2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 * mballoc.c contains the multiblocks allocation routines
25 #include <linux/debugfs.h>
26 #include <trace/events/ext4.h>
30 * - test ext4_ext_search_left() and ext4_ext_search_right()
31 * - search for metadata in few groups
34 * - normalization should take into account whether file is still open
35 * - discard preallocations if no free space left (policy?)
36 * - don't normalize tails
38 * - reservation for superuser
41 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
42 * - track min/max extents in each group for better group selection
43 * - mb_mark_used() may allocate chunk right after splitting buddy
44 * - tree of groups sorted by number of free blocks
49 * The allocation request involve request for multiple number of blocks
50 * near to the goal(block) value specified.
52 * During initialization phase of the allocator we decide to use the
53 * group preallocation or inode preallocation depending on the size of
54 * the file. The size of the file could be the resulting file size we
55 * would have after allocation, or the current file size, which ever
56 * is larger. If the size is less than sbi->s_mb_stream_request we
57 * select to use the group preallocation. The default value of
58 * s_mb_stream_request is 16 blocks. This can also be tuned via
59 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
60 * terms of number of blocks.
62 * The main motivation for having small file use group preallocation is to
63 * ensure that we have small files closer together on the disk.
65 * First stage the allocator looks at the inode prealloc list,
66 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
67 * spaces for this particular inode. The inode prealloc space is
70 * pa_lstart -> the logical start block for this prealloc space
71 * pa_pstart -> the physical start block for this prealloc space
72 * pa_len -> lenght for this prealloc space
73 * pa_free -> free space available in this prealloc space
75 * The inode preallocation space is used looking at the _logical_ start
76 * block. If only the logical file block falls within the range of prealloc
77 * space we will consume the particular prealloc space. This make sure that
78 * that the we have contiguous physical blocks representing the file blocks
80 * The important thing to be noted in case of inode prealloc space is that
81 * we don't modify the values associated to inode prealloc space except
84 * If we are not able to find blocks in the inode prealloc space and if we
85 * have the group allocation flag set then we look at the locality group
86 * prealloc space. These are per CPU prealloc list repreasented as
88 * ext4_sb_info.s_locality_groups[smp_processor_id()]
90 * The reason for having a per cpu locality group is to reduce the contention
91 * between CPUs. It is possible to get scheduled at this point.
93 * The locality group prealloc space is used looking at whether we have
94 * enough free space (pa_free) withing the prealloc space.
96 * If we can't allocate blocks via inode prealloc or/and locality group
97 * prealloc then we look at the buddy cache. The buddy cache is represented
98 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
99 * mapped to the buddy and bitmap information regarding different
100 * groups. The buddy information is attached to buddy cache inode so that
101 * we can access them through the page cache. The information regarding
102 * each group is loaded via ext4_mb_load_buddy. The information involve
103 * block bitmap and buddy information. The information are stored in the
107 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
110 * one block each for bitmap and buddy information. So for each group we
111 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
112 * blocksize) blocks. So it can have information regarding groups_per_page
113 * which is blocks_per_page/2
115 * The buddy cache inode is not stored on disk. The inode is thrown
116 * away when the filesystem is unmounted.
118 * We look for count number of blocks in the buddy cache. If we were able
119 * to locate that many free blocks we return with additional information
120 * regarding rest of the contiguous physical block available
122 * Before allocating blocks via buddy cache we normalize the request
123 * blocks. This ensure we ask for more blocks that we needed. The extra
124 * blocks that we get after allocation is added to the respective prealloc
125 * list. In case of inode preallocation we follow a list of heuristics
126 * based on file size. This can be found in ext4_mb_normalize_request. If
127 * we are doing a group prealloc we try to normalize the request to
128 * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is
129 * 512 blocks. This can be tuned via
130 * /sys/fs/ext4/<partition/mb_group_prealloc. The value is represented in
131 * terms of number of blocks. If we have mounted the file system with -O
132 * stripe=<value> option the group prealloc request is normalized to the
133 * stripe value (sbi->s_stripe)
135 * The regular allocator(using the buddy cache) supports few tunables.
137 * /sys/fs/ext4/<partition>/mb_min_to_scan
138 * /sys/fs/ext4/<partition>/mb_max_to_scan
139 * /sys/fs/ext4/<partition>/mb_order2_req
141 * The regular allocator uses buddy scan only if the request len is power of
142 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
143 * value of s_mb_order2_reqs can be tuned via
144 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
145 * stripe size (sbi->s_stripe), we try to search for contiguous block in
146 * stripe size. This should result in better allocation on RAID setups. If
147 * not, we search in the specific group using bitmap for best extents. The
148 * tunable min_to_scan and max_to_scan control the behaviour here.
149 * min_to_scan indicate how long the mballoc __must__ look for a best
150 * extent and max_to_scan indicates how long the mballoc __can__ look for a
151 * best extent in the found extents. Searching for the blocks starts with
152 * the group specified as the goal value in allocation context via
153 * ac_g_ex. Each group is first checked based on the criteria whether it
154 * can used for allocation. ext4_mb_good_group explains how the groups are
157 * Both the prealloc space are getting populated as above. So for the first
158 * request we will hit the buddy cache which will result in this prealloc
159 * space getting filled. The prealloc space is then later used for the
160 * subsequent request.
164 * mballoc operates on the following data:
166 * - in-core buddy (actually includes buddy and bitmap)
167 * - preallocation descriptors (PAs)
169 * there are two types of preallocations:
171 * assiged to specific inode and can be used for this inode only.
172 * it describes part of inode's space preallocated to specific
173 * physical blocks. any block from that preallocated can be used
174 * independent. the descriptor just tracks number of blocks left
175 * unused. so, before taking some block from descriptor, one must
176 * make sure corresponded logical block isn't allocated yet. this
177 * also means that freeing any block within descriptor's range
178 * must discard all preallocated blocks.
180 * assigned to specific locality group which does not translate to
181 * permanent set of inodes: inode can join and leave group. space
182 * from this type of preallocation can be used for any inode. thus
183 * it's consumed from the beginning to the end.
185 * relation between them can be expressed as:
186 * in-core buddy = on-disk bitmap + preallocation descriptors
188 * this mean blocks mballoc considers used are:
189 * - allocated blocks (persistent)
190 * - preallocated blocks (non-persistent)
192 * consistency in mballoc world means that at any time a block is either
193 * free or used in ALL structures. notice: "any time" should not be read
194 * literally -- time is discrete and delimited by locks.
196 * to keep it simple, we don't use block numbers, instead we count number of
197 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
199 * all operations can be expressed as:
200 * - init buddy: buddy = on-disk + PAs
201 * - new PA: buddy += N; PA = N
202 * - use inode PA: on-disk += N; PA -= N
203 * - discard inode PA buddy -= on-disk - PA; PA = 0
204 * - use locality group PA on-disk += N; PA -= N
205 * - discard locality group PA buddy -= PA; PA = 0
206 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
207 * is used in real operation because we can't know actual used
208 * bits from PA, only from on-disk bitmap
210 * if we follow this strict logic, then all operations above should be atomic.
211 * given some of them can block, we'd have to use something like semaphores
212 * killing performance on high-end SMP hardware. let's try to relax it using
213 * the following knowledge:
214 * 1) if buddy is referenced, it's already initialized
215 * 2) while block is used in buddy and the buddy is referenced,
216 * nobody can re-allocate that block
217 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
218 * bit set and PA claims same block, it's OK. IOW, one can set bit in
219 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
222 * so, now we're building a concurrency table:
225 * blocks for PA are allocated in the buddy, buddy must be referenced
226 * until PA is linked to allocation group to avoid concurrent buddy init
228 * we need to make sure that either on-disk bitmap or PA has uptodate data
229 * given (3) we care that PA-=N operation doesn't interfere with init
231 * the simplest way would be to have buddy initialized by the discard
232 * - use locality group PA
233 * again PA-=N must be serialized with init
234 * - discard locality group PA
235 * the simplest way would be to have buddy initialized by the discard
238 * i_data_sem serializes them
240 * discard process must wait until PA isn't used by another process
241 * - use locality group PA
242 * some mutex should serialize them
243 * - discard locality group PA
244 * discard process must wait until PA isn't used by another process
247 * i_data_sem or another mutex should serializes them
249 * discard process must wait until PA isn't used by another process
250 * - use locality group PA
251 * nothing wrong here -- they're different PAs covering different blocks
252 * - discard locality group PA
253 * discard process must wait until PA isn't used by another process
255 * now we're ready to make few consequences:
256 * - PA is referenced and while it is no discard is possible
257 * - PA is referenced until block isn't marked in on-disk bitmap
258 * - PA changes only after on-disk bitmap
259 * - discard must not compete with init. either init is done before
260 * any discard or they're serialized somehow
261 * - buddy init as sum of on-disk bitmap and PAs is done atomically
263 * a special case when we've used PA to emptiness. no need to modify buddy
264 * in this case, but we should care about concurrent init
269 * Logic in few words:
274 * mark bits in on-disk bitmap
277 * - use preallocation:
278 * find proper PA (per-inode or group)
280 * mark bits in on-disk bitmap
286 * mark bits in on-disk bitmap
289 * - discard preallocations in group:
291 * move them onto local list
292 * load on-disk bitmap
294 * remove PA from object (inode or locality group)
295 * mark free blocks in-core
297 * - discard inode's preallocations:
304 * - bitlock on a group (group)
305 * - object (inode/locality) (object)
316 * - release consumed pa:
321 * - generate in-core bitmap:
325 * - discard all for given object (inode, locality group):
330 * - discard all for given group:
337 static struct kmem_cache
*ext4_pspace_cachep
;
338 static struct kmem_cache
*ext4_ac_cachep
;
339 static struct kmem_cache
*ext4_free_ext_cachep
;
340 static void ext4_mb_generate_from_pa(struct super_block
*sb
, void *bitmap
,
342 static void ext4_mb_generate_from_freelist(struct super_block
*sb
, void *bitmap
,
344 static void release_blocks_on_commit(journal_t
*journal
, transaction_t
*txn
);
346 static inline void *mb_correct_addr_and_bit(int *bit
, void *addr
)
348 #if BITS_PER_LONG == 64
349 *bit
+= ((unsigned long) addr
& 7UL) << 3;
350 addr
= (void *) ((unsigned long) addr
& ~7UL);
351 #elif BITS_PER_LONG == 32
352 *bit
+= ((unsigned long) addr
& 3UL) << 3;
353 addr
= (void *) ((unsigned long) addr
& ~3UL);
355 #error "how many bits you are?!"
360 static inline int mb_test_bit(int bit
, void *addr
)
363 * ext4_test_bit on architecture like powerpc
364 * needs unsigned long aligned address
366 addr
= mb_correct_addr_and_bit(&bit
, addr
);
367 return ext4_test_bit(bit
, addr
);
370 static inline void mb_set_bit(int bit
, void *addr
)
372 addr
= mb_correct_addr_and_bit(&bit
, addr
);
373 ext4_set_bit(bit
, addr
);
376 static inline void mb_clear_bit(int bit
, void *addr
)
378 addr
= mb_correct_addr_and_bit(&bit
, addr
);
379 ext4_clear_bit(bit
, addr
);
382 static inline int mb_find_next_zero_bit(void *addr
, int max
, int start
)
384 int fix
= 0, ret
, tmpmax
;
385 addr
= mb_correct_addr_and_bit(&fix
, addr
);
389 ret
= ext4_find_next_zero_bit(addr
, tmpmax
, start
) - fix
;
395 static inline int mb_find_next_bit(void *addr
, int max
, int start
)
397 int fix
= 0, ret
, tmpmax
;
398 addr
= mb_correct_addr_and_bit(&fix
, addr
);
402 ret
= ext4_find_next_bit(addr
, tmpmax
, start
) - fix
;
408 static void *mb_find_buddy(struct ext4_buddy
*e4b
, int order
, int *max
)
412 BUG_ON(EXT4_MB_BITMAP(e4b
) == EXT4_MB_BUDDY(e4b
));
415 if (order
> e4b
->bd_blkbits
+ 1) {
420 /* at order 0 we see each particular block */
421 *max
= 1 << (e4b
->bd_blkbits
+ 3);
423 return EXT4_MB_BITMAP(e4b
);
425 bb
= EXT4_MB_BUDDY(e4b
) + EXT4_SB(e4b
->bd_sb
)->s_mb_offsets
[order
];
426 *max
= EXT4_SB(e4b
->bd_sb
)->s_mb_maxs
[order
];
432 static void mb_free_blocks_double(struct inode
*inode
, struct ext4_buddy
*e4b
,
433 int first
, int count
)
436 struct super_block
*sb
= e4b
->bd_sb
;
438 if (unlikely(e4b
->bd_info
->bb_bitmap
== NULL
))
440 assert_spin_locked(ext4_group_lock_ptr(sb
, e4b
->bd_group
));
441 for (i
= 0; i
< count
; i
++) {
442 if (!mb_test_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
)) {
443 ext4_fsblk_t blocknr
;
444 blocknr
= e4b
->bd_group
* EXT4_BLOCKS_PER_GROUP(sb
);
445 blocknr
+= first
+ i
;
447 le32_to_cpu(EXT4_SB(sb
)->s_es
->s_first_data_block
);
448 ext4_grp_locked_error(sb
, e4b
->bd_group
,
449 __func__
, "double-free of inode"
450 " %lu's block %llu(bit %u in group %u)",
451 inode
? inode
->i_ino
: 0, blocknr
,
452 first
+ i
, e4b
->bd_group
);
454 mb_clear_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
);
458 static void mb_mark_used_double(struct ext4_buddy
*e4b
, int first
, int count
)
462 if (unlikely(e4b
->bd_info
->bb_bitmap
== NULL
))
464 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
465 for (i
= 0; i
< count
; i
++) {
466 BUG_ON(mb_test_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
));
467 mb_set_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
);
471 static void mb_cmp_bitmaps(struct ext4_buddy
*e4b
, void *bitmap
)
473 if (memcmp(e4b
->bd_info
->bb_bitmap
, bitmap
, e4b
->bd_sb
->s_blocksize
)) {
474 unsigned char *b1
, *b2
;
476 b1
= (unsigned char *) e4b
->bd_info
->bb_bitmap
;
477 b2
= (unsigned char *) bitmap
;
478 for (i
= 0; i
< e4b
->bd_sb
->s_blocksize
; i
++) {
479 if (b1
[i
] != b2
[i
]) {
480 printk(KERN_ERR
"corruption in group %u "
481 "at byte %u(%u): %x in copy != %x "
482 "on disk/prealloc\n",
483 e4b
->bd_group
, i
, i
* 8, b1
[i
], b2
[i
]);
491 static inline void mb_free_blocks_double(struct inode
*inode
,
492 struct ext4_buddy
*e4b
, int first
, int count
)
496 static inline void mb_mark_used_double(struct ext4_buddy
*e4b
,
497 int first
, int count
)
501 static inline void mb_cmp_bitmaps(struct ext4_buddy
*e4b
, void *bitmap
)
507 #ifdef AGGRESSIVE_CHECK
509 #define MB_CHECK_ASSERT(assert) \
513 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
514 function, file, line, # assert); \
519 static int __mb_check_buddy(struct ext4_buddy
*e4b
, char *file
,
520 const char *function
, int line
)
522 struct super_block
*sb
= e4b
->bd_sb
;
523 int order
= e4b
->bd_blkbits
+ 1;
530 struct ext4_group_info
*grp
;
533 struct list_head
*cur
;
538 static int mb_check_counter
;
539 if (mb_check_counter
++ % 100 != 0)
544 buddy
= mb_find_buddy(e4b
, order
, &max
);
545 MB_CHECK_ASSERT(buddy
);
546 buddy2
= mb_find_buddy(e4b
, order
- 1, &max2
);
547 MB_CHECK_ASSERT(buddy2
);
548 MB_CHECK_ASSERT(buddy
!= buddy2
);
549 MB_CHECK_ASSERT(max
* 2 == max2
);
552 for (i
= 0; i
< max
; i
++) {
554 if (mb_test_bit(i
, buddy
)) {
555 /* only single bit in buddy2 may be 1 */
556 if (!mb_test_bit(i
<< 1, buddy2
)) {
558 mb_test_bit((i
<<1)+1, buddy2
));
559 } else if (!mb_test_bit((i
<< 1) + 1, buddy2
)) {
561 mb_test_bit(i
<< 1, buddy2
));
566 /* both bits in buddy2 must be 0 */
567 MB_CHECK_ASSERT(mb_test_bit(i
<< 1, buddy2
));
568 MB_CHECK_ASSERT(mb_test_bit((i
<< 1) + 1, buddy2
));
570 for (j
= 0; j
< (1 << order
); j
++) {
571 k
= (i
* (1 << order
)) + j
;
573 !mb_test_bit(k
, EXT4_MB_BITMAP(e4b
)));
577 MB_CHECK_ASSERT(e4b
->bd_info
->bb_counters
[order
] == count
);
582 buddy
= mb_find_buddy(e4b
, 0, &max
);
583 for (i
= 0; i
< max
; i
++) {
584 if (!mb_test_bit(i
, buddy
)) {
585 MB_CHECK_ASSERT(i
>= e4b
->bd_info
->bb_first_free
);
593 /* check used bits only */
594 for (j
= 0; j
< e4b
->bd_blkbits
+ 1; j
++) {
595 buddy2
= mb_find_buddy(e4b
, j
, &max2
);
597 MB_CHECK_ASSERT(k
< max2
);
598 MB_CHECK_ASSERT(mb_test_bit(k
, buddy2
));
601 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b
->bd_info
));
602 MB_CHECK_ASSERT(e4b
->bd_info
->bb_fragments
== fragments
);
604 grp
= ext4_get_group_info(sb
, e4b
->bd_group
);
605 buddy
= mb_find_buddy(e4b
, 0, &max
);
606 list_for_each(cur
, &grp
->bb_prealloc_list
) {
607 ext4_group_t groupnr
;
608 struct ext4_prealloc_space
*pa
;
609 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
610 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &groupnr
, &k
);
611 MB_CHECK_ASSERT(groupnr
== e4b
->bd_group
);
612 for (i
= 0; i
< pa
->pa_len
; i
++)
613 MB_CHECK_ASSERT(mb_test_bit(k
+ i
, buddy
));
617 #undef MB_CHECK_ASSERT
618 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
619 __FILE__, __func__, __LINE__)
621 #define mb_check_buddy(e4b)
624 /* FIXME!! need more doc */
625 static void ext4_mb_mark_free_simple(struct super_block
*sb
,
626 void *buddy
, ext4_grpblk_t first
, ext4_grpblk_t len
,
627 struct ext4_group_info
*grp
)
629 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
633 unsigned short border
;
635 BUG_ON(len
> EXT4_BLOCKS_PER_GROUP(sb
));
637 border
= 2 << sb
->s_blocksize_bits
;
640 /* find how many blocks can be covered since this position */
641 max
= ffs(first
| border
) - 1;
643 /* find how many blocks of power 2 we need to mark */
650 /* mark multiblock chunks only */
651 grp
->bb_counters
[min
]++;
653 mb_clear_bit(first
>> min
,
654 buddy
+ sbi
->s_mb_offsets
[min
]);
661 static noinline_for_stack
662 void ext4_mb_generate_buddy(struct super_block
*sb
,
663 void *buddy
, void *bitmap
, ext4_group_t group
)
665 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
666 ext4_grpblk_t max
= EXT4_BLOCKS_PER_GROUP(sb
);
671 unsigned fragments
= 0;
672 unsigned long long period
= get_cycles();
674 /* initialize buddy from bitmap which is aggregation
675 * of on-disk bitmap and preallocations */
676 i
= mb_find_next_zero_bit(bitmap
, max
, 0);
677 grp
->bb_first_free
= i
;
681 i
= mb_find_next_bit(bitmap
, max
, i
);
685 ext4_mb_mark_free_simple(sb
, buddy
, first
, len
, grp
);
687 grp
->bb_counters
[0]++;
689 i
= mb_find_next_zero_bit(bitmap
, max
, i
);
691 grp
->bb_fragments
= fragments
;
693 if (free
!= grp
->bb_free
) {
694 ext4_grp_locked_error(sb
, group
, __func__
,
695 "EXT4-fs: group %u: %u blocks in bitmap, %u in gd",
696 group
, free
, grp
->bb_free
);
698 * If we intent to continue, we consider group descritor
699 * corrupt and update bb_free using bitmap value
704 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT
, &(grp
->bb_state
));
706 period
= get_cycles() - period
;
707 spin_lock(&EXT4_SB(sb
)->s_bal_lock
);
708 EXT4_SB(sb
)->s_mb_buddies_generated
++;
709 EXT4_SB(sb
)->s_mb_generation_time
+= period
;
710 spin_unlock(&EXT4_SB(sb
)->s_bal_lock
);
713 /* The buddy information is attached the buddy cache inode
714 * for convenience. The information regarding each group
715 * is loaded via ext4_mb_load_buddy. The information involve
716 * block bitmap and buddy information. The information are
717 * stored in the inode as
720 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
723 * one block each for bitmap and buddy information.
