
& S_IFMT
) == mode
))
204 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
205 * ->first_trees points to its beginning, ->trees - to the current end of data.
206 * ->tree_count is the number of free entries in array pointed to by ->trees.
207 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
208 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
209 * it's going to remain 1-element for almost any setup) until we free context itself.
210 * References in it _are_ dropped - at the same time we free/drop aux stuff.
213 #ifdef CONFIG_AUDIT_TREE
214 static void audit_set_auditable(struct audit_context
*ctx
)
218 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
222 static int put_tree_ref(struct audit_context
*ctx
, struct audit_chunk
*chunk
)
224 struct audit_tree_refs
*p
= ctx
->trees
;
225 int left
= ctx
->tree_count
;
227 p
->c
[--left
] = chunk
;
228 ctx
->tree_count
= left
;
237 ctx
->tree_count
= 30;
243 static int grow_tree_refs(struct audit_context
*ctx
)
245 struct audit_tree_refs
*p
= ctx
->trees
;
246 ctx
->trees
= kzalloc(sizeof(struct audit_tree_refs
), GFP_KERNEL
);
252 p
->next
= ctx
->trees
;
254 ctx
->first_trees
= ctx
->trees
;
255 ctx
->tree_count
= 31;
260 static void unroll_tree_refs(struct audit_context
*ctx
,
261 struct audit_tree_refs
*p
, int count
)
263 #ifdef CONFIG_AUDIT_TREE
264 struct audit_tree_refs
*q
;
267 /* we started with empty chain */
268 p
= ctx
->first_trees
;
270 /* if the very first allocation has failed, nothing to do */
275 for (q
= p
; q
!= ctx
->trees
; q
= q
->next
, n
= 31) {
277 audit_put_chunk(q
->c
[n
]);
281 while (n
-- > ctx
->tree_count
) {
282 audit_put_chunk(q
->c
[n
]);
286 ctx
->tree_count
= count
;
290 static void free_tree_refs(struct audit_context
*ctx
)
292 struct audit_tree_refs
*p
, *q
;
293 for (p
= ctx
->first_trees
; p
; p
= q
) {
299 static int match_tree_refs(struct audit_context
*ctx
, struct audit_tree
*tree
)
301 #ifdef CONFIG_AUDIT_TREE
302 struct audit_tree_refs
*p
;
307 for (p
= ctx
->first_trees
; p
!= ctx
->trees
; p
= p
->next
) {
308 for (n
= 0; n
< 31; n
++)
309 if (audit_tree_match(p
->c
[n
], tree
))
314 for (n
= ctx
->tree_count
; n
< 31; n
++)
315 if (audit_tree_match(p
->c
[n
], tree
))
322 static int audit_compare_uid(kuid_t uid
,
323 struct audit_names
*name
,
324 struct audit_field
*f
,
325 struct audit_context
*ctx
)
327 struct audit_names
*n
;
331 rc
= audit_uid_comparator(uid
, f
->op
, name
->uid
);
337 list_for_each_entry(n
, &ctx
->names_list
, list
) {
338 rc
= audit_uid_comparator(uid
, f
->op
, n
->uid
);
346 static int audit_compare_gid(kgid_t gid
,
347 struct audit_names
*name
,
348 struct audit_field
*f
,
349 struct audit_context
*ctx
)
351 struct audit_names
*n
;
355 rc
= audit_gid_comparator(gid
, f
->op
, name
->gid
);
361 list_for_each_entry(n
, &ctx
->names_list
, list
) {
362 rc
= audit_gid_comparator(gid
, f
->op
, n
->gid
);
370 static int audit_field_compare(struct task_struct
*tsk
,
371 const struct cred
*cred
,
372 struct audit_field
*f
,
373 struct audit_context
*ctx
,
374 struct audit_names
*name
)
377 /* process to file object comparisons */
378 case AUDIT_COMPARE_UID_TO_OBJ_UID
:
379 return audit_compare_uid(cred
->uid
, name
, f
, ctx
);
380 case AUDIT_COMPARE_GID_TO_OBJ_GID
:
381 return audit_compare_gid(cred
->gid
, name
, f
, ctx
);
382 case AUDIT_COMPARE_EUID_TO_OBJ_UID
:
383 return audit_compare_uid(cred
->euid
, name
, f
, ctx
);
384 case AUDIT_COMPARE_EGID_TO_OBJ_GID
:
385 return audit_compare_gid(cred
->egid
, name
, f
, ctx
);
386 case AUDIT_COMPARE_AUID_TO_OBJ_UID
:
387 return audit_compare_uid(tsk
->loginuid
, name
, f
, ctx
);
388 case AUDIT_COMPARE_SUID_TO_OBJ_UID
:
389 return audit_compare_uid(cred
->suid
, name
, f
, ctx
);
390 case AUDIT_COMPARE_SGID_TO_OBJ_GID
:
391 return audit_compare_gid(cred
->sgid
, name
, f
, ctx
);
392 case AUDIT_COMPARE_FSUID_TO_OBJ_UID
:
393 return audit_compare_uid(cred
->fsuid
, name
, f
, ctx
);
394 case AUDIT_COMPARE_FSGID_TO_OBJ_GID
:
395 return audit_compare_gid(cred
->fsgid
, name
, f
, ctx
);
396 /* uid comparisons */
397 case AUDIT_COMPARE_UID_TO_AUID
:
398 return audit_uid_comparator(cred
->uid
, f
->op
, tsk
->loginuid
);
399 case AUDIT_COMPARE_UID_TO_EUID
:
400 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->euid
);
401 case AUDIT_COMPARE_UID_TO_SUID
:
402 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->suid
);
403 case AUDIT_COMPARE_UID_TO_FSUID
:
404 return audit_uid_comparator(cred
->uid
, f
->op
, cred
->fsuid
);
405 /* auid comparisons */
406 case AUDIT_COMPARE_AUID_TO_EUID
:
407 return audit_uid_comparator(tsk
->loginuid
, f
->op
, cred
->euid
);
408 case AUDIT_COMPARE_AUID_TO_SUID
:
409 return audit_uid_comparator(tsk
->loginuid
, f
->op
, cred
->suid
);
410 case AUDIT_COMPARE_AUID_TO_FSUID
:
411 return audit_uid_comparator(tsk
->loginuid
, f
->op
, cred
->fsuid
);
412 /* euid comparisons */
413 case AUDIT_COMPARE_EUID_TO_SUID
:
414 return audit_uid_comparator(cred
->euid
, f
->op
, cred
->suid
);
415 case AUDIT_COMPARE_EUID_TO_FSUID
:
416 return audit_uid_comparator(cred
->euid
, f
->op
, cred
->fsuid
);
417 /* suid comparisons */
418 case AUDIT_COMPARE_SUID_TO_FSUID
:
419 return audit_uid_comparator(cred
->suid
, f
->op
, cred
->fsuid
);
420 /* gid comparisons */
421 case AUDIT_COMPARE_GID_TO_EGID
:
422 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->egid
);
423 case AUDIT_COMPARE_GID_TO_SGID
:
424 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->sgid
);
425 case AUDIT_COMPARE_GID_TO_FSGID
:
426 return audit_gid_comparator(cred
->gid
, f
->op
, cred
->fsgid
);
427 /* egid comparisons */
428 case AUDIT_COMPARE_EGID_TO_SGID
:
429 return audit_gid_comparator(cred
->egid
, f
->op
, cred
->sgid
);
430 case AUDIT_COMPARE_EGID_TO_FSGID
:
431 return audit_gid_comparator(cred
->egid
, f
->op
, cred
->fsgid
);
432 /* sgid comparison */
433 case AUDIT_COMPARE_SGID_TO_FSGID
:
434 return audit_gid_comparator(cred
->sgid
, f
->op
, cred
->fsgid
);
436 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
442 /* Determine if any context name data matches a rule's watch data */
443 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
446 * If task_creation is true, this is an explicit indication that we are
447 * filtering a task rule at task creation time. This and tsk == current are
448 * the only situations where tsk->cred may be accessed without an rcu read lock.
