2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/timer.h>
51 #include <asm/uaccess.h>
53 #include <trace/events/timer.h>
58 * There are more clockids then hrtimer bases. Thus, we index
59 * into the timer bases by the hrtimer_base_type enum. When trying
60 * to reach a base using a clockid, hrtimer_clockid_to_base()
61 * is used to convert from clockid to the proper hrtimer_base_type.
63 DEFINE_PER_CPU(struct hrtimer_cpu_base
, hrtimer_bases
) =
66 .lock
= __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases
.lock
),
70 .index
= HRTIMER_BASE_MONOTONIC
,
71 .clockid
= CLOCK_MONOTONIC
,
72 .get_time
= &ktime_get
,
73 .resolution
= KTIME_LOW_RES
,
76 .index
= HRTIMER_BASE_REALTIME
,
77 .clockid
= CLOCK_REALTIME
,
78 .get_time
= &ktime_get_real
,
79 .resolution
= KTIME_LOW_RES
,
82 .index
= HRTIMER_BASE_BOOTTIME
,
83 .clockid
= CLOCK_BOOTTIME
,
84 .get_time
= &ktime_get_boottime
,
85 .resolution
= KTIME_LOW_RES
,
88 .index
= HRTIMER_BASE_TAI
,
90 .get_time
= &ktime_get_clocktai
,
91 .resolution
= KTIME_LOW_RES
,
96 static const int hrtimer_clock_to_base_table
[MAX_CLOCKS
] = {
97 [CLOCK_REALTIME
] = HRTIMER_BASE_REALTIME
,
98 [CLOCK_MONOTONIC
] = HRTIMER_BASE_MONOTONIC
,
99 [CLOCK_BOOTTIME
] = HRTIMER_BASE_BOOTTIME
,
100 [CLOCK_TAI
] = HRTIMER_BASE_TAI
,
103 static inline int hrtimer_clockid_to_base(clockid_t clock_id
)
105 return hrtimer_clock_to_base_table
[clock_id
];
110 * Get the coarse grained time at the softirq based on xtime and
113 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base
*base
)
115 ktime_t xtim
, mono
, boot
;
116 struct timespec xts
, tom
, slp
;
119 get_xtime_and_monotonic_and_sleep_offset(&xts
, &tom
, &slp
);
120 tai_offset
= timekeeping_get_tai_offset();
122 xtim
= timespec_to_ktime(xts
);
123 mono
= ktime_add(xtim
, timespec_to_ktime(tom
));
124 boot
= ktime_add(mono
, timespec_to_ktime(slp
));
125 base
->clock_base
[HRTIMER_BASE_REALTIME
].softirq_time
= xtim
;
126 base
->clock_base
[HRTIMER_BASE_MONOTONIC
].softirq_time
= mono
;
127 base
->clock_base
[HRTIMER_BASE_BOOTTIME
].softirq_time
= boot
;
128 base
->clock_base
[HRTIMER_BASE_TAI
].softirq_time
=
129 ktime_add(xtim
, ktime_set(tai_offset
, 0));
133 * Functions and macros which are different for UP/SMP systems are kept in a
139 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
140 * means that all timers which are tied to this base via timer->base are
141 * locked, and the base itself is locked too.
143 * So __run_timers/migrate_timers can safely modify all timers which could
144 * be found on the lists/queues.
146 * When the timer's base is locked, and the timer removed from list, it is
147 * possible to set timer->base = NULL and drop the lock: the timer remains
151 struct hrtimer_clock_base
*lock_hrtimer_base(const struct hrtimer
*timer
,
152 unsigned long *flags
)
154 struct hrtimer_clock_base
*base
;
158 if (likely(base
!= NULL
)) {
159 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
160 if (likely(base
== timer
->base
))
162 /* The timer has migrated to another CPU: */
163 raw_spin_unlock_irqrestore(&base
->cpu_base
->lock
, *flags
);
171 * Get the preferred target CPU for NOHZ
173 static int hrtimer_get_target(int this_cpu
, int pinned
)
175 #ifdef CONFIG_NO_HZ_COMMON
176 if (!pinned
&& get_sysctl_timer_migration() && idle_cpu(this_cpu
))
177 return get_nohz_timer_target();
183 * With HIGHRES=y we do not migrate the timer when it is expiring
184 * before the next event on the target cpu because we cannot reprogram
185 * the target cpu hardware and we would cause it to fire late.
187 * Called with cpu_base->lock of target cpu held.
190 hrtimer_check_target(struct hrtimer
*timer
, struct hrtimer_clock_base
*new_base
)
192 #ifdef CONFIG_HIGH_RES_TIMERS
195 if (!new_base
->cpu_base
->hres_active
)
198 expires
= ktime_sub(hrtimer_get_expires(timer
), new_base
->offset
);
199 return expires
.tv64
<= new_base
->cpu_base
->expires_next
.tv64
;
206 * Switch the timer base to the current CPU when possible.
208 static inline struct hrtimer_clock_base
*
209 switch_hrtimer_base(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
,
212 struct hrtimer_clock_base
*new_base
;
213 struct hrtimer_cpu_base
*new_cpu_base
;
214 int this_cpu
= smp_processor_id();
215 int cpu
= hrtimer_get_target(this_cpu
, pinned
);
216 int basenum
= base
->index
;
219 new_cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
220 new_base
= &new_cpu_base
->clock_base
[basenum
];
222 if (base
!= new_base
) {
224 * We are trying to move timer to new_base.
225 * However we can't change timer's base while it is running,
226 * so we keep it on the same CPU. No hassle vs. reprogramming
227 * the event source in the high resolution case. The softirq
228 * code will take care of this when the timer function has
229 * completed. There is no conflict as we hold the lock until
230 * the timer is enqueued.