724 * So for each group we take up 2 blocks. A page can
725 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
726 * So it can have information regarding groups_per_page which
727 * is blocks_per_page/2
730 static int ext4_mb_init_cache(struct page
*page
, char *incore
)
732 ext4_group_t ngroups
;
738 ext4_group_t first_group
;
740 struct super_block
*sb
;
741 struct buffer_head
*bhs
;
742 struct buffer_head
**bh
;
747 mb_debug(1, "init page %lu\n", page
->index
);
749 inode
= page
->mapping
->host
;
751 ngroups
= ext4_get_groups_count(sb
);
752 blocksize
= 1 << inode
->i_blkbits
;
753 blocks_per_page
= PAGE_CACHE_SIZE
/ blocksize
;
755 groups_per_page
= blocks_per_page
>> 1;
756 if (groups_per_page
== 0)
759 /* allocate buffer_heads to read bitmaps */
760 if (groups_per_page
> 1) {
762 i
= sizeof(struct buffer_head
*) * groups_per_page
;
763 bh
= kzalloc(i
, GFP_NOFS
);
769 first_group
= page
->index
* blocks_per_page
/ 2;
771 /* read all groups the page covers into the cache */
772 for (i
= 0; i
< groups_per_page
; i
++) {
773 struct ext4_group_desc
*desc
;
775 if (first_group
+ i
>= ngroups
)
779 desc
= ext4_get_group_desc(sb
, first_group
+ i
, NULL
);
784 bh
[i
] = sb_getblk(sb
, ext4_block_bitmap(sb
, desc
));
788 if (bitmap_uptodate(bh
[i
]))
792 if (bitmap_uptodate(bh
[i
])) {
793 unlock_buffer(bh
[i
]);
796 ext4_lock_group(sb
, first_group
+ i
);
797 if (desc
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
798 ext4_init_block_bitmap(sb
, bh
[i
],
799 first_group
+ i
, desc
);
800 set_bitmap_uptodate(bh
[i
]);
801 set_buffer_uptodate(bh
[i
]);
802 ext4_unlock_group(sb
, first_group
+ i
);
803 unlock_buffer(bh
[i
]);
806 ext4_unlock_group(sb
, first_group
+ i
);
807 if (buffer_uptodate(bh
[i
])) {
809 * if not uninit if bh is uptodate,
810 * bitmap is also uptodate
812 set_bitmap_uptodate(bh
[i
]);
813 unlock_buffer(bh
[i
]);
818 * submit the buffer_head for read. We can
819 * safely mark the bitmap as uptodate now.
820 * We do it here so the bitmap uptodate bit
821 * get set with buffer lock held.
823 set_bitmap_uptodate(bh
[i
]);
824 bh
[i
]->b_end_io
= end_buffer_read_sync
;
825 submit_bh(READ
, bh
[i
]);
826 mb_debug(1, "read bitmap for group %u\n", first_group
+ i
);
829 /* wait for I/O completion */
830 for (i
= 0; i
< groups_per_page
&& bh
[i
]; i
++)
831 wait_on_buffer(bh
[i
]);
834 for (i
= 0; i
< groups_per_page
&& bh
[i
]; i
++)
835 if (!buffer_uptodate(bh
[i
]))
839 first_block
= page
->index
* blocks_per_page
;
841 memset(page_address(page
), 0xff, PAGE_CACHE_SIZE
);
842 for (i
= 0; i
< blocks_per_page
; i
++) {
844 struct ext4_group_info
*grinfo
;
846 group
= (first_block
+ i
) >> 1;
847 if (group
>= ngroups
)
851 * data carry information regarding this
852 * particular group in the format specified
856 data
= page_address(page
) + (i
* blocksize
);
857 bitmap
= bh
[group
- first_group
]->b_data
;
860 * We place the buddy block and bitmap block
863 if ((first_block
+ i
) & 1) {
864 /* this is block of buddy */
865 BUG_ON(incore
== NULL
);
866 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
867 group
, page
->index
, i
* blocksize
);
868 grinfo
= ext4_get_group_info(sb
, group
);
869 grinfo
->bb_fragments
= 0;
870 memset(grinfo
->bb_counters
, 0,
871 sizeof(*grinfo
->bb_counters
) *
872 (sb
->s_blocksize_bits
+2));
874 * incore got set to the group block bitmap below
876 ext4_lock_group(sb
, group
);
877 ext4_mb_generate_buddy(sb
, data
, incore
, group
);
878 ext4_unlock_group(sb
, group
);
881 /* this is block of bitmap */
882 BUG_ON(incore
!= NULL
);
883 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
884 group
, page
->index
, i
* blocksize
);
886 /* see comments in ext4_mb_put_pa() */
887 ext4_lock_group(sb
, group
);
888 memcpy(data
, bitmap
, blocksize
);
890 /* mark all preallocated blks used in in-core bitmap */
891 ext4_mb_generate_from_pa(sb
, data
, group
);
892 ext4_mb_generate_from_freelist(sb
, data
, group
);
893 ext4_unlock_group(sb
, group
);
895 /* set incore so that the buddy information can be
896 * generated using this
901 SetPageUptodate(page
);
905 for (i
= 0; i
< groups_per_page
&& bh
[i
]; i
++)
913 static noinline_for_stack
914 int ext4_mb_init_group(struct super_block
*sb
, ext4_group_t group
)
920 int block
, pnum
, poff
;
921 int num_grp_locked
= 0;
922 struct ext4_group_info
*this_grp
;
923 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
924 struct inode
*inode
= sbi
->s_buddy_cache
;
925 struct page
*page
= NULL
, *bitmap_page
= NULL
;
927 mb_debug(1, "init group %u\n", group
);
928 blocks_per_page
= PAGE_CACHE_SIZE
/ sb
->s_blocksize
;
929 this_grp
= ext4_get_group_info(sb
, group
);
931 * This ensures that we don't reinit the buddy cache
932 * page which map to the group from which we are already
933 * allocating. If we are looking at the buddy cache we would
934 * have taken a reference using ext4_mb_load_buddy and that
935 * would have taken the alloc_sem lock.
937 num_grp_locked
= ext4_mb_get_buddy_cache_lock(sb
, group
);
938 if (!EXT4_MB_GRP_NEED_INIT(this_grp
)) {
940 * somebody initialized the group
941 * return without doing anything
947 * the buddy cache inode stores the block bitmap
948 * and buddy information in consecutive blocks.
949 * So for each group we need two blocks.
952 pnum
= block
/ blocks_per_page
;
953 poff
= block
% blocks_per_page
;
954 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
956 BUG_ON(page
->mapping
!= inode
->i_mapping
);
957 ret
= ext4_mb_init_cache(page
, NULL
);
964 if (page
== NULL
|| !PageUptodate(page
)) {
968 mark_page_accessed(page
);
970 bitmap
= page_address(page
) + (poff
* sb
->s_blocksize
);
972 /* init buddy cache */
974 pnum
= block
/ blocks_per_page
;
975 poff
= block
% blocks_per_page
;
976 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
977 if (page
== bitmap_page
) {
979 * If both the bitmap and buddy are in
980 * the same page we don't need to force
985 BUG_ON(page
->mapping
!= inode
->i_mapping
);
986 ret
= ext4_mb_init_cache(page
, bitmap
);
993 if (page
== NULL
|| !PageUptodate(page
)) {
997 mark_page_accessed(page
);
999 ext4_mb_put_buddy_cache_lock(sb
, group
, num_grp_locked
);
1001 page_cache_release(bitmap_page
);
1003 page_cache_release(page
);
1007 static noinline_for_stack
int
1008 ext4_mb_load_buddy(struct super_block
*sb
, ext4_group_t group
,
1009 struct ext4_buddy
*e4b
)
1011 int blocks_per_page
;
1017 struct ext4_group_info
*grp
;
1018 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1019 struct inode
*inode
= sbi
->s_buddy_cache
;
1021 mb_debug(1, "load group %u\n", group
);
1023 blocks_per_page
= PAGE_CACHE_SIZE
/ sb
->s_blocksize
;
1024 grp
= ext4_get_group_info(sb
, group
);
1026 e4b
->bd_blkbits
= sb
->s_blocksize_bits
;
1027 e4b
->bd_info
= ext4_get_group_info(sb
, group
);
1029 e4b
->bd_group
= group
;
1030 e4b
->bd_buddy_page
= NULL
;
1031 e4b
->bd_bitmap_page
= NULL
;
1032 e4b
->alloc_semp
= &grp
->alloc_sem
;
1034 /* Take the read lock on the group alloc
1035 * sem. This would make sure a parallel
1036 * ext4_mb_init_group happening on other
1037 * groups mapped by the page is blocked
1038 * till we are done with allocation
1041 down_read(e4b
->alloc_semp
);
1043 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp
))) {
1044 /* we need to check for group need init flag
1045 * with alloc_semp held so that we can be sure
1046 * that new blocks didn't get added to the group
1047 * when we are loading the buddy cache
1049 up_read(e4b
->alloc_semp
);
1051 * we need full data about the group
1052 * to make a good selection
1054 ret
= ext4_mb_init_group(sb
, group
);
1057 goto repeat_load_buddy
;
1061 * the buddy cache inode stores the block bitmap
1062 * and buddy information in consecutive blocks.
1063 * So for each group we need two blocks.
1066 pnum
= block
/ blocks_per_page
;
1067 poff
= block
% blocks_per_page
;
1069 /* we could use find_or_create_page(), but it locks page
1070 * what we'd like to avoid in fast path ... */
1071 page
= find_get_page(inode
->i_mapping
, pnum
);
1072 if (page
== NULL
|| !PageUptodate(page
)) {
1075 * drop the page reference and try
1076 * to get the page with lock. If we
1077 * are not uptodate that implies
1078 * somebody just created the page but
1079 * is yet to initialize the same. So
1080 * wait for it to initialize.
1082 page_cache_release(page
);
1083 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
1085 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1086 if (!PageUptodate(page
)) {
1087 ret
= ext4_mb_init_cache(page
, NULL
);
1092 mb_cmp_bitmaps(e4b
, page_address(page
) +
1093 (poff
* sb
->s_blocksize
));
1098 if (page
== NULL
|| !PageUptodate(page
)) {
1102 e4b
->bd_bitmap_page
= page
;
1103 e4b
->bd_bitmap
= page_address(page
) + (poff
* sb
->s_blocksize
);
1104 mark_page_accessed(page
);
1107 pnum
= block
/ blocks_per_page
;
1108 poff
= block
% blocks_per_page
;
1110 page
= find_get_page(inode
->i_mapping
, pnum
);
1111 if (page
== NULL
|| !PageUptodate(page
)) {
1113 page_cache_release(page
);
1114 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
1116 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1117 if (!PageUptodate(page
)) {
1118 ret
= ext4_mb_init_cache(page
, e4b
->bd_bitmap
);
1127 if (page
== NULL
|| !PageUptodate(page
)) {
1131 e4b
->bd_buddy_page
= page
;
1132 e4b
->bd_buddy
= page_address(page
) + (poff
* sb
->s_blocksize
);
1133 mark_page_accessed(page
);
1135 BUG_ON(e4b
->bd_bitmap_page
== NULL
);
1136 BUG_ON(e4b
->bd_buddy_page
== NULL
);
1141 if (e4b
->bd_bitmap_page
)
1142 page_cache_release(e4b
->bd_bitmap_page
);
1143 if (e4b
->bd_buddy_page
)
1144 page_cache_release(e4b
->bd_buddy_page
);
1145 e4b
->bd_buddy
= NULL
;
1146 e4b
->bd_bitmap
= NULL
;
1148 /* Done with the buddy cache */
1149 up_read(e4b
->alloc_semp
);
1153 static void ext4_mb_release_desc(struct ext4_buddy
*e4b
)
1155 if (e4b
->bd_bitmap_page
)
1156 page_cache_release(e4b
->bd_bitmap_page
);
1157 if (e4b
->bd_buddy_page
)
1158 page_cache_release(e4b
->bd_buddy_page
);
1159 /* Done with the buddy cache */
1160 if (e4b
->alloc_semp
)
1161 up_read(e4b
->alloc_semp
);
1165 static int mb_find_order_for_block(struct ext4_buddy
*e4b
, int block
)
1170 BUG_ON(EXT4_MB_BITMAP(e4b
) == EXT4_MB_BUDDY(e4b
));
1171 BUG_ON(block
>= (1 << (e4b
->bd_blkbits
+ 3)));
1173 bb
= EXT4_MB_BUDDY(e4b
);
1174 while (order
<= e4b
->bd_blkbits
+ 1) {
1176 if (!mb_test_bit(block
, bb
)) {
1177 /* this block is part of buddy of order 'order' */
1180 bb
+= 1 << (e4b
->bd_blkbits
- order
);
1186 static void mb_clear_bits(void *bm
, int cur
, int len
)
1192 if ((cur
& 31) == 0 && (len
- cur
) >= 32) {
1193 /* fast path: clear whole word at once */
1194 addr
= bm
+ (cur
>> 3);
1199 mb_clear_bit(cur
, bm
);
1204 static void mb_set_bits(void *bm
, int cur
, int len
)
1210 if ((cur
& 31) == 0 && (len
- cur
) >= 32) {
1211 /* fast path: set whole word at once */
1212 addr
= bm
+ (cur
>> 3);
1217 mb_set_bit(cur
, bm
);
1222 static void mb_free_blocks(struct inode
*inode
, struct ext4_buddy
*e4b
,
1223 int first
, int count
)
1230 struct super_block
*sb
= e4b
->bd_sb
;
1232 BUG_ON(first
+ count
> (sb
->s_blocksize
<< 3));
1233 assert_spin_locked(ext4_group_lock_ptr(sb
, e4b
->bd_group
));
1234 mb_check_buddy(e4b
);
1235 mb_free_blocks_double(inode
, e4b
, first
, count
);
1237 e4b
->bd_info
->bb_free
+= count
;
1238 if (first
< e4b
->bd_info
->bb_first_free
)
1239 e4b
->bd_info
->bb_first_free
= first
;
1241 /* let's maintain fragments counter */
1243 block
= !mb_test_bit(first
- 1, EXT4_MB_BITMAP(e4b
));
1244 if (first
+ count
< EXT4_SB(sb
)->s_mb_maxs
[0])
1245 max
= !mb_test_bit(first
+ count
, EXT4_MB_BITMAP(e4b
));
1247 e4b
->bd_info
->bb_fragments
--;
1248 else if (!block
&& !max
)
1249 e4b
->bd_info
->bb_fragments
++;
1251 /* let's maintain buddy itself */
1252 while (count
-- > 0) {
1256 if (!mb_test_bit(block
, EXT4_MB_BITMAP(e4b
))) {
1257 ext4_fsblk_t blocknr
;
1258 blocknr
= e4b
->bd_group
* EXT4_BLOCKS_PER_GROUP(sb
);
1261 le32_to_cpu(EXT4_SB(sb
)->s_es
->s_first_data_block
);
1262 ext4_grp_locked_error(sb
, e4b
->bd_group
,
1263 __func__
, "double-free of inode"
1264 " %lu's block %llu(bit %u in group %u)",
1265 inode
? inode
->i_ino
: 0, blocknr
, block
,
1268 mb_clear_bit(block
, EXT4_MB_BITMAP(e4b
));
1269 e4b
->bd_info
->bb_counters
[order
]++;
1271 /* start of the buddy */
1272 buddy
= mb_find_buddy(e4b
, order
, &max
);
1276 if (mb_test_bit(block
, buddy
) ||
1277 mb_test_bit(block
+ 1, buddy
))
1280 /* both the buddies are free, try to coalesce them */
1281 buddy2
= mb_find_buddy(e4b
, order
+ 1, &max
);
1287 /* for special purposes, we don't set
1288 * free bits in bitmap */
1289 mb_set_bit(block
, buddy
);
1290 mb_set_bit(block
+ 1, buddy
);
1292 e4b
->bd_info
->bb_counters
[order
]--;
1293 e4b
->bd_info
->bb_counters
[order
]--;
1297 e4b
->bd_info
->bb_counters
[order
]++;
1299 mb_clear_bit(block
, buddy2
);
1303 mb_check_buddy(e4b
);
1306 static int mb_find_extent(struct ext4_buddy
*e4b
, int order
, int block
,
1307 int needed
, struct ext4_free_extent
*ex
)
1314 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
1317 buddy
= mb_find_buddy(e4b
, order
, &max
);
1318 BUG_ON(buddy
== NULL
);
1319 BUG_ON(block
>= max
);
1320 if (mb_test_bit(block
, buddy
)) {
1327 /* FIXME dorp order completely ? */
1328 if (likely(order
== 0)) {
1329 /* find actual order */
1330 order
= mb_find_order_for_block(e4b
, block
);
1331 block
= block
>> order
;
1334 ex
->fe_len
= 1 << order
;
1335 ex
->fe_start
= block
<< order
;
1336 ex
->fe_group
= e4b
->bd_group
;
1338 /* calc difference from given start */
1339 next
= next
- ex
->fe_start
;
1341 ex
->fe_start
+= next
;
1343 while (needed
> ex
->fe_len
&&
1344 (buddy
= mb_find_buddy(e4b
, order
, &max
))) {
1346 if (block
+ 1 >= max
)
1349 next
= (block
+ 1) * (1 << order
);
1350 if (mb_test_bit(next
, EXT4_MB_BITMAP(e4b
)))
1353 ord
= mb_find_order_for_block(e4b
, next
);
1356 block
= next
>> order
;
1357 ex
->fe_len
+= 1 << order
;
1360 BUG_ON(ex
->fe_start
+ ex
->fe_len
> (1 << (e4b
->bd_blkbits
+ 3)));
1364 static int mb_mark_used(struct ext4_buddy
*e4b
, struct ext4_free_extent
*ex
)
1370 int start
= ex
->fe_start
;
1371 int len
= ex
->fe_len
;
1376 BUG_ON(start
+ len
> (e4b
->bd_sb
->s_blocksize
<< 3));
1377 BUG_ON(e4b
->bd_group
!= ex
->fe_group
);
1378 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
1379 mb_check_buddy(e4b
);
1380 mb_mark_used_double(e4b
, start
, len
);
1382 e4b
->bd_info
->bb_free
-= len
;
1383 if (e4b
->bd_info
->bb_first_free
== start
)
1384 e4b
->bd_info
->bb_first_free
+= len
;
1386 /* let's maintain fragments counter */
1388 mlen
= !mb_test_bit(start
- 1, EXT4_MB_BITMAP(e4b
));
1389 if (start
+ len
< EXT4_SB(e4b
->bd_sb
)->s_mb_maxs
[0])
1390 max
= !mb_test_bit(start
+ len
, EXT4_MB_BITMAP(e4b
));
1392 e4b
->bd_info
->bb_fragments
++;
1393 else if (!mlen
&& !max
)
1394 e4b
->bd_info
->bb_fragments
--;
1396 /* let's maintain buddy itself */
1398 ord
= mb_find_order_for_block(e4b
, start
);
1400 if (((start
>> ord
) << ord
) == start
&& len
>= (1 << ord
)) {
1401 /* the whole chunk may be allocated at once! */
1403 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1404 BUG_ON((start
>> ord
) >= max
);
1405 mb_set_bit(start
>> ord
, buddy
);
1406 e4b
->bd_info
->bb_counters
[ord
]--;
1413 /* store for history */
1415 ret
= len
| (ord
<< 16);
1417 /* we have to split large buddy */
1419 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1420 mb_set_bit(start
>> ord
, buddy
);
1421 e4b
->bd_info
->bb_counters
[ord
]--;
1424 cur
= (start
>> ord
) & ~1U;
1425 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1426 mb_clear_bit(cur
, buddy
);
1427 mb_clear_bit(cur
+ 1, buddy
);
1428 e4b
->bd_info
->bb_counters
[ord
]++;
1429 e4b
->bd_info
->bb_counters
[ord
]++;
1432 mb_set_bits(EXT4_MB_BITMAP(e4b
), ex
->fe_start
, len0
);
1433 mb_check_buddy(e4b
);
1439 * Must be called under group lock!
