4 * Copyright (C) 1991, 1992 Linus Torvalds
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
62 static void exit_mm(struct task_struct
* tsk
);
64 static void __unhash_process(struct task_struct
*p
, bool group_dead
)
67 detach_pid(p
, PIDTYPE_PID
);
69 detach_pid(p
, PIDTYPE_PGID
);
70 detach_pid(p
, PIDTYPE_SID
);
72 list_del_rcu(&p
->tasks
);
73 list_del_init(&p
->sibling
);
74 __this_cpu_dec(process_counts
);
76 list_del_rcu(&p
->thread_group
);
80 * This function expects the tasklist_lock write-locked.
82 static void __exit_signal(struct task_struct
*tsk
)
84 struct signal_struct
*sig
= tsk
->signal
;
85 bool group_dead
= thread_group_leader(tsk
);
86 struct sighand_struct
*sighand
;
87 struct tty_struct
*uninitialized_var(tty
);
88 cputime_t utime
, stime
;
90 sighand
= rcu_dereference_check(tsk
->sighand
,
91 lockdep_tasklist_lock_is_held());
92 spin_lock(&sighand
->siglock
);
94 posix_cpu_timers_exit(tsk
);
96 posix_cpu_timers_exit_group(tsk
);
101 * This can only happen if the caller is de_thread().
102 * FIXME: this is the temporary hack, we should teach
103 * posix-cpu-timers to handle this case correctly.
105 if (unlikely(has_group_leader_pid(tsk
)))
106 posix_cpu_timers_exit_group(tsk
);
109 * If there is any task waiting for the group exit
112 if (sig
->notify_count
> 0 && !--sig
->notify_count
)
113 wake_up_process(sig
->group_exit_task
);
115 if (tsk
== sig
->curr_target
)
116 sig
->curr_target
= next_thread(tsk
);
118 * Accumulate here the counters for all threads but the
119 * group leader as they die, so they can be added into
120 * the process-wide totals when those are taken.
121 * The group leader stays around as a zombie as long
122 * as there are other threads. When it gets reaped,
123 * the exit.c code will add its counts into these totals.
124 * We won't ever get here for the group leader, since it
125 * will have been the last reference on the signal_struct.
127 task_cputime(tsk
, &utime
, &stime
);
130 sig
->gtime
+= task_gtime(tsk
);
131 sig
->min_flt
+= tsk
->min_flt
;
132 sig
->maj_flt
+= tsk
->maj_flt
;
133 sig
->nvcsw
+= tsk
->nvcsw
;
134 sig
->nivcsw
+= tsk
->nivcsw
;
135 sig
->inblock
+= task_io_get_inblock(tsk
);
136 sig
->oublock
+= task_io_get_oublock(tsk
);
137 task_io_accounting_add(&sig
->ioac
, &tsk
->ioac
);
138 sig
->sum_sched_runtime
+= tsk
->se
.sum_exec_runtime
;
142 __unhash_process(tsk
, group_dead
);
145 * Do this under ->siglock, we can race with another thread
146 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
148 flush_sigqueue(&tsk
->pending
);
150 spin_unlock(&sighand
->siglock
);
152 __cleanup_sighand(sighand
);
153 clear_tsk_thread_flag(tsk
,TIF_SIGPENDING
);
155 flush_sigqueue(&sig
->shared_pending
);
160 static void delayed_put_task_struct(struct rcu_head
*rhp
)
162 struct task_struct
*tsk
= container_of(rhp
, struct task_struct
, rcu
);
164 perf_event_delayed_put(tsk
);
165 trace_sched_process_free(tsk
);
166 put_task_struct(tsk
);
170 void release_task(struct task_struct
* p
)
172 struct task_struct
*leader
;
175 /* don't need to get the RCU readlock here - the process is dead and
176 * can't be modifying its own credentials. But shut RCU-lockdep up */
178 atomic_dec(&__task_cred(p
)->user
->processes
);
183 write_lock_irq(&tasklist_lock
);
184 ptrace_release_task(p
);
188 * If we are the last non-leader member of the thread
189 * group, and the leader is zombie, then notify the
190 * group leader's parent process. (if it wants notification.)
193 leader
= p
->group_leader
;
194 if (leader
!= p
&& thread_group_empty(leader
) && leader
->exit_state
== EXIT_ZOMBIE
) {
196 * If we were the last child thread and the leader has
197 * exited already, and the leader's parent ignores SIGCHLD,
198 * then we are the one who should release the leader.
200 zap_leader
= do_notify_parent(leader
, leader
->exit_signal
);
202 leader
->exit_state
= EXIT_DEAD
;
205 write_unlock_irq(&tasklist_lock
);
207 call_rcu(&p
->rcu
, delayed_put_task_struct
);
210 if (unlikely(zap_leader
))
215 * This checks not only the pgrp, but falls back on the pid if no
216 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
219 * The caller must hold rcu lock or the tasklist lock.
221 struct pid
*session_of_pgrp(struct pid
*pgrp
)
223 struct task_struct
*p
;
224 struct pid
*sid
= NULL
;
226 p
= pid_task(pgrp
, PIDTYPE_PGID
);
228 p
= pid_task(pgrp
, PIDTYPE_PID
);
230 sid
= task_session(p
);
236 * Determine if a process group is "orphaned", according to the POSIX
237 * definition in 2.2.2.52. Orphaned process groups are not to be affected
238 * by terminal-generated stop signals. Newly orphaned process groups are
239 * to receive a SIGHUP and a SIGCONT.
241 * "I ask you, have you ever known what it is to be an orphan?"