450 static int audit_filter_rules(struct task_struct
*tsk
,
451 struct audit_krule
*rule
,
452 struct audit_context
*ctx
,
453 struct audit_names
*name
,
454 enum audit_state
*state
,
457 const struct cred
*cred
;
461 cred
= rcu_dereference_check(tsk
->cred
, tsk
== current
|| task_creation
);
463 for (i
= 0; i
< rule
->field_count
; i
++) {
464 struct audit_field
*f
= &rule
->fields
[i
];
465 struct audit_names
*n
;
470 result
= audit_comparator(tsk
->pid
, f
->op
, f
->val
);
475 ctx
->ppid
= sys_getppid();
476 result
= audit_comparator(ctx
->ppid
, f
->op
, f
->val
);
480 result
= audit_uid_comparator(cred
->uid
, f
->op
, f
->uid
);
483 result
= audit_uid_comparator(cred
->euid
, f
->op
, f
->uid
);
486 result
= audit_uid_comparator(cred
->suid
, f
->op
, f
->uid
);
489 result
= audit_uid_comparator(cred
->fsuid
, f
->op
, f
->uid
);
492 result
= audit_gid_comparator(cred
->gid
, f
->op
, f
->gid
);
493 if (f
->op
== Audit_equal
) {
495 result
= in_group_p(f
->gid
);
496 } else if (f
->op
== Audit_not_equal
) {
498 result
= !in_group_p(f
->gid
);
502 result
= audit_gid_comparator(cred
->egid
, f
->op
, f
->gid
);
503 if (f
->op
== Audit_equal
) {
505 result
= in_egroup_p(f
->gid
);
506 } else if (f
->op
== Audit_not_equal
) {
508 result
= !in_egroup_p(f
->gid
);
512 result
= audit_gid_comparator(cred
->sgid
, f
->op
, f
->gid
);
515 result
= audit_gid_comparator(cred
->fsgid
, f
->op
, f
->gid
);
518 result
= audit_comparator(tsk
->personality
, f
->op
, f
->val
);
522 result
= audit_comparator(ctx
->arch
, f
->op
, f
->val
);
526 if (ctx
&& ctx
->return_valid
)
527 result
= audit_comparator(ctx
->return_code
, f
->op
, f
->val
);
530 if (ctx
&& ctx
->return_valid
) {
532 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_SUCCESS
);
534 result
= audit_comparator(ctx
->return_valid
, f
->op
, AUDITSC_FAILURE
);
539 if (audit_comparator(MAJOR(name
->dev
), f
->op
, f
->val
) ||
540 audit_comparator(MAJOR(name
->rdev
), f
->op
, f
->val
))
543 list_for_each_entry(n
, &ctx
->names_list
, list
) {
544 if (audit_comparator(MAJOR(n
->dev
), f
->op
, f
->val
) ||
545 audit_comparator(MAJOR(n
->rdev
), f
->op
, f
->val
)) {
554 if (audit_comparator(MINOR(name
->dev
), f
->op
, f
->val
) ||
555 audit_comparator(MINOR(name
->rdev
), f
->op
, f
->val
))
558 list_for_each_entry(n
, &ctx
->names_list
, list
) {
559 if (audit_comparator(MINOR(n
->dev
), f
->op
, f
->val
) ||
560 audit_comparator(MINOR(n
->rdev
), f
->op
, f
->val
)) {
569 result
= (name
->ino
== f
->val
);
571 list_for_each_entry(n
, &ctx
->names_list
, list
) {
572 if (audit_comparator(n
->ino
, f
->op
, f
->val
)) {
581 result
= audit_uid_comparator(name
->uid
, f
->op
, f
->uid
);
583 list_for_each_entry(n
, &ctx
->names_list
, list
) {
584 if (audit_uid_comparator(n
->uid
, f
->op
, f
->uid
)) {
593 result
= audit_gid_comparator(name
->gid
, f
->op
, f
->gid
);
595 list_for_each_entry(n
, &ctx
->names_list
, list
) {
596 if (audit_gid_comparator(n
->gid
, f
->op
, f
->gid
)) {
605 result
= audit_watch_compare(rule
->watch
, name
->ino
, name
->dev
);
609 result
= match_tree_refs(ctx
, rule
->tree
);
614 result
= audit_uid_comparator(tsk
->loginuid
, f
->op
, f
->uid
);
616 case AUDIT_LOGINUID_SET
:
617 result
= audit_comparator(audit_loginuid_set(tsk
), f
->op
, f
->val
);
619 case AUDIT_SUBJ_USER
:
620 case AUDIT_SUBJ_ROLE
:
621 case AUDIT_SUBJ_TYPE
:
624 /* NOTE: this may return negative values indicating
625 a temporary error. We simply treat this as a
626 match for now to avoid losing information that
627 may be wanted. An error message will also be
631 security_task_getsecid(tsk
, &sid
);
634 result
= security_audit_rule_match(sid
, f
->type
,
643 case AUDIT_OBJ_LEV_LOW
:
644 case AUDIT_OBJ_LEV_HIGH
:
645 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
648 /* Find files that match */
650 result
= security_audit_rule_match(
651 name
->osid
, f
->type
, f
->op
,
654 list_for_each_entry(n
, &ctx
->names_list
, list
) {
655 if (security_audit_rule_match(n
->osid
, f
->type
,
663 /* Find ipc objects that match */
664 if (!ctx
|| ctx
->type
!= AUDIT_IPC
)
666 if (security_audit_rule_match(ctx
->ipc
.osid
,
677 result
= audit_comparator(ctx
->argv
[f
->type
-AUDIT_ARG0
], f
->op
, f
->val
);
679 case AUDIT_FILTERKEY
:
680 /* ignore this field for filtering */
684 result
= audit_match_perm(ctx
, f
->val
);
687 result
= audit_match_filetype(ctx
, f
->val
);
689 case AUDIT_FIELD_COMPARE
:
690 result
= audit_field_compare(tsk
, cred
, f
, ctx
, name
);
698 if (rule
->prio
<= ctx
->prio
)
700 if (rule
->filterkey
) {
701 kfree(ctx
->filterkey
);
702 ctx
->filterkey
= kstrdup(rule
->filterkey
, GFP_ATOMIC
);
704 ctx
->prio
= rule
->prio
;
706 switch (rule
->action
) {
707 case AUDIT_NEVER
: *state
= AUDIT_DISABLED
; break;
708 case AUDIT_ALWAYS
: *state
= AUDIT_RECORD_CONTEXT
; break;
713 /* At process creation time, we can determine if system-call auditing is
714 * completely disabled for this task. Since we only have the task
715 * structure at this point, we can only check uid and gid.
717 static enum audit_state
audit_filter_task(struct task_struct
*tsk
, char **key
)
719 struct audit_entry
*e
;
720 enum audit_state state
;
723 list_for_each_entry_rcu(e
, &audit_filter_list
[AUDIT_FILTER_TASK
], list
) {
724 if (audit_filter_rules(tsk
, &e
->rule
, NULL
, NULL
,
726 if (state
== AUDIT_RECORD_CONTEXT
)
727 *key
= kstrdup(e
->rule
.filterkey
, GFP_ATOMIC
);
733 return AUDIT_BUILD_CONTEXT
;
736 /* At syscall entry and exit time, this filter is called if the
737 * audit_state is not low enough that auditing cannot take place, but is
738 * also not high enough that we already know we have to write an audit
739 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
741 static enum audit_state
audit_filter_syscall(struct task_struct
*tsk
,
742 struct audit_context
*ctx
,
743 struct list_head
*list
)
745 struct audit_entry
*e
;
746 enum audit_state state
;
748 if (audit_pid
&& tsk
->tgid
== audit_pid
)
749 return AUDIT_DISABLED
;
752 if (!list_empty(list
)) {
753 int word
= AUDIT_WORD(ctx
->major
);
754 int bit
= AUDIT_BIT(ctx
->major
);
756 list_for_each_entry_rcu(e
, list
, list
) {
757 if ((e
->rule
.mask
[word
] & bit
) == bit
&&
758 audit_filter_rules(tsk
, &e
->rule
, ctx
, NULL
,
761 ctx
->current_state
= state
;
767 return AUDIT_BUILD_CONTEXT
;
771 * Given an audit_name check the inode hash table to see if they match.