1441 static void ext4_mb_use_best_found(struct ext4_allocation_context
*ac
,
1442 struct ext4_buddy
*e4b
)
1444 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1447 BUG_ON(ac
->ac_b_ex
.fe_group
!= e4b
->bd_group
);
1448 BUG_ON(ac
->ac_status
== AC_STATUS_FOUND
);
1450 ac
->ac_b_ex
.fe_len
= min(ac
->ac_b_ex
.fe_len
, ac
->ac_g_ex
.fe_len
);
1451 ac
->ac_b_ex
.fe_logical
= ac
->ac_g_ex
.fe_logical
;
1452 ret
= mb_mark_used(e4b
, &ac
->ac_b_ex
);
1454 /* preallocation can change ac_b_ex, thus we store actually
1455 * allocated blocks for history */
1456 ac
->ac_f_ex
= ac
->ac_b_ex
;
1458 ac
->ac_status
= AC_STATUS_FOUND
;
1459 ac
->ac_tail
= ret
& 0xffff;
1460 ac
->ac_buddy
= ret
>> 16;
1463 * take the page reference. We want the page to be pinned
1464 * so that we don't get a ext4_mb_init_cache_call for this
1465 * group until we update the bitmap. That would mean we
1466 * double allocate blocks. The reference is dropped
1467 * in ext4_mb_release_context
1469 ac
->ac_bitmap_page
= e4b
->bd_bitmap_page
;
1470 get_page(ac
->ac_bitmap_page
);
1471 ac
->ac_buddy_page
= e4b
->bd_buddy_page
;
1472 get_page(ac
->ac_buddy_page
);
1473 /* on allocation we use ac to track the held semaphore */
1474 ac
->alloc_semp
= e4b
->alloc_semp
;
1475 e4b
->alloc_semp
= NULL
;
1476 /* store last allocated for subsequent stream allocation */
1477 if (ac
->ac_flags
& EXT4_MB_STREAM_ALLOC
) {
1478 spin_lock(&sbi
->s_md_lock
);
1479 sbi
->s_mb_last_group
= ac
->ac_f_ex
.fe_group
;
1480 sbi
->s_mb_last_start
= ac
->ac_f_ex
.fe_start
;
1481 spin_unlock(&sbi
->s_md_lock
);
1486 * regular allocator, for general purposes allocation
1489 static void ext4_mb_check_limits(struct ext4_allocation_context
*ac
,
1490 struct ext4_buddy
*e4b
,
1493 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1494 struct ext4_free_extent
*bex
= &ac
->ac_b_ex
;
1495 struct ext4_free_extent
*gex
= &ac
->ac_g_ex
;
1496 struct ext4_free_extent ex
;
1499 if (ac
->ac_status
== AC_STATUS_FOUND
)
1502 * We don't want to scan for a whole year
1504 if (ac
->ac_found
> sbi
->s_mb_max_to_scan
&&
1505 !(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
1506 ac
->ac_status
= AC_STATUS_BREAK
;
1511 * Haven't found good chunk so far, let's continue
1513 if (bex
->fe_len
< gex
->fe_len
)
1516 if ((finish_group
|| ac
->ac_found
> sbi
->s_mb_min_to_scan
)
1517 && bex
->fe_group
== e4b
->bd_group
) {
1518 /* recheck chunk's availability - we don't know
1519 * when it was found (within this lock-unlock
1521 max
= mb_find_extent(e4b
, 0, bex
->fe_start
, gex
->fe_len
, &ex
);
1522 if (max
>= gex
->fe_len
) {
1523 ext4_mb_use_best_found(ac
, e4b
);
1530 * The routine checks whether found extent is good enough. If it is,
1531 * then the extent gets marked used and flag is set to the context
1532 * to stop scanning. Otherwise, the extent is compared with the
1533 * previous found extent and if new one is better, then it's stored
1534 * in the context. Later, the best found extent will be used, if
1535 * mballoc can't find good enough extent.
1537 * FIXME: real allocation policy is to be designed yet!
1539 static void ext4_mb_measure_extent(struct ext4_allocation_context
*ac
,
1540 struct ext4_free_extent
*ex
,
1541 struct ext4_buddy
*e4b
)
1543 struct ext4_free_extent
*bex
= &ac
->ac_b_ex
;
1544 struct ext4_free_extent
*gex
= &ac
->ac_g_ex
;
1546 BUG_ON(ex
->fe_len
<= 0);
1547 BUG_ON(ex
->fe_len
> EXT4_BLOCKS_PER_GROUP(ac
->ac_sb
));
1548 BUG_ON(ex
->fe_start
>= EXT4_BLOCKS_PER_GROUP(ac
->ac_sb
));
1549 BUG_ON(ac
->ac_status
!= AC_STATUS_CONTINUE
);
1554 * The special case - take what you catch first
1556 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
1558 ext4_mb_use_best_found(ac
, e4b
);
1563 * Let's check whether the chuck is good enough
1565 if (ex
->fe_len
== gex
->fe_len
) {
1567 ext4_mb_use_best_found(ac
, e4b
);
1572 * If this is first found extent, just store it in the context
1574 if (bex
->fe_len
== 0) {
1580 * If new found extent is better, store it in the context
1582 if (bex
->fe_len
< gex
->fe_len
) {
1583 /* if the request isn't satisfied, any found extent
1584 * larger than previous best one is better */
1585 if (ex
->fe_len
> bex
->fe_len
)
1587 } else if (ex
->fe_len
> gex
->fe_len
) {
1588 /* if the request is satisfied, then we try to find
1589 * an extent that still satisfy the request, but is
1590 * smaller than previous one */
1591 if (ex
->fe_len
< bex
->fe_len
)
1595 ext4_mb_check_limits(ac
, e4b
, 0);
1598 static noinline_for_stack
1599 int ext4_mb_try_best_found(struct ext4_allocation_context
*ac
,
1600 struct ext4_buddy
*e4b
)
1602 struct ext4_free_extent ex
= ac
->ac_b_ex
;
1603 ext4_group_t group
= ex
.fe_group
;
1607 BUG_ON(ex
.fe_len
<= 0);
1608 err
= ext4_mb_load_buddy(ac
->ac_sb
, group
, e4b
);
1612 ext4_lock_group(ac
->ac_sb
, group
);
1613 max
= mb_find_extent(e4b
, 0, ex
.fe_start
, ex
.fe_len
, &ex
);
1617 ext4_mb_use_best_found(ac
, e4b
);
1620 ext4_unlock_group(ac
->ac_sb
, group
);
1621 ext4_mb_release_desc(e4b
);
1626 static noinline_for_stack
1627 int ext4_mb_find_by_goal(struct ext4_allocation_context
*ac
,
1628 struct ext4_buddy
*e4b
)
1630 ext4_group_t group
= ac
->ac_g_ex
.fe_group
;
1633 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1634 struct ext4_super_block
*es
= sbi
->s_es
;
1635 struct ext4_free_extent ex
;
1637 if (!(ac
->ac_flags
& EXT4_MB_HINT_TRY_GOAL
))
1640 err
= ext4_mb_load_buddy(ac
->ac_sb
, group
, e4b
);
1644 ext4_lock_group(ac
->ac_sb
, group
);
1645 max
= mb_find_extent(e4b
, 0, ac
->ac_g_ex
.fe_start
,
1646 ac
->ac_g_ex
.fe_len
, &ex
);
1648 if (max
>= ac
->ac_g_ex
.fe_len
&& ac
->ac_g_ex
.fe_len
== sbi
->s_stripe
) {
1651 start
= (e4b
->bd_group
* EXT4_BLOCKS_PER_GROUP(ac
->ac_sb
)) +
1652 ex
.fe_start
+ le32_to_cpu(es
->s_first_data_block
);
1653 /* use do_div to get remainder (would be 64-bit modulo) */
1654 if (do_div(start
, sbi
->s_stripe
) == 0) {
1657 ext4_mb_use_best_found(ac
, e4b
);
1659 } else if (max
>= ac
->ac_g_ex
.fe_len
) {
1660 BUG_ON(ex
.fe_len
<= 0);
1661 BUG_ON(ex
.fe_group
!= ac
->ac_g_ex
.fe_group
);
1662 BUG_ON(ex
.fe_start
!= ac
->ac_g_ex
.fe_start
);
1665 ext4_mb_use_best_found(ac
, e4b
);
1666 } else if (max
> 0 && (ac
->ac_flags
& EXT4_MB_HINT_MERGE
)) {
1667 /* Sometimes, caller may want to merge even small
1668 * number of blocks to an existing extent */
1669 BUG_ON(ex
.fe_len
<= 0);
1670 BUG_ON(ex
.fe_group
!= ac
->ac_g_ex
.fe_group
);
1671 BUG_ON(ex
.fe_start
!= ac
->ac_g_ex
.fe_start
);
1674 ext4_mb_use_best_found(ac
, e4b
);
1676 ext4_unlock_group(ac
->ac_sb
, group
);
1677 ext4_mb_release_desc(e4b
);
1683 * The routine scans buddy structures (not bitmap!) from given order
1684 * to max order and tries to find big enough chunk to satisfy the req
1686 static noinline_for_stack
1687 void ext4_mb_simple_scan_group(struct ext4_allocation_context
*ac
,
1688 struct ext4_buddy
*e4b
)
1690 struct super_block
*sb
= ac
->ac_sb
;
1691 struct ext4_group_info
*grp
= e4b
->bd_info
;
1697 BUG_ON(ac
->ac_2order
<= 0);
1698 for (i
= ac
->ac_2order
; i
<= sb
->s_blocksize_bits
+ 1; i
++) {
1699 if (grp
->bb_counters
[i
] == 0)
1702 buddy
= mb_find_buddy(e4b
, i
, &max
);
1703 BUG_ON(buddy
== NULL
);
1705 k
= mb_find_next_zero_bit(buddy
, max
, 0);
1710 ac
->ac_b_ex
.fe_len
= 1 << i
;
1711 ac
->ac_b_ex
.fe_start
= k
<< i
;
1712 ac
->ac_b_ex
.fe_group
= e4b
->bd_group
;
1714 ext4_mb_use_best_found(ac
, e4b
);
1716 BUG_ON(ac
->ac_b_ex
.fe_len
!= ac
->ac_g_ex
.fe_len
);
1718 if (EXT4_SB(sb
)->s_mb_stats
)
1719 atomic_inc(&EXT4_SB(sb
)->s_bal_2orders
);
1726 * The routine scans the group and measures all found extents.
1727 * In order to optimize scanning, caller must pass number of
1728 * free blocks in the group, so the routine can know upper limit.
1730 static noinline_for_stack
1731 void ext4_mb_complex_scan_group(struct ext4_allocation_context
*ac
,
1732 struct ext4_buddy
*e4b
)
1734 struct super_block
*sb
= ac
->ac_sb
;
1735 void *bitmap
= EXT4_MB_BITMAP(e4b
);
1736 struct ext4_free_extent ex
;
1740 free
= e4b
->bd_info
->bb_free
;
1743 i
= e4b
->bd_info
->bb_first_free
;
1745 while (free
&& ac
->ac_status
== AC_STATUS_CONTINUE
) {
1746 i
= mb_find_next_zero_bit(bitmap
,
1747 EXT4_BLOCKS_PER_GROUP(sb
), i
);
1748 if (i
>= EXT4_BLOCKS_PER_GROUP(sb
)) {
1750 * IF we have corrupt bitmap, we won't find any
1751 * free blocks even though group info says we
1752 * we have free blocks
1754 ext4_grp_locked_error(sb
, e4b
->bd_group
,
1755 __func__
, "%d free blocks as per "
1756 "group info. But bitmap says 0",
1761 mb_find_extent(e4b
, 0, i
, ac
->ac_g_ex
.fe_len
, &ex
);
1762 BUG_ON(ex
.fe_len
<= 0);
1763 if (free
< ex
.fe_len
) {
1764 ext4_grp_locked_error(sb
, e4b
->bd_group
,
1765 __func__
, "%d free blocks as per "
1766 "group info. But got %d blocks",
1769 * The number of free blocks differs. This mostly
1770 * indicate that the bitmap is corrupt. So exit
1771 * without claiming the space.
1776 ext4_mb_measure_extent(ac
, &ex
, e4b
);
1782 ext4_mb_check_limits(ac
, e4b
, 1);
1786 * This is a special case for storages like raid5
1787 * we try to find stripe-aligned chunks for stripe-size requests
1788 * XXX should do so at least for multiples of stripe size as well
1790 static noinline_for_stack
1791 void ext4_mb_scan_aligned(struct ext4_allocation_context
*ac
,
1792 struct ext4_buddy
*e4b
)
1794 struct super_block
*sb
= ac
->ac_sb
;
1795 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1796 void *bitmap
= EXT4_MB_BITMAP(e4b
);
1797 struct ext4_free_extent ex
;
1798 ext4_fsblk_t first_group_block
;
1803 BUG_ON(sbi
->s_stripe
== 0);
1805 /* find first stripe-aligned block in group */
1806 first_group_block
= e4b
->bd_group
* EXT4_BLOCKS_PER_GROUP(sb
)
1807 + le32_to_cpu(sbi
->s_es
->s_first_data_block
);
1808 a
= first_group_block
+ sbi
->s_stripe
- 1;
1809 do_div(a
, sbi
->s_stripe
);
1810 i
= (a
* sbi
->s_stripe
) - first_group_block
;
1812 while (i
< EXT4_BLOCKS_PER_GROUP(sb
)) {
1813 if (!mb_test_bit(i
, bitmap
)) {
1814 max
= mb_find_extent(e4b
, 0, i
, sbi
->s_stripe
, &ex
);
1815 if (max
>= sbi
->s_stripe
) {
1818 ext4_mb_use_best_found(ac
, e4b
);
1826 static int ext4_mb_good_group(struct ext4_allocation_context
*ac
,
1827 ext4_group_t group
, int cr
)
1829 unsigned free
, fragments
;
1831 int flex_size
= ext4_flex_bg_size(EXT4_SB(ac
->ac_sb
));
1832 struct ext4_group_info
*grp
= ext4_get_group_info(ac
->ac_sb
, group
);
1834 BUG_ON(cr
< 0 || cr
>= 4);
1835 BUG_ON(EXT4_MB_GRP_NEED_INIT(grp
));
1837 free
= grp
->bb_free
;
1838 fragments
= grp
->bb_fragments
;
1846 BUG_ON(ac
->ac_2order
== 0);
1848 /* Avoid using the first bg of a flexgroup for data files */
1849 if ((ac
->ac_flags
& EXT4_MB_HINT_DATA
) &&
1850 (flex_size
>= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
) &&
1851 ((group
% flex_size
) == 0))
1854 bits
= ac
->ac_sb
->s_blocksize_bits
+ 1;
1855 for (i
= ac
->ac_2order
; i
<= bits
; i
++)
1856 if (grp
->bb_counters
[i
] > 0)
1860 if ((free
/ fragments
) >= ac
->ac_g_ex
.fe_len
)
1864 if (free
>= ac
->ac_g_ex
.fe_len
)
1877 * lock the group_info alloc_sem of all the groups
1878 * belonging to the same buddy cache page. This
1879 * make sure other parallel operation on the buddy
1880 * cache doesn't happen whild holding the buddy cache
1883 int ext4_mb_get_buddy_cache_lock(struct super_block
*sb
, ext4_group_t group
)
1887 int blocks_per_page
;
1888 int groups_per_page
;
1889 ext4_group_t ngroups
= ext4_get_groups_count(sb
);
1890 ext4_group_t first_group
;
1891 struct ext4_group_info
*grp
;
1893 blocks_per_page
= PAGE_CACHE_SIZE
/ sb
->s_blocksize
;
1895 * the buddy cache inode stores the block bitmap
1896 * and buddy information in consecutive blocks.
1897 * So for each group we need two blocks.