243 static int will_become_orphaned_pgrp(struct pid
*pgrp
, struct task_struct
*ignored_task
)
245 struct task_struct
*p
;
247 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
248 if ((p
== ignored_task
) ||
249 (p
->exit_state
&& thread_group_empty(p
)) ||
250 is_global_init(p
->real_parent
))
253 if (task_pgrp(p
->real_parent
) != pgrp
&&
254 task_session(p
->real_parent
) == task_session(p
))
256 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
261 int is_current_pgrp_orphaned(void)
265 read_lock(&tasklist_lock
);
266 retval
= will_become_orphaned_pgrp(task_pgrp(current
), NULL
);
267 read_unlock(&tasklist_lock
);
272 static bool has_stopped_jobs(struct pid
*pgrp
)
274 struct task_struct
*p
;
276 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
277 if (p
->signal
->flags
& SIGNAL_STOP_STOPPED
)
279 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
285 * Check to see if any process groups have become orphaned as
286 * a result of our exiting, and if they have any stopped jobs,
287 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
290 kill_orphaned_pgrp(struct task_struct
*tsk
, struct task_struct
*parent
)
292 struct pid
*pgrp
= task_pgrp(tsk
);
293 struct task_struct
*ignored_task
= tsk
;
296 /* exit: our father is in a different pgrp than
297 * we are and we were the only connection outside.
299 parent
= tsk
->real_parent
;
301 /* reparent: our child is in a different pgrp than
302 * we are, and it was the only connection outside.
306 if (task_pgrp(parent
) != pgrp
&&
307 task_session(parent
) == task_session(tsk
) &&
308 will_become_orphaned_pgrp(pgrp
, ignored_task
) &&
309 has_stopped_jobs(pgrp
)) {
310 __kill_pgrp_info(SIGHUP
, SEND_SIG_PRIV
, pgrp
);
311 __kill_pgrp_info(SIGCONT
, SEND_SIG_PRIV
, pgrp
);
316 * Let kernel threads use this to say that they allow a certain signal.
317 * Must not be used if kthread was cloned with CLONE_SIGHAND.
319 int allow_signal(int sig
)
321 if (!valid_signal(sig
) || sig
< 1)
324 spin_lock_irq(¤t
->sighand
->siglock
);
325 /* This is only needed for daemonize()'ed kthreads */
326 sigdelset(¤t
->blocked
, sig
);
328 * Kernel threads handle their own signals. Let the signal code
329 * know it'll be handled, so that they don't get converted to
330 * SIGKILL or just silently dropped.
332 current
->sighand
->action
[(sig
)-1].sa
.sa_handler
= (void __user
*)2;
334 spin_unlock_irq(¤t
->sighand
->siglock
);
338 EXPORT_SYMBOL(allow_signal
);
340 int disallow_signal(int sig
)
342 if (!valid_signal(sig
) || sig
< 1)
345 spin_lock_irq(¤t
->sighand
->siglock
);
346 current
->sighand
->action
[(sig
)-1].sa
.sa_handler
= SIG_IGN
;
348 spin_unlock_irq(¤t
->sighand
->siglock
);
352 EXPORT_SYMBOL(disallow_signal
);
354 #ifdef CONFIG_MM_OWNER
356 * A task is exiting. If it owned this mm, find a new owner for the mm.
358 void mm_update_next_owner(struct mm_struct
*mm
)
360 struct task_struct
*c
, *g
, *p
= current
;
364 * If the exiting or execing task is not the owner, it's
365 * someone else's problem.
370 * The current owner is exiting/execing and there are no other
371 * candidates. Do not leave the mm pointing to a possibly
372 * freed task structure.
374 if (atomic_read(&mm
->mm_users
) <= 1) {
379 read_lock(&tasklist_lock
);
381 * Search in the children
383 list_for_each_entry(c
, &p
->children
, sibling
) {
385 goto assign_new_owner
;
389 * Search in the siblings
391 list_for_each_entry(c
, &p
->real_parent
->children
, sibling
) {
393 goto assign_new_owner
;
397 * Search through everything else. We should not get
400 do_each_thread(g
, c
) {
402 goto assign_new_owner
;
403 } while_each_thread(g
, c
);
405 read_unlock(&tasklist_lock
);
407 * We found no owner yet mm_users > 1: this implies that we are
408 * most likely racing with swapoff (try_to_unuse()) or /proc or
409 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
418 * The task_lock protects c->mm from changing.
419 * We always want mm->owner->mm == mm
423 * Delay read_unlock() till we have the task_lock()
424 * to ensure that c does not slip away underneath us
426 read_unlock(&tasklist_lock
);
436 #endif /* CONFIG_MM_OWNER */
439 * Turn us into a lazy TLB process if we
442 static void exit_mm(struct task_struct
* tsk
)
444 struct mm_struct
*mm
= tsk
->mm
;
445 struct core_state
*core_state
;
452 * Serialize with any possible pending coredump.
453 * We must hold mmap_sem around checking core_state
454 * and clearing tsk->mm. The core-inducing thread
455 * will increment ->nr_threads for each thread in the
456 * group with ->mm != NULL.
458 down_read(&mm
->mmap_sem
);
459 core_state
= mm
->core_state
;
461 struct core_thread self
;
462 up_read(&mm
->mmap_sem
);
465 self
.next
= xchg(&core_state
->dumper
.next
, &self
);
467 * Implies mb(), the result of xchg() must be visible
468 * to core_state->dumper.