232 if (unlikely(hrtimer_callback_running(timer
)))
235 /* See the comment in lock_timer_base() */
237 raw_spin_unlock(&base
->cpu_base
->lock
);
238 raw_spin_lock(&new_base
->cpu_base
->lock
);
240 if (cpu
!= this_cpu
&& hrtimer_check_target(timer
, new_base
)) {
242 raw_spin_unlock(&new_base
->cpu_base
->lock
);
243 raw_spin_lock(&base
->cpu_base
->lock
);
247 timer
->base
= new_base
;
252 #else /* CONFIG_SMP */
254 static inline struct hrtimer_clock_base
*
255 lock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
257 struct hrtimer_clock_base
*base
= timer
->base
;
259 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
264 # define switch_hrtimer_base(t, b, p) (b)
266 #endif /* !CONFIG_SMP */
269 * Functions for the union type storage format of ktime_t which are
270 * too large for inlining:
272 #if BITS_PER_LONG < 64
273 # ifndef CONFIG_KTIME_SCALAR
275 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
277 * @nsec: the scalar nsec value to add
279 * Returns the sum of kt and nsec in ktime_t format
281 ktime_t
ktime_add_ns(const ktime_t kt
, u64 nsec
)
285 if (likely(nsec
< NSEC_PER_SEC
)) {
288 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
290 /* Make sure nsec fits into long */
291 if (unlikely(nsec
> KTIME_SEC_MAX
))
292 return (ktime_t
){ .tv64
= KTIME_MAX
};
294 tmp
= ktime_set((long)nsec
, rem
);
297 return ktime_add(kt
, tmp
);
300 EXPORT_SYMBOL_GPL(ktime_add_ns
);
303 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
305 * @nsec: the scalar nsec value to subtract
307 * Returns the subtraction of @nsec from @kt in ktime_t format
309 ktime_t
ktime_sub_ns(const ktime_t kt
, u64 nsec
)
313 if (likely(nsec
< NSEC_PER_SEC
)) {
316 unsigned long rem
= do_div(nsec
, NSEC_PER_SEC
);
318 tmp
= ktime_set((long)nsec
, rem
);
321 return ktime_sub(kt
, tmp
);
324 EXPORT_SYMBOL_GPL(ktime_sub_ns
);
325 # endif /* !CONFIG_KTIME_SCALAR */
328 * Divide a ktime value by a nanosecond value
330 u64
ktime_divns(const ktime_t kt
, s64 div
)
335 dclc
= ktime_to_ns(kt
);
336 /* Make sure the divisor is less than 2^32: */
342 do_div(dclc
, (unsigned long) div
);
346 #endif /* BITS_PER_LONG >= 64 */
349 * Add two ktime values and do a safety check for overflow:
351 ktime_t
ktime_add_safe(const ktime_t lhs
, const ktime_t rhs
)
353 ktime_t res
= ktime_add(lhs
, rhs
);
356 * We use KTIME_SEC_MAX here, the maximum timeout which we can
357 * return to user space in a timespec:
359 if (res
.tv64
< 0 || res
.tv64
< lhs
.tv64
|| res
.tv64
< rhs
.tv64
)
360 res
= ktime_set(KTIME_SEC_MAX
, 0);
365 EXPORT_SYMBOL_GPL(ktime_add_safe
);
367 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
369 static struct debug_obj_descr hrtimer_debug_descr
;
371 static void *hrtimer_debug_hint(void *addr
)
373 return ((struct hrtimer
*) addr
)->function
;
377 * fixup_init is called when:
378 * - an active object is initialized
380 static int hrtimer_fixup_init(void *addr
, enum debug_obj_state state
)
382 struct hrtimer
*timer
= addr
;
385 case ODEBUG_STATE_ACTIVE
:
386 hrtimer_cancel(timer
);
387 debug_object_init(timer
, &hrtimer_debug_descr
);
395 * fixup_activate is called when:
396 * - an active object is activated
397 * - an unknown object is activated (might be a statically initialized object)
399 static int hrtimer_fixup_activate(void *addr
, enum debug_obj_state state
)
403 case ODEBUG_STATE_NOTAVAILABLE
:
407 case ODEBUG_STATE_ACTIVE
:
416 * fixup_free is called when:
417 * - an active object is freed
419 static int hrtimer_fixup_free(void *addr
, enum debug_obj_state state
)
421 struct hrtimer
*timer
= addr
;
424 case ODEBUG_STATE_ACTIVE
:
425 hrtimer_cancel(timer
);
426 debug_object_free(timer
, &hrtimer_debug_descr
);
433 static struct debug_obj_descr hrtimer_debug_descr
= {
435 .debug_hint
= hrtimer_debug_hint
,
436 .fixup_init
= hrtimer_fixup_init
,
437 .fixup_activate
= hrtimer_fixup_activate
,
438 .fixup_free
= hrtimer_fixup_free
,
441 static inline void debug_hrtimer_init(struct hrtimer
*timer
)
443 debug_object_init(timer
, &hrtimer_debug_descr
);
446 static inline void debug_hrtimer_activate(struct hrtimer
*timer
)
448 debug_object_activate(timer
, &hrtimer_debug_descr
);
451 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
)
453 debug_object_deactivate(timer
, &hrtimer_debug_descr
);
456 static inline void debug_hrtimer_free(struct hrtimer
*timer
)
458 debug_object_free(timer
, &hrtimer_debug_descr
);
461 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
462 enum hrtimer_mode mode
);
464 void hrtimer_init_on_stack(struct hrtimer
*timer
, clockid_t clock_id
,
465 enum hrtimer_mode mode
)
467 debug_object_init_on_stack(timer
, &hrtimer_debug_descr
);
468 __hrtimer_init(timer
, clock_id
, mode
);
470 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack
);
472 void destroy_hrtimer_on_stack(struct hrtimer
*timer
)
474 debug_object_free(timer
, &hrtimer_debug_descr
);
478 static inline void debug_hrtimer_init(struct hrtimer
*timer
) { }
479 static inline void debug_hrtimer_activate(struct hrtimer
*timer
) { }
480 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
) { }
484 debug_init(struct hrtimer
*timer
, clockid_t clockid
,
485 enum hrtimer_mode mode
)
487 debug_hrtimer_init(timer
);
488 trace_hrtimer_init(timer
, clockid
, mode
);
491 static inline void debug_activate(struct hrtimer
*timer
)
493 debug_hrtimer_activate(timer
);
494 trace_hrtimer_start(timer
);
497 static inline void debug_deactivate(struct hrtimer
*timer
)
499 debug_hrtimer_deactivate(timer
);
500 trace_hrtimer_cancel(timer
);
503 /* High resolution timer related functions */
504 #ifdef CONFIG_HIGH_RES_TIMERS
507 * High resolution timer enabled ?
509 static int hrtimer_hres_enabled __read_mostly
= 1;
512 * Enable / Disable high resolution mode
514 static int __init
setup_hrtimer_hres(char *str
)
516 if (!strcmp(str
, "off"))
517 hrtimer_hres_enabled
= 0;
518 else if (!strcmp(str
, "on"))
519 hrtimer_hres_enabled
= 1;
525 __setup("highres=", setup_hrtimer_hres
);
528 * hrtimer_high_res_enabled - query, if the highres mode is enabled
530 static inline int hrtimer_is_hres_enabled(void)
532 return hrtimer_hres_enabled
;
536 * Is the high resolution mode active ?