1900 pnum
= block
/ blocks_per_page
;
1901 first_group
= pnum
* blocks_per_page
/ 2;
1903 groups_per_page
= blocks_per_page
>> 1;
1904 if (groups_per_page
== 0)
1905 groups_per_page
= 1;
1906 /* read all groups the page covers into the cache */
1907 for (i
= 0; i
< groups_per_page
; i
++) {
1909 if ((first_group
+ i
) >= ngroups
)
1911 grp
= ext4_get_group_info(sb
, first_group
+ i
);
1912 /* take all groups write allocation
1913 * semaphore. This make sure there is
1914 * no block allocation going on in any
1917 down_write_nested(&grp
->alloc_sem
, i
);
1922 void ext4_mb_put_buddy_cache_lock(struct super_block
*sb
,
1923 ext4_group_t group
, int locked_group
)
1927 int blocks_per_page
;
1928 ext4_group_t first_group
;
1929 struct ext4_group_info
*grp
;
1931 blocks_per_page
= PAGE_CACHE_SIZE
/ sb
->s_blocksize
;
1933 * the buddy cache inode stores the block bitmap
1934 * and buddy information in consecutive blocks.
1935 * So for each group we need two blocks.
1938 pnum
= block
/ blocks_per_page
;
1939 first_group
= pnum
* blocks_per_page
/ 2;
1940 /* release locks on all the groups */
1941 for (i
= 0; i
< locked_group
; i
++) {
1943 grp
= ext4_get_group_info(sb
, first_group
+ i
);
1944 /* take all groups write allocation
1945 * semaphore. This make sure there is
1946 * no block allocation going on in any
1949 up_write(&grp
->alloc_sem
);
1954 static noinline_for_stack
int
1955 ext4_mb_regular_allocator(struct ext4_allocation_context
*ac
)
1957 ext4_group_t ngroups
, group
, i
;
1961 struct ext4_sb_info
*sbi
;
1962 struct super_block
*sb
;
1963 struct ext4_buddy e4b
;
1967 ngroups
= ext4_get_groups_count(sb
);
1968 /* non-extent files are limited to low blocks/groups */
1969 if (!(EXT4_I(ac
->ac_inode
)->i_flags
& EXT4_EXTENTS_FL
))
1970 ngroups
= sbi
->s_blockfile_groups
;
1972 BUG_ON(ac
->ac_status
== AC_STATUS_FOUND
);
1974 /* first, try the goal */
1975 err
= ext4_mb_find_by_goal(ac
, &e4b
);
1976 if (err
|| ac
->ac_status
== AC_STATUS_FOUND
)
1979 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
1983 * ac->ac2_order is set only if the fe_len is a power of 2
1984 * if ac2_order is set we also set criteria to 0 so that we
1985 * try exact allocation using buddy.
1987 i
= fls(ac
->ac_g_ex
.fe_len
);
1990 * We search using buddy data only if the order of the request
1991 * is greater than equal to the sbi_s_mb_order2_reqs
1992 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
1994 if (i
>= sbi
->s_mb_order2_reqs
) {
1996 * This should tell if fe_len is exactly power of 2
1998 if ((ac
->ac_g_ex
.fe_len
& (~(1 << (i
- 1)))) == 0)
1999 ac
->ac_2order
= i
- 1;
2002 bsbits
= ac
->ac_sb
->s_blocksize_bits
;
2004 /* if stream allocation is enabled, use global goal */
2005 if (ac
->ac_flags
& EXT4_MB_STREAM_ALLOC
) {
2006 /* TBD: may be hot point */
2007 spin_lock(&sbi
->s_md_lock
);
2008 ac
->ac_g_ex
.fe_group
= sbi
->s_mb_last_group
;
2009 ac
->ac_g_ex
.fe_start
= sbi
->s_mb_last_start
;
2010 spin_unlock(&sbi
->s_md_lock
);
2013 /* Let's just scan groups to find more-less suitable blocks */
2014 cr
= ac
->ac_2order
? 0 : 1;
2016 * cr == 0 try to get exact allocation,
2017 * cr == 3 try to get anything
2020 for (; cr
< 4 && ac
->ac_status
== AC_STATUS_CONTINUE
; cr
++) {
2021 ac
->ac_criteria
= cr
;
2023 * searching for the right group start
2024 * from the goal value specified
2026 group
= ac
->ac_g_ex
.fe_group
;
2028 for (i
= 0; i
< ngroups
; group
++, i
++) {
2029 struct ext4_group_info
*grp
;
2030 struct ext4_group_desc
*desc
;
2032 if (group
== ngroups
)
2035 /* quick check to skip empty groups */
2036 grp
= ext4_get_group_info(sb
, group
);
2037 if (grp
->bb_free
== 0)
2040 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
2044 ext4_lock_group(sb
, group
);
2045 if (!ext4_mb_good_group(ac
, group
, cr
)) {
2046 /* someone did allocation from this group */
2047 ext4_unlock_group(sb
, group
);
2048 ext4_mb_release_desc(&e4b
);
2052 ac
->ac_groups_scanned
++;
2053 desc
= ext4_get_group_desc(sb
, group
, NULL
);
2055 ext4_mb_simple_scan_group(ac
, &e4b
);
2057 ac
->ac_g_ex
.fe_len
== sbi
->s_stripe
)
2058 ext4_mb_scan_aligned(ac
, &e4b
);
2060 ext4_mb_complex_scan_group(ac
, &e4b
);
2062 ext4_unlock_group(sb
, group
);
2063 ext4_mb_release_desc(&e4b
);
2065 if (ac
->ac_status
!= AC_STATUS_CONTINUE
)
2070 if (ac
->ac_b_ex
.fe_len
> 0 && ac
->ac_status
!= AC_STATUS_FOUND
&&
2071 !(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
2073 * We've been searching too long. Let's try to allocate
2074 * the best chunk we've found so far
2077 ext4_mb_try_best_found(ac
, &e4b
);
2078 if (ac
->ac_status
!= AC_STATUS_FOUND
) {
2080 * Someone more lucky has already allocated it.
2081 * The only thing we can do is just take first
2083 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2085 ac
->ac_b_ex
.fe_group
= 0;
2086 ac
->ac_b_ex
.fe_start
= 0;
2087 ac
->ac_b_ex
.fe_len
= 0;
2088 ac
->ac_status
= AC_STATUS_CONTINUE
;
2089 ac
->ac_flags
|= EXT4_MB_HINT_FIRST
;
2091 atomic_inc(&sbi
->s_mb_lost_chunks
);
2099 static void *ext4_mb_seq_groups_start(struct seq_file
*seq
, loff_t
*pos
)
2101 struct super_block
*sb
= seq
->private;
2104 if (*pos
< 0 || *pos
>= ext4_get_groups_count(sb
))
2107 return (void *) ((unsigned long) group
);
2110 static void *ext4_mb_seq_groups_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2112 struct super_block
*sb
= seq
->private;
2116 if (*pos
< 0 || *pos
>= ext4_get_groups_count(sb
))
2119 return (void *) ((unsigned long) group
);
2122 static int ext4_mb_seq_groups_show(struct seq_file
*seq
, void *v
)
2124 struct super_block
*sb
= seq
->private;
2125 ext4_group_t group
= (ext4_group_t
) ((unsigned long) v
);
2128 struct ext4_buddy e4b
;
2130 struct ext4_group_info info
;
2131 ext4_grpblk_t counters
[16];
2136 seq_printf(seq
, "#%-5s: %-5s %-5s %-5s "
2137 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2138 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2139 "group", "free", "frags", "first",
2140 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2141 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2143 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(sg
.info
.bb_counters
[0]) +
2144 sizeof(struct ext4_group_info
);
2145 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
2147 seq_printf(seq
, "#%-5u: I/O error\n", group
);
2150 ext4_lock_group(sb
, group
);
2151 memcpy(&sg
, ext4_get_group_info(sb
, group
), i
);
2152 ext4_unlock_group(sb
, group
);
2153 ext4_mb_release_desc(&e4b
);
2155 seq_printf(seq
, "#%-5u: %-5u %-5u %-5u [", group
, sg
.info
.bb_free
,
2156 sg
.info
.bb_fragments
, sg
.info
.bb_first_free
);
2157 for (i
= 0; i
<= 13; i
++)
2158 seq_printf(seq
, " %-5u", i
<= sb
->s_blocksize_bits
+ 1 ?
2159 sg
.info
.bb_counters
[i
] : 0);
2160 seq_printf(seq
, " ]\n");
2165 static void ext4_mb_seq_groups_stop(struct seq_file
*seq
, void *v
)
2169 static const struct seq_operations ext4_mb_seq_groups_ops
= {
2170 .start
= ext4_mb_seq_groups_start
,
2171 .next
= ext4_mb_seq_groups_next
,
2172 .stop
= ext4_mb_seq_groups_stop
,
2173 .show
= ext4_mb_seq_groups_show
,
2176 static int ext4_mb_seq_groups_open(struct inode
*inode
, struct file
*file
)
2178 struct super_block
*sb
= PDE(inode
)->data
;
2181 rc
= seq_open(file
, &ext4_mb_seq_groups_ops
);
2183 struct seq_file
*m
= (struct seq_file
*)file
->private_data
;
2190 static const struct file_operations ext4_mb_seq_groups_fops
= {
2191 .owner
= THIS_MODULE
,
2192 .open
= ext4_mb_seq_groups_open
,
2194 .llseek
= seq_lseek
,
2195 .release
= seq_release
,
2199 /* Create and initialize ext4_group_info data for the given group. */
2200 int ext4_mb_add_groupinfo(struct super_block
*sb
, ext4_group_t group
,
2201 struct ext4_group_desc
*desc
)
2205 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2206 struct ext4_group_info
**meta_group_info
;
2209 * First check if this group is the first of a reserved block.
2210 * If it's true, we have to allocate a new table of pointers
2211 * to ext4_group_info structures
2213 if (group
% EXT4_DESC_PER_BLOCK(sb
) == 0) {
2214 metalen
= sizeof(*meta_group_info
) <<
2215 EXT4_DESC_PER_BLOCK_BITS(sb
);
2216 meta_group_info
= kmalloc(metalen
, GFP_KERNEL
);
2217 if (meta_group_info
== NULL
) {
2218 printk(KERN_ERR
"EXT4-fs: can't allocate mem for a "
2220 goto exit_meta_group_info
;
2222 sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)] =
2227 * calculate needed size. if change bb_counters size,
2228 * don't forget about ext4_mb_generate_buddy()
2230 len
= offsetof(typeof(**meta_group_info
),
2231 bb_counters
[sb
->s_blocksize_bits
+ 2]);
2234 sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)];
2235 i
= group
& (EXT4_DESC_PER_BLOCK(sb
) - 1);
2237 meta_group_info
[i
] = kzalloc(len
, GFP_KERNEL
);
2238 if (meta_group_info
[i
] == NULL
) {
2239 printk(KERN_ERR
"EXT4-fs: can't allocate buddy mem\n");
2240 goto exit_group_info
;
2242 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT
,
2243 &(meta_group_info
[i
]->bb_state
));
2246 * initialize bb_free to be able to skip
2247 * empty groups without initialization
2249 if (desc
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
2250 meta_group_info
[i
]->bb_free
=
2251 ext4_free_blocks_after_init(sb
, group
, desc
);
2253 meta_group_info
[i
]->bb_free
=
2254 ext4_free_blks_count(sb
, desc
);
2257 INIT_LIST_HEAD(&meta_group_info
[i
]->bb_prealloc_list
);
2258 init_rwsem(&meta_group_info
[i
]->alloc_sem
);
2259 meta_group_info
[i
]->bb_free_root
.rb_node
= NULL
;
2263 struct buffer_head
*bh
;
2264 meta_group_info
[i
]->bb_bitmap
=
2265 kmalloc(sb
->s_blocksize
, GFP_KERNEL
);
2266 BUG_ON(meta_group_info
[i
]->bb_bitmap
== NULL
);
2267 bh
= ext4_read_block_bitmap(sb
, group
);
2269 memcpy(meta_group_info
[i
]->bb_bitmap
, bh
->b_data
,
2278 /* If a meta_group_info table has been allocated, release it now */
2279 if (group
% EXT4_DESC_PER_BLOCK(sb
) == 0)
2280 kfree(sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)]);
2281 exit_meta_group_info
:
2283 } /* ext4_mb_add_groupinfo */
2285 static int ext4_mb_init_backend(struct super_block
*sb
)
2287 ext4_group_t ngroups
= ext4_get_groups_count(sb
);
2289 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2290 struct ext4_super_block
*es
= sbi
->s_es
;
2291 int num_meta_group_infos
;
2292 int num_meta_group_infos_max
;
2294 struct ext4_group_desc
*desc
;
2296 /* This is the number of blocks used by GDT */
2297 num_meta_group_infos
= (ngroups
+ EXT4_DESC_PER_BLOCK(sb
) -
2298 1) >> EXT4_DESC_PER_BLOCK_BITS(sb
);
2301 * This is the total number of blocks used by GDT including
2302 * the number of reserved blocks for GDT.
2303 * The s_group_info array is allocated with this value
2304 * to allow a clean online resize without a complex
2305 * manipulation of pointer.
2306 * The drawback is the unused memory when no resize
2307 * occurs but it's very low in terms of pages
2308 * (see comments below)
2309 * Need to handle this properly when META_BG resizing is allowed
2311 num_meta_group_infos_max
= num_meta_group_infos
+
2312 le16_to_cpu(es
->s_reserved_gdt_blocks
);
2315 * array_size is the size of s_group_info array. We round it
2316 * to the next power of two because this approximation is done
2317 * internally by kmalloc so we can have some more memory
2318 * for free here (e.g. may be used for META_BG resize).
2321 while (array_size
< sizeof(*sbi
->s_group_info
) *
2322 num_meta_group_infos_max
)
2323 array_size
= array_size
<< 1;
2324 /* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2325 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2326 * So a two level scheme suffices for now. */
2327 sbi
->s_group_info
= kmalloc(array_size
, GFP_KERNEL
);
2328 if (sbi
->s_group_info
== NULL
) {
2329 printk(KERN_ERR
"EXT4-fs: can't allocate buddy meta group\n");
2332 sbi
->s_buddy_cache
= new_inode(sb
);
2333 if (sbi
->s_buddy_cache
== NULL
) {
2334 printk(KERN_ERR
"EXT4-fs: can't get new inode\n");
2337 EXT4_I(sbi
->s_buddy_cache
)->i_disksize
= 0;
2338 for (i
= 0; i
< ngroups
; i
++) {
2339 desc
= ext4_get_group_desc(sb
, i
, NULL
);
2342 "EXT4-fs: can't read descriptor %u\n", i
);
2345 if (ext4_mb_add_groupinfo(sb
, i
, desc
) != 0)
2353 kfree(ext4_get_group_info(sb
, i
));
2354 i
= num_meta_group_infos
;
2356 kfree(sbi
->s_group_info
[i
]);
2357 iput(sbi
->s_buddy_cache
);
2359 kfree(sbi
->s_group_info
);
2363 int ext4_mb_init(struct super_block
*sb
, int needs_recovery
)
2365 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2371 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(*sbi
->s_mb_offsets
);
2373 sbi
->s_mb_offsets
= kmalloc(i
, GFP_KERNEL
);
2374 if (sbi
->s_mb_offsets
== NULL
) {
2378 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(*sbi
->s_mb_maxs
);
2379 sbi
->s_mb_maxs
= kmalloc(i
, GFP_KERNEL
);
2380 if (sbi
->s_mb_maxs
== NULL
) {
2381 kfree(sbi
->s_mb_offsets
);
2385 /* order 0 is regular bitmap */
2386 sbi
->s_mb_maxs
[0] = sb
->s_blocksize
<< 3;
2387 sbi
->s_mb_offsets
[0] = 0;
2391 max
= sb
->s_blocksize
<< 2;
2393 sbi
->s_mb_offsets
[i
] = offset
;
2394 sbi
->s_mb_maxs
[i
] = max
;
2395 offset
+= 1 << (sb
->s_blocksize_bits
- i
);
2398 } while (i
<= sb
->s_blocksize_bits
+ 1);
2400 /* init file for buddy data */
2401 ret
= ext4_mb_init_backend(sb
);
2403 kfree(sbi
->s_mb_offsets
);
2404 kfree(sbi
->s_mb_maxs
);
2408 spin_lock_init(&sbi
->s_md_lock
);
2409 spin_lock_init(&sbi
->s_bal_lock
);
2411 sbi
->s_mb_max_to_scan
= MB_DEFAULT_MAX_TO_SCAN
;
2412 sbi
->s_mb_min_to_scan
= MB_DEFAULT_MIN_TO_SCAN
;
2413 sbi
->s_mb_stats
= MB_DEFAULT_STATS
;
2414 sbi
->s_mb_stream_request
= MB_DEFAULT_STREAM_THRESHOLD
;
2415 sbi
->s_mb_order2_reqs
= MB_DEFAULT_ORDER2_REQS
;
2416 sbi
->s_mb_group_prealloc
= MB_DEFAULT_GROUP_PREALLOC
;
2418 sbi
->s_locality_groups
= alloc_percpu(struct ext4_locality_group
);
2419 if (sbi
->s_locality_groups
== NULL
) {
2420 kfree(sbi
->s_mb_offsets
);
2421 kfree(sbi
->s_mb_maxs
);
2424 for_each_possible_cpu(i
) {
2425 struct ext4_locality_group
*lg
;
2426 lg
= per_cpu_ptr(sbi
->s_locality_groups
, i
);
2427 mutex_init(&lg
->lg_mutex
);
2428 for (j
= 0; j
< PREALLOC_TB_SIZE
; j
++)
2429 INIT_LIST_HEAD(&lg
->lg_prealloc_list
[j
]);
2430 spin_lock_init(&lg
->lg_prealloc_lock
);
2434 proc_create_data("mb_groups", S_IRUGO
, sbi
->s_proc
,
2435 &ext4_mb_seq_groups_fops
, sb
);
2438 sbi
->s_journal
->j_commit_callback
= release_blocks_on_commit
;
2442 /* need to called with the ext4 group lock held */
2443 static void ext4_mb_cleanup_pa(struct ext4_group_info
*grp
)
2445 struct ext4_prealloc_space
*pa
;
2446 struct list_head
*cur
, *tmp
;
2449 list_for_each_safe(cur
, tmp
, &grp
->bb_prealloc_list
) {
2450 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
2451 list_del(&pa
->pa_group_list
);
2453 kmem_cache_free(ext4_pspace_cachep
, pa
);
2456 mb_debug(1, "mballoc: %u PAs left\n", count
);
2460 int ext4_mb_release(struct super_block
*sb
)
2462 ext4_group_t ngroups
= ext4_get_groups_count(sb
);
2464 int num_meta_group_infos
;
2465 struct ext4_group_info
*grinfo
;
2466 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2468 if (sbi
->s_group_info
) {
2469 for (i
= 0; i
< ngroups
; i
++) {
2470 grinfo
= ext4_get_group_info(sb
, i
);
2472 kfree(grinfo
->bb_bitmap
);
2474 ext4_lock_group(sb
, i
);
2475 ext4_mb_cleanup_pa(grinfo
);
2476 ext4_unlock_group(sb
, i
);
2479 num_meta_group_infos
= (ngroups
+
2480 EXT4_DESC_PER_BLOCK(sb
) - 1) >>
2481 EXT4_DESC_PER_BLOCK_BITS(sb
);
2482 for (i
= 0; i
< num_meta_group_infos
; i
++)
2483 kfree(sbi
->s_group_info
[i
]);
2484 kfree(sbi
->s_group_info
);
2486 kfree(sbi
->s_mb_offsets
);
2487 kfree(sbi
->s_mb_maxs
);
2488 if (sbi
->s_buddy_cache
)
2489 iput(sbi
->s_buddy_cache
);
2490 if (sbi
->s_mb_stats
) {
2492 "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
2493 atomic_read(&sbi
->s_bal_allocated
),
2494 atomic_read(&sbi
->s_bal_reqs
),
2495 atomic_read(&sbi
->s_bal_success
));
2497 "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
2498 "%u 2^N hits, %u breaks, %u lost\n",
2499 atomic_read(&sbi
->s_bal_ex_scanned
),
2500 atomic_read(&sbi
->s_bal_goals
),
2501 atomic_read(&sbi
->s_bal_2orders
),
2502 atomic_read(&sbi
->s_bal_breaks
),
2503 atomic_read(&sbi
->s_mb_lost_chunks
));
2505 "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
2506 sbi
->s_mb_buddies_generated
++,
2507 sbi
->s_mb_generation_time
);
2509 "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
2510 atomic_read(&sbi
->s_mb_preallocated
),
2511 atomic_read(&sbi
->s_mb_discarded
));
2514 free_percpu(sbi
->s_locality_groups
);
2516 remove_proc_entry("mb_groups", sbi
->s_proc
);
2522 * This function is called by the jbd2 layer once the commit has finished,
2523 * so we know we can free the blocks that were released with that commit.