470 if (atomic_dec_and_test(&core_state
->nr_threads
))
471 complete(&core_state
->startup
);
474 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
475 if (!self
.task
) /* see coredump_finish() */
477 freezable_schedule();
479 __set_task_state(tsk
, TASK_RUNNING
);
480 down_read(&mm
->mmap_sem
);
482 atomic_inc(&mm
->mm_count
);
483 BUG_ON(mm
!= tsk
->active_mm
);
484 /* more a memory barrier than a real lock */
487 up_read(&mm
->mmap_sem
);
488 enter_lazy_tlb(mm
, current
);
490 mm_update_next_owner(mm
);
495 * When we die, we re-parent all our children, and try to:
496 * 1. give them to another thread in our thread group, if such a member exists
497 * 2. give it to the first ancestor process which prctl'd itself as a
498 * child_subreaper for its children (like a service manager)
499 * 3. give it to the init process (PID 1) in our pid namespace
501 static struct task_struct
*find_new_reaper(struct task_struct
*father
)
502 __releases(&tasklist_lock
)
503 __acquires(&tasklist_lock
)
505 struct pid_namespace
*pid_ns
= task_active_pid_ns(father
);
506 struct task_struct
*thread
;
509 while_each_thread(father
, thread
) {
510 if (thread
->flags
& PF_EXITING
)
512 if (unlikely(pid_ns
->child_reaper
== father
))
513 pid_ns
->child_reaper
= thread
;
517 if (unlikely(pid_ns
->child_reaper
== father
)) {
518 write_unlock_irq(&tasklist_lock
);
519 if (unlikely(pid_ns
== &init_pid_ns
)) {
520 panic("Attempted to kill init! exitcode=0x%08x\n",
521 father
->signal
->group_exit_code
?:
525 zap_pid_ns_processes(pid_ns
);
526 write_lock_irq(&tasklist_lock
);
527 } else if (father
->signal
->has_child_subreaper
) {
528 struct task_struct
*reaper
;
531 * Find the first ancestor marked as child_subreaper.
532 * Note that the code below checks same_thread_group(reaper,
533 * pid_ns->child_reaper). This is what we need to DTRT in a
534 * PID namespace. However we still need the check above, see
535 * http://marc.info/?l=linux-kernel&m=131385460420380
537 for (reaper
= father
->real_parent
;
538 reaper
!= &init_task
;
539 reaper
= reaper
->real_parent
) {
540 if (same_thread_group(reaper
, pid_ns
->child_reaper
))
542 if (!reaper
->signal
->is_child_subreaper
)
546 if (!(thread
->flags
& PF_EXITING
))
548 } while_each_thread(reaper
, thread
);
552 return pid_ns
->child_reaper
;
556 * Any that need to be release_task'd are put on the @dead list.
558 static void reparent_leader(struct task_struct
*father
, struct task_struct
*p
,
559 struct list_head
*dead
)
561 list_move_tail(&p
->sibling
, &p
->real_parent
->children
);
563 if (p
->exit_state
== EXIT_DEAD
)
566 * If this is a threaded reparent there is no need to
567 * notify anyone anything has happened.
569 if (same_thread_group(p
->real_parent
, father
))
572 /* We don't want people slaying init. */
573 p
->exit_signal
= SIGCHLD
;
575 /* If it has exited notify the new parent about this child's death. */
577 p
->exit_state
== EXIT_ZOMBIE
&& thread_group_empty(p
)) {
578 if (do_notify_parent(p
, p
->exit_signal
)) {
579 p
->exit_state
= EXIT_DEAD
;
580 list_move_tail(&p
->sibling
, dead
);
584 kill_orphaned_pgrp(p
, father
);
587 static void forget_original_parent(struct task_struct
*father
)
589 struct task_struct
*p
, *n
, *reaper
;
590 LIST_HEAD(dead_children
);
592 write_lock_irq(&tasklist_lock
);
594 * Note that exit_ptrace() and find_new_reaper() might
595 * drop tasklist_lock and reacquire it.
598 reaper
= find_new_reaper(father
);
600 list_for_each_entry_safe(p
, n
, &father
->children
, sibling
) {
601 struct task_struct
*t
= p
;
603 t
->real_parent
= reaper
;
604 if (t
->parent
== father
) {
606 t
->parent
= t
->real_parent
;
608 if (t
->pdeath_signal
)
609 group_send_sig_info(t
->pdeath_signal
,
611 } while_each_thread(p
, t
);
612 reparent_leader(father
, p
, &dead_children
);
614 write_unlock_irq(&tasklist_lock
);
616 BUG_ON(!list_empty(&father
->children
));
618 list_for_each_entry_safe(p
, n
, &dead_children
, sibling
) {
619 list_del_init(&p
->sibling
);
625 * Send signals to all our closest relatives so that they know
626 * to properly mourn us..
628 static void exit_notify(struct task_struct
*tsk
, int group_dead
)
633 * This does two things:
635 * A. Make init inherit all the child processes
636 * B. Check to see if any process groups have become orphaned
637 * as a result of our exiting, and if they have any stopped
638 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
640 forget_original_parent(tsk
);
642 write_lock_irq(&tasklist_lock
);
644 kill_orphaned_pgrp(tsk
->group_leader
, NULL
);
646 if (unlikely(tsk
->ptrace
)) {
647 int sig
= thread_group_leader(tsk
) &&
648 thread_group_empty(tsk
) &&
649 !ptrace_reparented(tsk
) ?