538 static inline int hrtimer_hres_active(void)
540 return __this_cpu_read(hrtimer_bases
.hres_active
);
544 * Reprogram the event source with checking both queues for the
546 * Called with interrupts disabled and base->lock held
549 hrtimer_force_reprogram(struct hrtimer_cpu_base
*cpu_base
, int skip_equal
)
552 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
553 ktime_t expires
, expires_next
;
555 expires_next
.tv64
= KTIME_MAX
;
557 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
558 struct hrtimer
*timer
;
559 struct timerqueue_node
*next
;
561 next
= timerqueue_getnext(&base
->active
);
564 timer
= container_of(next
, struct hrtimer
, node
);
566 expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
568 * clock_was_set() has changed base->offset so the
569 * result might be negative. Fix it up to prevent a
570 * false positive in clockevents_program_event()
572 if (expires
.tv64
< 0)
574 if (expires
.tv64
< expires_next
.tv64
)
575 expires_next
= expires
;
578 if (skip_equal
&& expires_next
.tv64
== cpu_base
->expires_next
.tv64
)
581 cpu_base
->expires_next
.tv64
= expires_next
.tv64
;
583 if (cpu_base
->expires_next
.tv64
!= KTIME_MAX
)
584 tick_program_event(cpu_base
->expires_next
, 1);
588 * Shared reprogramming for clock_realtime and clock_monotonic
590 * When a timer is enqueued and expires earlier than the already enqueued
591 * timers, we have to check, whether it expires earlier than the timer for
592 * which the clock event device was armed.
594 * Called with interrupts disabled and base->cpu_base.lock held
596 static int hrtimer_reprogram(struct hrtimer
*timer
,
597 struct hrtimer_clock_base
*base
)
599 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
600 ktime_t expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
603 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer
) < 0);
606 * When the callback is running, we do not reprogram the clock event
607 * device. The timer callback is either running on a different CPU or
608 * the callback is executed in the hrtimer_interrupt context. The
609 * reprogramming is handled either by the softirq, which called the
610 * callback or at the end of the hrtimer_interrupt.
612 if (hrtimer_callback_running(timer
))
616 * CLOCK_REALTIME timer might be requested with an absolute
617 * expiry time which is less than base->offset. Nothing wrong
618 * about that, just avoid to call into the tick code, which
619 * has now objections against negative expiry values.
621 if (expires
.tv64
< 0)
624 if (expires
.tv64
>= cpu_base
->expires_next
.tv64
)
628 * If a hang was detected in the last timer interrupt then we
629 * do not schedule a timer which is earlier than the expiry
630 * which we enforced in the hang detection. We want the system
633 if (cpu_base
->hang_detected
)
637 * Clockevents returns -ETIME, when the event was in the past.
639 res
= tick_program_event(expires
, 0);
640 if (!IS_ERR_VALUE(res
))
641 cpu_base
->expires_next
= expires
;
646 * Initialize the high resolution related parts of cpu_base
648 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
)
650 base
->expires_next
.tv64
= KTIME_MAX
;
651 base
->hres_active
= 0;
655 * When High resolution timers are active, try to reprogram. Note, that in case
656 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
657 * check happens. The timer gets enqueued into the rbtree. The reprogramming
658 * and expiry check is done in the hrtimer_interrupt or in the softirq.
660 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
661 struct hrtimer_clock_base
*base
)
663 return base
->cpu_base
->hres_active
&& hrtimer_reprogram(timer
, base
);
666 static inline ktime_t
hrtimer_update_base(struct hrtimer_cpu_base
*base
)
668 ktime_t
*offs_real
= &base
->clock_base
[HRTIMER_BASE_REALTIME
].offset
;
669 ktime_t
*offs_boot
= &base
->clock_base
[HRTIMER_BASE_BOOTTIME
].offset
;
670 ktime_t
*offs_tai
= &base
->clock_base
[HRTIMER_BASE_TAI
].offset
;
672 return ktime_get_update_offsets(offs_real
, offs_boot
, offs_tai
);
676 * Retrigger next event is called after clock was set
678 * Called with interrupts disabled via on_each_cpu()
680 static void retrigger_next_event(void *arg
)
682 struct hrtimer_cpu_base
*base
= &__get_cpu_var(hrtimer_bases
);
684 if (!hrtimer_hres_active())
687 raw_spin_lock(&base
->lock
);
688 hrtimer_update_base(base
);
689 hrtimer_force_reprogram(base
, 0);
690 raw_spin_unlock(&base
->lock
);
694 * Switch to high resolution mode
696 static int hrtimer_switch_to_hres(void)
698 int i
, cpu
= smp_processor_id();
699 struct hrtimer_cpu_base
*base
= &per_cpu(hrtimer_bases
, cpu
);
702 if (base
->hres_active
)
705 local_irq_save(flags
);
707 if (tick_init_highres()) {
708 local_irq_restore(flags
);
709 printk(KERN_WARNING
"Could not switch to high resolution "
710 "mode on CPU %d\n", cpu
);
713 base
->hres_active
= 1;
714 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++)
715 base
->clock_base
[i
].resolution
= KTIME_HIGH_RES
;
717 tick_setup_sched_timer();
718 /* "Retrigger" the interrupt to get things going */
719 retrigger_next_event(NULL
);
720 local_irq_restore(flags
);
725 * Called from timekeeping code to reprogramm the hrtimer interrupt
726 * device. If called from the timer interrupt context we defer it to
729 void clock_was_set_delayed(void)
731 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
733 cpu_base
->clock_was_set
= 1;
734 __raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
739 static inline int hrtimer_hres_active(void) { return 0; }
740 static inline int hrtimer_is_hres_enabled(void) { return 0; }
741 static inline int hrtimer_switch_to_hres(void) { return 0; }
743 hrtimer_force_reprogram(struct hrtimer_cpu_base
*base
, int skip_equal
) { }
744 static inline int hrtimer_enqueue_reprogram(struct hrtimer
*timer
,
745 struct hrtimer_clock_base
*base
)
749 static inline void hrtimer_init_hres(struct hrtimer_cpu_base
*base
) { }
750 static inline void retrigger_next_event(void *arg
) { }
752 #endif /* CONFIG_HIGH_RES_TIMERS */
755 * Clock realtime was set
757 * Change the offset of the realtime clock vs. the monotonic
760 * We might have to reprogram the high resolution timer interrupt. On
761 * SMP we call the architecture specific code to retrigger _all_ high
762 * resolution timer interrupts. On UP we just disable interrupts and
763 * call the high resolution interrupt code.
