kbuild: finally remove the obsolete variable $TOPDIR
[linux-2.6.git] / fs / namespace.c
blob3dc283fd4716beacfe037839d2fc5fd5974c925d
1 /*
2 * linux/fs/namespace.c
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/acct.h>
18 #include <linux/capability.h>
19 #include <linux/cpumask.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/security.h>
26 #include <linux/mount.h>
27 #include <linux/ramfs.h>
28 #include <linux/log2.h>
29 #include <linux/idr.h>
30 #include <linux/fs_struct.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include "pnode.h"
34 #include "internal.h"
36 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
37 #define HASH_SIZE (1UL << HASH_SHIFT)
39 /* spinlock for vfsmount related operations, inplace of dcache_lock */
40 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
42 static int event;
43 static DEFINE_IDA(mnt_id_ida);
44 static DEFINE_IDA(mnt_group_ida);
45 static int mnt_id_start = 0;
46 static int mnt_group_start = 1;
48 static struct list_head *mount_hashtable __read_mostly;
49 static struct kmem_cache *mnt_cache __read_mostly;
50 static struct rw_semaphore namespace_sem;
52 /* /sys/fs */
53 struct kobject *fs_kobj;
54 EXPORT_SYMBOL_GPL(fs_kobj);
56 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
58 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
59 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
60 tmp = tmp + (tmp >> HASH_SHIFT);
61 return tmp & (HASH_SIZE - 1);
64 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
66 /* allocation is serialized by namespace_sem */
67 static int mnt_alloc_id(struct vfsmount *mnt)
69 int res;
71 retry:
72 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
73 spin_lock(&vfsmount_lock);
74 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
75 if (!res)
76 mnt_id_start = mnt->mnt_id + 1;
77 spin_unlock(&vfsmount_lock);
78 if (res == -EAGAIN)
79 goto retry;
81 return res;
84 static void mnt_free_id(struct vfsmount *mnt)
86 int id = mnt->mnt_id;
87 spin_lock(&vfsmount_lock);
88 ida_remove(&mnt_id_ida, id);
89 if (mnt_id_start > id)
90 mnt_id_start = id;
91 spin_unlock(&vfsmount_lock);
95 * Allocate a new peer group ID
97 * mnt_group_ida is protected by namespace_sem
99 static int mnt_alloc_group_id(struct vfsmount *mnt)
101 int res;
103 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
104 return -ENOMEM;
106 res = ida_get_new_above(&mnt_group_ida,
107 mnt_group_start,
108 &mnt->mnt_group_id);
109 if (!res)
110 mnt_group_start = mnt->mnt_group_id + 1;
112 return res;
116 * Release a peer group ID
118 void mnt_release_group_id(struct vfsmount *mnt)
120 int id = mnt->mnt_group_id;
121 ida_remove(&mnt_group_ida, id);
122 if (mnt_group_start > id)
123 mnt_group_start = id;
124 mnt->mnt_group_id = 0;
127 struct vfsmount *alloc_vfsmnt(const char *name)
129 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
130 if (mnt) {
131 int err;
133 err = mnt_alloc_id(mnt);
134 if (err)
135 goto out_free_cache;
137 if (name) {
138 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
139 if (!mnt->mnt_devname)
140 goto out_free_id;
143 atomic_set(&mnt->mnt_count, 1);
144 INIT_LIST_HEAD(&mnt->mnt_hash);
145 INIT_LIST_HEAD(&mnt->mnt_child);
146 INIT_LIST_HEAD(&mnt->mnt_mounts);
147 INIT_LIST_HEAD(&mnt->mnt_list);
148 INIT_LIST_HEAD(&mnt->mnt_expire);
149 INIT_LIST_HEAD(&mnt->mnt_share);
150 INIT_LIST_HEAD(&mnt->mnt_slave_list);
151 INIT_LIST_HEAD(&mnt->mnt_slave);
152 #ifdef CONFIG_SMP
153 mnt->mnt_writers = alloc_percpu(int);
154 if (!mnt->mnt_writers)
155 goto out_free_devname;
156 #else
157 mnt->mnt_writers = 0;
158 #endif
160 return mnt;
162 #ifdef CONFIG_SMP
163 out_free_devname:
164 kfree(mnt->mnt_devname);
165 #endif
166 out_free_id:
167 mnt_free_id(mnt);
168 out_free_cache:
169 kmem_cache_free(mnt_cache, mnt);
170 return NULL;
174 * Most r/o checks on a fs are for operations that take
175 * discrete amounts of time, like a write() or unlink().
176 * We must keep track of when those operations start
177 * (for permission checks) and when they end, so that
178 * we can determine when writes are able to occur to
179 * a filesystem.
182 * __mnt_is_readonly: check whether a mount is read-only
183 * @mnt: the mount to check for its write status
185 * This shouldn't be used directly ouside of the VFS.
186 * It does not guarantee that the filesystem will stay
187 * r/w, just that it is right *now*. This can not and
188 * should not be used in place of IS_RDONLY(inode).
189 * mnt_want/drop_write() will _keep_ the filesystem
190 * r/w.