772 * Called holding the rcu read lock to protect the use of audit_inode_hash
774 static int audit_filter_inode_name(struct task_struct
*tsk
,
775 struct audit_names
*n
,
776 struct audit_context
*ctx
) {
778 int h
= audit_hash_ino((u32
)n
->ino
);
779 struct list_head
*list
= &audit_inode_hash
[h
];
780 struct audit_entry
*e
;
781 enum audit_state state
;
783 word
= AUDIT_WORD(ctx
->major
);
784 bit
= AUDIT_BIT(ctx
->major
);
786 if (list_empty(list
))
789 list_for_each_entry_rcu(e
, list
, list
) {
790 if ((e
->rule
.mask
[word
] & bit
) == bit
&&
791 audit_filter_rules(tsk
, &e
->rule
, ctx
, n
, &state
, false)) {
792 ctx
->current_state
= state
;
800 /* At syscall exit time, this filter is called if any audit_names have been
801 * collected during syscall processing. We only check rules in sublists at hash
802 * buckets applicable to the inode numbers in audit_names.
803 * Regarding audit_state, same rules apply as for audit_filter_syscall().
805 void audit_filter_inodes(struct task_struct
*tsk
, struct audit_context
*ctx
)
807 struct audit_names
*n
;
809 if (audit_pid
&& tsk
->tgid
== audit_pid
)
814 list_for_each_entry(n
, &ctx
->names_list
, list
) {
815 if (audit_filter_inode_name(tsk
, n
, ctx
))
821 static inline struct audit_context
*audit_get_context(struct task_struct
*tsk
,
825 struct audit_context
*context
= tsk
->audit_context
;
829 context
->return_valid
= return_valid
;
832 * we need to fix up the return code in the audit logs if the actual
833 * return codes are later going to be fixed up by the arch specific
836 * This is actually a test for:
837 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
838 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
840 * but is faster than a bunch of ||
842 if (unlikely(return_code
<= -ERESTARTSYS
) &&
843 (return_code
>= -ERESTART_RESTARTBLOCK
) &&
844 (return_code
!= -ENOIOCTLCMD
))
845 context
->return_code
= -EINTR
;
847 context
->return_code
= return_code
;
849 if (context
->in_syscall
&& !context
->dummy
) {
850 audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_EXIT
]);
851 audit_filter_inodes(tsk
, context
);
854 tsk
->audit_context
= NULL
;
858 static inline void audit_free_names(struct audit_context
*context
)
860 struct audit_names
*n
, *next
;
863 if (context
->put_count
+ context
->ino_count
!= context
->name_count
) {
866 printk(KERN_ERR
"%s:%d(:%d): major=%d in_syscall=%d"
867 " name_count=%d put_count=%d"
868 " ino_count=%d [NOT freeing]\n",
870 context
->serial
, context
->major
, context
->in_syscall
,
871 context
->name_count
, context
->put_count
,
873 list_for_each_entry(n
, &context
->names_list
, list
) {
874 printk(KERN_ERR
"names[%d] = %p = %s\n", i
++,
875 n
->name
, n
->name
->name
?: "(null)");
882 context
->put_count
= 0;
883 context
->ino_count
= 0;
886 list_for_each_entry_safe(n
, next
, &context
->names_list
, list
) {
888 if (n
->name
&& n
->name_put
)
889 final_putname(n
->name
);
893 context
->name_count
= 0;
894 path_put(&context
->pwd
);
895 context
->pwd
.dentry
= NULL
;
896 context
->pwd
.mnt
= NULL
;
899 static inline void audit_free_aux(struct audit_context
*context
)
901 struct audit_aux_data
*aux
;
903 while ((aux
= context
->aux
)) {
904 context
->aux
= aux
->next
;
907 while ((aux
= context
->aux_pids
)) {
908 context
->aux_pids
= aux
->next
;
913 static inline struct audit_context
*audit_alloc_context(enum audit_state state
)
915 struct audit_context
*context
;
917 context
= kzalloc(sizeof(*context
), GFP_KERNEL
);
920 context
->state
= state
;
921 context
->prio
= state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
922 INIT_LIST_HEAD(&context
->killed_trees
);
923 INIT_LIST_HEAD(&context
->names_list
);
928 * audit_alloc - allocate an audit context block for a task
931 * Filter on the task information and allocate a per-task audit context
932 * if necessary. Doing so turns on system call auditing for the
933 * specified task. This is called from copy_process, so no lock is
936 int audit_alloc(struct task_struct
*tsk
)
938 struct audit_context
*context
;
939 enum audit_state state
;
942 if (likely(!audit_ever_enabled
))
943 return 0; /* Return if not auditing. */
945 state
= audit_filter_task(tsk
, &key
);
946 if (state
== AUDIT_DISABLED
)
949 if (!(context
= audit_alloc_context(state
))) {
951 audit_log_lost("out of memory in audit_alloc");
954 context
->filterkey
= key
;
956 tsk
->audit_context
= context
;
957 set_tsk_thread_flag(tsk
, TIF_SYSCALL_AUDIT
);
961 static inline void audit_free_context(struct audit_context
*context
)
963 audit_free_names(context
);
964 unroll_tree_refs(context
, NULL
, 0);
965 free_tree_refs(context
);
966 audit_free_aux(context
);
967 kfree(context
->filterkey
);
968 kfree(context
->sockaddr
);
972 static int audit_log_pid_context(struct audit_context
*context
, pid_t pid
,
973 kuid_t auid
, kuid_t uid
, unsigned int sessionid
,
976 struct audit_buffer
*ab
;
981 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_OBJ_PID
);
985 audit_log_format(ab
, "opid=%d oauid=%d ouid=%d oses=%d", pid
,
986 from_kuid(&init_user_ns
, auid
),
987 from_kuid(&init_user_ns
, uid
), sessionid
);
989 if (security_secid_to_secctx(sid
, &ctx
, &len
)) {
990 audit_log_format(ab
, " obj=(none)");
993 audit_log_format(ab
, " obj=%s", ctx
);
994 security_release_secctx(ctx
, len
);
997 audit_log_format(ab
, " ocomm=");
998 audit_log_untrustedstring(ab
, comm
);
1005 * to_send and len_sent accounting are very loose estimates. We aren't
1006 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1007 * within about 500 bytes (next page boundary)
1009 * why snprintf? an int is up to 12 digits long. if we just assumed when
1010 * logging that a[%d]= was going to be 16 characters long we would be wasting
1011 * space in every audit message. In one 7500 byte message we can log up to
1012 * about 1000 min size arguments. That comes down to about 50% waste of space
1013 * if we didn't do the snprintf to find out how long arg_num_len was.
1015 static int audit_log_single_execve_arg(struct audit_context
*context
,
1016 struct audit_buffer
**ab
,
1019 const char __user
*p
,
1022 char arg_num_len_buf
[12];
1023 const char __user
*tmp_p
= p
;
1024 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1025 size_t arg_num_len
= snprintf(arg_num_len_buf
, 12, "%d", arg_num
) + 5;
1026 size_t len
, len_left
, to_send
;
1027 size_t max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
;
1028 unsigned int i
, has_cntl
= 0, too_long
= 0;
1031 /* strnlen_user includes the null we don't want to send */
1032 len_left
= len
= strnlen_user(p
, MAX_ARG_STRLEN
) - 1;
1035 * We just created this mm, if we can't find the strings
1036 * we just copied into it something is _very_ wrong. Similar
1037 * for strings that are too long, we should not have created
1040 if (unlikely((len
== -1) || len
> MAX_ARG_STRLEN
- 1)) {
1042 send_sig(SIGKILL
, current
, 0);
1046 /* walk the whole argument looking for non-ascii chars */
1048 if (len_left
> MAX_EXECVE_AUDIT_LEN
)
1049 to_send
= MAX_EXECVE_AUDIT_LEN
;
1052 ret
= copy_from_user(buf
, tmp_p
, to_send
);
1054 * There is no reason for this copy to be short. We just
1055 * copied them here, and the mm hasn't been exposed to user-
1060 send_sig(SIGKILL
, current
, 0);
1063 buf
[to_send
] = '\0';
1064 has_cntl
= audit_string_contains_control(buf
, to_send
);
1067 * hex messages get logged as 2 bytes, so we can only
1068 * send half as much in each message
1070 max_execve_audit_len
= MAX_EXECVE_AUDIT_LEN
/ 2;
1073 len_left
-= to_send
;
1075 } while (len_left
> 0);
1079 if (len
> max_execve_audit_len
)
1082 /* rewalk the argument actually logging the message */
1083 for (i
= 0; len_left
> 0; i
++) {
1086 if (len_left
> max_execve_audit_len
)
1087 to_send
= max_execve_audit_len
;
1091 /* do we have space left to send this argument in this ab? */
1092 room_left
= MAX_EXECVE_AUDIT_LEN
- arg_num_len
- *len_sent
;
1094 room_left
-= (to_send
* 2);
1096 room_left
-= to_send
;
1097 if (room_left
< 0) {
1100 *ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EXECVE
);
1106 * first record needs to say how long the original string was
1107 * so we can be sure nothing was lost.