765 void clock_was_set(void)
767 #ifdef CONFIG_HIGH_RES_TIMERS
768 /* Retrigger the CPU local events everywhere */
769 on_each_cpu(retrigger_next_event
, NULL
, 1);
771 timerfd_clock_was_set();
775 * During resume we might have to reprogram the high resolution timer
776 * interrupt (on the local CPU):
778 void hrtimers_resume(void)
780 WARN_ONCE(!irqs_disabled(),
781 KERN_INFO
"hrtimers_resume() called with IRQs enabled!");
783 retrigger_next_event(NULL
);
784 timerfd_clock_was_set();
787 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer
*timer
)
789 #ifdef CONFIG_TIMER_STATS
790 if (timer
->start_site
)
792 timer
->start_site
= __builtin_return_address(0);
793 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
794 timer
->start_pid
= current
->pid
;
798 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer
*timer
)
800 #ifdef CONFIG_TIMER_STATS
801 timer
->start_site
= NULL
;
805 static inline void timer_stats_account_hrtimer(struct hrtimer
*timer
)
807 #ifdef CONFIG_TIMER_STATS
808 if (likely(!timer_stats_active
))
810 timer_stats_update_stats(timer
, timer
->start_pid
, timer
->start_site
,
811 timer
->function
, timer
->start_comm
, 0);
816 * Counterpart to lock_hrtimer_base above:
819 void unlock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
821 raw_spin_unlock_irqrestore(&timer
->base
->cpu_base
->lock
, *flags
);
825 * hrtimer_forward - forward the timer expiry
826 * @timer: hrtimer to forward
827 * @now: forward past this time
828 * @interval: the interval to forward
830 * Forward the timer expiry so it will expire in the future.
831 * Returns the number of overruns.
833 u64
hrtimer_forward(struct hrtimer
*timer
, ktime_t now
, ktime_t interval
)
838 delta
= ktime_sub(now
, hrtimer_get_expires(timer
));
843 if (interval
.tv64
< timer
->base
->resolution
.tv64
)
844 interval
.tv64
= timer
->base
->resolution
.tv64
;
846 if (unlikely(delta
.tv64
>= interval
.tv64
)) {
847 s64 incr
= ktime_to_ns(interval
);
849 orun
= ktime_divns(delta
, incr
);
850 hrtimer_add_expires_ns(timer
, incr
* orun
);
851 if (hrtimer_get_expires_tv64(timer
) > now
.tv64
)
854 * This (and the ktime_add() below) is the
855 * correction for exact:
859 hrtimer_add_expires(timer
, interval
);
863 EXPORT_SYMBOL_GPL(hrtimer_forward
);
866 * enqueue_hrtimer - internal function to (re)start a timer
868 * The timer is inserted in expiry order. Insertion into the
869 * red black tree is O(log(n)). Must hold the base lock.
871 * Returns 1 when the new timer is the leftmost timer in the tree.
873 static int enqueue_hrtimer(struct hrtimer
*timer
,
874 struct hrtimer_clock_base
*base
)
876 debug_activate(timer
);
878 timerqueue_add(&base
->active
, &timer
->node
);
879 base
->cpu_base
->active_bases
|= 1 << base
->index
;
882 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
883 * state of a possibly running callback.
885 timer
->state
|= HRTIMER_STATE_ENQUEUED
;
887 return (&timer
->node
== base
->active
.next
);
891 * __remove_hrtimer - internal function to remove a timer
893 * Caller must hold the base lock.
895 * High resolution timer mode reprograms the clock event device when the
896 * timer is the one which expires next. The caller can disable this by setting
897 * reprogram to zero. This is useful, when the context does a reprogramming
898 * anyway (e.g. timer interrupt)
900 static void __remove_hrtimer(struct hrtimer
*timer
,
901 struct hrtimer_clock_base
*base
,
902 unsigned long newstate
, int reprogram
)
904 struct timerqueue_node
*next_timer
;
905 if (!(timer
->state
& HRTIMER_STATE_ENQUEUED
))
908 next_timer
= timerqueue_getnext(&base
->active
);
909 timerqueue_del(&base
->active
, &timer
->node
);
910 if (&timer
->node
== next_timer
) {
911 #ifdef CONFIG_HIGH_RES_TIMERS
912 /* Reprogram the clock event device. if enabled */
913 if (reprogram
&& hrtimer_hres_active()) {
916 expires
= ktime_sub(hrtimer_get_expires(timer
),
918 if (base
->cpu_base
->expires_next
.tv64
== expires
.tv64
)
919 hrtimer_force_reprogram(base
->cpu_base
, 1);
923 if (!timerqueue_getnext(&base
->active
))
924 base
->cpu_base
->active_bases
&= ~(1 << base
->index
);
926 timer
->state
= newstate
;
930 * remove hrtimer, called with base lock held
933 remove_hrtimer(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
)
935 if (hrtimer_is_queued(timer
)) {
940 * Remove the timer and force reprogramming when high
941 * resolution mode is active and the timer is on the current
942 * CPU. If we remove a timer on another CPU, reprogramming is
943 * skipped. The interrupt event on this CPU is fired and
944 * reprogramming happens in the interrupt handler. This is a
945 * rare case and less expensive than a smp call.
947 debug_deactivate(timer
);
948 timer_stats_hrtimer_clear_start_info(timer
);
949 reprogram
= base
->cpu_base
== &__get_cpu_var(hrtimer_bases
);
951 * We must preserve the CALLBACK state flag here,
952 * otherwise we could move the timer base in
953 * switch_hrtimer_base.
955 state
= timer
->state
& HRTIMER_STATE_CALLBACK
;
956 __remove_hrtimer(timer
, base
, state
, reprogram
);
962 int __hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
963 unsigned long delta_ns
, const enum hrtimer_mode mode
,
966 struct hrtimer_clock_base
*base
, *new_base
;
970 base
= lock_hrtimer_base(timer
, &flags
);
972 /* Remove an active timer from the queue: */
973 ret
= remove_hrtimer(timer
, base
);
975 /* Switch the timer base, if necessary: */
976 new_base
= switch_hrtimer_base(timer
, base
, mode
& HRTIMER_MODE_PINNED
);
978 if (mode
& HRTIMER_MODE_REL
) {
979 tim
= ktime_add_safe(tim
, new_base
->get_time());
981 * CONFIG_TIME_LOW_RES is a temporary way for architectures
982 * to signal that they simply return xtime in
983 * do_gettimeoffset(). In this case we want to round up by
984 * resolution when starting a relative timer, to avoid short
985 * timeouts. This will go away with the GTOD framework.
987 #ifdef CONFIG_TIME_LOW_RES
988 tim
= ktime_add_safe(tim
, base
->resolution
);
992 hrtimer_set_expires_range_ns(timer
, tim
, delta_ns
);
994 timer_stats_hrtimer_set_start_info(timer
);
996 leftmost
= enqueue_hrtimer(timer
, new_base
);
999 * Only allow reprogramming if the new base is on this CPU.