2525 static void release_blocks_on_commit(journal_t
*journal
, transaction_t
*txn
)
2527 struct super_block
*sb
= journal
->j_private
;
2528 struct ext4_buddy e4b
;
2529 struct ext4_group_info
*db
;
2530 int err
, count
= 0, count2
= 0;
2531 struct ext4_free_data
*entry
;
2532 struct list_head
*l
, *ltmp
;
2534 list_for_each_safe(l
, ltmp
, &txn
->t_private_list
) {
2535 entry
= list_entry(l
, struct ext4_free_data
, list
);
2537 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2538 entry
->count
, entry
->group
, entry
);
2540 err
= ext4_mb_load_buddy(sb
, entry
->group
, &e4b
);
2541 /* we expect to find existing buddy because it's pinned */
2545 /* there are blocks to put in buddy to make them really free */
2546 count
+= entry
->count
;
2548 ext4_lock_group(sb
, entry
->group
);
2549 /* Take it out of per group rb tree */
2550 rb_erase(&entry
->node
, &(db
->bb_free_root
));
2551 mb_free_blocks(NULL
, &e4b
, entry
->start_blk
, entry
->count
);
2553 if (!db
->bb_free_root
.rb_node
) {
2554 /* No more items in the per group rb tree
2555 * balance refcounts from ext4_mb_free_metadata()
2557 page_cache_release(e4b
.bd_buddy_page
);
2558 page_cache_release(e4b
.bd_bitmap_page
);
2560 ext4_unlock_group(sb
, entry
->group
);
2561 if (test_opt(sb
, DISCARD
)) {
2562 ext4_fsblk_t discard_block
;
2563 struct ext4_super_block
*es
= EXT4_SB(sb
)->s_es
;
2565 discard_block
= (ext4_fsblk_t
)entry
->group
*
2566 EXT4_BLOCKS_PER_GROUP(sb
)
2568 + le32_to_cpu(es
->s_first_data_block
);
2569 trace_ext4_discard_blocks(sb
,
2570 (unsigned long long)discard_block
,
2572 sb_issue_discard(sb
, discard_block
, entry
->count
);
2574 kmem_cache_free(ext4_free_ext_cachep
, entry
);
2575 ext4_mb_release_desc(&e4b
);
2578 mb_debug(1, "freed %u blocks in %u structures\n", count
, count2
);
2581 #ifdef CONFIG_EXT4_DEBUG
2582 u8 mb_enable_debug __read_mostly
;
2584 static struct dentry
*debugfs_dir
;
2585 static struct dentry
*debugfs_debug
;
2587 static void __init
ext4_create_debugfs_entry(void)
2589 debugfs_dir
= debugfs_create_dir("ext4", NULL
);
2591 debugfs_debug
= debugfs_create_u8("mballoc-debug",
2597 static void ext4_remove_debugfs_entry(void)
2599 debugfs_remove(debugfs_debug
);
2600 debugfs_remove(debugfs_dir
);
2605 static void __init
ext4_create_debugfs_entry(void)
2609 static void ext4_remove_debugfs_entry(void)
2615 int __init
init_ext4_mballoc(void)
2617 ext4_pspace_cachep
=
2618 kmem_cache_create("ext4_prealloc_space",
2619 sizeof(struct ext4_prealloc_space
),
2620 0, SLAB_RECLAIM_ACCOUNT
, NULL
);
2621 if (ext4_pspace_cachep
== NULL
)
2625 kmem_cache_create("ext4_alloc_context",
2626 sizeof(struct ext4_allocation_context
),
2627 0, SLAB_RECLAIM_ACCOUNT
, NULL
);
2628 if (ext4_ac_cachep
== NULL
) {
2629 kmem_cache_destroy(ext4_pspace_cachep
);
2633 ext4_free_ext_cachep
=
2634 kmem_cache_create("ext4_free_block_extents",
2635 sizeof(struct ext4_free_data
),
2636 0, SLAB_RECLAIM_ACCOUNT
, NULL
);
2637 if (ext4_free_ext_cachep
== NULL
) {
2638 kmem_cache_destroy(ext4_pspace_cachep
);
2639 kmem_cache_destroy(ext4_ac_cachep
);
2642 ext4_create_debugfs_entry();
2646 void exit_ext4_mballoc(void)
2649 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2650 * before destroying the slab cache.
2653 kmem_cache_destroy(ext4_pspace_cachep
);
2654 kmem_cache_destroy(ext4_ac_cachep
);
2655 kmem_cache_destroy(ext4_free_ext_cachep
);
2656 ext4_remove_debugfs_entry();
2661 * Check quota and mark choosed space (ac->ac_b_ex) non-free in bitmaps
2662 * Returns 0 if success or error code
2664 static noinline_for_stack
int
2665 ext4_mb_mark_diskspace_used(struct ext4_allocation_context
*ac
,
2666 handle_t
*handle
, unsigned int reserv_blks
)
2668 struct buffer_head
*bitmap_bh
= NULL
;
2669 struct ext4_super_block
*es
;
2670 struct ext4_group_desc
*gdp
;
2671 struct buffer_head
*gdp_bh
;
2672 struct ext4_sb_info
*sbi
;
2673 struct super_block
*sb
;
2677 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
2678 BUG_ON(ac
->ac_b_ex
.fe_len
<= 0);
2686 bitmap_bh
= ext4_read_block_bitmap(sb
, ac
->ac_b_ex
.fe_group
);
2690 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
2695 gdp
= ext4_get_group_desc(sb
, ac
->ac_b_ex
.fe_group
, &gdp_bh
);
2699 ext4_debug("using block group %u(%d)\n", ac
->ac_b_ex
.fe_group
,
2700 ext4_free_blks_count(sb
, gdp
));
2702 err
= ext4_journal_get_write_access(handle
, gdp_bh
);
2706 block
= ac
->ac_b_ex
.fe_group
* EXT4_BLOCKS_PER_GROUP(sb
)
2707 + ac
->ac_b_ex
.fe_start
2708 + le32_to_cpu(es
->s_first_data_block
);
2710 len
= ac
->ac_b_ex
.fe_len
;
2711 if (!ext4_data_block_valid(sbi
, block
, len
)) {
2712 ext4_error(sb
, "Allocating blocks %llu-%llu which overlap "
2713 "fs metadata\n", block
, block
+len
);
2714 /* File system mounted not to panic on error
2715 * Fix the bitmap and repeat the block allocation
2716 * We leak some of the blocks here.
2718 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
2719 mb_set_bits(bitmap_bh
->b_data
, ac
->ac_b_ex
.fe_start
,
2720 ac
->ac_b_ex
.fe_len
);
2721 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
2722 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
2728 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
2729 #ifdef AGGRESSIVE_CHECK
2732 for (i
= 0; i
< ac
->ac_b_ex
.fe_len
; i
++) {
2733 BUG_ON(mb_test_bit(ac
->ac_b_ex
.fe_start
+ i
,
2734 bitmap_bh
->b_data
));
2738 mb_set_bits(bitmap_bh
->b_data
, ac
->ac_b_ex
.fe_start
,ac
->ac_b_ex
.fe_len
);
2739 if (gdp
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
2740 gdp
->bg_flags
&= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT
);
2741 ext4_free_blks_set(sb
, gdp
,
2742 ext4_free_blocks_after_init(sb
,
2743 ac
->ac_b_ex
.fe_group
, gdp
));
2745 len
= ext4_free_blks_count(sb
, gdp
) - ac
->ac_b_ex
.fe_len
;
2746 ext4_free_blks_set(sb
, gdp
, len
);
2747 gdp
->bg_checksum
= ext4_group_desc_csum(sbi
, ac
->ac_b_ex
.fe_group
, gdp
);
2749 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
2750 percpu_counter_sub(&sbi
->s_freeblocks_counter
, ac
->ac_b_ex
.fe_len
);
2752 * Now reduce the dirty block count also. Should not go negative
2754 if (!(ac
->ac_flags
& EXT4_MB_DELALLOC_RESERVED
))
2755 /* release all the reserved blocks if non delalloc */
2756 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
, reserv_blks
);
2758 if (sbi
->s_log_groups_per_flex
) {
2759 ext4_group_t flex_group
= ext4_flex_group(sbi
,
2760 ac
->ac_b_ex
.fe_group
);
2761 atomic_sub(ac
->ac_b_ex
.fe_len
,
2762 &sbi
->s_flex_groups
[flex_group
].free_blocks
);
2765 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
2768 err
= ext4_handle_dirty_metadata(handle
, NULL
, gdp_bh
);
2777 * here we normalize request for locality group
2778 * Group request are normalized to s_strip size if we set the same via mount
2779 * option. If not we set it to s_mb_group_prealloc which can be configured via
2780 * /sys/fs/ext4/<partition>/mb_group_prealloc
2782 * XXX: should we try to preallocate more than the group has now?
2784 static void ext4_mb_normalize_group_request(struct ext4_allocation_context
*ac
)
2786 struct super_block
*sb
= ac
->ac_sb
;
2787 struct ext4_locality_group
*lg
= ac
->ac_lg
;
2790 if (EXT4_SB(sb
)->s_stripe
)
2791 ac
->ac_g_ex
.fe_len
= EXT4_SB(sb
)->s_stripe
;
2793 ac
->ac_g_ex
.fe_len
= EXT4_SB(sb
)->s_mb_group_prealloc
;
2794 mb_debug(1, "#%u: goal %u blocks for locality group\n",
2795 current
->pid
, ac
->ac_g_ex
.fe_len
);
2799 * Normalization means making request better in terms of
2800 * size and alignment
2802 static noinline_for_stack
void
2803 ext4_mb_normalize_request(struct ext4_allocation_context
*ac
,
2804 struct ext4_allocation_request
*ar
)
2808 loff_t size
, orig_size
, start_off
;
2809 ext4_lblk_t start
, orig_start
;
2810 struct ext4_inode_info
*ei
= EXT4_I(ac
->ac_inode
);
2811 struct ext4_prealloc_space
*pa
;
2813 /* do normalize only data requests, metadata requests
2814 do not need preallocation */
2815 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
2818 /* sometime caller may want exact blocks */
2819 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
2822 /* caller may indicate that preallocation isn't
2823 * required (it's a tail, for example) */
2824 if (ac
->ac_flags
& EXT4_MB_HINT_NOPREALLOC
)
2827 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
) {
2828 ext4_mb_normalize_group_request(ac
);
2832 bsbits
= ac
->ac_sb
->s_blocksize_bits
;
2834 /* first, let's learn actual file size
2835 * given current request is allocated */
2836 size
= ac
->ac_o_ex
.fe_logical
+ ac
->ac_o_ex
.fe_len
;
2837 size
= size
<< bsbits
;
2838 if (size
< i_size_read(ac
->ac_inode
))
2839 size
= i_size_read(ac
->ac_inode
);
2841 /* max size of free chunks */
2844 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
2845 (req <= (size) || max <= (chunk_size))
2847 /* first, try to predict filesize */
2848 /* XXX: should this table be tunable? */
2850 if (size
<= 16 * 1024) {
2852 } else if (size
<= 32 * 1024) {
2854 } else if (size
<= 64 * 1024) {
2856 } else if (size
<= 128 * 1024) {
2858 } else if (size
<= 256 * 1024) {
2860 } else if (size
<= 512 * 1024) {
2862 } else if (size
<= 1024 * 1024) {
2864 } else if (NRL_CHECK_SIZE(size
, 4 * 1024 * 1024, max
, 2 * 1024)) {
2865 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
2866 (21 - bsbits
)) << 21;
2867 size
= 2 * 1024 * 1024;
2868 } else if (NRL_CHECK_SIZE(size
, 8 * 1024 * 1024, max
, 4 * 1024)) {
2869 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
2870 (22 - bsbits
)) << 22;
2871 size
= 4 * 1024 * 1024;
2872 } else if (NRL_CHECK_SIZE(ac
->ac_o_ex
.fe_len
,
2873 (8<<20)>>bsbits
, max
, 8 * 1024)) {
2874 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
2875 (23 - bsbits
)) << 23;
2876 size
= 8 * 1024 * 1024;
2878 start_off
= (loff_t
)ac
->ac_o_ex
.fe_logical
<< bsbits
;
2879 size
= ac
->ac_o_ex
.fe_len
<< bsbits
;
2881 orig_size
= size
= size
>> bsbits
;
2882 orig_start
= start
= start_off
>> bsbits
;
2884 /* don't cover already allocated blocks in selected range */
2885 if (ar
->pleft
&& start
<= ar
->lleft
) {
2886 size
-= ar
->lleft
+ 1 - start
;
2887 start
= ar
->lleft
+ 1;
2889 if (ar
->pright
&& start
+ size
- 1 >= ar
->lright
)
2890 size
-= start
+ size
- ar
->lright
;
2894 /* check we don't cross already preallocated blocks */
2896 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
2901 spin_lock(&pa
->pa_lock
);
2902 if (pa
->pa_deleted
) {
2903 spin_unlock(&pa
->pa_lock
);
2907 pa_end
= pa
->pa_lstart
+ pa
->pa_len
;
2909 /* PA must not overlap original request */
2910 BUG_ON(!(ac
->ac_o_ex
.fe_logical
>= pa_end
||
2911 ac
->ac_o_ex
.fe_logical
< pa
->pa_lstart
));
2913 /* skip PAs this normalized request doesn't overlap with */
2914 if (pa
->pa_lstart
>= end
|| pa_end
<= start
) {
2915 spin_unlock(&pa
->pa_lock
);
2918 BUG_ON(pa
->pa_lstart
<= start
&& pa_end
>= end
);
2920 /* adjust start or end to be adjacent to this pa */
2921 if (pa_end
<= ac
->ac_o_ex
.fe_logical
) {
2922 BUG_ON(pa_end
< start
);
2924 } else if (pa
->pa_lstart
> ac
->ac_o_ex
.fe_logical
) {
2925 BUG_ON(pa
->pa_lstart
> end
);
2926 end
= pa
->pa_lstart
;
2928 spin_unlock(&pa
->pa_lock
);
2933 /* XXX: extra loop to check we really don't overlap preallocations */
2935 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
2937 spin_lock(&pa
->pa_lock
);
2938 if (pa
->pa_deleted
== 0) {
2939 pa_end
= pa
->pa_lstart
+ pa
->pa_len
;
2940 BUG_ON(!(start
>= pa_end
|| end
<= pa
->pa_lstart
));
2942 spin_unlock(&pa
->pa_lock
);
2946 if (start
+ size
<= ac
->ac_o_ex
.fe_logical
&&
2947 start
> ac
->ac_o_ex
.fe_logical
) {
2948 printk(KERN_ERR
"start %lu, size %lu, fe_logical %lu\n",
2949 (unsigned long) start
, (unsigned long) size
,
2950 (unsigned long) ac
->ac_o_ex
.fe_logical
);
2952 BUG_ON(start
+ size
<= ac
->ac_o_ex
.fe_logical
&&
2953 start
> ac
->ac_o_ex
.fe_logical
);
2954 BUG_ON(size
<= 0 || size
> EXT4_BLOCKS_PER_GROUP(ac
->ac_sb
));
2956 /* now prepare goal request */
2958 /* XXX: is it better to align blocks WRT to logical
2959 * placement or satisfy big request as is */
2960 ac
->ac_g_ex
.fe_logical
= start
;
2961 ac
->ac_g_ex
.fe_len
= size
;
2963 /* define goal start in order to merge */
2964 if (ar
->pright
&& (ar
->lright
== (start
+ size
))) {
2965 /* merge to the right */
2966 ext4_get_group_no_and_offset(ac
->ac_sb
, ar
->pright
- size
,
2967 &ac
->ac_f_ex
.fe_group
,
2968 &ac
->ac_f_ex
.fe_start
);
2969 ac
->ac_flags
|= EXT4_MB_HINT_TRY_GOAL
;
2971 if (ar
->pleft
&& (ar
->lleft
+ 1 == start
)) {
2972 /* merge to the left */
2973 ext4_get_group_no_and_offset(ac
->ac_sb
, ar
->pleft
+ 1,
2974 &ac
->ac_f_ex
.fe_group
,
2975 &ac
->ac_f_ex
.fe_start
);
2976 ac
->ac_flags
|= EXT4_MB_HINT_TRY_GOAL
;
2979 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size
,
2980 (unsigned) orig_size
, (unsigned) start
);
2983 static void ext4_mb_collect_stats(struct ext4_allocation_context
*ac
)
2985 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
2987 if (sbi
->s_mb_stats
&& ac
->ac_g_ex
.fe_len
> 1) {
2988 atomic_inc(&sbi
->s_bal_reqs
);
2989 atomic_add(ac
->ac_b_ex
.fe_len
, &sbi
->s_bal_allocated
);
2990 if (ac
->ac_o_ex
.fe_len
>= ac
->ac_g_ex
.fe_len
)
2991 atomic_inc(&sbi
->s_bal_success
);
2992 atomic_add(ac
->ac_found
, &sbi
->s_bal_ex_scanned
);
2993 if (ac
->ac_g_ex
.fe_start
== ac
->ac_b_ex
.fe_start
&&
2994 ac
->ac_g_ex
.fe_group
== ac
->ac_b_ex
.fe_group
)
2995 atomic_inc(&sbi
->s_bal_goals
);
2996 if (ac
->ac_found
> sbi
->s_mb_max_to_scan
)
2997 atomic_inc(&sbi
->s_bal_breaks
);
3000 if (ac
->ac_op
== EXT4_MB_HISTORY_ALLOC
)
3001 trace_ext4_mballoc_alloc(ac
);
3003 trace_ext4_mballoc_prealloc(ac
);
3007 * Called on failure; free up any blocks from the inode PA for this
3008 * context. We don't need this for MB_GROUP_PA because we only change
3009 * pa_free in ext4_mb_release_context(), but on failure, we've already
3010 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3012 static void ext4_discard_allocated_blocks(struct ext4_allocation_context
*ac
)
3014 struct ext4_prealloc_space
*pa
= ac
->ac_pa
;
3017 if (pa
&& pa
->pa_type
== MB_INODE_PA
) {
3018 len
= ac
->ac_b_ex
.fe_len
;
3025 * use blocks preallocated to inode
3027 static void ext4_mb_use_inode_pa(struct ext4_allocation_context
*ac
,
3028 struct ext4_prealloc_space
*pa
)
3034 /* found preallocated blocks, use them */
3035 start
= pa
->pa_pstart
+ (ac
->ac_o_ex
.fe_logical
- pa
->pa_lstart
);
3036 end
= min(pa
->pa_pstart
+ pa
->pa_len
, start
+ ac
->ac_o_ex
.fe_len
);
3038 ext4_get_group_no_and_offset(ac
->ac_sb
, start
, &ac
->ac_b_ex
.fe_group
,
3039 &ac
->ac_b_ex
.fe_start
);
3040 ac
->ac_b_ex
.fe_len
= len
;
3041 ac
->ac_status
= AC_STATUS_FOUND
;
3044 BUG_ON(start
< pa
->pa_pstart
);
3045 BUG_ON(start
+ len
> pa
->pa_pstart
+ pa
->pa_len
);
3046 BUG_ON(pa
->pa_free
< len
);
3049 mb_debug(1, "use %llu/%u from inode pa %p\n", start
, len
, pa
);
3053 * use blocks preallocated to locality group
3055 static void ext4_mb_use_group_pa(struct ext4_allocation_context
*ac
,
3056 struct ext4_prealloc_space
*pa
)
3058 unsigned int len
= ac
->ac_o_ex
.fe_len
;
3060 ext4_get_group_no_and_offset(ac
->ac_sb
, pa
->pa_pstart
,
3061 &ac
->ac_b_ex
.fe_group
,
3062 &ac
->ac_b_ex
.fe_start
);
3063 ac
->ac_b_ex
.fe_len
= len
;
3064 ac
->ac_status
= AC_STATUS_FOUND
;
3067 /* we don't correct pa_pstart or pa_plen here to avoid
3068 * possible race when the group is being loaded concurrently
3069 * instead we correct pa later, after blocks are marked
3070 * in on-disk bitmap -- see ext4_mb_release_context()
3071 * Other CPUs are prevented from allocating from this pa by lg_mutex
3073 mb_debug(1, "use %u/%u from group pa %p\n", pa
->pa_lstart
-len
, len
, pa
);
3077 * Return the prealloc space that have minimal distance
3078 * from the goal block. @cpa is the prealloc
3079 * space that is having currently known minimal distance
3080 * from the goal block.