1109 if ((i
== 0) && (too_long
))
1110 audit_log_format(*ab
, " a%d_len=%zu", arg_num
,
1111 has_cntl
? 2*len
: len
);
1114 * normally arguments are small enough to fit and we already
1115 * filled buf above when we checked for control characters
1116 * so don't bother with another copy_from_user
1118 if (len
>= max_execve_audit_len
)
1119 ret
= copy_from_user(buf
, p
, to_send
);
1124 send_sig(SIGKILL
, current
, 0);
1127 buf
[to_send
] = '\0';
1129 /* actually log it */
1130 audit_log_format(*ab
, " a%d", arg_num
);
1132 audit_log_format(*ab
, "[%d]", i
);
1133 audit_log_format(*ab
, "=");
1135 audit_log_n_hex(*ab
, buf
, to_send
);
1137 audit_log_string(*ab
, buf
);
1140 len_left
-= to_send
;
1141 *len_sent
+= arg_num_len
;
1143 *len_sent
+= to_send
* 2;
1145 *len_sent
+= to_send
;
1147 /* include the null we didn't log */
1151 static void audit_log_execve_info(struct audit_context
*context
,
1152 struct audit_buffer
**ab
,
1153 struct audit_aux_data_execve
*axi
)
1156 size_t len_sent
= 0;
1157 const char __user
*p
;
1160 if (axi
->mm
!= current
->mm
)
1161 return; /* execve failed, no additional info */
1163 p
= (const char __user
*)axi
->mm
->arg_start
;
1165 audit_log_format(*ab
, "argc=%d", axi
->argc
);
1168 * we need some kernel buffer to hold the userspace args. Just
1169 * allocate one big one rather than allocating one of the right size
1170 * for every single argument inside audit_log_single_execve_arg()
1171 * should be <8k allocation so should be pretty safe.
1173 buf
= kmalloc(MAX_EXECVE_AUDIT_LEN
+ 1, GFP_KERNEL
);
1175 audit_panic("out of memory for argv string\n");
1179 for (i
= 0; i
< axi
->argc
; i
++) {
1180 len
= audit_log_single_execve_arg(context
, ab
, i
,
1189 static void show_special(struct audit_context
*context
, int *call_panic
)
1191 struct audit_buffer
*ab
;
1194 ab
= audit_log_start(context
, GFP_KERNEL
, context
->type
);
1198 switch (context
->type
) {
1199 case AUDIT_SOCKETCALL
: {
1200 int nargs
= context
->socketcall
.nargs
;
1201 audit_log_format(ab
, "nargs=%d", nargs
);
1202 for (i
= 0; i
< nargs
; i
++)
1203 audit_log_format(ab
, " a%d=%lx", i
,
1204 context
->socketcall
.args
[i
]);
1207 u32 osid
= context
->ipc
.osid
;
1209 audit_log_format(ab
, "ouid=%u ogid=%u mode=%#ho",
1210 from_kuid(&init_user_ns
, context
->ipc
.uid
),
1211 from_kgid(&init_user_ns
, context
->ipc
.gid
),
1216 if (security_secid_to_secctx(osid
, &ctx
, &len
)) {
1217 audit_log_format(ab
, " osid=%u", osid
);
1220 audit_log_format(ab
, " obj=%s", ctx
);
1221 security_release_secctx(ctx
, len
);
1224 if (context
->ipc
.has_perm
) {
1226 ab
= audit_log_start(context
, GFP_KERNEL
,
1227 AUDIT_IPC_SET_PERM
);
1230 audit_log_format(ab
,
1231 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1232 context
->ipc
.qbytes
,
1233 context
->ipc
.perm_uid
,
1234 context
->ipc
.perm_gid
,
1235 context
->ipc
.perm_mode
);
1238 case AUDIT_MQ_OPEN
: {
1239 audit_log_format(ab
,
1240 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1241 "mq_msgsize=%ld mq_curmsgs=%ld",
1242 context
->mq_open
.oflag
, context
->mq_open
.mode
,
1243 context
->mq_open
.attr
.mq_flags
,
1244 context
->mq_open
.attr
.mq_maxmsg
,
1245 context
->mq_open
.attr
.mq_msgsize
,
1246 context
->mq_open
.attr
.mq_curmsgs
);
1248 case AUDIT_MQ_SENDRECV
: {
1249 audit_log_format(ab
,
1250 "mqdes=%d msg_len=%zd msg_prio=%u "
1251 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1252 context
->mq_sendrecv
.mqdes
,
1253 context
->mq_sendrecv
.msg_len
,
1254 context
->mq_sendrecv
.msg_prio
,
1255 context
->mq_sendrecv
.abs_timeout
.tv_sec
,
1256 context
->mq_sendrecv
.abs_timeout
.tv_nsec
);
1258 case AUDIT_MQ_NOTIFY
: {
1259 audit_log_format(ab
, "mqdes=%d sigev_signo=%d",
1260 context
->mq_notify
.mqdes
,
1261 context
->mq_notify
.sigev_signo
);
1263 case AUDIT_MQ_GETSETATTR
: {
1264 struct mq_attr
*attr
= &context
->mq_getsetattr
.mqstat
;
1265 audit_log_format(ab
,
1266 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1268 context
->mq_getsetattr
.mqdes
,
1269 attr
->mq_flags
, attr
->mq_maxmsg
,
1270 attr
->mq_msgsize
, attr
->mq_curmsgs
);
1272 case AUDIT_CAPSET
: {
1273 audit_log_format(ab
, "pid=%d", context
->capset
.pid
);
1274 audit_log_cap(ab
, "cap_pi", &context
->capset
.cap
.inheritable
);
1275 audit_log_cap(ab
, "cap_pp", &context
->capset
.cap
.permitted
);
1276 audit_log_cap(ab
, "cap_pe", &context
->capset
.cap
.effective
);
1279 audit_log_format(ab
, "fd=%d flags=0x%x", context
->mmap
.fd
,
1280 context
->mmap
.flags
);
1286 static void audit_log_exit(struct audit_context
*context
, struct task_struct
*tsk
)
1288 int i
, call_panic
= 0;
1289 struct audit_buffer
*ab
;
1290 struct audit_aux_data
*aux
;
1291 struct audit_names
*n
;
1293 /* tsk == current */
1294 context
->personality
= tsk
->personality
;
1296 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SYSCALL
);
1298 return; /* audit_panic has been called */
1299 audit_log_format(ab
, "arch=%x syscall=%d",
1300 context
->arch
, context
->major
);
1301 if (context
->personality
!= PER_LINUX
)
1302 audit_log_format(ab
, " per=%lx", context
->personality
);
1303 if (context
->return_valid
)
1304 audit_log_format(ab
, " success=%s exit=%ld",
1305 (context
->return_valid
==AUDITSC_SUCCESS
)?"yes":"no",
1306 context
->return_code
);
1308 audit_log_format(ab
,
1309 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1314 context
->name_count
);
1316 audit_log_task_info(ab
, tsk
);
1317 audit_log_key(ab
, context
->filterkey
);
1320 for (aux
= context
->aux
; aux
; aux
= aux
->next
) {
1322 ab
= audit_log_start(context
, GFP_KERNEL
, aux
->type
);
1324 continue; /* audit_panic has been called */
1326 switch (aux
->type
) {
1328 case AUDIT_EXECVE
: {
1329 struct audit_aux_data_execve
*axi
= (void *)aux
;
1330 audit_log_execve_info(context
, &ab
, axi
);
1333 case AUDIT_BPRM_FCAPS
: {
1334 struct audit_aux_data_bprm_fcaps
*axs
= (void *)aux
;
1335 audit_log_format(ab
, "fver=%x", axs
->fcap_ver
);
1336 audit_log_cap(ab
, "fp", &axs
->fcap
.permitted
);
1337 audit_log_cap(ab
, "fi", &axs
->fcap
.inheritable
);
1338 audit_log_format(ab
, " fe=%d", axs
->fcap
.fE
);
1339 audit_log_cap(ab
, "old_pp", &axs
->old_pcap
.permitted
);
1340 audit_log_cap(ab
, "old_pi", &axs
->old_pcap
.inheritable
);
1341 audit_log_cap(ab
, "old_pe", &axs
->old_pcap
.effective
);
1342 audit_log_cap(ab
, "new_pp", &axs
->new_pcap
.permitted
);
1343 audit_log_cap(ab
, "new_pi", &axs
->new_pcap
.inheritable
);
1344 audit_log_cap(ab
, "new_pe", &axs
->new_pcap
.effective
);
1352 show_special(context
, &call_panic
);
1354 if (context
->fds
[0] >= 0) {
1355 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_FD_PAIR
);
1357 audit_log_format(ab
, "fd0=%d fd1=%d",
1358 context
->fds
[0], context
->fds
[1]);
1363 if (context
->sockaddr_len
) {
1364 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_SOCKADDR
);
1366 audit_log_format(ab
, "saddr=");
1367 audit_log_n_hex(ab
, (void *)context
->sockaddr
,
1368 context
->sockaddr_len
);
1373 for (aux
= context
->aux_pids
; aux
; aux
= aux
->next
) {
1374 struct audit_aux_data_pids
*axs
= (void *)aux
;
1376 for (i
= 0; i
< axs
->pid_count
; i
++)
1377 if (audit_log_pid_context(context
, axs
->target_pid
[i
],
1378 axs
->target_auid
[i
],
1380 axs
->target_sessionid
[i
],
1382 axs
->target_comm
[i
]))
1386 if (context