192 int __mnt_is_readonly(struct vfsmount *mnt)
194 if (mnt->mnt_flags & MNT_READONLY)
195 return 1;
196 if (mnt->mnt_sb->s_flags & MS_RDONLY)
197 return 1;
198 return 0;
200 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
202 static inline void inc_mnt_writers(struct vfsmount *mnt)
204 #ifdef CONFIG_SMP
205 (*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))++;
206 #else
207 mnt->mnt_writers++;
208 #endif
211 static inline void dec_mnt_writers(struct vfsmount *mnt)
213 #ifdef CONFIG_SMP
214 (*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))--;
215 #else
216 mnt->mnt_writers--;
217 #endif
220 static unsigned int count_mnt_writers(struct vfsmount *mnt)
222 #ifdef CONFIG_SMP
223 unsigned int count = 0;
224 int cpu;
226 for_each_possible_cpu(cpu) {
227 count += *per_cpu_ptr(mnt->mnt_writers, cpu);
230 return count;
231 #else
232 return mnt->mnt_writers;
233 #endif
237 * Most r/o checks on a fs are for operations that take
238 * discrete amounts of time, like a write() or unlink().
239 * We must keep track of when those operations start
240 * (for permission checks) and when they end, so that
241 * we can determine when writes are able to occur to
242 * a filesystem.
245 * mnt_want_write - get write access to a mount
246 * @mnt: the mount on which to take a write
248 * This tells the low-level filesystem that a write is
249 * about to be performed to it, and makes sure that
250 * writes are allowed before returning success. When
251 * the write operation is finished, mnt_drop_write()
252 * must be called. This is effectively a refcount.
254 int mnt_want_write(struct vfsmount *mnt)
256 int ret = 0;
258 preempt_disable();
259 inc_mnt_writers(mnt);
261 * The store to inc_mnt_writers must be visible before we pass
262 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
263 * incremented count after it has set MNT_WRITE_HOLD.
265 smp_mb();
266 while (mnt->mnt_flags & MNT_WRITE_HOLD)
267 cpu_relax();
269 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
270 * be set to match its requirements. So we must not load that until
271 * MNT_WRITE_HOLD is cleared.
273 smp_rmb();
274 if (__mnt_is_readonly(mnt)) {
275 dec_mnt_writers(mnt);
276 ret = -EROFS;
277 goto out;
279 out:
280 preempt_enable();
281 return ret;
283 EXPORT_SYMBOL_GPL(mnt_want_write);
286 * mnt_clone_write - get write access to a mount
287 * @mnt: the mount on which to take a write
289 * This is effectively like mnt_want_write, except
290 * it must only be used to take an extra write reference
291 * on a mountpoint that we already know has a write reference
292 * on it. This allows some optimisation.
294 * After finished, mnt_drop_write must be called as usual to
295 * drop the reference.
297 int mnt_clone_write(struct vfsmount *mnt)
299 /* superblock may be r/o */
300 if (__mnt_is_readonly(mnt))
301 return -EROFS;
302 preempt_disable();
303 inc_mnt_writers(mnt);
304 preempt_enable();
305 return 0;
307 EXPORT_SYMBOL_GPL(mnt_clone_write);
310 * mnt_want_write_file - get write access to a file's mount
311 * @file: the file who's mount on which to take a write
313 * This is like mnt_want_write, but it takes a file and can
314 * do some optimisations if the file is open for write already
316 int mnt_want_write_file(struct file *file)
318 if (!(file->f_mode & FMODE_WRITE))
319 return mnt_want_write(file->f_path.mnt);
320 else
321 return mnt_clone_write(file->f_path.mnt);
323 EXPORT_SYMBOL_GPL(mnt_want_write_file);
326 * mnt_drop_write - give up write access to a mount
327 * @mnt: the mount on which to give up write access
329 * Tells the low-level filesystem that we are done
330 * performing writes to it. Must be matched with
331 * mnt_want_write() call above.
333 void mnt_drop_write(struct vfsmount *mnt)
335 preempt_disable();
336 dec_mnt_writers(mnt);
337 preempt_enable();
339 EXPORT_SYMBOL_GPL(mnt_drop_write);
341 static int mnt_make_readonly(struct vfsmount *mnt)
343 int ret = 0;
345 spin_lock(&vfsmount_lock);
346 mnt->mnt_flags |= MNT_WRITE_HOLD;
348 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
349 * should be visible before we do.
351 smp_mb();
354 * With writers on hold, if this value is zero, then there are
355 * definitely no active writers (although held writers may subsequently
356 * increment the count, they'll have to wait, and decrement it after
357 * seeing MNT_READONLY).
359 * It is OK to have counter incremented on one CPU and decremented on
360 * another: the sum will add up correctly. The danger would be when we
361 * sum up each counter, if we read a counter before it is incremented,
362 * but then read another CPU's count which it has been subsequently
363 * decremented from -- we would see more decrements than we should.
364 * MNT_WRITE_HOLD protects against this scenario, because
365 * mnt_want_write first increments count, then smp_mb, then spins on
366 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
367 * we're counting up here.
369 if (count_mnt_writers(mnt) > 0)
370 ret = -EBUSY;
371 else
372 mnt->mnt_flags |= MNT_READONLY;
374 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
375 * that become unheld will see MNT_READONLY.
377 smp_wmb();
378 mnt->mnt_flags &= ~MNT_WRITE_HOLD;
379 spin_unlock(&vfsmount_lock);
380 return ret;
383 static void __mnt_unmake_readonly(struct vfsmount *mnt)
385 spin_lock(&vfsmount_lock);
386 mnt->mnt_flags &= ~MNT_READONLY;
387 spin_unlock(&vfsmount_lock);
390 void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
392 mnt->mnt_sb = sb;
393 mnt->mnt_root = dget(sb->s_root);
396 EXPORT_SYMBOL(simple_set_mnt);
398 void free_vfsmnt(struct vfsmount *mnt)
400 kfree(mnt->mnt_devname);
401 mnt_free_id(mnt);
402 #ifdef CONFIG_SMP
403 free_percpu(mnt->mnt_writers);
404 #endif
405 kmem_cache_free(mnt_cache, mnt);
409 * find the first or last mount at @dentry on vfsmount @mnt depending on
410 * @dir. If @dir is set return the first mount else return the last mount.