650 tsk
->exit_signal
: SIGCHLD
;
651 autoreap
= do_notify_parent(tsk
, sig
);
652 } else if (thread_group_leader(tsk
)) {
653 autoreap
= thread_group_empty(tsk
) &&
654 do_notify_parent(tsk
, tsk
->exit_signal
);
659 tsk
->exit_state
= autoreap
? EXIT_DEAD
: EXIT_ZOMBIE
;
661 /* mt-exec, de_thread() is waiting for group leader */
662 if (unlikely(tsk
->signal
->notify_count
< 0))
663 wake_up_process(tsk
->signal
->group_exit_task
);
664 write_unlock_irq(&tasklist_lock
);
666 /* If the process is dead, release it - nobody will wait for it */
671 #ifdef CONFIG_DEBUG_STACK_USAGE
672 static void check_stack_usage(void)
674 static DEFINE_SPINLOCK(low_water_lock
);
675 static int lowest_to_date
= THREAD_SIZE
;
678 free
= stack_not_used(current
);
680 if (free
>= lowest_to_date
)
683 spin_lock(&low_water_lock
);
684 if (free
< lowest_to_date
) {
685 printk(KERN_WARNING
"%s (%d) used greatest stack depth: "
687 current
->comm
, task_pid_nr(current
), free
);
688 lowest_to_date
= free
;
690 spin_unlock(&low_water_lock
);
693 static inline void check_stack_usage(void) {}
696 void do_exit(long code
)
698 struct task_struct
*tsk
= current
;
701 profile_task_exit(tsk
);
703 WARN_ON(blk_needs_flush_plug(tsk
));
705 if (unlikely(in_interrupt()))
706 panic("Aiee, killing interrupt handler!");
707 if (unlikely(!tsk
->pid
))
708 panic("Attempted to kill the idle task!");
711 * If do_exit is called because this processes oopsed, it's possible
712 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
713 * continuing. Amongst other possible reasons, this is to prevent
714 * mm_release()->clear_child_tid() from writing to a user-controlled
719 ptrace_event(PTRACE_EVENT_EXIT
, code
);
721 validate_creds_for_do_exit(tsk
);
724 * We're taking recursive faults here in do_exit. Safest is to just
725 * leave this task alone and wait for reboot.
727 if (unlikely(tsk
->flags
& PF_EXITING
)) {
729 "Fixing recursive fault but reboot is needed!\n");
731 * We can do this unlocked here. The futex code uses
732 * this flag just to verify whether the pi state
733 * cleanup has been done or not. In the worst case it
734 * loops once more. We pretend that the cleanup was
735 * done as there is no way to return. Either the
736 * OWNER_DIED bit is set by now or we push the blocked
737 * task into the wait for ever nirwana as well.
739 tsk
->flags
|= PF_EXITPIDONE
;
740 set_current_state(TASK_UNINTERRUPTIBLE
);
744 exit_signals(tsk
); /* sets PF_EXITING */
746 * tsk->flags are checked in the futex code to protect against
747 * an exiting task cleaning up the robust pi futexes.
750 raw_spin_unlock_wait(&tsk
->pi_lock
);
752 if (unlikely(in_atomic()))
753 printk(KERN_INFO
"note: %s[%d] exited with preempt_count %d\n",
754 current
->comm
, task_pid_nr(current
),
757 acct_update_integrals(tsk
);
758 /* sync mm's RSS info before statistics gathering */
760 sync_mm_rss(tsk
->mm
);
761 group_dead
= atomic_dec_and_test(&tsk
->signal
->live
);
763 hrtimer_cancel(&tsk
->signal
->real_timer
);
764 exit_itimers(tsk
->signal
);
766 setmax_mm_hiwater_rss(&tsk
->signal
->maxrss
, tsk
->mm
);
768 acct_collect(code
, group_dead
);
773 tsk
->exit_code
= code
;
774 taskstats_exit(tsk
, group_dead
);
780 trace_sched_process_exit(tsk
);
786 exit_task_namespaces(tsk
);
792 * Flush inherited counters to the parent - before the parent
793 * gets woken up by child-exit notifications.
795 * because of cgroup mode, must be called before cgroup_exit()
797 perf_event_exit_task(tsk
);
802 disassociate_ctty(1);
804 module_put(task_thread_info(tsk
)->exec_domain
->module
);
806 proc_exit_connector(tsk
);
809 * FIXME: do that only when needed, using sched_exit tracepoint
811 ptrace_put_breakpoints(tsk
);
813 exit_notify(tsk
, group_dead
);
816 mpol_put(tsk
->mempolicy
);
817 tsk
->mempolicy
= NULL
;
821 if (unlikely(current
->pi_state_cache
))
822 kfree(current
->pi_state_cache
);
825 * Make sure we are holding no locks:
827 debug_check_no_locks_held();
829 * We can do this unlocked here. The futex code uses this flag
830 * just to verify whether the pi state cleanup has been done
831 * or not. In the worst case it loops once more.
833 tsk
->flags
|= PF_EXITPIDONE
;
836 exit_io_context(tsk
);
838 if (tsk
->splice_pipe
)
839 free_pipe_info(tsk
->splice_pipe
);
841 if (tsk
->task_frag
.page
)
842 put_page(tsk
->task_frag
.page
);
844 validate_creds_for_do_exit(tsk
);
848 __this_cpu_add(dirty_throttle_leaks
, tsk
->nr_dirtied
);
852 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
853 * when the following two conditions become true.
854 * - There is race condition of mmap_sem (It is acquired by
856 * - SMI occurs before setting TASK_RUNINNG.
857 * (or hypervisor of virtual machine switches to other guest)
858 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
860 * To avoid it, we have to wait for releasing tsk->pi_lock which
861 * is held by try_to_wake_up()
864 raw_spin_unlock_wait(&tsk
->pi_lock
);
866 /* causes final put_task_struct in finish_task_switch(). */
867 tsk
->state
= TASK_DEAD
;
868 tsk
->flags
|= PF_NOFREEZE
; /* tell freezer to ignore us */
871 /* Avoid "noreturn function does return". */
873 cpu_relax(); /* For when BUG is null */
876 EXPORT_SYMBOL_GPL(do_exit
);
878 void complete_and_exit(struct completion
*comp
, long code
)
886 EXPORT_SYMBOL(complete_and_exit
);
888 SYSCALL_DEFINE1(exit
, int, error_code
)
890 do_exit((error_code
&0xff)<<8);
894 * Take down every thread in the group. This is called by fatal signals
895 * as well as by sys_exit_group (below).