->target_pid
&&
1387 audit_log_pid_context(context
, context
->target_pid
,
1388 context
->target_auid
, context
->target_uid
,
1389 context
->target_sessionid
,
1390 context
->target_sid
, context
->target_comm
))
1393 if (context
->pwd
.dentry
&& context
->pwd
.mnt
) {
1394 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_CWD
);
1396 audit_log_d_path(ab
, " cwd=", &context
->pwd
);
1402 list_for_each_entry(n
, &context
->names_list
, list
)
1403 audit_log_name(context
, n
, NULL
, i
++, &call_panic
);
1405 /* Send end of event record to help user space know we are finished */
1406 ab
= audit_log_start(context
, GFP_KERNEL
, AUDIT_EOE
);
1410 audit_panic("error converting sid to string");
1414 * audit_free - free a per-task audit context
1415 * @tsk: task whose audit context block to free
1417 * Called from copy_process and do_exit
1419 void __audit_free(struct task_struct
*tsk
)
1421 struct audit_context
*context
;
1423 context
= audit_get_context(tsk
, 0, 0);
1427 /* Check for system calls that do not go through the exit
1428 * function (e.g., exit_group), then free context block.
1429 * We use GFP_ATOMIC here because we might be doing this
1430 * in the context of the idle thread */
1431 /* that can happen only if we are called from do_exit() */
1432 if (context
->in_syscall
&& context
->current_state
== AUDIT_RECORD_CONTEXT
)
1433 audit_log_exit(context
, tsk
);
1434 if (!list_empty(&context
->killed_trees
))
1435 audit_kill_trees(&context
->killed_trees
);
1437 audit_free_context(context
);
1441 * audit_syscall_entry - fill in an audit record at syscall entry
1442 * @arch: architecture type
1443 * @major: major syscall type (function)
1444 * @a1: additional syscall register 1
1445 * @a2: additional syscall register 2
1446 * @a3: additional syscall register 3
1447 * @a4: additional syscall register 4
1449 * Fill in audit context at syscall entry. This only happens if the
1450 * audit context was created when the task was created and the state or
1451 * filters demand the audit context be built. If the state from the
1452 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1453 * then the record will be written at syscall exit time (otherwise, it
1454 * will only be written if another part of the kernel requests that it
1457 void __audit_syscall_entry(int arch
, int major
,
1458 unsigned long a1
, unsigned long a2
,
1459 unsigned long a3
, unsigned long a4
)
1461 struct task_struct
*tsk
= current
;
1462 struct audit_context
*context
= tsk
->audit_context
;
1463 enum audit_state state
;
1468 BUG_ON(context
->in_syscall
|| context
->name_count
);
1473 context
->arch
= arch
;
1474 context
->major
= major
;
1475 context
->argv
[0] = a1
;
1476 context
->argv
[1] = a2
;
1477 context
->argv
[2] = a3
;
1478 context
->argv
[3] = a4
;
1480 state
= context
->state
;
1481 context
->dummy
= !audit_n_rules
;
1482 if (!context
->dummy
&& state
== AUDIT_BUILD_CONTEXT
) {
1484 state
= audit_filter_syscall(tsk
, context
, &audit_filter_list
[AUDIT_FILTER_ENTRY
]);
1486 if (state
== AUDIT_DISABLED
)
1489 context
->serial
= 0;
1490 context
->ctime
= CURRENT_TIME
;
1491 context
->in_syscall
= 1;
1492 context
->current_state
= state
;
1497 * audit_syscall_exit - deallocate audit context after a system call
1498 * @success: success value of the syscall
1499 * @return_code: return value of the syscall
1501 * Tear down after system call. If the audit context has been marked as
1502 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1503 * filtering, or because some other part of the kernel wrote an audit
1504 * message), then write out the syscall information. In call cases,
1505 * free the names stored from getname().
1507 void __audit_syscall_exit(int success
, long return_code
)
1509 struct task_struct
*tsk
= current
;
1510 struct audit_context
*context
;
1513 success
= AUDITSC_SUCCESS
;
1515 success
= AUDITSC_FAILURE
;
1517 context
= audit_get_context(tsk
, success
, return_code
);
1521 if (context
->in_syscall
&& context
->current_state
== AUDIT_RECORD_CONTEXT
)
1522 audit_log_exit(context
, tsk
);
1524 context
->in_syscall
= 0;
1525 context
->prio
= context
->state
== AUDIT_RECORD_CONTEXT
? ~0ULL : 0;
1527 if (!list_empty(&context
->killed_trees
))
1528 audit_kill_trees(&context
->killed_trees
);
1530 audit_free_names(context
);
1531 unroll_tree_refs(context
, NULL
, 0);
1532 audit_free_aux(context
);
1533 context
->aux
= NULL
;
1534 context
->aux_pids
= NULL
;
1535 context
->target_pid
= 0;
1536 context
->target_sid
= 0;
1537 context
->sockaddr_len
= 0;
1539 context
->fds
[0] = -1;
1540 if (context
->state
!= AUDIT_RECORD_CONTEXT
) {
1541 kfree(context
->filterkey
);
1542 context
->filterkey
= NULL
;
1544 tsk
->audit_context
= context
;
1547 static inline void handle_one(const struct inode
*inode
)
1549 #ifdef CONFIG_AUDIT_TREE
1550 struct audit_context
*context
;
1551 struct audit_tree_refs
*p
;
1552 struct audit_chunk
*chunk
;
1554 if (likely(hlist_empty(&inode
->i_fsnotify_marks
)))
1556 context
= current
->audit_context
;
1558 count
= context
->tree_count
;
1560 chunk
= audit_tree_lookup(inode
);
1564 if (likely(put_tree_ref(context
, chunk
)))
1566 if (unlikely(!grow_tree_refs(context
))) {
1567 printk(KERN_WARNING
"out of memory, audit has lost a tree reference\n");
1568 audit_set_auditable(context
);
1569 audit_put_chunk(chunk
);
1570 unroll_tree_refs(context
, p
, count
);
1573 put_tree_ref(context
, chunk
);
1577 static void handle_path(const struct dentry
*dentry
)
1579 #ifdef CONFIG_AUDIT_TREE
1580 struct audit_context
*context
;
1581 struct audit_tree_refs
*p
;
1582 const struct dentry
*d
, *parent
;
1583 struct audit_chunk
*drop
;
1587 context
= current
->audit_context
;
1589 count
= context
->tree_count
;
1594 seq
= read_seqbegin(&rename_lock
);
1596 struct inode
*inode
= d
->d_inode
;
1597 if (inode
&& unlikely(!hlist_empty(&inode
->i_fsnotify_marks
))) {
1598 struct audit_chunk
*chunk
;
1599 chunk
= audit_tree_lookup(inode
);
1601 if (unlikely(!put_tree_ref(context
, chunk
))) {
1607 parent
= d
->d_parent
;
1612 if (unlikely(read_seqretry(&rename_lock
, seq
) || drop
)) { /* in this order */
1615 /* just a race with rename */
1616 unroll_tree_refs(context
, p
, count
);
1619 audit_put_chunk(drop
);
1620 if (grow_tree_refs(context
)) {
1621 /* OK, got more space */
1622 unroll_tree_refs(context
, p
, count
);
1627 "out of memory, audit has lost a tree reference\n");
1628 unroll_tree_refs(context
, p
, count
);
1629 audit_set_auditable(context
);
1636 static struct audit_names
*audit_alloc_name(struct audit_context
*context
,
1639 struct audit_names
*aname
;
1641 if (context
->name_count
< AUDIT_NAMES
) {
1642 aname
= &context
->preallocated_names
[context
->name_count
];
1643 memset(aname
, 0, sizeof(*aname
));
1645 aname
= kzalloc(sizeof(*aname
), GFP_NOFS
);
1648 aname
->should_free
= true;
1651 aname
->ino
= (unsigned long)-1;
1653 list_add_tail(&aname
->list
, &context
->names_list
);
1655 context
->name_count
++;
1657 context
->ino_count
++;
1663 * audit_reusename - fill out filename with info from existing entry
1664 * @uptr: userland ptr to pathname
1666 * Search the audit_names list for the current audit context. If there is an
1667 * existing entry with a matching "uptr" then return the filename
1668 * associated with that audit_name. If not, return NULL.