3082 static struct ext4_prealloc_space
*
3083 ext4_mb_check_group_pa(ext4_fsblk_t goal_block
,
3084 struct ext4_prealloc_space
*pa
,
3085 struct ext4_prealloc_space
*cpa
)
3087 ext4_fsblk_t cur_distance
, new_distance
;
3090 atomic_inc(&pa
->pa_count
);
3093 cur_distance
= abs(goal_block
- cpa
->pa_pstart
);
3094 new_distance
= abs(goal_block
- pa
->pa_pstart
);
3096 if (cur_distance
< new_distance
)
3099 /* drop the previous reference */
3100 atomic_dec(&cpa
->pa_count
);
3101 atomic_inc(&pa
->pa_count
);
3106 * search goal blocks in preallocated space
3108 static noinline_for_stack
int
3109 ext4_mb_use_preallocated(struct ext4_allocation_context
*ac
)
3112 struct ext4_inode_info
*ei
= EXT4_I(ac
->ac_inode
);
3113 struct ext4_locality_group
*lg
;
3114 struct ext4_prealloc_space
*pa
, *cpa
= NULL
;
3115 ext4_fsblk_t goal_block
;
3117 /* only data can be preallocated */
3118 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
3121 /* first, try per-file preallocation */
3123 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
3125 /* all fields in this condition don't change,
3126 * so we can skip locking for them */
3127 if (ac
->ac_o_ex
.fe_logical
< pa
->pa_lstart
||
3128 ac
->ac_o_ex
.fe_logical
>= pa
->pa_lstart
+ pa
->pa_len
)
3131 /* non-extent files can't have physical blocks past 2^32 */
3132 if (!(EXT4_I(ac
->ac_inode
)->i_flags
& EXT4_EXTENTS_FL
) &&
3133 pa
->pa_pstart
+ pa
->pa_len
> EXT4_MAX_BLOCK_FILE_PHYS
)
3136 /* found preallocated blocks, use them */
3137 spin_lock(&pa
->pa_lock
);
3138 if (pa
->pa_deleted
== 0 && pa
->pa_free
) {
3139 atomic_inc(&pa
->pa_count
);
3140 ext4_mb_use_inode_pa(ac
, pa
);
3141 spin_unlock(&pa
->pa_lock
);
3142 ac
->ac_criteria
= 10;
3146 spin_unlock(&pa
->pa_lock
);
3150 /* can we use group allocation? */
3151 if (!(ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
))
3154 /* inode may have no locality group for some reason */
3158 order
= fls(ac
->ac_o_ex
.fe_len
) - 1;
3159 if (order
> PREALLOC_TB_SIZE
- 1)
3160 /* The max size of hash table is PREALLOC_TB_SIZE */
3161 order
= PREALLOC_TB_SIZE
- 1;
3163 goal_block
= ac
->ac_g_ex
.fe_group
* EXT4_BLOCKS_PER_GROUP(ac
->ac_sb
) +
3164 ac
->ac_g_ex
.fe_start
+
3165 le32_to_cpu(EXT4_SB(ac
->ac_sb
)->s_es
->s_first_data_block
);
3167 * search for the prealloc space that is having
3168 * minimal distance from the goal block.
3170 for (i
= order
; i
< PREALLOC_TB_SIZE
; i
++) {
3172 list_for_each_entry_rcu(pa
, &lg
->lg_prealloc_list
[i
],
3174 spin_lock(&pa
->pa_lock
);
3175 if (pa
->pa_deleted
== 0 &&
3176 pa
->pa_free
>= ac
->ac_o_ex
.fe_len
) {
3178 cpa
= ext4_mb_check_group_pa(goal_block
,
3181 spin_unlock(&pa
->pa_lock
);
3186 ext4_mb_use_group_pa(ac
, cpa
);
3187 ac
->ac_criteria
= 20;
3194 * the function goes through all block freed in the group
3195 * but not yet committed and marks them used in in-core bitmap.
3196 * buddy must be generated from this bitmap
3197 * Need to be called with the ext4 group lock held
3199 static void ext4_mb_generate_from_freelist(struct super_block
*sb
, void *bitmap
,
3203 struct ext4_group_info
*grp
;
3204 struct ext4_free_data
*entry
;
3206 grp
= ext4_get_group_info(sb
, group
);
3207 n
= rb_first(&(grp
->bb_free_root
));
3210 entry
= rb_entry(n
, struct ext4_free_data
, node
);
3211 mb_set_bits(bitmap
, entry
->start_blk
, entry
->count
);
3218 * the function goes through all preallocation in this group and marks them
3219 * used in in-core bitmap. buddy must be generated from this bitmap
3220 * Need to be called with ext4 group lock held
3222 static noinline_for_stack
3223 void ext4_mb_generate_from_pa(struct super_block
*sb
, void *bitmap
,
3226 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
3227 struct ext4_prealloc_space
*pa
;
3228 struct list_head
*cur
;
3229 ext4_group_t groupnr
;
3230 ext4_grpblk_t start
;
3231 int preallocated
= 0;
3235 /* all form of preallocation discards first load group,
3236 * so the only competing code is preallocation use.
3237 * we don't need any locking here
3238 * notice we do NOT ignore preallocations with pa_deleted
3239 * otherwise we could leave used blocks available for
3240 * allocation in buddy when concurrent ext4_mb_put_pa()
3241 * is dropping preallocation
3243 list_for_each(cur
, &grp
->bb_prealloc_list
) {
3244 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
3245 spin_lock(&pa
->pa_lock
);
3246 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
,
3249 spin_unlock(&pa
->pa_lock
);
3250 if (unlikely(len
== 0))
3252 BUG_ON(groupnr
!= group
);
3253 mb_set_bits(bitmap
, start
, len
);
3254 preallocated
+= len
;
3257 mb_debug(1, "prellocated %u for group %u\n", preallocated
, group
);
3260 static void ext4_mb_pa_callback(struct rcu_head
*head
)
3262 struct ext4_prealloc_space
*pa
;
3263 pa
= container_of(head
, struct ext4_prealloc_space
, u
.pa_rcu
);
3264 kmem_cache_free(ext4_pspace_cachep
, pa
);
3268 * drops a reference to preallocated space descriptor
3269 * if this was the last reference and the space is consumed
3271 static void ext4_mb_put_pa(struct ext4_allocation_context
*ac
,
3272 struct super_block
*sb
, struct ext4_prealloc_space
*pa
)
3275 ext4_fsblk_t grp_blk
;
3277 if (!atomic_dec_and_test(&pa
->pa_count
) || pa
->pa_free
!= 0)
3280 /* in this short window concurrent discard can set pa_deleted */
3281 spin_lock(&pa
->pa_lock
);
3282 if (pa
->pa_deleted
== 1) {
3283 spin_unlock(&pa
->pa_lock
);
3288 spin_unlock(&pa
->pa_lock
);
3290 grp_blk
= pa
->pa_pstart
;
3292 * If doing group-based preallocation, pa_pstart may be in the
3293 * next group when pa is used up
3295 if (pa
->pa_type
== MB_GROUP_PA
)
3298 ext4_get_group_no_and_offset(sb
, grp_blk
, &grp
, NULL
);
3303 * P1 (buddy init) P2 (regular allocation)
3304 * find block B in PA
3305 * copy on-disk bitmap to buddy
3306 * mark B in on-disk bitmap
3307 * drop PA from group
3308 * mark all PAs in buddy
3310 * thus, P1 initializes buddy with B available. to prevent this
3311 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3314 ext4_lock_group(sb
, grp
);
3315 list_del(&pa
->pa_group_list
);
3316 ext4_unlock_group(sb
, grp
);
3318 spin_lock(pa
->pa_obj_lock
);
3319 list_del_rcu(&pa
->pa_inode_list
);
3320 spin_unlock(pa
->pa_obj_lock
);
3322 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
3326 * creates new preallocated space for given inode
3328 static noinline_for_stack
int
3329 ext4_mb_new_inode_pa(struct ext4_allocation_context
*ac
)
3331 struct super_block
*sb
= ac
->ac_sb
;
3332 struct ext4_prealloc_space
*pa
;
3333 struct ext4_group_info
*grp
;
3334 struct ext4_inode_info
*ei
;
3336 /* preallocate only when found space is larger then requested */
3337 BUG_ON(ac
->ac_o_ex
.fe_len
>= ac
->ac_b_ex
.fe_len
);
3338 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
3339 BUG_ON(!S_ISREG(ac
->ac_inode
->i_mode
));
3341 pa
= kmem_cache_alloc(ext4_pspace_cachep
, GFP_NOFS
);
3345 if (ac
->ac_b_ex
.fe_len
< ac
->ac_g_ex
.fe_len
) {
3351 /* we can't allocate as much as normalizer wants.
3352 * so, found space must get proper lstart
3353 * to cover original request */
3354 BUG_ON(ac
->ac_g_ex
.fe_logical
> ac
->ac_o_ex
.fe_logical
);
3355 BUG_ON(ac
->ac_g_ex
.fe_len
< ac
->ac_o_ex
.fe_len
);
3357 /* we're limited by original request in that
3358 * logical block must be covered any way
3359 * winl is window we can move our chunk within */
3360 winl
= ac
->ac_o_ex
.fe_logical
- ac
->ac_g_ex
.fe_logical
;
3362 /* also, we should cover whole original request */
3363 wins
= ac
->ac_b_ex
.fe_len
- ac
->ac_o_ex
.fe_len
;
3365 /* the smallest one defines real window */
3366 win
= min(winl
, wins
);
3368 offs
= ac
->ac_o_ex
.fe_logical
% ac
->ac_b_ex
.fe_len
;
3369 if (offs
&& offs
< win
)
3372 ac
->ac_b_ex
.fe_logical
= ac
->ac_o_ex
.fe_logical
- win
;
3373 BUG_ON(ac
->ac_o_ex
.fe_logical
< ac
->ac_b_ex
.fe_logical
);
3374 BUG_ON(ac
->ac_o_ex
.fe_len
> ac
->ac_b_ex
.fe_len
);
3377 /* preallocation can change ac_b_ex, thus we store actually
3378 * allocated blocks for history */
3379 ac
->ac_f_ex
= ac
->ac_b_ex
;
3381 pa
->pa_lstart
= ac
->ac_b_ex
.fe_logical
;
3382 pa
->pa_pstart
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
3383 pa
->pa_len
= ac
->ac_b_ex
.fe_len
;
3384 pa
->pa_free
= pa
->pa_len
;
3385 atomic_set(&pa
->pa_count
, 1);
3386 spin_lock_init(&pa
->pa_lock
);
3387 INIT_LIST_HEAD(&pa
->pa_inode_list
);
3388 INIT_LIST_HEAD(&pa
->pa_group_list
);
3390 pa
->pa_type
= MB_INODE_PA
;
3392 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa
,
3393 pa
->pa_pstart
, pa
->pa_len
, pa
->pa_lstart
);
3394 trace_ext4_mb_new_inode_pa(ac
, pa
);
3396 ext4_mb_use_inode_pa(ac
, pa
);
3397 atomic_add(pa
->pa_free
, &EXT4_SB(sb
)->s_mb_preallocated
);
3399 ei
= EXT4_I(ac
->ac_inode
);
3400 grp
= ext4_get_group_info(sb
, ac
->ac_b_ex
.fe_group
);
3402 pa
->pa_obj_lock
= &ei
->i_prealloc_lock
;
3403 pa
->pa_inode
= ac
->ac_inode
;
3405 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
3406 list_add(&pa
->pa_group_list
, &grp
->bb_prealloc_list
);
3407 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
3409 spin_lock(pa
->pa_obj_lock
);
3410 list_add_rcu(&pa
->pa_inode_list
, &ei
->i_prealloc_list
);
3411 spin_unlock(pa
->pa_obj_lock
);
3417 * creates new preallocated space for locality group inodes belongs to
3419 static noinline_for_stack
int
3420 ext4_mb_new_group_pa(struct ext4_allocation_context
*ac
)
3422 struct super_block
*sb
= ac
->ac_sb
;
3423 struct ext4_locality_group
*lg
;
3424 struct ext4_prealloc_space
*pa
;
3425 struct ext4_group_info
*grp
;
3427 /* preallocate only when found space is larger then requested */
3428 BUG_ON(ac
->ac_o_ex
.fe_len
>= ac
->ac_b_ex
.fe_len
);
3429 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
3430 BUG_ON(!S_ISREG(ac
->ac_inode
->i_mode
));
3432 BUG_ON(ext4_pspace_cachep
== NULL
);
3433 pa
= kmem_cache_alloc(ext4_pspace_cachep
, GFP_NOFS
);
3437 /* preallocation can change ac_b_ex, thus we store actually
3438 * allocated blocks for history */
3439 ac
->ac_f_ex
= ac
->ac_b_ex
;
3441 pa
->pa_pstart
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
3442 pa
->pa_lstart
= pa
->pa_pstart
;
3443 pa
->pa_len
= ac
->ac_b_ex
.fe_len
;
3444 pa
->pa_free
= pa
->pa_len
;
3445 atomic_set(&pa
->pa_count
, 1);
3446 spin_lock_init(&pa
->pa_lock
);
3447 INIT_LIST_HEAD(&pa
->pa_inode_list
);
3448 INIT_LIST_HEAD(&pa
->pa_group_list
);
3450 pa
->pa_type
= MB_GROUP_PA
;
3452 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa
,
3453 pa
->pa_pstart
, pa
->pa_len
, pa
->pa_lstart
);
3454 trace_ext4_mb_new_group_pa(ac
, pa
);
3456 ext4_mb_use_group_pa(ac
, pa
);
3457 atomic_add(pa
->pa_free
, &EXT4_SB(sb
)->s_mb_preallocated
);
3459 grp
= ext4_get_group_info(sb
, ac
->ac_b_ex
.fe_group
);
3463 pa
->pa_obj_lock
= &lg
->lg_prealloc_lock
;
3464 pa
->pa_inode
= NULL
;
3466 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
3467 list_add(&pa
->pa_group_list
, &grp
->bb_prealloc_list
);
3468 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
3471 * We will later add the new pa to the right bucket
3472 * after updating the pa_free in ext4_mb_release_context
3477 static int ext4_mb_new_preallocation(struct ext4_allocation_context
*ac
)
3481 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
)
3482 err
= ext4_mb_new_group_pa(ac
);
3484 err
= ext4_mb_new_inode_pa(ac
);
3489 * finds all unused blocks in on-disk bitmap, frees them in
3490 * in-core bitmap and buddy.
3491 * @pa must be unlinked from inode and group lists, so that
3492 * nobody else can find/use it.
3493 * the caller MUST hold group/inode locks.
3494 * TODO: optimize the case when there are no in-core structures yet
3496 static noinline_for_stack
int
3497 ext4_mb_release_inode_pa(struct ext4_buddy
*e4b
, struct buffer_head
*bitmap_bh
,
3498 struct ext4_prealloc_space
*pa
,
3499 struct ext4_allocation_context
*ac
)
3501 struct super_block
*sb
= e4b
->bd_sb
;
3502 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3507 unsigned long long grp_blk_start
;
3512 BUG_ON(pa
->pa_deleted
== 0);
3513 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, &bit
);
3514 grp_blk_start
= pa
->pa_pstart
- bit
;
3515 BUG_ON(group
!= e4b
->bd_group
&& pa
->pa_len
!= 0);
3516 end
= bit
+ pa
->pa_len
;
3520 ac
->ac_inode
= pa
->pa_inode
;
3524 bit
= mb_find_next_zero_bit(bitmap_bh
->b_data
, end
, bit
);
3527 next
= mb_find_next_bit(bitmap_bh
->b_data
, end
, bit
);
3528 start
= group
* EXT4_BLOCKS_PER_GROUP(sb
) + bit
+
3529 le32_to_cpu(sbi
->s_es
->s_first_data_block
);
3530 mb_debug(1, " free preallocated %u/%u in group %u\n",
3531 (unsigned) start
, (unsigned) next
- bit
,
3536 ac
->ac_b_ex
.fe_group
= group
;
3537 ac
->ac_b_ex
.fe_start
= bit
;
3538 ac
->ac_b_ex
.fe_len
= next
- bit
;
3539 ac
->ac_b_ex
.fe_logical
= 0;
3540 trace_ext4_mballoc_discard(ac
);
3543 trace_ext4_mb_release_inode_pa(ac
, pa
, grp_blk_start
+ bit
,
3545 mb_free_blocks(pa
->pa_inode
, e4b
, bit
, next
- bit
);
3548 if (free
!= pa
->pa_free
) {
3549 printk(KERN_CRIT
"pa %p: logic %lu, phys. %lu, len %lu\n",
3550 pa
, (unsigned long) pa
->pa_lstart
,
3551 (unsigned long) pa
->pa_pstart
,
3552 (unsigned long) pa
->pa_len
);
3553 ext4_grp_locked_error(sb
, group
,
3554 __func__
, "free %u, pa_free %u",
3557 * pa is already deleted so we use the value obtained
3558 * from the bitmap and continue.