412 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
413 int dir)
415 struct list_head *head = mount_hashtable + hash(mnt, dentry);
416 struct list_head *tmp = head;
417 struct vfsmount *p, *found = NULL;
419 for (;;) {
420 tmp = dir ? tmp->next : tmp->prev;
421 p = NULL;
422 if (tmp == head)
423 break;
424 p = list_entry(tmp, struct vfsmount, mnt_hash);
425 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
426 found = p;
427 break;
430 return found;
434 * lookup_mnt increments the ref count before returning
435 * the vfsmount struct.
437 struct vfsmount *lookup_mnt(struct path *path)
439 struct vfsmount *child_mnt;
440 spin_lock(&vfsmount_lock);
441 if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
442 mntget(child_mnt);
443 spin_unlock(&vfsmount_lock);
444 return child_mnt;
447 static inline int check_mnt(struct vfsmount *mnt)
449 return mnt->mnt_ns == current->nsproxy->mnt_ns;
452 static void touch_mnt_namespace(struct mnt_namespace *ns)
454 if (ns) {
455 ns->event = ++event;
456 wake_up_interruptible(&ns->poll);
460 static void __touch_mnt_namespace(struct mnt_namespace *ns)
462 if (ns && ns->event != event) {
463 ns->event = event;
464 wake_up_interruptible(&ns->poll);
468 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
470 old_path->dentry = mnt->mnt_mountpoint;
471 old_path->mnt = mnt->mnt_parent;
472 mnt->mnt_parent = mnt;
473 mnt->mnt_mountpoint = mnt->mnt_root;
474 list_del_init(&mnt->mnt_child);
475 list_del_init(&mnt->mnt_hash);
476 old_path->dentry->d_mounted--;
479 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
480 struct vfsmount *child_mnt)
482 child_mnt->mnt_parent = mntget(mnt);
483 child_mnt->mnt_mountpoint = dget(dentry);
484 dentry->d_mounted++;
487 static void attach_mnt(struct vfsmount *mnt, struct path *path)
489 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
490 list_add_tail(&mnt->mnt_hash, mount_hashtable +
491 hash(path->mnt, path->dentry));
492 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
496 * the caller must hold vfsmount_lock
498 static void commit_tree(struct vfsmount *mnt)
500 struct vfsmount *parent = mnt->mnt_parent;
501 struct vfsmount *m;
502 LIST_HEAD(head);
503 struct mnt_namespace *n = parent->mnt_ns;
505 BUG_ON(parent == mnt);
507 list_add_tail(&head, &mnt->mnt_list);
508 list_for_each_entry(m, &head, mnt_list)
509 m->mnt_ns = n;
510 list_splice(&head, n->list.prev);
512 list_add_tail(&mnt->mnt_hash, mount_hashtable +
513 hash(parent, mnt->mnt_mountpoint));
514 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
515 touch_mnt_namespace(n);
518 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
520 struct list_head *next = p->mnt_mounts.next;
521 if (next == &p->mnt_mounts) {
522 while (1) {
523 if (p == root)
524 return NULL;
525 next = p->mnt_child.next;
526 if (next != &p->mnt_parent->mnt_mounts)
527 break;
528 p = p->mnt_parent;
531 return list_entry(next, struct vfsmount, mnt_child);
534 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
536 struct list_head *prev = p->mnt_mounts.prev;
537 while (prev != &p->mnt_mounts) {
538 p = list_entry(prev, struct vfsmount, mnt_child);
539 prev = p->mnt_mounts.prev;
541 return p;
544 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
545 int flag)
547 struct super_block *sb = old->mnt_sb;
548 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
550 if (mnt) {
551 if (flag & (CL_SLAVE | CL_PRIVATE))
552 mnt->mnt_group_id = 0; /* not a peer of original */
553 else
554 mnt->mnt_group_id = old->mnt_group_id;
556 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
557 int err = mnt_alloc_group_id(mnt);
558 if (err)
559 goto out_free;
562 mnt->mnt_flags = old->mnt_flags;
563 atomic_inc(&sb->s_active);
564 mnt->mnt_sb = sb;
565 mnt->mnt_root = dget(root);
566 mnt->mnt_mountpoint = mnt->mnt_root;
567 mnt->mnt_parent = mnt;
569 if (flag & CL_SLAVE) {
570 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
571 mnt->mnt_master = old;
572 CLEAR_MNT_SHARED(mnt);
573 } else if (!(flag & CL_PRIVATE)) {
574 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
575 list_add(&mnt->mnt_share, &old->mnt_share);
576 if (IS_MNT_SLAVE(old))
577 list_add(&mnt->mnt_slave, &old->mnt_slave);
578 mnt->mnt_master = old->mnt_master;
580 if (flag & CL_MAKE_SHARED)
581 set_mnt_shared(mnt);
583 /* stick the duplicate mount on the same expiry list
584 * as the original if that was on one */
585 if (flag & CL_EXPIRE) {
586 if (!list_empty(&old->mnt_expire))
587 list_add(&mnt->mnt_expire, &old->mnt_expire);
590 return mnt;
592 out_free:
593 free_vfsmnt(mnt);
594 return NULL;
597 static inline void __mntput(struct vfsmount *mnt)
599 struct super_block *sb = mnt->mnt_sb;
601 * This probably indicates that somebody messed
602 * up a mnt_want/drop_write() pair. If this
603 * happens, the filesystem was probably unable
604 * to make r/w->r/o transitions.