1671 __audit_reusename(const __user
char *uptr
)
1673 struct audit_context
*context
= current
->audit_context
;
1674 struct audit_names
*n
;
1676 list_for_each_entry(n
, &context
->names_list
, list
) {
1679 if (n
->name
->uptr
== uptr
)
1686 * audit_getname - add a name to the list
1687 * @name: name to add
1689 * Add a name to the list of audit names for this context.
1690 * Called from fs/namei.c:getname().
1692 void __audit_getname(struct filename
*name
)
1694 struct audit_context
*context
= current
->audit_context
;
1695 struct audit_names
*n
;
1697 if (!context
->in_syscall
) {
1698 #if AUDIT_DEBUG == 2
1699 printk(KERN_ERR
"%s:%d(:%d): ignoring getname(%p)\n",
1700 __FILE__
, __LINE__
, context
->serial
, name
);
1707 /* The filename _must_ have a populated ->name */
1708 BUG_ON(!name
->name
);
1711 n
= audit_alloc_name(context
, AUDIT_TYPE_UNKNOWN
);
1716 n
->name_len
= AUDIT_NAME_FULL
;
1720 if (!context
->pwd
.dentry
)
1721 get_fs_pwd(current
->fs
, &context
->pwd
);
1724 /* audit_putname - intercept a putname request
1725 * @name: name to intercept and delay for putname
1727 * If we have stored the name from getname in the audit context,
1728 * then we delay the putname until syscall exit.
1729 * Called from include/linux/fs.h:putname().
1731 void audit_putname(struct filename
*name
)
1733 struct audit_context
*context
= current
->audit_context
;
1736 if (!context
->in_syscall
) {
1737 #if AUDIT_DEBUG == 2
1738 printk(KERN_ERR
"%s:%d(:%d): final_putname(%p)\n",
1739 __FILE__
, __LINE__
, context
->serial
, name
);
1740 if (context
->name_count
) {
1741 struct audit_names
*n
;
1744 list_for_each_entry(n
, &context
->names_list
, list
)
1745 printk(KERN_ERR
"name[%d] = %p = %s\n", i
++,
1746 n
->name
, n
->name
->name
?: "(null)");
1749 final_putname(name
);
1753 ++context
->put_count
;
1754 if (context
->put_count
> context
->name_count
) {
1755 printk(KERN_ERR
"%s:%d(:%d): major=%d"
1756 " in_syscall=%d putname(%p) name_count=%d"
1759 context
->serial
, context
->major
,
1760 context
->in_syscall
, name
->name
,
1761 context
->name_count
, context
->put_count
);
1769 * __audit_inode - store the inode and device from a lookup
1770 * @name: name being audited
1771 * @dentry: dentry being audited
1772 * @parent: does this dentry represent the parent?
1774 void __audit_inode(struct filename
*name
, const struct dentry
*dentry
,
1775 unsigned int parent
)
1777 struct audit_context
*context
= current
->audit_context
;
1778 const struct inode
*inode
= dentry
->d_inode
;
1779 struct audit_names
*n
;
1781 if (!context
->in_syscall
)
1788 /* The struct filename _must_ have a populated ->name */
1789 BUG_ON(!name
->name
);
1792 * If we have a pointer to an audit_names entry already, then we can
1793 * just use it directly if the type is correct.
1798 if (n
->type
== AUDIT_TYPE_PARENT
||
1799 n
->type
== AUDIT_TYPE_UNKNOWN
)
1802 if (n
->type
!= AUDIT_TYPE_PARENT
)
1807 list_for_each_entry_reverse(n
, &context
->names_list
, list
) {
1808 /* does the name pointer match? */
1809 if (!n
->name
|| n
->name
->name
!= name
->name
)
1812 /* match the correct record type */
1814 if (n
->type
== AUDIT_TYPE_PARENT
||
1815 n
->type
== AUDIT_TYPE_UNKNOWN
)
1818 if (n
->type
!= AUDIT_TYPE_PARENT
)
1824 /* unable to find the name from a previous getname(). Allocate a new
1827 n
= audit_alloc_name(context
, AUDIT_TYPE_NORMAL
);
1832 n
->name_len
= n
->name
? parent_len(n
->name
->name
) : AUDIT_NAME_FULL
;
1833 n
->type
= AUDIT_TYPE_PARENT
;
1835 n
->name_len
= AUDIT_NAME_FULL
;
1836 n
->type
= AUDIT_TYPE_NORMAL
;
1838 handle_path(dentry
);
1839 audit_copy_inode(n
, dentry
, inode
);
1843 * __audit_inode_child - collect inode info for created/removed objects
1844 * @parent: inode of dentry parent
1845 * @dentry: dentry being audited
1846 * @type: AUDIT_TYPE_* value that we're looking for
1848 * For syscalls that create or remove filesystem objects, audit_inode
1849 * can only collect information for the filesystem object's parent.
1850 * This call updates the audit context with the child's information.
1851 * Syscalls that create a new filesystem object must be hooked after
1852 * the object is created. Syscalls that remove a filesystem object
1853 * must be hooked prior, in order to capture the target inode during
1854 * unsuccessful attempts.
1856 void __audit_inode_child(const struct inode
*parent
,
1857 const struct dentry
*dentry
,
1858 const unsigned char type
)
1860 struct audit_context
*context
= current
->audit_context
;
1861 const struct inode
*inode
= dentry
->d_inode
;
1862 const char *dname
= dentry
->d_name
.name
;
1863 struct audit_names
*n
, *found_parent
= NULL
, *found_child
= NULL
;
1865 if (!context
->in_syscall
)
1871 /* look for a parent entry first */
1872 list_for_each_entry(n
, &context
->names_list
, list
) {
1873 if (!n
->name
|| n
->type
!= AUDIT_TYPE_PARENT
)
1876 if (n
->ino
== parent
->i_ino
&&
1877 !audit_compare_dname_path(dname
, n
->name
->name
, n
->name_len
)) {
1883 /* is there a matching child entry? */
1884 list_for_each_entry(n
, &context
->names_list
, list
) {
1885 /* can only match entries that have a name */
1886 if (!n
->name
|| n
->type
!= type
)
1889 /* if we found a parent, make sure this one is a child of it */
1890 if (found_parent
&& (n
->name
!= found_parent
->name
))
1893 if (!strcmp(dname
, n
->name
->name
) ||
1894 !audit_compare_dname_path(dname
, n
->name
->name
,
1896 found_parent
->name_len
:
1903 if (!found_parent
) {
1904 /* create a new, "anonymous" parent record */
1905 n
= audit_alloc_name(context
, AUDIT_TYPE_PARENT
);
1908 audit_copy_inode(n
, NULL
, parent
);
1912 found_child
= audit_alloc_name(context
, type
);
1916 /* Re-use the name belonging to the slot for a matching parent
1917 * directory. All names for this context are relinquished in
1918 * audit_free_names() */
1920 found_child
->name
= found_parent
->name
;
1921 found_child
->name_len
= AUDIT_NAME_FULL
;
1922 /* don't call __putname() */
1923 found_child
->name_put
= false;
1927 audit_copy_inode(found_child
, dentry
, inode
);
1929 found_child
->ino
= (unsigned long)-1;
1931 EXPORT_SYMBOL_GPL(__audit_inode_child
);
1934 * auditsc_get_stamp - get local copies of audit_context values
1935 * @ctx: audit_context for the task
1936 * @t: timespec to store time recorded in the audit_context
1937 * @serial: serial value that is recorded in the audit_context
1939 * Also sets the context as auditable.