898 do_group_exit(int exit_code
)
900 struct signal_struct
*sig
= current
->signal
;
902 BUG_ON(exit_code
& 0x80); /* core dumps don't get here */
904 if (signal_group_exit(sig
))
905 exit_code
= sig
->group_exit_code
;
906 else if (!thread_group_empty(current
)) {
907 struct sighand_struct
*const sighand
= current
->sighand
;
908 spin_lock_irq(&sighand
->siglock
);
909 if (signal_group_exit(sig
))
910 /* Another thread got here before we took the lock. */
911 exit_code
= sig
->group_exit_code
;
913 sig
->group_exit_code
= exit_code
;
914 sig
->flags
= SIGNAL_GROUP_EXIT
;
915 zap_other_threads(current
);
917 spin_unlock_irq(&sighand
->siglock
);
925 * this kills every thread in the thread group. Note that any externally
926 * wait4()-ing process will get the correct exit code - even if this
927 * thread is not the thread group leader.
929 SYSCALL_DEFINE1(exit_group
, int, error_code
)
931 do_group_exit((error_code
& 0xff) << 8);
937 enum pid_type wo_type
;
941 struct siginfo __user
*wo_info
;
943 struct rusage __user
*wo_rusage
;
945 wait_queue_t child_wait
;
950 struct pid
*task_pid_type(struct task_struct
*task
, enum pid_type type
)
952 if (type
!= PIDTYPE_PID
)
953 task
= task
->group_leader
;
954 return task
->pids
[type
].pid
;
957 static int eligible_pid(struct wait_opts
*wo
, struct task_struct
*p
)
959 return wo
->wo_type
== PIDTYPE_MAX
||
960 task_pid_type(p
, wo
->wo_type
) == wo
->wo_pid
;
963 static int eligible_child(struct wait_opts
*wo
, struct task_struct
*p
)
965 if (!eligible_pid(wo
, p
))
967 /* Wait for all children (clone and not) if __WALL is set;
968 * otherwise, wait for clone children *only* if __WCLONE is
969 * set; otherwise, wait for non-clone children *only*. (Note:
970 * A "clone" child here is one that reports to its parent
971 * using a signal other than SIGCHLD.) */
972 if (((p
->exit_signal
!= SIGCHLD
) ^ !!(wo
->wo_flags
& __WCLONE
))
973 && !(wo
->wo_flags
& __WALL
))
979 static int wait_noreap_copyout(struct wait_opts
*wo
, struct task_struct
*p
,
980 pid_t pid
, uid_t uid
, int why
, int status
)
982 struct siginfo __user
*infop
;
983 int retval
= wo
->wo_rusage
984 ? getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
) : 0;
990 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
992 retval
= put_user(0, &infop
->si_errno
);
994 retval
= put_user((short)why
, &infop
->si_code
);
996 retval
= put_user(pid
, &infop
->si_pid
);
998 retval
= put_user(uid
, &infop
->si_uid
);
1000 retval
= put_user(status
, &infop
->si_status
);
1008 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1009 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1010 * the lock and this task is uninteresting. If we return nonzero, we have
1011 * released the lock and the system call should return.
1013 static int wait_task_zombie(struct wait_opts
*wo
, struct task_struct
*p
)
1015 unsigned long state
;
1016 int retval
, status
, traced
;
1017 pid_t pid
= task_pid_vnr(p
);
1018 uid_t uid
= from_kuid_munged(current_user_ns(), task_uid(p
));
1019 struct siginfo __user
*infop
;
1021 if (!likely(wo
->wo_flags
& WEXITED
))
1024 if (unlikely(wo
->wo_flags
& WNOWAIT
)) {
1025 int exit_code
= p
->exit_code
;
1029 read_unlock(&tasklist_lock
);
1030 if ((exit_code
& 0x7f) == 0) {
1032 status
= exit_code
>> 8;
1034 why
= (exit_code
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1035 status
= exit_code
& 0x7f;
1037 return wait_noreap_copyout(wo
, p
, pid
, uid
, why
, status
);
1041 * Try to move the task's state to DEAD
1042 * only one thread is allowed to do this:
1044 state
= xchg(&p
->exit_state
, EXIT_DEAD
);
1045 if (state
!= EXIT_ZOMBIE
) {
1046 BUG_ON(state
!= EXIT_DEAD
);
1050 traced
= ptrace_reparented(p
);
1052 * It can be ptraced but not reparented, check
1053 * thread_group_leader() to filter out sub-threads.
1055 if (likely(!traced
) && thread_group_leader(p
)) {
1056 struct signal_struct
*psig
;
1057 struct signal_struct
*sig
;
1058 unsigned long maxrss
;
1059 cputime_t tgutime
, tgstime
;
1062 * The resource counters for the group leader are in its
1063 * own task_struct. Those for dead threads in the group
1064 * are in its signal_struct, as are those for the child
1065 * processes it has previously reaped. All these
1066 * accumulate in the parent's signal_struct c* fields.
1068 * We don't bother to take a lock here to protect these
1069 * p->signal fields, because they are only touched by
1070 * __exit_signal, which runs with tasklist_lock
1071 * write-locked anyway, and so is excluded here. We do
1072 * need to protect the access to parent->signal fields,
1073 * as other threads in the parent group can be right
1074 * here reaping other children at the same time.
1076 * We use thread_group_cputime_adjusted() to get times for the thread
1077 * group, which consolidates times for all threads in the
1078 * group including the group leader.