607 * atomic_dec_and_lock() used to deal with ->mnt_count decrements
608 * provides barriers, so count_mnt_writers() below is safe. AV
610 WARN_ON(count_mnt_writers(mnt));
611 dput(mnt->mnt_root);
612 free_vfsmnt(mnt);
613 deactivate_super(sb);
616 void mntput_no_expire(struct vfsmount *mnt)
618 repeat:
619 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
620 if (likely(!mnt->mnt_pinned)) {
621 spin_unlock(&vfsmount_lock);
622 __mntput(mnt);
623 return;
625 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
626 mnt->mnt_pinned = 0;
627 spin_unlock(&vfsmount_lock);
628 acct_auto_close_mnt(mnt);
629 security_sb_umount_close(mnt);
630 goto repeat;
634 EXPORT_SYMBOL(mntput_no_expire);
636 void mnt_pin(struct vfsmount *mnt)
638 spin_lock(&vfsmount_lock);
639 mnt->mnt_pinned++;
640 spin_unlock(&vfsmount_lock);
643 EXPORT_SYMBOL(mnt_pin);
645 void mnt_unpin(struct vfsmount *mnt)
647 spin_lock(&vfsmount_lock);
648 if (mnt->mnt_pinned) {
649 atomic_inc(&mnt->mnt_count);
650 mnt->mnt_pinned--;
652 spin_unlock(&vfsmount_lock);
655 EXPORT_SYMBOL(mnt_unpin);
657 static inline void mangle(struct seq_file *m, const char *s)
659 seq_escape(m, s, " \t\n\\");
663 * Simple .show_options callback for filesystems which don't want to
664 * implement more complex mount option showing.
666 * See also save_mount_options().
668 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
670 const char *options;
672 rcu_read_lock();
673 options = rcu_dereference(mnt->mnt_sb->s_options);
675 if (options != NULL && options[0]) {
676 seq_putc(m, ',');
677 mangle(m, options);
679 rcu_read_unlock();
681 return 0;
683 EXPORT_SYMBOL(generic_show_options);
686 * If filesystem uses generic_show_options(), this function should be
687 * called from the fill_super() callback.
689 * The .remount_fs callback usually needs to be handled in a special
690 * way, to make sure, that previous options are not overwritten if the
691 * remount fails.
693 * Also note, that if the filesystem's .remount_fs function doesn't
694 * reset all options to their default value, but changes only newly
695 * given options, then the displayed options will not reflect reality
696 * any more.
698 void save_mount_options(struct super_block *sb, char *options)
700 BUG_ON(sb->s_options);
701 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
703 EXPORT_SYMBOL(save_mount_options);
705 void replace_mount_options(struct super_block *sb, char *options)
707 char *old = sb->s_options;
708 rcu_assign_pointer(sb->s_options, options);
709 if (old) {
710 synchronize_rcu();
711 kfree(old);
714 EXPORT_SYMBOL(replace_mount_options);
716 #ifdef CONFIG_PROC_FS
717 /* iterator */
718 static void *m_start(struct seq_file *m, loff_t *pos)
720 struct proc_mounts *p = m->private;
722 down_read(&namespace_sem);
723 return seq_list_start(&p->ns->list, *pos);
726 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
728 struct proc_mounts *p = m->private;
730 return seq_list_next(v, &p->ns->list, pos);
733 static void m_stop(struct seq_file *m, void *v)
735 up_read(&namespace_sem);
738 struct proc_fs_info {
739 int flag;
740 const char *str;
743 static int show_sb_opts(struct seq_file *m, struct super_block *sb)
745 static const struct proc_fs_info fs_info[] = {
746 { MS_SYNCHRONOUS, ",sync" },
747 { MS_DIRSYNC, ",dirsync" },
748 { MS_MANDLOCK, ",mand" },
749 { 0, NULL }
751 const struct proc_fs_info *fs_infop;
753 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
754 if (sb->s_flags & fs_infop->flag)
755 seq_puts(m, fs_infop->str);
758 return security_sb_show_options(m, sb);
761 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
763 static const struct proc_fs_info mnt_info[] = {
764 { MNT_NOSUID, ",nosuid" },
765 { MNT_NODEV, ",nodev" },
766 { MNT_NOEXEC, ",noexec" },
767 { MNT_NOATIME, ",noatime" },
768 { MNT_NODIRATIME, ",nodiratime" },
769 { MNT_RELATIME, ",relatime" },
770 { MNT_STRICTATIME, ",strictatime" },
771 { 0, NULL }
773 const struct proc_fs_info *fs_infop;
775 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
776 if (mnt->mnt_flags & fs_infop->flag)
777 seq_puts(m, fs_infop->str);
781 static void show_type(struct seq_file *m, struct super_block *sb)
783 mangle(m, sb->s_type->name);
784 if (sb->s_subtype && sb->s_subtype[0]) {
785 seq_putc(m, '.');
786 mangle(m, sb->s_subtype);
790 static int show_vfsmnt(struct seq_file *m, void *v)
792 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
793 int err = 0;
794 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
796 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
797 seq_putc(m, ' ');
798 seq_path(m, &mnt_path, " \t\n\\");
799 seq_putc(m, ' ');
800 show_type(m, mnt->mnt_sb);
801 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
802 err = show_sb_opts(m, mnt->mnt_sb);
803 if (err)
804 goto out;
805 show_mnt_opts(m, mnt);
806 if (mnt->mnt_sb->s_op->show_options)
807 err = mnt->mnt_sb->s_op->show_options(m, mnt);
808 seq_puts(m, " 0 0\n");
809 out:
810 return err;
813 const struct seq_operations mounts_op = {
814 .start = m_start,
815 .next = m_next,
816 .stop = m_stop,
817 .show = show_vfsmnt
820 static int show_mountinfo(struct seq_file *m, void *v)
822 struct proc_mounts *p = m->private;
823 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
824 struct super_block *sb = mnt->mnt_sb;
825 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
826 struct path root = p->root;
827 int err = 0;
829 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
830 MAJOR(sb->s_dev), MINOR(sb->s_dev));
831 seq_dentry(m, mnt->mnt_root, " \t\n\\");
832 seq_putc(m, ' ');
833 seq_path_root(m, &mnt_path, &root, " \t\n\\");
834 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
836 * Mountpoint is outside root, discard that one. Ugly,
837 * but less so than trying to do that in iterator in a
838 * race-free way (due to renames).