1941 int auditsc_get_stamp(struct audit_context
*ctx
,
1942 struct timespec
*t
, unsigned int *serial
)
1944 if (!ctx
->in_syscall
)
1947 ctx
->serial
= audit_serial();
1948 t
->tv_sec
= ctx
->ctime
.tv_sec
;
1949 t
->tv_nsec
= ctx
->ctime
.tv_nsec
;
1950 *serial
= ctx
->serial
;
1953 ctx
->current_state
= AUDIT_RECORD_CONTEXT
;
1958 /* global counter which is incremented every time something logs in */
1959 static atomic_t session_id
= ATOMIC_INIT(0);
1962 * audit_set_loginuid - set current task's audit_context loginuid
1963 * @loginuid: loginuid value
1967 * Called (set) from fs/proc/base.c::proc_loginuid_write().
1969 int audit_set_loginuid(kuid_t loginuid
)
1971 struct task_struct
*task
= current
;
1972 struct audit_context
*context
= task
->audit_context
;
1973 unsigned int sessionid
;
1975 #ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
1976 if (audit_loginuid_set(task
))
1978 #else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
1979 if (!capable(CAP_AUDIT_CONTROL
))
1981 #endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
1983 sessionid
= atomic_inc_return(&session_id
);
1984 if (context
&& context
->in_syscall
) {
1985 struct audit_buffer
*ab
;
1987 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_LOGIN
);
1989 audit_log_format(ab
, "login pid=%d uid=%u "
1990 "old auid=%u new auid=%u"
1991 " old ses=%u new ses=%u",
1993 from_kuid(&init_user_ns
, task_uid(task
)),
1994 from_kuid(&init_user_ns
, task
->loginuid
),
1995 from_kuid(&init_user_ns
, loginuid
),
1996 task
->sessionid
, sessionid
);
2000 task
->sessionid
= sessionid
;
2001 task
->loginuid
= loginuid
;
2006 * __audit_mq_open - record audit data for a POSIX MQ open
2009 * @attr: queue attributes
2012 void __audit_mq_open(int oflag
, umode_t mode
, struct mq_attr
*attr
)
2014 struct audit_context
*context
= current
->audit_context
;
2017 memcpy(&context
->mq_open
.attr
, attr
, sizeof(struct mq_attr
));
2019 memset(&context
->mq_open
.attr
, 0, sizeof(struct mq_attr
));
2021 context
->mq_open
.oflag
= oflag
;
2022 context
->mq_open
.mode
= mode
;
2024 context
->type
= AUDIT_MQ_OPEN
;
2028 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2029 * @mqdes: MQ descriptor
2030 * @msg_len: Message length
2031 * @msg_prio: Message priority
2032 * @abs_timeout: Message timeout in absolute time
2035 void __audit_mq_sendrecv(mqd_t mqdes
, size_t msg_len
, unsigned int msg_prio
,
2036 const struct timespec
*abs_timeout
)
2038 struct audit_context
*context
= current
->audit_context
;
2039 struct timespec
*p
= &context
->mq_sendrecv
.abs_timeout
;
2042 memcpy(p
, abs_timeout
, sizeof(struct timespec
));
2044 memset(p
, 0, sizeof(struct timespec
));
2046 context
->mq_sendrecv
.mqdes
= mqdes
;
2047 context
->mq_sendrecv
.msg_len
= msg_len
;
2048 context
->mq_sendrecv
.msg_prio
= msg_prio
;
2050 context
->type
= AUDIT_MQ_SENDRECV
;
2054 * __audit_mq_notify - record audit data for a POSIX MQ notify
2055 * @mqdes: MQ descriptor
2056 * @notification: Notification event
2060 void __audit_mq_notify(mqd_t mqdes
, const struct sigevent
*notification
)
2062 struct audit_context
*context
= current
->audit_context
;
2065 context
->mq_notify
.sigev_signo
= notification
->sigev_signo
;
2067 context
->mq_notify
.sigev_signo
= 0;
2069 context
->mq_notify
.mqdes
= mqdes
;
2070 context
->type
= AUDIT_MQ_NOTIFY
;
2074 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2075 * @mqdes: MQ descriptor
2079 void __audit_mq_getsetattr(mqd_t mqdes
, struct mq_attr
*mqstat
)
2081 struct audit_context
*context
= current
->audit_context
;
2082 context
->mq_getsetattr
.mqdes
= mqdes
;
2083 context
->mq_getsetattr
.mqstat
= *mqstat
;
2084 context
->type
= AUDIT_MQ_GETSETATTR
;
2088 * audit_ipc_obj - record audit data for ipc object
2089 * @ipcp: ipc permissions
2092 void __audit_ipc_obj(struct kern_ipc_perm
*ipcp
)
2094 struct audit_context
*context
= current
->audit_context
;
2095 context
->ipc
.uid
= ipcp
->uid
;
2096 context
->ipc
.gid
= ipcp
->gid
;
2097 context
->ipc
.mode
= ipcp
->mode
;
2098 context
->ipc
.has_perm
= 0;
2099 security_ipc_getsecid(ipcp
, &context
->ipc
.osid
);
2100 context
->type
= AUDIT_IPC
;
2104 * audit_ipc_set_perm - record audit data for new ipc permissions
2105 * @qbytes: msgq bytes
2106 * @uid: msgq user id
2107 * @gid: msgq group id
2108 * @mode: msgq mode (permissions)
2110 * Called only after audit_ipc_obj().
2112 void __audit_ipc_set_perm(unsigned long qbytes
, uid_t uid
, gid_t gid
, umode_t mode
)
2114 struct audit_context
*context
= current
->audit_context
;
2116 context
->ipc
.qbytes
= qbytes
;
2117 context
->ipc
.perm_uid
= uid
;
2118 context
->ipc
.perm_gid
= gid
;
2119 context
->ipc
.perm_mode
= mode
;
2120 context
->ipc
.has_perm
= 1;
2123 int __audit_bprm(struct linux_binprm
*bprm
)
2125 struct audit_aux_data_execve
*ax
;
2126 struct audit_context
*context
= current
->audit_context
;
2128 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2132 ax
->argc
= bprm
->argc
;
2133 ax
->envc
= bprm
->envc
;
2135 ax
->d
.type
= AUDIT_EXECVE
;
2136 ax
->d
.next
= context
->aux
;
2137 context
->aux
= (void *)ax
;
2143 * audit_socketcall - record audit data for sys_socketcall
2144 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2148 int __audit_socketcall(int nargs
, unsigned long *args
)
2150 struct audit_context
*context
= current
->audit_context
;
2152 if (nargs
<= 0 || nargs
> AUDITSC_ARGS
|| !args
)
2154 context
->type
= AUDIT_SOCKETCALL
;
2155 context
->socketcall
.nargs
= nargs
;
2156 memcpy(context
->socketcall
.args
, args
, nargs
* sizeof(unsigned long));
2161 * __audit_fd_pair - record audit data for pipe and socketpair
2162 * @fd1: the first file descriptor
2163 * @fd2: the second file descriptor
2166 void __audit_fd_pair(int fd1
, int fd2
)
2168 struct audit_context
*context
= current
->audit_context
;
2169 context
->fds
[0] = fd1
;
2170 context
->fds
[1] = fd2
;
2174 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2175 * @len: data length in user space
2176 * @a: data address in kernel space
2178 * Returns 0 for success or NULL context or < 0 on error.