1000 * (it might still be on another CPU if the timer was pending)
1002 * XXX send_remote_softirq() ?
1004 if (leftmost
&& new_base
->cpu_base
== &__get_cpu_var(hrtimer_bases
)
1005 && hrtimer_enqueue_reprogram(timer
, new_base
)) {
1008 * We need to drop cpu_base->lock to avoid a
1009 * lock ordering issue vs. rq->lock.
1011 raw_spin_unlock(&new_base
->cpu_base
->lock
);
1012 raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
1013 local_irq_restore(flags
);
1016 __raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
1020 unlock_hrtimer_base(timer
, &flags
);
1026 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1027 * @timer: the timer to be added
1029 * @delta_ns: "slack" range for the timer
1030 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1031 * relative (HRTIMER_MODE_REL)
1035 * 1 when the timer was active
1037 int hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
1038 unsigned long delta_ns
, const enum hrtimer_mode mode
)
1040 return __hrtimer_start_range_ns(timer
, tim
, delta_ns
, mode
, 1);
1042 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns
);
1045 * hrtimer_start - (re)start an hrtimer on the current CPU
1046 * @timer: the timer to be added
1048 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1049 * relative (HRTIMER_MODE_REL)
1053 * 1 when the timer was active
1056 hrtimer_start(struct hrtimer
*timer
, ktime_t tim
, const enum hrtimer_mode mode
)
1058 return __hrtimer_start_range_ns(timer
, tim
, 0, mode
, 1);
1060 EXPORT_SYMBOL_GPL(hrtimer_start
);
1064 * hrtimer_try_to_cancel - try to deactivate a timer
1065 * @timer: hrtimer to stop
1068 * 0 when the timer was not active
1069 * 1 when the timer was active
1070 * -1 when the timer is currently excuting the callback function and
1073 int hrtimer_try_to_cancel(struct hrtimer
*timer
)
1075 struct hrtimer_clock_base
*base
;
1076 unsigned long flags
;
1079 base
= lock_hrtimer_base(timer
, &flags
);
1081 if (!hrtimer_callback_running(timer
))
1082 ret
= remove_hrtimer(timer
, base
);
1084 unlock_hrtimer_base(timer
, &flags
);
1089 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel
);
1092 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1093 * @timer: the timer to be cancelled
1096 * 0 when the timer was not active
1097 * 1 when the timer was active
1099 int hrtimer_cancel(struct hrtimer
*timer
)
1102 int ret
= hrtimer_try_to_cancel(timer
);
1109 EXPORT_SYMBOL_GPL(hrtimer_cancel
);
1112 * hrtimer_get_remaining - get remaining time for the timer
1113 * @timer: the timer to read
1115 ktime_t
hrtimer_get_remaining(const struct hrtimer
*timer
)
1117 unsigned long flags
;
1120 lock_hrtimer_base(timer
, &flags
);
1121 rem
= hrtimer_expires_remaining(timer
);
1122 unlock_hrtimer_base(timer
, &flags
);
1126 EXPORT_SYMBOL_GPL(hrtimer_get_remaining
);
1128 #ifdef CONFIG_NO_HZ_COMMON
1130 * hrtimer_get_next_event - get the time until next expiry event
1132 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1135 ktime_t
hrtimer_get_next_event(void)
1137 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1138 struct hrtimer_clock_base
*base
= cpu_base
->clock_base
;
1139 ktime_t delta
, mindelta
= { .tv64
= KTIME_MAX
};
1140 unsigned long flags
;
1143 raw_spin_lock_irqsave(&cpu_base
->lock
, flags
);
1145 if (!hrtimer_hres_active()) {
1146 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++, base
++) {
1147 struct hrtimer
*timer
;
1148 struct timerqueue_node
*next
;
1150 next
= timerqueue_getnext(&base
->active
);
1154 timer
= container_of(next
, struct hrtimer
, node
);
1155 delta
.tv64
= hrtimer_get_expires_tv64(timer
);
1156 delta
= ktime_sub(delta
, base
->get_time());
1157 if (delta
.tv64
< mindelta
.tv64
)
1158 mindelta
.tv64
= delta
.tv64
;
1162 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1164 if (mindelta
.tv64
< 0)
1170 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1171 enum hrtimer_mode mode
)
1173 struct hrtimer_cpu_base
*cpu_base
;
1176 memset(timer
, 0, sizeof(struct hrtimer
));
1178 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1180 if (clock_id
== CLOCK_REALTIME
&& mode
!= HRTIMER_MODE_ABS
)
1181 clock_id
= CLOCK_MONOTONIC
;
1183 base
= hrtimer_clockid_to_base(clock_id
);
1184 timer
->base
= &cpu_base
->clock_base
[base
];
1185 timerqueue_init(&timer
->node
);
1187 #ifdef CONFIG_TIMER_STATS
1188 timer
->start_site
= NULL
;
1189 timer
->start_pid
= -1;
1190 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
1195 * hrtimer_init - initialize a timer to the given clock
1196 * @timer: the timer to be initialized
1197 * @clock_id: the clock to be used
1198 * @mode: timer mode abs/rel
1200 void hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1201 enum hrtimer_mode mode
)
1203 debug_init(timer
, clock_id
, mode
);
1204 __hrtimer_init(timer
, clock_id
, mode
);
1206 EXPORT_SYMBOL_GPL(hrtimer_init
);
1209 * hrtimer_get_res - get the timer resolution for a clock
1210 * @which_clock: which clock to query
1211 * @tp: pointer to timespec variable to store the resolution
1213 * Store the resolution of the clock selected by @which_clock in the
1214 * variable pointed to by @tp.