840 return SEQ_SKIP;
842 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
843 show_mnt_opts(m, mnt);
845 /* Tagged fields ("foo:X" or "bar") */
846 if (IS_MNT_SHARED(mnt))
847 seq_printf(m, " shared:%i", mnt->mnt_group_id);
848 if (IS_MNT_SLAVE(mnt)) {
849 int master = mnt->mnt_master->mnt_group_id;
850 int dom = get_dominating_id(mnt, &p->root);
851 seq_printf(m, " master:%i", master);
852 if (dom && dom != master)
853 seq_printf(m, " propagate_from:%i", dom);
855 if (IS_MNT_UNBINDABLE(mnt))
856 seq_puts(m, " unbindable");
858 /* Filesystem specific data */
859 seq_puts(m, " - ");
860 show_type(m, sb);
861 seq_putc(m, ' ');
862 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
863 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
864 err = show_sb_opts(m, sb);
865 if (err)
866 goto out;
867 if (sb->s_op->show_options)
868 err = sb->s_op->show_options(m, mnt);
869 seq_putc(m, '\n');
870 out:
871 return err;
874 const struct seq_operations mountinfo_op = {
875 .start = m_start,
876 .next = m_next,
877 .stop = m_stop,
878 .show = show_mountinfo,
881 static int show_vfsstat(struct seq_file *m, void *v)
883 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
884 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
885 int err = 0;
887 /* device */
888 if (mnt->mnt_devname) {
889 seq_puts(m, "device ");
890 mangle(m, mnt->mnt_devname);
891 } else
892 seq_puts(m, "no device");
894 /* mount point */
895 seq_puts(m, " mounted on ");
896 seq_path(m, &mnt_path, " \t\n\\");
897 seq_putc(m, ' ');
899 /* file system type */
900 seq_puts(m, "with fstype ");
901 show_type(m, mnt->mnt_sb);
903 /* optional statistics */
904 if (mnt->mnt_sb->s_op->show_stats) {
905 seq_putc(m, ' ');
906 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
909 seq_putc(m, '\n');
910 return err;
913 const struct seq_operations mountstats_op = {
914 .start = m_start,
915 .next = m_next,
916 .stop = m_stop,
917 .show = show_vfsstat,
919 #endif /* CONFIG_PROC_FS */
922 * may_umount_tree - check if a mount tree is busy
923 * @mnt: root of mount tree
925 * This is called to check if a tree of mounts has any
926 * open files, pwds, chroots or sub mounts that are
927 * busy.
929 int may_umount_tree(struct vfsmount *mnt)
931 int actual_refs = 0;
932 int minimum_refs = 0;
933 struct vfsmount *p;
935 spin_lock(&vfsmount_lock);
936 for (p = mnt; p; p = next_mnt(p, mnt)) {
937 actual_refs += atomic_read(&p->mnt_count);
938 minimum_refs += 2;
940 spin_unlock(&vfsmount_lock);
942 if (actual_refs > minimum_refs)
943 return 0;
945 return 1;
948 EXPORT_SYMBOL(may_umount_tree);
951 * may_umount - check if a mount point is busy
952 * @mnt: root of mount
954 * This is called to check if a mount point has any
955 * open files, pwds, chroots or sub mounts. If the
956 * mount has sub mounts this will return busy
957 * regardless of whether the sub mounts are busy.
959 * Doesn't take quota and stuff into account. IOW, in some cases it will
960 * give false negatives. The main reason why it's here is that we need
961 * a non-destructive way to look for easily umountable filesystems.