2180 int __audit_sockaddr(int len
, void *a
)
2182 struct audit_context
*context
= current
->audit_context
;
2184 if (!context
->sockaddr
) {
2185 void *p
= kmalloc(sizeof(struct sockaddr_storage
), GFP_KERNEL
);
2188 context
->sockaddr
= p
;
2191 context
->sockaddr_len
= len
;
2192 memcpy(context
->sockaddr
, a
, len
);
2196 void __audit_ptrace(struct task_struct
*t
)
2198 struct audit_context
*context
= current
->audit_context
;
2200 context
->target_pid
= t
->pid
;
2201 context
->target_auid
= audit_get_loginuid(t
);
2202 context
->target_uid
= task_uid(t
);
2203 context
->target_sessionid
= audit_get_sessionid(t
);
2204 security_task_getsecid(t
, &context
->target_sid
);
2205 memcpy(context
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2209 * audit_signal_info - record signal info for shutting down audit subsystem
2210 * @sig: signal value
2211 * @t: task being signaled
2213 * If the audit subsystem is being terminated, record the task (pid)
2214 * and uid that is doing that.
2216 int __audit_signal_info(int sig
, struct task_struct
*t
)
2218 struct audit_aux_data_pids
*axp
;
2219 struct task_struct
*tsk
= current
;
2220 struct audit_context
*ctx
= tsk
->audit_context
;
2221 kuid_t uid
= current_uid(), t_uid
= task_uid(t
);
2223 if (audit_pid
&& t
->tgid
== audit_pid
) {
2224 if (sig
== SIGTERM
|| sig
== SIGHUP
|| sig
== SIGUSR1
|| sig
== SIGUSR2
) {
2225 audit_sig_pid
= tsk
->pid
;
2226 if (uid_valid(tsk
->loginuid
))
2227 audit_sig_uid
= tsk
->loginuid
;
2229 audit_sig_uid
= uid
;
2230 security_task_getsecid(tsk
, &audit_sig_sid
);
2232 if (!audit_signals
|| audit_dummy_context())
2236 /* optimize the common case by putting first signal recipient directly
2237 * in audit_context */
2238 if (!ctx
->target_pid
) {
2239 ctx
->target_pid
= t
->tgid
;
2240 ctx
->target_auid
= audit_get_loginuid(t
);
2241 ctx
->target_uid
= t_uid
;
2242 ctx
->target_sessionid
= audit_get_sessionid(t
);
2243 security_task_getsecid(t
, &ctx
->target_sid
);
2244 memcpy(ctx
->target_comm
, t
->comm
, TASK_COMM_LEN
);
2248 axp
= (void *)ctx
->aux_pids
;
2249 if (!axp
|| axp
->pid_count
== AUDIT_AUX_PIDS
) {
2250 axp
= kzalloc(sizeof(*axp
), GFP_ATOMIC
);
2254 axp
->d
.type
= AUDIT_OBJ_PID
;
2255 axp
->d
.next
= ctx
->aux_pids
;
2256 ctx
->aux_pids
= (void *)axp
;
2258 BUG_ON(axp
->pid_count
>= AUDIT_AUX_PIDS
);
2260 axp
->target_pid
[axp
->pid_count
] = t
->tgid
;
2261 axp
->target_auid
[axp
->pid_count
] = audit_get_loginuid(t
);
2262 axp
->target_uid
[axp
->pid_count
] = t_uid
;
2263 axp
->target_sessionid
[axp
->pid_count
] = audit_get_sessionid(t
);
2264 security_task_getsecid(t
, &axp
->target_sid
[axp
->pid_count
]);
2265 memcpy(axp
->target_comm
[axp
->pid_count
], t
->comm
, TASK_COMM_LEN
);
2272 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2273 * @bprm: pointer to the bprm being processed
2274 * @new: the proposed new credentials
2275 * @old: the old credentials
2277 * Simply check if the proc already has the caps given by the file and if not
2278 * store the priv escalation info for later auditing at the end of the syscall
2282 int __audit_log_bprm_fcaps(struct linux_binprm
*bprm
,
2283 const struct cred
*new, const struct cred
*old
)
2285 struct audit_aux_data_bprm_fcaps
*ax
;
2286 struct audit_context
*context
= current
->audit_context
;
2287 struct cpu_vfs_cap_data vcaps
;
2288 struct dentry
*dentry
;
2290 ax
= kmalloc(sizeof(*ax
), GFP_KERNEL
);
2294 ax
->d
.type
= AUDIT_BPRM_FCAPS
;
2295 ax
->d
.next
= context
->aux
;
2296 context
->aux
= (void *)ax
;
2298 dentry
= dget(bprm
->file
->f_dentry
);
2299 get_vfs_caps_from_disk(dentry
, &vcaps
);
2302 ax
->fcap
.permitted
= vcaps
.permitted
;
2303 ax
->fcap
.inheritable
= vcaps
.inheritable
;
2304 ax
->fcap
.fE
= !!(vcaps
.magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
);
2305 ax
->fcap_ver
= (vcaps
.magic_etc
& VFS_CAP_REVISION_MASK
) >> VFS_CAP_REVISION_SHIFT
;
2307 ax
->old_pcap
.permitted
= old
->cap_permitted
;
2308 ax
->old_pcap
.inheritable
= old
->cap_inheritable
;
2309 ax
->old_pcap
.effective
= old
->cap_effective
;
2311 ax
->new_pcap
.permitted
= new->cap_permitted
;
2312 ax
->new_pcap
.inheritable
= new->cap_inheritable
;
2313 ax
->new_pcap
.effective
= new->cap_effective
;
2318 * __audit_log_capset - store information about the arguments to the capset syscall
2319 * @pid: target pid of the capset call
2320 * @new: the new credentials
2321 * @old: the old (current) credentials
2323 * Record the aguments userspace sent to sys_capset for later printing by the
2324 * audit system if applicable
2326 void __audit_log_capset(pid_t pid
,
2327 const struct cred
*new, const struct cred
*old
)
2329 struct audit_context
*context
= current
->audit_context
;
2330 context
->capset
.pid
= pid
;
2331 context
->capset
.cap
.effective
= new->cap_effective
;
2332 context
->capset
.cap
.inheritable
= new->cap_effective
;
2333 context
->capset
.cap
.permitted
= new->cap_permitted
;
2334 context
->type
= AUDIT_CAPSET
;
2337 void __audit_mmap_fd(int fd
, int flags
)
2339 struct audit_context
*context
= current
->audit_context
;
2340 context
->mmap
.fd
= fd
;
2341 context
->mmap
.flags
= flags
;
2342 context
->type
= AUDIT_MMAP
;
2345 static void audit_log_task(struct audit_buffer
*ab
)
2349 unsigned int sessionid
;
2351 auid
= audit_get_loginuid(current
);
2352 sessionid
= audit_get_sessionid(current
);
2353 current_uid_gid(&uid
, &gid
);
2355 audit_log_format(ab
, "auid=%u uid=%u gid=%u ses=%u",
2356 from_kuid(&init_user_ns
, auid
),
2357 from_kuid(&init_user_ns
, uid
),
2358 from_kgid(&init_user_ns
, gid
),
2360 audit_log_task_context(ab
);
2361 audit_log_format(ab
, " pid=%d comm=", current
->pid
);
2362 audit_log_untrustedstring(ab
, current
->comm
);
2365 static void audit_log_abend(struct audit_buffer
*ab
, char *reason
, long signr
)
2368 audit_log_format(ab
, " reason=");
2369 audit_log_string(ab
, reason
);
2370 audit_log_format(ab
, " sig=%ld", signr
);
2373 * audit_core_dumps - record information about processes that end abnormally
2374 * @signr: signal value
2376 * If a process ends with a core dump, something fishy is going on and we
2377 * should record the event for investigation.
2379 void audit_core_dumps(long signr
)
2381 struct audit_buffer
*ab
;
2386 if (signr
== SIGQUIT
) /* don't care for those */
2389 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_ANOM_ABEND
);
2392 audit_log_abend(ab
, "memory violation", signr
);
2396 void __audit_seccomp(unsigned long syscall
, long signr
, int code
)
2398 struct audit_buffer
*ab
;
2400 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_SECCOMP
);
2404 audit_log_format(ab
, " sig=%ld", signr
);
2405 audit_log_format(ab
, " syscall=%ld", syscall
);
2406 audit_log_format(ab
, " compat=%d", is_compat_task());
2407 audit_log_format(ab
, " ip=0x%lx", KSTK_EIP(current
));
2408 audit_log_format(ab
, " code=0x%x", code
);
2412 struct list_head
*audit_killed_trees(void)
2414 struct audit_context
*ctx
= current
->audit_context
;
2415 if (likely(!ctx
|| !ctx
->in_syscall
))
2417 return &ctx
->killed_trees
;