1216 int hrtimer_get_res(const clockid_t which_clock
, struct timespec
*tp
)
1218 struct hrtimer_cpu_base
*cpu_base
;
1219 int base
= hrtimer_clockid_to_base(which_clock
);
1221 cpu_base
= &__raw_get_cpu_var(hrtimer_bases
);
1222 *tp
= ktime_to_timespec(cpu_base
->clock_base
[base
].resolution
);
1226 EXPORT_SYMBOL_GPL(hrtimer_get_res
);
1228 static void __run_hrtimer(struct hrtimer
*timer
, ktime_t
*now
)
1230 struct hrtimer_clock_base
*base
= timer
->base
;
1231 struct hrtimer_cpu_base
*cpu_base
= base
->cpu_base
;
1232 enum hrtimer_restart (*fn
)(struct hrtimer
*);
1235 WARN_ON(!irqs_disabled());
1237 debug_deactivate(timer
);
1238 __remove_hrtimer(timer
, base
, HRTIMER_STATE_CALLBACK
, 0);
1239 timer_stats_account_hrtimer(timer
);
1240 fn
= timer
->function
;
1243 * Because we run timers from hardirq context, there is no chance
1244 * they get migrated to another cpu, therefore its safe to unlock
1247 raw_spin_unlock(&cpu_base
->lock
);
1248 trace_hrtimer_expire_entry(timer
, now
);
1249 restart
= fn(timer
);
1250 trace_hrtimer_expire_exit(timer
);
1251 raw_spin_lock(&cpu_base
->lock
);
1254 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1255 * we do not reprogramm the event hardware. Happens either in
1256 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1258 if (restart
!= HRTIMER_NORESTART
) {
1259 BUG_ON(timer
->state
!= HRTIMER_STATE_CALLBACK
);
1260 enqueue_hrtimer(timer
, base
);
1263 WARN_ON_ONCE(!(timer
->state
& HRTIMER_STATE_CALLBACK
));
1265 timer
->state
&= ~HRTIMER_STATE_CALLBACK
;
1268 #ifdef CONFIG_HIGH_RES_TIMERS
1271 * High resolution timer interrupt
1272 * Called with interrupts disabled
1274 void hrtimer_interrupt(struct clock_event_device
*dev
)
1276 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1277 ktime_t expires_next
, now
, entry_time
, delta
;
1280 BUG_ON(!cpu_base
->hres_active
);
1281 cpu_base
->nr_events
++;
1282 dev
->next_event
.tv64
= KTIME_MAX
;
1284 raw_spin_lock(&cpu_base
->lock
);
1285 entry_time
= now
= hrtimer_update_base(cpu_base
);
1287 expires_next
.tv64
= KTIME_MAX
;
1289 * We set expires_next to KTIME_MAX here with cpu_base->lock
1290 * held to prevent that a timer is enqueued in our queue via
1291 * the migration code. This does not affect enqueueing of
1292 * timers which run their callback and need to be requeued on
1295 cpu_base
->expires_next
.tv64
= KTIME_MAX
;
1297 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1298 struct hrtimer_clock_base
*base
;
1299 struct timerqueue_node
*node
;
1302 if (!(cpu_base
->active_bases
& (1 << i
)))
1305 base
= cpu_base
->clock_base
+ i
;
1306 basenow
= ktime_add(now
, base
->offset
);
1308 while ((node
= timerqueue_getnext(&base
->active
))) {
1309 struct hrtimer
*timer
;
1311 timer
= container_of(node
, struct hrtimer
, node
);
1314 * The immediate goal for using the softexpires is
1315 * minimizing wakeups, not running timers at the
1316 * earliest interrupt after their soft expiration.
1317 * This allows us to avoid using a Priority Search
1318 * Tree, which can answer a stabbing querry for
1319 * overlapping intervals and instead use the simple
1320 * BST we already have.
1321 * We don't add extra wakeups by delaying timers that
1322 * are right-of a not yet expired timer, because that
1323 * timer will have to trigger a wakeup anyway.
1326 if (basenow
.tv64
< hrtimer_get_softexpires_tv64(timer
)) {
1329 expires
= ktime_sub(hrtimer_get_expires(timer
),
1331 if (expires
.tv64
< 0)
1332 expires
.tv64
= KTIME_MAX
;
1333 if (expires
.tv64
< expires_next
.tv64
)
1334 expires_next
= expires
;
1338 __run_hrtimer(timer
, &basenow
);
1343 * Store the new expiry value so the migration code can verify
1346 cpu_base
->expires_next
= expires_next
;
1347 raw_spin_unlock(&cpu_base
->lock
);
1349 /* Reprogramming necessary ? */
1350 if (expires_next
.tv64
== KTIME_MAX
||
1351 !tick_program_event(expires_next
, 0)) {
1352 cpu_base
->hang_detected
= 0;
1357 * The next timer was already expired due to:
1359 * - long lasting callbacks
1360 * - being scheduled away when running in a VM
1362 * We need to prevent that we loop forever in the hrtimer
1363 * interrupt routine. We give it 3 attempts to avoid
1364 * overreacting on some spurious event.
1366 * Acquire base lock for updating the offsets and retrieving
1369 raw_spin_lock(&cpu_base
->lock
);
1370 now
= hrtimer_update_base(cpu_base
);
1371 cpu_base
->nr_retries
++;
1375 * Give the system a chance to do something else than looping
1376 * here. We stored the entry time, so we know exactly how long
1377 * we spent here. We schedule the next event this amount of
1380 cpu_base
->nr_hangs
++;
1381 cpu_base
->hang_detected
= 1;
1382 raw_spin_unlock(&cpu_base
->lock
);
1383 delta
= ktime_sub(now
, entry_time
);
1384 if (delta
.tv64
> cpu_base
->max_hang_time
.tv64
)
1385 cpu_base
->max_hang_time
= delta
;
1387 * Limit it to a sensible value as we enforce a longer
1388 * delay. Give the CPU at least 100ms to catch up.
1390 if (delta
.tv64
> 100 * NSEC_PER_MSEC
)
1391 expires_next
= ktime_add_ns(now
, 100 * NSEC_PER_MSEC
);
1393 expires_next
= ktime_add(now
, delta
);
1394 tick_program_event(expires_next
, 1);
1395 printk_once(KERN_WARNING
"hrtimer: interrupt took %llu ns\n",
1396 ktime_to_ns(delta
));
1400 * local version of hrtimer_peek_ahead_timers() called with interrupts
1403 static void __hrtimer_peek_ahead_timers(void)
1405 struct tick_device
*td
;
1407 if (!hrtimer_hres_active())
1410 td
= &__get_cpu_var(tick_cpu_device
);
1411 if (td
&& td
->evtdev
)
1412 hrtimer_interrupt(td
->evtdev
);
1416 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1418 * hrtimer_peek_ahead_timers will peek at the timer queue of
1419 * the current cpu and check if there are any timers for which
1420 * the soft expires time has passed. If any such timers exist,
1421 * they are run immediately and then removed from the timer queue.
1424 void hrtimer_peek_ahead_timers(void)
1426 unsigned long flags
;
1428 local_irq_save(flags
);
1429 __hrtimer_peek_ahead_timers();
1430 local_irq_restore(flags
);
1433 static void run_hrtimer_softirq(struct softirq_action
*h
)
1435 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1437 if (cpu_base
->clock_was_set
) {
1438 cpu_base
->clock_was_set
= 0;
1442 hrtimer_peek_ahead_timers();
1445 #else /* CONFIG_HIGH_RES_TIMERS */
1447 static inline void __hrtimer_peek_ahead_timers(void) { }
1449 #endif /* !CONFIG_HIGH_RES_TIMERS */
1452 * Called from timer softirq every jiffy, expire hrtimers:
1454 * For HRT its the fall back code to run the softirq in the timer
1455 * softirq context in case the hrtimer initialization failed or has
1456 * not been done yet.