963 int may_umount(struct vfsmount *mnt)
965 int ret = 1;
966 spin_lock(&vfsmount_lock);
967 if (propagate_mount_busy(mnt, 2))
968 ret = 0;
969 spin_unlock(&vfsmount_lock);
970 return ret;
973 EXPORT_SYMBOL(may_umount);
975 void release_mounts(struct list_head *head)
977 struct vfsmount *mnt;
978 while (!list_empty(head)) {
979 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
980 list_del_init(&mnt->mnt_hash);
981 if (mnt->mnt_parent != mnt) {
982 struct dentry *dentry;
983 struct vfsmount *m;
984 spin_lock(&vfsmount_lock);
985 dentry = mnt->mnt_mountpoint;
986 m = mnt->mnt_parent;
987 mnt->mnt_mountpoint = mnt->mnt_root;
988 mnt->mnt_parent = mnt;
989 m->mnt_ghosts--;
990 spin_unlock(&vfsmount_lock);
991 dput(dentry);
992 mntput(m);
994 mntput(mnt);
998 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1000 struct vfsmount *p;
1002 for (p = mnt; p; p = next_mnt(p, mnt))
1003 list_move(&p->mnt_hash, kill);
1005 if (propagate)
1006 propagate_umount(kill);
1008 list_for_each_entry(p, kill, mnt_hash) {
1009 list_del_init(&p->mnt_expire);
1010 list_del_init(&p->mnt_list);
1011 __touch_mnt_namespace(p->mnt_ns);
1012 p->mnt_ns = NULL;
1013 list_del_init(&p->mnt_child);
1014 if (p->mnt_parent != p) {
1015 p->mnt_parent->mnt_ghosts++;
1016 p->mnt_mountpoint->d_mounted--;
1018 change_mnt_propagation(p, MS_PRIVATE);
1022 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1024 static int do_umount(struct vfsmount *mnt, int flags)
1026 struct super_block *sb = mnt->mnt_sb;
1027 int retval;
1028 LIST_HEAD(umount_list);
1030 retval = security_sb_umount(mnt, flags);
1031 if (retval)
1032 return retval;
1035 * Allow userspace to request a mountpoint be expired rather than
1036 * unmounting unconditionally. Unmount only happens if:
1037 * (1) the mark is already set (the mark is cleared by mntput())
1038 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1040 if (flags & MNT_EXPIRE) {
1041 if (mnt == current->fs->root.mnt ||
1042 flags & (MNT_FORCE | MNT_DETACH))
1043 return -EINVAL;
1045 if (atomic_read(&mnt->mnt_count) != 2)
1046 return -EBUSY;
1048 if (!xchg(&mnt->mnt_expiry_mark, 1))
1049 return -EAGAIN;
1053 * If we may have to abort operations to get out of this
1054 * mount, and they will themselves hold resources we must
1055 * allow the fs to do things. In the Unix tradition of
1056 * 'Gee thats tricky lets do it in userspace' the umount_begin
1057 * might fail to complete on the first run through as other tasks
1058 * must return, and the like. Thats for the mount program to worry
1059 * about for the moment.
1062 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1063 sb->s_op->umount_begin(sb);
1067 * No sense to grab the lock for this test, but test itself looks
1068 * somewhat bogus. Suggestions for better replacement?
1069 * Ho-hum... In principle, we might treat that as umount + switch
1070 * to rootfs. GC would eventually take care of the old vfsmount.
1071 * Actually it makes sense, especially if rootfs would contain a
1072 * /reboot - static binary that would close all descriptors and
1073 * call reboot(9). Then init(8) could umount root and exec /reboot.
1075 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1077 * Special case for "unmounting" root ...
1078 * we just try to remount it readonly.
1080 down_write(&sb->s_umount);
1081 if (!(sb->s_flags & MS_RDONLY))
1082 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1083 up_write(&sb->s_umount);
1084 return retval;
1087 down_write(&namespace_sem);
1088 spin_lock(&vfsmount_lock);
1089 event++;
1091 if (!(flags & MNT_DETACH))
1092 shrink_submounts(mnt, &umount_list);
1094 retval = -EBUSY;
1095 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1096 if (!list_empty(&mnt->mnt_list))
1097 umount_tree(mnt, 1, &umount_list);
1098 retval = 0;
1100 spin_unlock(&vfsmount_lock);
1101 if (retval)
1102 security_sb_umount_busy(mnt);
1103 up_write(&namespace_sem);
1104 release_mounts(&umount_list);
1105 return retval;
1109 * Now umount can handle mount points as well as block devices.
1110 * This is important for filesystems which use unnamed block devices.
1112 * We now support a flag for forced unmount like the other 'big iron'
1113 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1116 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1118 struct path path;
1119 int retval;
1121 retval = user_path(name, &path);
1122 if (retval)
1123 goto out;
1124 retval = -EINVAL;
1125 if (path.dentry != path.mnt->mnt_root)
1126 goto dput_and_out;
1127 if (!check_mnt(path.mnt))
1128 goto dput_and_out;
1130 retval = -EPERM;
1131 if (!capable(CAP_SYS_ADMIN))
1132 goto dput_and_out;
1134 retval = do_umount(path.mnt, flags);
1135 dput_and_out:
1136 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1137 dput(path.dentry);
1138 mntput_no_expire(path.mnt);
1139 out:
1140 return retval;
1143 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1146 * The 2.0 compatible umount. No flags.