3561 atomic_add(free
, &sbi
->s_mb_discarded
);
3566 static noinline_for_stack
int
3567 ext4_mb_release_group_pa(struct ext4_buddy
*e4b
,
3568 struct ext4_prealloc_space
*pa
,
3569 struct ext4_allocation_context
*ac
)
3571 struct super_block
*sb
= e4b
->bd_sb
;
3575 trace_ext4_mb_release_group_pa(ac
, pa
);
3576 BUG_ON(pa
->pa_deleted
== 0);
3577 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, &bit
);
3578 BUG_ON(group
!= e4b
->bd_group
&& pa
->pa_len
!= 0);
3579 mb_free_blocks(pa
->pa_inode
, e4b
, bit
, pa
->pa_len
);
3580 atomic_add(pa
->pa_len
, &EXT4_SB(sb
)->s_mb_discarded
);
3584 ac
->ac_inode
= NULL
;
3585 ac
->ac_b_ex
.fe_group
= group
;
3586 ac
->ac_b_ex
.fe_start
= bit
;
3587 ac
->ac_b_ex
.fe_len
= pa
->pa_len
;
3588 ac
->ac_b_ex
.fe_logical
= 0;
3589 trace_ext4_mballoc_discard(ac
);
3596 * releases all preallocations in given group
3598 * first, we need to decide discard policy:
3599 * - when do we discard
3601 * - how many do we discard
3602 * 1) how many requested
3604 static noinline_for_stack
int
3605 ext4_mb_discard_group_preallocations(struct super_block
*sb
,
3606 ext4_group_t group
, int needed
)
3608 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
3609 struct buffer_head
*bitmap_bh
= NULL
;
3610 struct ext4_prealloc_space
*pa
, *tmp
;
3611 struct ext4_allocation_context
*ac
;
3612 struct list_head list
;
3613 struct ext4_buddy e4b
;
3618 mb_debug(1, "discard preallocation for group %u\n", group
);
3620 if (list_empty(&grp
->bb_prealloc_list
))
3623 bitmap_bh
= ext4_read_block_bitmap(sb
, group
);
3624 if (bitmap_bh
== NULL
) {
3625 ext4_error(sb
, "Error reading block bitmap for %u", group
);
3629 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
3631 ext4_error(sb
, "Error loading buddy information for %u", group
);
3637 needed
= EXT4_BLOCKS_PER_GROUP(sb
) + 1;
3639 INIT_LIST_HEAD(&list
);
3640 ac
= kmem_cache_alloc(ext4_ac_cachep
, GFP_NOFS
);
3644 ext4_lock_group(sb
, group
);
3645 list_for_each_entry_safe(pa
, tmp
,
3646 &grp
->bb_prealloc_list
, pa_group_list
) {
3647 spin_lock(&pa
->pa_lock
);
3648 if (atomic_read(&pa
->pa_count
)) {
3649 spin_unlock(&pa
->pa_lock
);
3653 if (pa
->pa_deleted
) {
3654 spin_unlock(&pa
->pa_lock
);
3658 /* seems this one can be freed ... */
3661 /* we can trust pa_free ... */
3662 free
+= pa
->pa_free
;
3664 spin_unlock(&pa
->pa_lock
);
3666 list_del(&pa
->pa_group_list
);
3667 list_add(&pa
->u
.pa_tmp_list
, &list
);
3670 /* if we still need more blocks and some PAs were used, try again */
3671 if (free
< needed
&& busy
) {
3673 ext4_unlock_group(sb
, group
);
3675 * Yield the CPU here so that we don't get soft lockup
3676 * in non preempt case.
3682 /* found anything to free? */
3683 if (list_empty(&list
)) {
3688 /* now free all selected PAs */
3689 list_for_each_entry_safe(pa
, tmp
, &list
, u
.pa_tmp_list
) {
3691 /* remove from object (inode or locality group) */
3692 spin_lock(pa
->pa_obj_lock
);
3693 list_del_rcu(&pa
->pa_inode_list
);
3694 spin_unlock(pa
->pa_obj_lock
);
3696 if (pa
->pa_type
== MB_GROUP_PA
)
3697 ext4_mb_release_group_pa(&e4b
, pa
, ac
);
3699 ext4_mb_release_inode_pa(&e4b
, bitmap_bh
, pa
, ac
);
3701 list_del(&pa
->u
.pa_tmp_list
);
3702 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
3706 ext4_unlock_group(sb
, group
);
3708 kmem_cache_free(ext4_ac_cachep
, ac
);
3709 ext4_mb_release_desc(&e4b
);
3715 * releases all non-used preallocated blocks for given inode
3717 * It's important to discard preallocations under i_data_sem
3718 * We don't want another block to be served from the prealloc
3719 * space when we are discarding the inode prealloc space.
3721 * FIXME!! Make sure it is valid at all the call sites
3723 void ext4_discard_preallocations(struct inode
*inode
)
3725 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3726 struct super_block
*sb
= inode
->i_sb
;
3727 struct buffer_head
*bitmap_bh
= NULL
;
3728 struct ext4_prealloc_space
*pa
, *tmp
;
3729 struct ext4_allocation_context
*ac
;
3730 ext4_group_t group
= 0;
3731 struct list_head list
;
3732 struct ext4_buddy e4b
;
3735 if (!S_ISREG(inode
->i_mode
)) {
3736 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3740 mb_debug(1, "discard preallocation for inode %lu\n", inode
->i_ino
);
3741 trace_ext4_discard_preallocations(inode
);
3743 INIT_LIST_HEAD(&list
);
3745 ac
= kmem_cache_alloc(ext4_ac_cachep
, GFP_NOFS
);
3748 ac
->ac_inode
= inode
;
3751 /* first, collect all pa's in the inode */
3752 spin_lock(&ei
->i_prealloc_lock
);
3753 while (!list_empty(&ei
->i_prealloc_list
)) {
3754 pa
= list_entry(ei
->i_prealloc_list
.next
,
3755 struct ext4_prealloc_space
, pa_inode_list
);
3756 BUG_ON(pa
->pa_obj_lock
!= &ei
->i_prealloc_lock
);
3757 spin_lock(&pa
->pa_lock
);
3758 if (atomic_read(&pa
->pa_count
)) {
3759 /* this shouldn't happen often - nobody should
3760 * use preallocation while we're discarding it */
3761 spin_unlock(&pa
->pa_lock
);
3762 spin_unlock(&ei
->i_prealloc_lock
);
3763 printk(KERN_ERR
"uh-oh! used pa while discarding\n");
3765 schedule_timeout_uninterruptible(HZ
);
3769 if (pa
->pa_deleted
== 0) {
3771 spin_unlock(&pa
->pa_lock
);
3772 list_del_rcu(&pa
->pa_inode_list
);
3773 list_add(&pa
->u
.pa_tmp_list
, &list
);
3777 /* someone is deleting pa right now */
3778 spin_unlock(&pa
->pa_lock
);
3779 spin_unlock(&ei
->i_prealloc_lock
);
3781 /* we have to wait here because pa_deleted
3782 * doesn't mean pa is already unlinked from
3783 * the list. as we might be called from
3784 * ->clear_inode() the inode will get freed
3785 * and concurrent thread which is unlinking
3786 * pa from inode's list may access already
3787 * freed memory, bad-bad-bad */
3789 /* XXX: if this happens too often, we can
3790 * add a flag to force wait only in case
3791 * of ->clear_inode(), but not in case of
3792 * regular truncate */
3793 schedule_timeout_uninterruptible(HZ
);
3796 spin_unlock(&ei
->i_prealloc_lock
);
3798 list_for_each_entry_safe(pa
, tmp
, &list
, u
.pa_tmp_list
) {
3799 BUG_ON(pa
->pa_type
!= MB_INODE_PA
);
3800 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, NULL
);
3802 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
3804 ext4_error(sb
, "Error loading buddy information for %u",
3809 bitmap_bh
= ext4_read_block_bitmap(sb
, group
);
3810 if (bitmap_bh
== NULL
) {
3811 ext4_error(sb
, "Error reading block bitmap for %u",
3813 ext4_mb_release_desc(&e4b
);
3817 ext4_lock_group(sb
, group
);
3818 list_del(&pa
->pa_group_list
);
3819 ext4_mb_release_inode_pa(&e4b
, bitmap_bh
, pa
, ac
);
3820 ext4_unlock_group(sb
, group
);
3822 ext4_mb_release_desc(&e4b
);
3825 list_del(&pa
->u
.pa_tmp_list
);
3826 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
3829 kmem_cache_free(ext4_ac_cachep
, ac
);
3833 * finds all preallocated spaces and return blocks being freed to them
3834 * if preallocated space becomes full (no block is used from the space)
3835 * then the function frees space in buddy
3836 * XXX: at the moment, truncate (which is the only way to free blocks)
3837 * discards all preallocations
3839 static void ext4_mb_return_to_preallocation(struct inode
*inode
,
3840 struct ext4_buddy
*e4b
,
3841 sector_t block
, int count
)
3843 BUG_ON(!list_empty(&EXT4_I(inode
)->i_prealloc_list
));
3845 #ifdef CONFIG_EXT4_DEBUG
3846 static void ext4_mb_show_ac(struct ext4_allocation_context
*ac
)
3848 struct super_block
*sb
= ac
->ac_sb
;
3849 ext4_group_t ngroups
, i
;
3851 printk(KERN_ERR
"EXT4-fs: Can't allocate:"
3852 " Allocation context details:\n");
3853 printk(KERN_ERR
"EXT4-fs: status %d flags %d\n",
3854 ac
->ac_status
, ac
->ac_flags
);
3855 printk(KERN_ERR
"EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
3856 "best %lu/%lu/%lu@%lu cr %d\n",
3857 (unsigned long)ac
->ac_o_ex
.fe_group
,
3858 (unsigned long)ac
->ac_o_ex
.fe_start
,
3859 (unsigned long)ac
->ac_o_ex
.fe_len
,
3860 (unsigned long)ac
->ac_o_ex
.fe_logical
,
3861 (unsigned long)ac
->ac_g_ex
.fe_group
,
3862 (unsigned long)ac
->ac_g_ex
.fe_start
,
3863 (unsigned long)ac
->ac_g_ex
.fe_len
,
3864 (unsigned long)ac
->ac_g_ex
.fe_logical
,
3865 (unsigned long)ac
->ac_b_ex
.fe_group
,
3866 (unsigned long)ac
->ac_b_ex
.fe_start
,
3867 (unsigned long)ac
->ac_b_ex
.fe_len
,
3868 (unsigned long)ac
->ac_b_ex
.fe_logical
,
3869 (int)ac
->ac_criteria
);
3870 printk(KERN_ERR
"EXT4-fs: %lu scanned, %d found\n", ac
->ac_ex_scanned
,
3872 printk(KERN_ERR
"EXT4-fs: groups: \n");
3873 ngroups
= ext4_get_groups_count(sb
);
3874 for (i
= 0; i
< ngroups
; i
++) {
3875 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, i
);
3876 struct ext4_prealloc_space
*pa
;
3877 ext4_grpblk_t start
;
3878 struct list_head
*cur
;
3879 ext4_lock_group(sb
, i
);
3880 list_for_each(cur
, &grp
->bb_prealloc_list
) {
3881 pa
= list_entry(cur
, struct ext4_prealloc_space
,
3883 spin_lock(&pa
->pa_lock
);
3884 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
,
3886 spin_unlock(&pa
->pa_lock
);
3887 printk(KERN_ERR
"PA:%u:%d:%u \n", i
,
3890 ext4_unlock_group(sb
, i
);
3892 if (grp
->bb_free
== 0)
3894 printk(KERN_ERR
"%u: %d/%d \n",
3895 i
, grp
->bb_free
, grp
->bb_fragments
);
3897 printk(KERN_ERR
"\n");
3900 static inline void ext4_mb_show_ac(struct ext4_allocation_context
*ac
)
3907 * We use locality group preallocation for small size file. The size of the
3908 * file is determined by the current size or the resulting size after
3909 * allocation which ever is larger
3911 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
3913 static void ext4_mb_group_or_file(struct ext4_allocation_context
*ac
)
3915 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3916 int bsbits
= ac
->ac_sb
->s_blocksize_bits
;
3919 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
3922 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
3925 size
= ac
->ac_o_ex
.fe_logical
+ ac
->ac_o_ex
.fe_len
;
3926 isize
= (i_size_read(ac
->ac_inode
) + ac
->ac_sb
->s_blocksize
- 1)
3929 if ((size
== isize
) &&
3930 !ext4_fs_is_busy(sbi
) &&
3931 (atomic_read(&ac
->ac_inode
->i_writecount
) == 0)) {
3932 ac
->ac_flags
|= EXT4_MB_HINT_NOPREALLOC
;
3936 /* don't use group allocation for large files */
3937 size
= max(size
, isize
);
3938 if (size
>= sbi
->s_mb_stream_request
) {
3939 ac
->ac_flags
|= EXT4_MB_STREAM_ALLOC
;
3943 BUG_ON(ac
->ac_lg
!= NULL
);
3945 * locality group prealloc space are per cpu. The reason for having
3946 * per cpu locality group is to reduce the contention between block
3947 * request from multiple CPUs.
3949 ac
->ac_lg
= __this_cpu_ptr(sbi
->s_locality_groups
);
3951 /* we're going to use group allocation */
3952 ac
->ac_flags
|= EXT4_MB_HINT_GROUP_ALLOC
;
3954 /* serialize all allocations in the group */
3955 mutex_lock(&ac
->ac_lg
->lg_mutex
);
3958 static noinline_for_stack
int
3959 ext4_mb_initialize_context(struct ext4_allocation_context
*ac
,
3960 struct ext4_allocation_request
*ar
)
3962 struct super_block
*sb
= ar
->inode
->i_sb
;
3963 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3964 struct ext4_super_block
*es
= sbi
->s_es
;
3968 ext4_grpblk_t block
;
3970 /* we can't allocate > group size */
3973 /* just a dirty hack to filter too big requests */
3974 if (len
>= EXT4_BLOCKS_PER_GROUP(sb
) - 10)
3975 len
= EXT4_BLOCKS_PER_GROUP(sb
) - 10;
3977 /* start searching from the goal */
3979 if (goal
< le32_to_cpu(es
->s_first_data_block
) ||
3980 goal
>= ext4_blocks_count(es
))
3981 goal
= le32_to_cpu(es
->s_first_data_block
);
3982 ext4_get_group_no_and_offset(sb
, goal
, &group
, &block
);
3984 /* set up allocation goals */
3985 memset(ac
, 0, sizeof(struct ext4_allocation_context
));
3986 ac
->ac_b_ex
.fe_logical
= ar
->logical
;
3987 ac
->ac_status
= AC_STATUS_CONTINUE
;
3989 ac
->ac_inode
= ar
->inode
;
3990 ac
->ac_o_ex
.fe_logical
= ar
->logical
;
3991 ac
->ac_o_ex
.fe_group
= group
;
3992 ac
->ac_o_ex
.fe_start
= block
;
3993 ac
->ac_o_ex
.fe_len
= len
;
3994 ac
->ac_g_ex
.fe_logical
= ar
->logical
;
3995 ac
->ac_g_ex
.fe_group
= group
;
3996 ac
->ac_g_ex
.fe_start
= block
;
3997 ac
->ac_g_ex
.fe_len
= len
;
3998 ac
->ac_flags
= ar
->flags
;
4000 /* we have to define context: we'll we work with a file or
4001 * locality group. this is a policy, actually */
4002 ext4_mb_group_or_file(ac
);
4004 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4005 "left: %u/%u, right %u/%u to %swritable\n",
4006 (unsigned) ar
->len
, (unsigned) ar
->logical
,
4007 (unsigned) ar
->goal
, ac
->ac_flags
, ac
->ac_2order
,
4008 (unsigned) ar
->lleft
, (unsigned) ar
->pleft
,
4009 (unsigned) ar
->lright
, (unsigned) ar
->pright
,
4010 atomic_read(&ar
->inode
->i_writecount
) ? "" : "non-");
4015 static noinline_for_stack
void
4016 ext4_mb_discard_lg_preallocations(struct super_block
*sb
,
4017 struct ext4_locality_group
*lg
,
4018 int order
, int total_entries
)
4020 ext4_group_t group
= 0;
4021 struct ext4_buddy e4b
;
4022 struct list_head discard_list
;
4023 struct ext4_prealloc_space
*pa
, *tmp
;
4024 struct ext4_allocation_context
*ac
;
4026 mb_debug(1, "discard locality group preallocation\n");
4028 INIT_LIST_HEAD(&discard_list
);
4029 ac
= kmem_cache_alloc(ext4_ac_cachep
, GFP_NOFS
);
4033 spin_lock(&lg
->lg_prealloc_lock
);
4034 list_for_each_entry_rcu(pa
, &lg
->lg_prealloc_list
[order
],
4036 spin_lock(&pa
->pa_lock
);
4037 if (atomic_read(&pa
->pa_count
)) {
4039 * This is the pa that we just used
4040 * for block allocation. So don't
4043 spin_unlock(&pa
->pa_lock
);
4046 if (pa
->pa_deleted
) {
4047 spin_unlock(&pa
->pa_lock
);
4050 /* only lg prealloc space */
4051 BUG_ON(pa
->pa_type
!= MB_GROUP_PA
);
4053 /* seems this one can be freed ... */
4055 spin_unlock(&pa
->pa_lock
);
4057 list_del_rcu(&pa
->pa_inode_list
);
4058 list_add(&pa
->u
.pa_tmp_list
, &discard_list
);
4061 if (total_entries
<= 5) {
4063 * we want to keep only 5 entries
4064 * allowing it to grow to 8. This
4065 * mak sure we don't call discard
4066 * soon for this list.
4071 spin_unlock(&lg
->lg_prealloc_lock
);
4073 list_for_each_entry_safe(pa
, tmp
, &discard_list
, u
.pa_tmp_list
) {
4075 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, NULL
);
4076 if (ext4_mb_load_buddy(sb
, group
, &e4b
)) {
4077 ext4_error(sb
, "Error loading buddy information for %u",
4081 ext4_lock_group(sb
, group
);
4082 list_del(&pa
->pa_group_list
);
4083 ext4_mb_release_group_pa(&e4b
, pa
, ac
);
4084 ext4_unlock_group(sb
, group
);
4086 ext4_mb_release_desc(&e4b
);
4087 list_del(&pa
->u
.pa_tmp_list
);
4088 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
4091 kmem_cache_free(ext4_ac_cachep
, ac
);
4095 * We have incremented pa_count. So it cannot be freed at this
4096 * point. Also we hold lg_mutex. So no parallel allocation is
4097 * possible from this lg. That means pa_free cannot be updated.