1458 void hrtimer_run_pending(void)
1460 if (hrtimer_hres_active())
1464 * This _is_ ugly: We have to check in the softirq context,
1465 * whether we can switch to highres and / or nohz mode. The
1466 * clocksource switch happens in the timer interrupt with
1467 * xtime_lock held. Notification from there only sets the
1468 * check bit in the tick_oneshot code, otherwise we might
1469 * deadlock vs. xtime_lock.
1471 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1472 hrtimer_switch_to_hres();
1476 * Called from hardirq context every jiffy
1478 void hrtimer_run_queues(void)
1480 struct timerqueue_node
*node
;
1481 struct hrtimer_cpu_base
*cpu_base
= &__get_cpu_var(hrtimer_bases
);
1482 struct hrtimer_clock_base
*base
;
1483 int index
, gettime
= 1;
1485 if (hrtimer_hres_active())
1488 for (index
= 0; index
< HRTIMER_MAX_CLOCK_BASES
; index
++) {
1489 base
= &cpu_base
->clock_base
[index
];
1490 if (!timerqueue_getnext(&base
->active
))
1494 hrtimer_get_softirq_time(cpu_base
);
1498 raw_spin_lock(&cpu_base
->lock
);
1500 while ((node
= timerqueue_getnext(&base
->active
))) {
1501 struct hrtimer
*timer
;
1503 timer
= container_of(node
, struct hrtimer
, node
);
1504 if (base
->softirq_time
.tv64
<=
1505 hrtimer_get_expires_tv64(timer
))
1508 __run_hrtimer(timer
, &base
->softirq_time
);
1510 raw_spin_unlock(&cpu_base
->lock
);
1515 * Sleep related functions:
1517 static enum hrtimer_restart
hrtimer_wakeup(struct hrtimer
*timer
)
1519 struct hrtimer_sleeper
*t
=
1520 container_of(timer
, struct hrtimer_sleeper
, timer
);
1521 struct task_struct
*task
= t
->task
;
1525 wake_up_process(task
);
1527 return HRTIMER_NORESTART
;
1530 void hrtimer_init_sleeper(struct hrtimer_sleeper
*sl
, struct task_struct
*task
)
1532 sl
->timer
.function
= hrtimer_wakeup
;
1535 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper
);
1537 static int __sched
do_nanosleep(struct hrtimer_sleeper
*t
, enum hrtimer_mode mode
)
1539 hrtimer_init_sleeper(t
, current
);
1542 set_current_state(TASK_INTERRUPTIBLE
);
1543 hrtimer_start_expires(&t
->timer
, mode
);
1544 if (!hrtimer_active(&t
->timer
))
1547 if (likely(t
->task
))
1550 hrtimer_cancel(&t
->timer
);
1551 mode
= HRTIMER_MODE_ABS
;
1553 } while (t
->task
&& !signal_pending(current
));
1555 __set_current_state(TASK_RUNNING
);
1557 return t
->task
== NULL
;
1560 static int update_rmtp(struct hrtimer
*timer
, struct timespec __user
*rmtp
)
1562 struct timespec rmt
;
1565 rem
= hrtimer_expires_remaining(timer
);
1568 rmt
= ktime_to_timespec(rem
);
1570 if (copy_to_user(rmtp
, &rmt
, sizeof(*rmtp
)))
1576 long __sched
hrtimer_nanosleep_restart(struct restart_block
*restart
)
1578 struct hrtimer_sleeper t
;
1579 struct timespec __user
*rmtp
;
1582 hrtimer_init_on_stack(&t
.timer
, restart
->nanosleep
.clockid
,
1584 hrtimer_set_expires_tv64(&t
.timer
, restart
->nanosleep
.expires
);
1586 if (do_nanosleep(&t
, HRTIMER_MODE_ABS
))
1589 rmtp
= restart
->nanosleep
.rmtp
;
1591 ret
= update_rmtp(&t
.timer
, rmtp
);
1596 /* The other values in restart are already filled in */
1597 ret
= -ERESTART_RESTARTBLOCK
;
1599 destroy_hrtimer_on_stack(&t
.timer
);
1603 long hrtimer_nanosleep(struct timespec
*rqtp
, struct timespec __user
*rmtp
,
1604 const enum hrtimer_mode mode
, const clockid_t clockid
)
1606 struct restart_block
*restart
;
1607 struct hrtimer_sleeper t
;
1609 unsigned long slack
;
1611 slack
= current
->timer_slack_ns
;
1612 if (rt_task(current
))
1615 hrtimer_init_on_stack(&t
.timer
, clockid
, mode
);
1616 hrtimer_set_expires_range_ns(&t
.timer
, timespec_to_ktime(*rqtp
), slack
);
1617 if (do_nanosleep(&t
, mode
))
1620 /* Absolute timers do not update the rmtp value and restart: */
1621 if (mode
== HRTIMER_MODE_ABS
) {
1622 ret
= -ERESTARTNOHAND
;
1627 ret
= update_rmtp(&t
.timer
, rmtp
);
1632 restart
= ¤t_thread_info()->restart_block
;
1633 restart
->fn
= hrtimer_nanosleep_restart
;
1634 restart
->nanosleep
.clockid
= t
.timer
.base
->clockid
;
1635 restart
->nanosleep
.rmtp
= rmtp
;
1636 restart
->nanosleep
.expires
= hrtimer_get_expires_tv64(&t
.timer
);
1638 ret
= -ERESTART_RESTARTBLOCK
;
1640 destroy_hrtimer_on_stack(&t
.timer
);
1644 SYSCALL_DEFINE2(nanosleep
, struct timespec __user
*, rqtp
,
1645 struct timespec __user
*, rmtp
)
1649 if (copy_from_user(&tu
, rqtp
, sizeof(tu
)))
1652 if (!timespec_valid(&tu
))
1655 return hrtimer_nanosleep(&tu
, rmtp
, HRTIMER_MODE_REL
, CLOCK_MONOTONIC
);
1659 * Functions related to boot-time initialization:
1661 static void __cpuinit
init_hrtimers_cpu(int cpu
)
1663 struct hrtimer_cpu_base
*cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
1666 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1667 cpu_base
->clock_base
[i
].cpu_base
= cpu_base
;
1668 timerqueue_init_head(&cpu_base
->clock_base
[i
].active
);
1671 hrtimer_init_hres(cpu_base
);
1674 #ifdef CONFIG_HOTPLUG_CPU
1676 static void migrate_hrtimer_list(struct hrtimer_clock_base
*old_base
,
1677 struct hrtimer_clock_base
*new_base
)
1679 struct hrtimer
*timer
;
1680 struct timerqueue_node
*node
;
1682 while ((node
= timerqueue_getnext(&old_base
->active
))) {
1683 timer
= container_of(node
, struct hrtimer
, node
);
1684 BUG_ON(hrtimer_callback_running(timer
));
1685 debug_deactivate(timer
);
1688 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1689 * timer could be seen as !active and just vanish away
1690 * under us on another CPU
1692 __remove_hrtimer(timer
, old_base
, HRTIMER_STATE_MIGRATE
, 0);
1693 timer
->base
= new_base
;
1695 * Enqueue the timers on the new cpu. This does not
1696 * reprogram the event device in case the timer
1697 * expires before the earliest on this CPU, but we run
1698 * hrtimer_interrupt after we migrated everything to
1699 * sort out already expired timers and reprogram the
1702 enqueue_hrtimer(timer
, new_base
);
1704 /* Clear the migration state bit */
1705 timer
->state
&= ~HRTIMER_STATE_MIGRATE
;
1709 static void migrate_hrtimers(int scpu
)
1711 struct hrtimer_cpu_base
*old_base
, *new_base
;
1714 BUG_ON(cpu_online(scpu
));
1715 tick_cancel_sched_timer(scpu
);
1717 local_irq_disable();
1718 old_base
= &per_cpu(hrtimer_bases
, scpu
);
1719 new_base
= &__get_cpu_var(hrtimer_bases
);
1721 * The caller is globally serialized and nobody else
1722 * takes two locks at once, deadlock is not possible.