1080 thread_group_cputime_adjusted(p
, &tgutime
, &tgstime
);
1081 spin_lock_irq(&p
->real_parent
->sighand
->siglock
);
1082 psig
= p
->real_parent
->signal
;
1084 psig
->cutime
+= tgutime
+ sig
->cutime
;
1085 psig
->cstime
+= tgstime
+ sig
->cstime
;
1086 psig
->cgtime
+= task_gtime(p
) + sig
->gtime
+ sig
->cgtime
;
1088 p
->min_flt
+ sig
->min_flt
+ sig
->cmin_flt
;
1090 p
->maj_flt
+ sig
->maj_flt
+ sig
->cmaj_flt
;
1092 p
->nvcsw
+ sig
->nvcsw
+ sig
->cnvcsw
;
1094 p
->nivcsw
+ sig
->nivcsw
+ sig
->cnivcsw
;
1096 task_io_get_inblock(p
) +
1097 sig
->inblock
+ sig
->cinblock
;
1099 task_io_get_oublock(p
) +
1100 sig
->oublock
+ sig
->coublock
;
1101 maxrss
= max(sig
->maxrss
, sig
->cmaxrss
);
1102 if (psig
->cmaxrss
< maxrss
)
1103 psig
->cmaxrss
= maxrss
;
1104 task_io_accounting_add(&psig
->ioac
, &p
->ioac
);
1105 task_io_accounting_add(&psig
->ioac
, &sig
->ioac
);
1106 spin_unlock_irq(&p
->real_parent
->sighand
->siglock
);
1110 * Now we are sure this task is interesting, and no other
1111 * thread can reap it because we set its state to EXIT_DEAD.
1113 read_unlock(&tasklist_lock
);
1115 retval
= wo
->wo_rusage
1116 ? getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
) : 0;
1117 status
= (p
->signal
->flags
& SIGNAL_GROUP_EXIT
)
1118 ? p
->signal
->group_exit_code
: p
->exit_code
;
1119 if (!retval
&& wo
->wo_stat
)
1120 retval
= put_user(status
, wo
->wo_stat
);
1122 infop
= wo
->wo_info
;
1123 if (!retval
&& infop
)
1124 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1125 if (!retval
&& infop
)
1126 retval
= put_user(0, &infop
->si_errno
);
1127 if (!retval
&& infop
) {
1130 if ((status
& 0x7f) == 0) {
1134 why
= (status
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1137 retval
= put_user((short)why
, &infop
->si_code
);
1139 retval
= put_user(status
, &infop
->si_status
);
1141 if (!retval
&& infop
)
1142 retval
= put_user(pid
, &infop
->si_pid
);
1143 if (!retval
&& infop
)
1144 retval
= put_user(uid
, &infop
->si_uid
);
1149 write_lock_irq(&tasklist_lock
);
1150 /* We dropped tasklist, ptracer could die and untrace */
1153 * If this is not a sub-thread, notify the parent.
1154 * If parent wants a zombie, don't release it now.
1156 if (thread_group_leader(p
) &&
1157 !do_notify_parent(p
, p
->exit_signal
)) {
1158 p
->exit_state
= EXIT_ZOMBIE
;
1161 write_unlock_irq(&tasklist_lock
);
1169 static int *task_stopped_code(struct task_struct
*p
, bool ptrace
)
1172 if (task_is_stopped_or_traced(p
) &&
1173 !(p
->jobctl
& JOBCTL_LISTENING
))
1174 return &p
->exit_code
;
1176 if (p
->signal
->flags
& SIGNAL_STOP_STOPPED
)
1177 return &p
->signal
->group_exit_code
;
1183 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1185 * @ptrace: is the wait for ptrace
1186 * @p: task to wait for
1188 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1191 * read_lock(&tasklist_lock), which is released if return value is
1192 * non-zero. Also, grabs and releases @p->sighand->siglock.
1195 * 0 if wait condition didn't exist and search for other wait conditions
1196 * should continue. Non-zero return, -errno on failure and @p's pid on
1197 * success, implies that tasklist_lock is released and wait condition
1198 * search should terminate.
1200 static int wait_task_stopped(struct wait_opts
*wo
,
1201 int ptrace
, struct task_struct
*p
)
1203 struct siginfo __user
*infop
;
1204 int retval
, exit_code
, *p_code
, why
;
1205 uid_t uid
= 0; /* unneeded, required by compiler */
1209 * Traditionally we see ptrace'd stopped tasks regardless of options.
1211 if (!ptrace
&& !(wo
->wo_flags
& WUNTRACED
))
1214 if (!task_stopped_code(p
, ptrace
))
1218 spin_lock_irq(&p
->sighand
->siglock
);
1220 p_code
= task_stopped_code(p
, ptrace
);
1221 if (unlikely(!p_code
))
1224 exit_code
= *p_code
;
1228 if (!unlikely(wo
->wo_flags
& WNOWAIT
))
1231 uid
= from_kuid_munged(current_user_ns(), task_uid(p
));
1233 spin_unlock_irq(&p
->sighand
->siglock
);
1238 * Now we are pretty sure this task is interesting.
1239 * Make sure it doesn't get reaped out from under us while we
1240 * give up the lock and then examine it below. We don't want to
1241 * keep holding onto the tasklist_lock while we call getrusage and
1242 * possibly take page faults for user memory.