4099 * A parallel ext4_mb_discard_group_preallocations is possible.
4100 * which can cause the lg_prealloc_list to be updated.
4103 static void ext4_mb_add_n_trim(struct ext4_allocation_context
*ac
)
4105 int order
, added
= 0, lg_prealloc_count
= 1;
4106 struct super_block
*sb
= ac
->ac_sb
;
4107 struct ext4_locality_group
*lg
= ac
->ac_lg
;
4108 struct ext4_prealloc_space
*tmp_pa
, *pa
= ac
->ac_pa
;
4110 order
= fls(pa
->pa_free
) - 1;
4111 if (order
> PREALLOC_TB_SIZE
- 1)
4112 /* The max size of hash table is PREALLOC_TB_SIZE */
4113 order
= PREALLOC_TB_SIZE
- 1;
4114 /* Add the prealloc space to lg */
4116 list_for_each_entry_rcu(tmp_pa
, &lg
->lg_prealloc_list
[order
],
4118 spin_lock(&tmp_pa
->pa_lock
);
4119 if (tmp_pa
->pa_deleted
) {
4120 spin_unlock(&tmp_pa
->pa_lock
);
4123 if (!added
&& pa
->pa_free
< tmp_pa
->pa_free
) {
4124 /* Add to the tail of the previous entry */
4125 list_add_tail_rcu(&pa
->pa_inode_list
,
4126 &tmp_pa
->pa_inode_list
);
4129 * we want to count the total
4130 * number of entries in the list
4133 spin_unlock(&tmp_pa
->pa_lock
);
4134 lg_prealloc_count
++;
4137 list_add_tail_rcu(&pa
->pa_inode_list
,
4138 &lg
->lg_prealloc_list
[order
]);
4141 /* Now trim the list to be not more than 8 elements */
4142 if (lg_prealloc_count
> 8) {
4143 ext4_mb_discard_lg_preallocations(sb
, lg
,
4144 order
, lg_prealloc_count
);
4151 * release all resource we used in allocation
4153 static int ext4_mb_release_context(struct ext4_allocation_context
*ac
)
4155 struct ext4_prealloc_space
*pa
= ac
->ac_pa
;
4157 if (pa
->pa_type
== MB_GROUP_PA
) {
4158 /* see comment in ext4_mb_use_group_pa() */
4159 spin_lock(&pa
->pa_lock
);
4160 pa
->pa_pstart
+= ac
->ac_b_ex
.fe_len
;
4161 pa
->pa_lstart
+= ac
->ac_b_ex
.fe_len
;
4162 pa
->pa_free
-= ac
->ac_b_ex
.fe_len
;
4163 pa
->pa_len
-= ac
->ac_b_ex
.fe_len
;
4164 spin_unlock(&pa
->pa_lock
);
4168 up_read(ac
->alloc_semp
);
4171 * We want to add the pa to the right bucket.
4172 * Remove it from the list and while adding
4173 * make sure the list to which we are adding
4174 * doesn't grow big. We need to release
4175 * alloc_semp before calling ext4_mb_add_n_trim()
4177 if ((pa
->pa_type
== MB_GROUP_PA
) && likely(pa
->pa_free
)) {
4178 spin_lock(pa
->pa_obj_lock
);
4179 list_del_rcu(&pa
->pa_inode_list
);
4180 spin_unlock(pa
->pa_obj_lock
);
4181 ext4_mb_add_n_trim(ac
);
4183 ext4_mb_put_pa(ac
, ac
->ac_sb
, pa
);
4185 if (ac
->ac_bitmap_page
)
4186 page_cache_release(ac
->ac_bitmap_page
);
4187 if (ac
->ac_buddy_page
)
4188 page_cache_release(ac
->ac_buddy_page
);
4189 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
)
4190 mutex_unlock(&ac
->ac_lg
->lg_mutex
);
4191 ext4_mb_collect_stats(ac
);
4195 static int ext4_mb_discard_preallocations(struct super_block
*sb
, int needed
)
4197 ext4_group_t i
, ngroups
= ext4_get_groups_count(sb
);
4201 trace_ext4_mb_discard_preallocations(sb
, needed
);
4202 for (i
= 0; i
< ngroups
&& needed
> 0; i
++) {
4203 ret
= ext4_mb_discard_group_preallocations(sb
, i
, needed
);
4212 * Main entry point into mballoc to allocate blocks
4213 * it tries to use preallocation first, then falls back
4214 * to usual allocation
4216 ext4_fsblk_t
ext4_mb_new_blocks(handle_t
*handle
,
4217 struct ext4_allocation_request
*ar
, int *errp
)
4220 struct ext4_allocation_context
*ac
= NULL
;
4221 struct ext4_sb_info
*sbi
;
4222 struct super_block
*sb
;
4223 ext4_fsblk_t block
= 0;
4224 unsigned int inquota
= 0;
4225 unsigned int reserv_blks
= 0;
4227 sb
= ar
->inode
->i_sb
;
4230 trace_ext4_request_blocks(ar
);
4233 * For delayed allocation, we could skip the ENOSPC and
4234 * EDQUOT check, as blocks and quotas have been already
4235 * reserved when data being copied into pagecache.
4237 if (EXT4_I(ar
->inode
)->i_delalloc_reserved_flag
)
4238 ar
->flags
|= EXT4_MB_DELALLOC_RESERVED
;
4240 /* Without delayed allocation we need to verify
4241 * there is enough free blocks to do block allocation
4242 * and verify allocation doesn't exceed the quota limits.
4244 while (ar
->len
&& ext4_claim_free_blocks(sbi
, ar
->len
)) {
4245 /* let others to free the space */
4247 ar
->len
= ar
->len
>> 1;
4253 reserv_blks
= ar
->len
;
4254 while (ar
->len
&& vfs_dq_alloc_block(ar
->inode
, ar
->len
)) {
4255 ar
->flags
|= EXT4_MB_HINT_NOPREALLOC
;
4265 ac
= kmem_cache_alloc(ext4_ac_cachep
, GFP_NOFS
);
4272 *errp
= ext4_mb_initialize_context(ac
, ar
);
4278 ac
->ac_op
= EXT4_MB_HISTORY_PREALLOC
;
4279 if (!ext4_mb_use_preallocated(ac
)) {
4280 ac
->ac_op
= EXT4_MB_HISTORY_ALLOC
;
4281 ext4_mb_normalize_request(ac
, ar
);
4283 /* allocate space in core */
4284 ext4_mb_regular_allocator(ac
);
4286 /* as we've just preallocated more space than
4287 * user requested orinally, we store allocated
4288 * space in a special descriptor */
4289 if (ac
->ac_status
== AC_STATUS_FOUND
&&
4290 ac
->ac_o_ex
.fe_len
< ac
->ac_b_ex
.fe_len
)
4291 ext4_mb_new_preallocation(ac
);
4293 if (likely(ac
->ac_status
== AC_STATUS_FOUND
)) {
4294 *errp
= ext4_mb_mark_diskspace_used(ac
, handle
, reserv_blks
);
4295 if (*errp
== -EAGAIN
) {
4297 * drop the reference that we took
4298 * in ext4_mb_use_best_found
4300 ext4_mb_release_context(ac
);
4301 ac
->ac_b_ex
.fe_group
= 0;
4302 ac
->ac_b_ex
.fe_start
= 0;
4303 ac
->ac_b_ex
.fe_len
= 0;
4304 ac
->ac_status
= AC_STATUS_CONTINUE
;
4307 ext4_discard_allocated_blocks(ac
);
4308 ac
->ac_b_ex
.fe_len
= 0;
4310 ext4_mb_show_ac(ac
);
4312 block
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
4313 ar
->len
= ac
->ac_b_ex
.fe_len
;
4316 freed
= ext4_mb_discard_preallocations(sb
, ac
->ac_o_ex
.fe_len
);
4320 ac
->ac_b_ex
.fe_len
= 0;
4322 ext4_mb_show_ac(ac
);
4325 ext4_mb_release_context(ac
);
4328 kmem_cache_free(ext4_ac_cachep
, ac
);
4330 if (inquota
&& ar
->len
< inquota
)
4331 vfs_dq_free_block(ar
->inode
, inquota
- ar
->len
);
4334 if (!EXT4_I(ar
->inode
)->i_delalloc_reserved_flag
)
4335 /* release all the reserved blocks if non delalloc */
4336 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
,
4340 trace_ext4_allocate_blocks(ar
, (unsigned long long)block
);
4346 * We can merge two free data extents only if the physical blocks
4347 * are contiguous, AND the extents were freed by the same transaction,
4348 * AND the blocks are associated with the same group.
4350 static int can_merge(struct ext4_free_data
*entry1
,
4351 struct ext4_free_data
*entry2
)
4353 if ((entry1
->t_tid
== entry2
->t_tid
) &&
4354 (entry1
->group
== entry2
->group
) &&
4355 ((entry1
->start_blk
+ entry1
->count
) == entry2
->start_blk
))
4360 static noinline_for_stack
int
4361 ext4_mb_free_metadata(handle_t
*handle
, struct ext4_buddy
*e4b
,
4362 struct ext4_free_data
*new_entry
)
4364 ext4_grpblk_t block
;
4365 struct ext4_free_data
*entry
;
4366 struct ext4_group_info
*db
= e4b
->bd_info
;
4367 struct super_block
*sb
= e4b
->bd_sb
;
4368 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
4369 struct rb_node
**n
= &db
->bb_free_root
.rb_node
, *node
;
4370 struct rb_node
*parent
= NULL
, *new_node
;
4372 BUG_ON(!ext4_handle_valid(handle
));
4373 BUG_ON(e4b
->bd_bitmap_page
== NULL
);
4374 BUG_ON(e4b
->bd_buddy_page
== NULL
);
4376 new_node
= &new_entry
->node
;
4377 block
= new_entry
->start_blk
;
4380 /* first free block exent. We need to
4381 protect buddy cache from being freed,
4382 * otherwise we'll refresh it from
4383 * on-disk bitmap and lose not-yet-available
4385 page_cache_get(e4b
->bd_buddy_page
);
4386 page_cache_get(e4b
->bd_bitmap_page
);
4390 entry
= rb_entry(parent
, struct ext4_free_data
, node
);
4391 if (block
< entry
->start_blk
)
4393 else if (block
>= (entry
->start_blk
+ entry
->count
))
4394 n
= &(*n
)->rb_right
;
4396 ext4_grp_locked_error(sb
, e4b
->bd_group
, __func__
,
4397 "Double free of blocks %d (%d %d)",
4398 block
, entry
->start_blk
, entry
->count
);
4403 rb_link_node(new_node
, parent
, n
);
4404 rb_insert_color(new_node
, &db
->bb_free_root
);
4406 /* Now try to see the extent can be merged to left and right */
4407 node
= rb_prev(new_node
);
4409 entry
= rb_entry(node
, struct ext4_free_data
, node
);
4410 if (can_merge(entry
, new_entry
)) {
4411 new_entry
->start_blk
= entry
->start_blk
;
4412 new_entry
->count
+= entry
->count
;
4413 rb_erase(node
, &(db
->bb_free_root
));
4414 spin_lock(&sbi
->s_md_lock
);
4415 list_del(&entry
->list
);
4416 spin_unlock(&sbi
->s_md_lock
);
4417 kmem_cache_free(ext4_free_ext_cachep
, entry
);
4421 node
= rb_next(new_node
);
4423 entry
= rb_entry(node
, struct ext4_free_data
, node
);
4424 if (can_merge(new_entry
, entry
)) {
4425 new_entry
->count
+= entry
->count
;
4426 rb_erase(node
, &(db
->bb_free_root
));
4427 spin_lock(&sbi
->s_md_lock
);
4428 list_del(&entry
->list
);
4429 spin_unlock(&sbi
->s_md_lock
);
4430 kmem_cache_free(ext4_free_ext_cachep
, entry
);
4433 /* Add the extent to transaction's private list */
4434 spin_lock(&sbi
->s_md_lock
);
4435 list_add(&new_entry
->list
, &handle
->h_transaction
->t_private_list
);
4436 spin_unlock(&sbi
->s_md_lock
);
4441 * ext4_free_blocks() -- Free given blocks and update quota
4442 * @handle: handle for this transaction
4444 * @block: start physical block to free
4445 * @count: number of blocks to count
4446 * @metadata: Are these metadata blocks
4448 void ext4_free_blocks(handle_t
*handle
, struct inode
*inode
,
4449 struct buffer_head
*bh
, ext4_fsblk_t block
,
4450 unsigned long count
, int flags
)
4452 struct buffer_head
*bitmap_bh
= NULL
;
4453 struct super_block
*sb
= inode
->i_sb
;
4454 struct ext4_allocation_context
*ac
= NULL
;
4455 struct ext4_group_desc
*gdp
;
4456 struct ext4_super_block
*es
;
4457 unsigned long freed
= 0;
4458 unsigned int overflow
;
4460 struct buffer_head
*gd_bh
;
4461 ext4_group_t block_group
;
4462 struct ext4_sb_info
*sbi
;
4463 struct ext4_buddy e4b
;
4469 BUG_ON(block
!= bh
->b_blocknr
);
4471 block
= bh
->b_blocknr
;
4475 es
= EXT4_SB(sb
)->s_es
;
4476 if (!(flags
& EXT4_FREE_BLOCKS_VALIDATED
) &&
4477 !ext4_data_block_valid(sbi
, block
, count
)) {
4478 ext4_error(sb
, "Freeing blocks not in datazone - "
4479 "block = %llu, count = %lu", block
, count
);
4483 ext4_debug("freeing block %llu\n", block
);
4484 trace_ext4_free_blocks(inode
, block
, count
, flags
);
4486 if (flags
& EXT4_FREE_BLOCKS_FORGET
) {
4487 struct buffer_head
*tbh
= bh
;
4490 BUG_ON(bh
&& (count
> 1));
4492 for (i
= 0; i
< count
; i
++) {
4494 tbh
= sb_find_get_block(inode
->i_sb
,
4496 ext4_forget(handle
, flags
& EXT4_FREE_BLOCKS_METADATA
,
4497 inode
, tbh
, block
+ i
);
4502 * We need to make sure we don't reuse the freed block until
4503 * after the transaction is committed, which we can do by
4504 * treating the block as metadata, below. We make an
4505 * exception if the inode is to be written in writeback mode
4506 * since writeback mode has weak data consistency guarantees.
4508 if (!ext4_should_writeback_data(inode
))
4509 flags
|= EXT4_FREE_BLOCKS_METADATA
;
4511 ac
= kmem_cache_alloc(ext4_ac_cachep
, GFP_NOFS
);
4513 ac
->ac_inode
= inode
;
4519 ext4_get_group_no_and_offset(sb
, block
, &block_group
, &bit
);
4522 * Check to see if we are freeing blocks across a group
4525 if (bit
+ count
> EXT4_BLOCKS_PER_GROUP(sb
)) {
4526 overflow
= bit
+ count
- EXT4_BLOCKS_PER_GROUP(sb
);
4529 bitmap_bh
= ext4_read_block_bitmap(sb
, block_group
);
4534 gdp
= ext4_get_group_desc(sb
, block_group
, &gd_bh
);
4540 if (in_range(ext4_block_bitmap(sb
, gdp
), block
, count
) ||
4541 in_range(ext4_inode_bitmap(sb
, gdp
), block
, count
) ||
4542 in_range(block
, ext4_inode_table(sb
, gdp
),
4543 EXT4_SB(sb
)->s_itb_per_group
) ||
4544 in_range(block
+ count
- 1, ext4_inode_table(sb
, gdp
),
4545 EXT4_SB(sb
)->s_itb_per_group
)) {
4547 ext4_error(sb
, "Freeing blocks in system zone - "
4548 "Block = %llu, count = %lu", block
, count
);
4549 /* err = 0. ext4_std_error should be a no op */
4553 BUFFER_TRACE(bitmap_bh
, "getting write access");
4554 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
4559 * We are about to modify some metadata. Call the journal APIs
4560 * to unshare ->b_data if a currently-committing transaction is
4563 BUFFER_TRACE(gd_bh
, "get_write_access");
4564 err
= ext4_journal_get_write_access(handle
, gd_bh
);
4567 #ifdef AGGRESSIVE_CHECK
4570 for (i
= 0; i
< count
; i
++)
4571 BUG_ON(!mb_test_bit(bit
+ i
, bitmap_bh
->b_data
));
4575 ac
->ac_b_ex
.fe_group
= block_group
;
4576 ac
->ac_b_ex
.fe_start
= bit
;
4577 ac
->ac_b_ex
.fe_len
= count
;
4578 trace_ext4_mballoc_free(ac
);
4581 err
= ext4_mb_load_buddy(sb
, block_group
, &e4b
);
4585 if ((flags
& EXT4_FREE_BLOCKS_METADATA
) && ext4_handle_valid(handle
)) {
4586 struct ext4_free_data
*new_entry
;
4588 * blocks being freed are metadata. these blocks shouldn't
4589 * be used until this transaction is committed
4591 new_entry
= kmem_cache_alloc(ext4_free_ext_cachep
, GFP_NOFS
);
4592 new_entry
->start_blk
= bit
;
4593 new_entry
->group
= block_group
;
4594 new_entry
->count
= count
;
4595 new_entry
->t_tid
= handle
->h_transaction
->t_tid
;
4597 ext4_lock_group(sb
, block_group
);
4598 mb_clear_bits(bitmap_bh
->b_data
, bit
, count
);
4599 ext4_mb_free_metadata(handle
, &e4b
, new_entry
);
4601 /* need to update group_info->bb_free and bitmap
4602 * with group lock held. generate_buddy look at
4603 * them with group lock_held
4605 ext4_lock_group(sb
, block_group
);
4606 mb_clear_bits(bitmap_bh
->b_data
, bit
, count
);
4607 mb_free_blocks(inode
, &e4b
, bit
, count
);
4608 ext4_mb_return_to_preallocation(inode
, &e4b
, block
, count
);
4611 ret
= ext4_free_blks_count(sb
, gdp
) + count
;
4612 ext4_free_blks_set(sb
, gdp
, ret
);
4613 gdp
->bg_checksum
= ext4_group_desc_csum(sbi
, block_group
, gdp
);
4614 ext4_unlock_group(sb
, block_group
);
4615 percpu_counter_add(&sbi
->s_freeblocks_counter
, count
);
4617 if (sbi
->s_log_groups_per_flex
) {
4618 ext4_group_t flex_group
= ext4_flex_group(sbi
, block_group
);
4619 atomic_add(count
, &sbi
->s_flex_groups
[flex_group
].free_blocks
);
4622 ext4_mb_release_desc(&e4b
);
4626 /* We dirtied the bitmap block */
4627 BUFFER_TRACE(bitmap_bh
, "dirtied bitmap block");
4628 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
4630 /* And the group descriptor block */
4631 BUFFER_TRACE(gd_bh
, "dirtied group descriptor block");
4632 ret
= ext4_handle_dirty_metadata(handle
, NULL
, gd_bh
);
4636 if (overflow
&& !err
) {
4645 vfs_dq_free_block(inode
, freed
);
4647 ext4_std_error(sb
, err
);
4649 kmem_cache_free(ext4_ac_cachep
, ac
);