1148 SYSCALL_DEFINE1(oldumount, char __user *, name)
1150 return sys_umount(name, 0);
1153 #endif
1155 static int mount_is_safe(struct path *path)
1157 if (capable(CAP_SYS_ADMIN))
1158 return 0;
1159 return -EPERM;
1160 #ifdef notyet
1161 if (S_ISLNK(path->dentry->d_inode->i_mode))
1162 return -EPERM;
1163 if (path->dentry->d_inode->i_mode & S_ISVTX) {
1164 if (current_uid() != path->dentry->d_inode->i_uid)
1165 return -EPERM;
1167 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1168 return -EPERM;
1169 return 0;
1170 #endif
1173 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1174 int flag)
1176 struct vfsmount *res, *p, *q, *r, *s;
1177 struct path path;
1179 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1180 return NULL;
1182 res = q = clone_mnt(mnt, dentry, flag);
1183 if (!q)
1184 goto Enomem;
1185 q->mnt_mountpoint = mnt->mnt_mountpoint;
1187 p = mnt;
1188 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1189 if (!is_subdir(r->mnt_mountpoint, dentry))
1190 continue;
1192 for (s = r; s; s = next_mnt(s, r)) {
1193 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1194 s = skip_mnt_tree(s);
1195 continue;
1197 while (p != s->mnt_parent) {
1198 p = p->mnt_parent;
1199 q = q->mnt_parent;
1201 p = s;
1202 path.mnt = q;
1203 path.dentry = p->mnt_mountpoint;
1204 q = clone_mnt(p, p->mnt_root, flag);
1205 if (!q)
1206 goto Enomem;
1207 spin_lock(&vfsmount_lock);
1208 list_add_tail(&q->mnt_list, &res->mnt_list);
1209 attach_mnt(q, &path);
1210 spin_unlock(&vfsmount_lock);
1213 return res;
1214 Enomem:
1215 if (res) {
1216 LIST_HEAD(umount_list);
1217 spin_lock(&vfsmount_lock);
1218 umount_tree(res, 0, &umount_list);
1219 spin_unlock(&vfsmount_lock);
1220 release_mounts(&umount_list);
1222 return NULL;
1225 struct vfsmount *collect_mounts(struct path *path)
1227 struct vfsmount *tree;
1228 down_write(&namespace_sem);
1229 tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1230 up_write(&namespace_sem);
1231 return tree;
1234 void drop_collected_mounts(struct vfsmount *mnt)
1236 LIST_HEAD(umount_list);
1237 down_write(&namespace_sem);
1238 spin_lock(&vfsmount_lock);
1239 umount_tree(mnt, 0, &umount_list);
1240 spin_unlock(&vfsmount_lock);
1241 up_write(&namespace_sem);
1242 release_mounts(&umount_list);
1245 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1247 struct vfsmount *p;
1249 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1250 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1251 mnt_release_group_id(p);
1255 static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1257 struct vfsmount *p;
1259 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1260 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1261 int err = mnt_alloc_group_id(p);
1262 if (err) {
1263 cleanup_group_ids(mnt, p);
1264 return err;
1269 return 0;
1273 * @source_mnt : mount tree to be attached
1274 * @nd : place the mount tree @source_mnt is attached
1275 * @parent_nd : if non-null, detach the source_mnt from its parent and
1276 * store the parent mount and mountpoint dentry.
1277 * (done when source_mnt is moved)
1279 * NOTE: in the table below explains the semantics when a source mount
1280 * of a given type is attached to a destination mount of a given type.
1281 * ---------------------------------------------------------------------------
1282 * | BIND MOUNT OPERATION |
1283 * |**************************************************************************
1284 * | source-->| shared | private | slave | unbindable |
1285 * | dest | | | | |
1286 * | | | | | | |
1287 * | v | | | | |
1288 * |**************************************************************************
1289 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1290 * | | | | | |
1291 * |non-shared| shared (+) | private | slave (*) | invalid |
1292 * ***************************************************************************
1293 * A bind operation clones the source mount and mounts the clone on the
1294 * destination mount.
1296 * (++) the cloned mount is propagated to all the mounts in the propagation
1297 * tree of the destination mount and the cloned mount is added to
1298 * the peer group of the source mount.
1299 * (+) the cloned mount is created under the destination mount and is marked
1300 * as shared. The cloned mount is added to the peer group of the source
1301 * mount.
1302 * (+++) the mount is propagated to all the mounts in the propagation tree
1303 * of the destination mount and the cloned mount is made slave
1304 * of the same master as that of the source mount. The cloned mount
1305 * is marked as 'shared and slave'.
1306 * (*) the cloned mount is made a slave of the same master as that of the
1307 * source mount.
1309 * ---------------------------------------------------------------------------
1310 * | MOVE MOUNT OPERATION |
1311 * |**************************************************************************
1312 * | source-->| shared | private | slave | unbindable |
1313 * | dest | | | | |
1314 * | | | | | | |
1315 * | v | | | | |
1316 * |**************************************************************************
1317 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1318 * | | | | | |
1319 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1320 * ***************************************************************************
1322 * (+) the mount is moved to the destination. And is then propagated to
1323 * all the mounts in the propagation tree of the destination mount.
1324 * (+*) the mount is moved to the destination.
1325 * (+++) the mount is moved to the destination and is then propagated to
1326 * all the mounts belonging to the destination mount's propagation tree.
1327 * the mount is marked as 'shared and slave'.
1328 * (*) the mount continues to be a slave at the new location.
1330 * if the source mount is a tree, the operations explained above is
1331 * applied to each mount in the tree.
1332 * Must be called without spinlocks held, since this function can sleep
1333 * in allocations.