1724 raw_spin_lock(&new_base
->lock
);
1725 raw_spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1727 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
1728 migrate_hrtimer_list(&old_base
->clock_base
[i
],
1729 &new_base
->clock_base
[i
]);
1732 raw_spin_unlock(&old_base
->lock
);
1733 raw_spin_unlock(&new_base
->lock
);
1735 /* Check, if we got expired work to do */
1736 __hrtimer_peek_ahead_timers();
1740 #endif /* CONFIG_HOTPLUG_CPU */
1742 static int __cpuinit
hrtimer_cpu_notify(struct notifier_block
*self
,
1743 unsigned long action
, void *hcpu
)
1745 int scpu
= (long)hcpu
;
1749 case CPU_UP_PREPARE
:
1750 case CPU_UP_PREPARE_FROZEN
:
1751 init_hrtimers_cpu(scpu
);
1754 #ifdef CONFIG_HOTPLUG_CPU
1756 case CPU_DYING_FROZEN
:
1757 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING
, &scpu
);
1760 case CPU_DEAD_FROZEN
:
1762 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD
, &scpu
);
1763 migrate_hrtimers(scpu
);
1775 static struct notifier_block __cpuinitdata hrtimers_nb
= {
1776 .notifier_call
= hrtimer_cpu_notify
,
1779 void __init
hrtimers_init(void)
1781 hrtimer_cpu_notify(&hrtimers_nb
, (unsigned long)CPU_UP_PREPARE
,
1782 (void *)(long)smp_processor_id());
1783 register_cpu_notifier(&hrtimers_nb
);
1784 #ifdef CONFIG_HIGH_RES_TIMERS
1785 open_softirq(HRTIMER_SOFTIRQ
, run_hrtimer_softirq
);
1790 * schedule_hrtimeout_range_clock - sleep until timeout
1791 * @expires: timeout value (ktime_t)
1792 * @delta: slack in expires timeout (ktime_t)
1793 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1794 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1797 schedule_hrtimeout_range_clock(ktime_t
*expires
, unsigned long delta
,
1798 const enum hrtimer_mode mode
, int clock
)
1800 struct hrtimer_sleeper t
;
1803 * Optimize when a zero timeout value is given. It does not
1804 * matter whether this is an absolute or a relative time.
1806 if (expires
&& !expires
->tv64
) {
1807 __set_current_state(TASK_RUNNING
);
1812 * A NULL parameter means "infinite"
1816 __set_current_state(TASK_RUNNING
);
1820 hrtimer_init_on_stack(&t
.timer
, clock
, mode
);
1821 hrtimer_set_expires_range_ns(&t
.timer
, *expires
, delta
);
1823 hrtimer_init_sleeper(&t
, current
);
1825 hrtimer_start_expires(&t
.timer
, mode
);
1826 if (!hrtimer_active(&t
.timer
))
1832 hrtimer_cancel(&t
.timer
);
1833 destroy_hrtimer_on_stack(&t
.timer
);
1835 __set_current_state(TASK_RUNNING
);
1837 return !t
.task
? 0 : -EINTR
;
1841 * schedule_hrtimeout_range - sleep until timeout
1842 * @expires: timeout value (ktime_t)
1843 * @delta: slack in expires timeout (ktime_t)
1844 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1846 * Make the current task sleep until the given expiry time has
1847 * elapsed. The routine will return immediately unless
1848 * the current task state has been set (see set_current_state()).
1850 * The @delta argument gives the kernel the freedom to schedule the
1851 * actual wakeup to a time that is both power and performance friendly.
1852 * The kernel give the normal best effort behavior for "@expires+@delta",
1853 * but may decide to fire the timer earlier, but no earlier than @expires.
1855 * You can set the task state as follows -
1857 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1858 * pass before the routine returns.
1860 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1861 * delivered to the current task.
1863 * The current task state is guaranteed to be TASK_RUNNING when this
1866 * Returns 0 when the timer has expired otherwise -EINTR
1868 int __sched
schedule_hrtimeout_range(ktime_t
*expires
, unsigned long delta
,
1869 const enum hrtimer_mode mode
)
1871 return schedule_hrtimeout_range_clock(expires
, delta
, mode
,
1874 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range
);
1877 * schedule_hrtimeout - sleep until timeout
1878 * @expires: timeout value (ktime_t)
1879 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1881 * Make the current task sleep until the given expiry time has
1882 * elapsed. The routine will return immediately unless
1883 * the current task state has been set (see set_current_state()).
1885 * You can set the task state as follows -
1887 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1888 * pass before the routine returns.
1890 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1891 * delivered to the current task.
1893 * The current task state is guaranteed to be TASK_RUNNING when this
1896 * Returns 0 when the timer has expired otherwise -EINTR
1898 int __sched
schedule_hrtimeout(ktime_t
*expires
,
1899 const enum hrtimer_mode mode
)
1901 return schedule_hrtimeout_range(expires
, 0, mode
);
1903 EXPORT_SYMBOL_GPL(schedule_hrtimeout
);