1245 pid
= task_pid_vnr(p
);
1246 why
= ptrace
? CLD_TRAPPED
: CLD_STOPPED
;
1247 read_unlock(&tasklist_lock
);
1249 if (unlikely(wo
->wo_flags
& WNOWAIT
))
1250 return wait_noreap_copyout(wo
, p
, pid
, uid
, why
, exit_code
);
1252 retval
= wo
->wo_rusage
1253 ? getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
) : 0;
1254 if (!retval
&& wo
->wo_stat
)
1255 retval
= put_user((exit_code
<< 8) | 0x7f, wo
->wo_stat
);
1257 infop
= wo
->wo_info
;
1258 if (!retval
&& infop
)
1259 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1260 if (!retval
&& infop
)
1261 retval
= put_user(0, &infop
->si_errno
);
1262 if (!retval
&& infop
)
1263 retval
= put_user((short)why
, &infop
->si_code
);
1264 if (!retval
&& infop
)
1265 retval
= put_user(exit_code
, &infop
->si_status
);
1266 if (!retval
&& infop
)
1267 retval
= put_user(pid
, &infop
->si_pid
);
1268 if (!retval
&& infop
)
1269 retval
= put_user(uid
, &infop
->si_uid
);
1279 * Handle do_wait work for one task in a live, non-stopped state.
1280 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1281 * the lock and this task is uninteresting. If we return nonzero, we have
1282 * released the lock and the system call should return.
1284 static int wait_task_continued(struct wait_opts
*wo
, struct task_struct
*p
)
1290 if (!unlikely(wo
->wo_flags
& WCONTINUED
))
1293 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
))
1296 spin_lock_irq(&p
->sighand
->siglock
);
1297 /* Re-check with the lock held. */
1298 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
)) {
1299 spin_unlock_irq(&p
->sighand
->siglock
);
1302 if (!unlikely(wo
->wo_flags
& WNOWAIT
))
1303 p
->signal
->flags
&= ~SIGNAL_STOP_CONTINUED
;
1304 uid
= from_kuid_munged(current_user_ns(), task_uid(p
));
1305 spin_unlock_irq(&p
->sighand
->siglock
);
1307 pid
= task_pid_vnr(p
);
1309 read_unlock(&tasklist_lock
);
1312 retval
= wo
->wo_rusage
1313 ? getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
) : 0;
1315 if (!retval
&& wo
->wo_stat
)
1316 retval
= put_user(0xffff, wo
->wo_stat
);
1320 retval
= wait_noreap_copyout(wo
, p
, pid
, uid
,
1321 CLD_CONTINUED
, SIGCONT
);
1322 BUG_ON(retval
== 0);
1329 * Consider @p for a wait by @parent.
1331 * -ECHILD should be in ->notask_error before the first call.
1332 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1333 * Returns zero if the search for a child should continue;
1334 * then ->notask_error is 0 if @p is an eligible child,
1335 * or another error from security_task_wait(), or still -ECHILD.
1337 static int wait_consider_task(struct wait_opts
*wo
, int ptrace
,
1338 struct task_struct
*p
)
1340 int ret
= eligible_child(wo
, p
);
1344 ret
= security_task_wait(p
);
1345 if (unlikely(ret
< 0)) {
1347 * If we have not yet seen any eligible child,
1348 * then let this error code replace -ECHILD.
1349 * A permission error will give the user a clue
1350 * to look for security policy problems, rather
1351 * than for mysterious wait bugs.
1353 if (wo
->notask_error
)
1354 wo
->notask_error
= ret
;
1358 /* dead body doesn't have much to contribute */
1359 if (unlikely(p
->exit_state
== EXIT_DEAD
)) {
1361 * But do not ignore this task until the tracer does
1362 * wait_task_zombie()->do_notify_parent().
1364 if (likely(!ptrace
) && unlikely(ptrace_reparented(p
)))
1365 wo
->notask_error
= 0;
1370 if (p
->exit_state
== EXIT_ZOMBIE
) {
1372 * A zombie ptracee is only visible to its ptracer.
1373 * Notification and reaping will be cascaded to the real
1374 * parent when the ptracer detaches.
1376 if (likely(!ptrace
) && unlikely(p
->ptrace
)) {
1377 /* it will become visible, clear notask_error */
1378 wo
->notask_error
= 0;
1382 /* we don't reap group leaders with subthreads */
1383 if (!delay_group_leader(p
))
1384 return wait_task_zombie(wo
, p
);
1387 * Allow access to stopped/continued state via zombie by
1388 * falling through. Clearing of notask_error is complex.
1392 * If WEXITED is set, notask_error should naturally be
1393 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1394 * so, if there are live subthreads, there are events to
1395 * wait for. If all subthreads are dead, it's still safe
1396 * to clear - this function will be called again in finite
1397 * amount time once all the subthreads are released and
1398 * will then return without clearing.
1402 * Stopped state is per-task and thus can't change once the
1403 * target task dies. Only continued and exited can happen.
1404 * Clear notask_error if WCONTINUED | WEXITED.
1406 if (likely(!ptrace
) || (wo
->wo_flags
& (WCONTINUED
| WEXITED
)))
1407 wo
->notask_error
= 0;
1410 * If @p is ptraced by a task in its real parent's group,
1411 * hide group stop/continued state when looking at @p as
1412 * the real parent; otherwise, a single stop can be
1413 * reported twice as group and ptrace stops.
1415 * If a ptracer wants to distinguish the two events for its
1416 * own children, it should create a separate process which
1417 * takes the role of real parent.
1419 if (likely(!ptrace
) && p
->ptrace
&& !ptrace_reparented(p
))
1423 * @p is alive and it's gonna stop, continue or exit, so
1424 * there always is something to wait for.
1426 wo
->notask_error
= 0;
1430 * Wait for stopped. Depending on @ptrace, different stopped state
1431 * is used and the two don't interact with each other.
1433 ret
= wait_task_stopped(wo
, ptrace
, p
);
1438 * Wait for continued. There's only one continued state and the
1439 * ptracer can consume it which can confuse the real parent. Don't
1440 * use WCONTINUED from ptracer. You don't need or want it.
1442 return wait_task_continued(wo
, p
);
1446 * Do the work of do_wait() for one thread in the group, @tsk.
1448 * -ECHILD should be in ->notask_error before the first call.
1449 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1450 * Returns zero if the search for a child should continue; then
1451 * ->notask_error is 0 if there were any eligible children,
1452 * or another error from security_task_wait(), or still -ECHILD.
1454 static int do_wait_thread(struct wait_opts
*wo
, struct task_struct
*tsk
)
1456 struct task_struct
*p
;
1458 list_for_each_entry(p
, &tsk
->children
, sibling
) {
1459 int ret
= wait_consider_task(wo
, 0, p
);
1467 static int ptrace_do_wait(struct wait_opts
*wo
, struct task_struct
*tsk
)
1469 struct task_struct
*p
;
1471 list_for_each_entry(p
, &tsk
->ptraced
, ptrace_entry
) {
1472 int ret
= wait_consider_task(wo
, 1, p
);
1480 static int child_wait_callback(wait_queue_t
*wait
, unsigned mode
,
1481 int sync
, void *key
)
1483 struct wait_opts
*wo
= container_of(wait
, struct wait_opts
,
1485 struct task_struct
*p
= key
;
1487 if (!eligible_pid(wo
, p
))
1490 if ((wo
->wo_flags
& __WNOTHREAD
) && wait
->private != p
->parent
)
1493 return default_wake_function(wait
, mode
, sync
, key
);
1496 void __wake_up_parent(struct task_struct
*p
, struct task_struct
*parent
)
1498 __wake_up_sync_key(&parent
->signal
->wait_chldexit
,
1499 TASK_INTERRUPTIBLE
, 1, p
);
1502 static long do_wait(struct wait_opts
*wo
)
1504 struct task_struct
*tsk
;
1507 trace_sched_process_wait(wo
->wo_pid
);
1509 init_waitqueue_func_entry(&wo
->child_wait
, child_wait_callback
);
1510 wo
->child_wait
.private = current
;
1511 add_wait_queue(¤t
->signal
->wait_chldexit
, &wo
->child_wait
);
1514 * If there is nothing that can match our critiera just get out.
1515 * We will clear ->notask_error to zero if we see any child that
1516 * might later match our criteria, even if we are not able to reap
1519 wo
->notask_error
= -ECHILD
;
1520 if ((wo
->wo_type
< PIDTYPE_MAX
) &&
1521 (!wo
->wo_pid
|| hlist_empty(&wo
->wo_pid
->tasks
[wo
->wo_type
])))
1524 set_current_state(TASK_INTERRUPTIBLE
);
1525 read_lock(&tasklist_lock
);
1528 retval
= do_wait_thread(wo
, tsk
);
1532 retval
= ptrace_do_wait(wo
, tsk
);
1536 if (wo
->wo_flags
& __WNOTHREAD
)
1538 } while_each_thread(current
, tsk
);
1539 read_unlock(&tasklist_lock
);
1542 retval
= wo
->notask_error
;
1543 if (!retval
&& !(wo
->wo_flags
& WNOHANG
)) {
1544 retval
= -ERESTARTSYS
;
1545 if (!signal_pending(current
)) {
1551 __set_current_state(TASK_RUNNING
);
1552 remove_wait_queue(¤t
->signal
->wait_chldexit
, &wo
->child_wait
);
1556 SYSCALL_DEFINE5(waitid
, int, which
, pid_t
, upid
, struct siginfo __user
*,
1557 infop
, int, options
, struct rusage __user
*, ru
)
1559 struct wait_opts wo
;
1560 struct pid
*pid
= NULL
;
1564 if (options
& ~(WNOHANG
|WNOWAIT
|WEXITED
|WSTOPPED
|WCONTINUED
))
1566 if (!(options
& (WEXITED
|WSTOPPED
|WCONTINUED
)))
1579 type
= PIDTYPE_PGID
;
1587 if (type
< PIDTYPE_MAX
)
1588 pid
= find_get_pid(upid
);
1592 wo
.wo_flags
= options
;
1602 * For a WNOHANG return, clear out all the fields
1603 * we would set so the user can easily tell the
1607 ret
= put_user(0, &infop
->si_signo
);
1609 ret
= put_user(0, &infop
->si_errno
);
1611 ret
= put_user(0, &infop
->si_code
);
1613 ret
= put_user(0, &infop
->si_pid
);
1615 ret
= put_user(0, &infop
->si_uid
);
1617 ret
= put_user(0, &infop
->si_status
);
1624 SYSCALL_DEFINE4(wait4
, pid_t
, upid
, int __user
*, stat_addr
,
1625 int, options
, struct rusage __user
*, ru
)
1627 struct wait_opts wo
;
1628 struct pid
*pid
= NULL
;
1632 if (options
& ~(WNOHANG
|WUNTRACED
|WCONTINUED
|
1633 __WNOTHREAD
|__WCLONE
|__WALL
))
1638 else if (upid
< 0) {
1639 type
= PIDTYPE_PGID
;
1640 pid
= find_get_pid(-upid
);
1641 } else if (upid
== 0) {
1642 type
= PIDTYPE_PGID
;
1643 pid
= get_task_pid(current
, PIDTYPE_PGID
);
1644 } else /* upid > 0 */ {
1646 pid
= find_get_pid(upid
);
1651 wo
.wo_flags
= options
| WEXITED
;
1653 wo
.wo_stat
= stat_addr
;
1661 #ifdef __ARCH_WANT_SYS_WAITPID
1664 * sys_waitpid() remains for compatibility. waitpid() should be
1665 * implemented by calling sys_wait4() from libc.a.
1667 SYSCALL_DEFINE3(waitpid
, pid_t
, pid
, int __user
*, stat_addr
, int, options
)
1669 return sys_wait4(pid
, stat_addr
, options
, NULL
);