1335 static int attach_recursive_mnt(struct vfsmount *source_mnt,
1336 struct path *path, struct path *parent_path)
1338 LIST_HEAD(tree_list);
1339 struct vfsmount *dest_mnt = path->mnt;
1340 struct dentry *dest_dentry = path->dentry;
1341 struct vfsmount *child, *p;
1342 int err;
1344 if (IS_MNT_SHARED(dest_mnt)) {
1345 err = invent_group_ids(source_mnt, true);
1346 if (err)
1347 goto out;
1349 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1350 if (err)
1351 goto out_cleanup_ids;
1353 if (IS_MNT_SHARED(dest_mnt)) {
1354 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1355 set_mnt_shared(p);
1358 spin_lock(&vfsmount_lock);
1359 if (parent_path) {
1360 detach_mnt(source_mnt, parent_path);
1361 attach_mnt(source_mnt, path);
1362 touch_mnt_namespace(parent_path->mnt->mnt_ns);
1363 } else {
1364 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1365 commit_tree(source_mnt);
1368 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1369 list_del_init(&child->mnt_hash);
1370 commit_tree(child);
1372 spin_unlock(&vfsmount_lock);
1373 return 0;
1375 out_cleanup_ids:
1376 if (IS_MNT_SHARED(dest_mnt))
1377 cleanup_group_ids(source_mnt, NULL);
1378 out:
1379 return err;
1382 static int graft_tree(struct vfsmount *mnt, struct path *path)
1384 int err;
1385 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1386 return -EINVAL;
1388 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1389 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1390 return -ENOTDIR;
1392 err = -ENOENT;
1393 mutex_lock(&path->dentry->d_inode->i_mutex);
1394 if (IS_DEADDIR(path->dentry->d_inode))
1395 goto out_unlock;
1397 err = security_sb_check_sb(mnt, path);
1398 if (err)
1399 goto out_unlock;
1401 err = -ENOENT;
1402 if (!d_unlinked(path->dentry))
1403 err = attach_recursive_mnt(mnt, path, NULL);
1404 out_unlock:
1405 mutex_unlock(&path->dentry->d_inode->i_mutex);
1406 if (!err)
1407 security_sb_post_addmount(mnt, path);
1408 return err;
1412 * recursively change the type of the mountpoint.
1414 static int do_change_type(struct path *path, int flag)
1416 struct vfsmount *m, *mnt = path->mnt;
1417 int recurse = flag & MS_REC;
1418 int type = flag & ~MS_REC;
1419 int err = 0;
1421 if (!capable(CAP_SYS_ADMIN))
1422 return -EPERM;
1424 if (path->dentry != path->mnt->mnt_root)
1425 return -EINVAL;
1427 down_write(&namespace_sem);
1428 if (type == MS_SHARED) {
1429 err = invent_group_ids(mnt, recurse);
1430 if (err)
1431 goto out_unlock;
1434 spin_lock(&vfsmount_lock);
1435 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1436 change_mnt_propagation(m, type);
1437 spin_unlock(&vfsmount_lock);
1439 out_unlock:
1440 up_write(&namespace_sem);
1441 return err;
1445 * do loopback mount.
1447 static int do_loopback(struct path *path, char *old_name,
1448 int recurse)
1450 struct path old_path;
1451 struct vfsmount *mnt = NULL;
1452 int err = mount_is_safe(path);
1453 if (err)
1454 return err;
1455 if (!old_name || !*old_name)
1456 return -EINVAL;
1457 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1458 if (err)
1459 return err;
1461 down_write(&namespace_sem);
1462 err = -EINVAL;
1463 if (IS_MNT_UNBINDABLE(old_path.mnt))
1464 goto out;
1466 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1467 goto out;
1469 err = -ENOMEM;
1470 if (recurse)
1471 mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
1472 else
1473 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
1475 if (!mnt)
1476 goto out;
1478 err = graft_tree(mnt, path);
1479 if (err) {
1480 LIST_HEAD(umount_list);
1481 spin_lock(&vfsmount_lock);
1482 umount_tree(mnt, 0, &umount_list);
1483 spin_unlock(&vfsmount_lock);
1484 release_mounts(&umount_list);
1487 out:
1488 up_write(&namespace_sem);
1489 path_put(&old_path);
1490 return err;
1493 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1495 int error = 0;
1496 int readonly_request = 0;
1498 if (ms_flags & MS_RDONLY)
1499 readonly_request = 1;
1500 if (readonly_request == __mnt_is_readonly(mnt))
1501 return 0;
1503 if (readonly_request)
1504 error = mnt_make_readonly(mnt);
1505 else
1506 __mnt_unmake_readonly(mnt);
1507 return error;
1511 * change filesystem flags. dir should be a physical root of filesystem.
1512 * If you've mounted a non-root directory somewhere and want to do remount
1513 * on it - tough luck.
1515 static int do_remount(struct path *path, int flags, int mnt_flags,
1516 void *data)
1518 int err;
1519 struct super_block *sb = path->mnt->mnt_sb;
1521 if (!capable(CAP_SYS_ADMIN))
1522 return -EPERM;
1524 if (!check_mnt(path->mnt))
1525 return -EINVAL;
1527 if (path->dentry != path->mnt->mnt_root)
1528 return -EINVAL;
1530 down_write(&sb->s_umount);
1531 if (flags & MS_BIND)
1532 err = change_mount_flags(path->mnt, flags);
1533 else
1534 err = do_remount_sb(sb, flags, data, 0);
1535 if (!err)
1536 path->mnt->mnt_flags = mnt_flags;
1537 up_write(&sb->s_umount);
1538 if (!err) {
1539 security_sb_post_remount(path->mnt, flags, data);
1541 spin_lock(&vfsmount_lock);
1542 touch_mnt_namespace(path->mnt->mnt_ns);
1543 spin_unlock(&vfsmount_lock);
1545 return err;
1548 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1550 struct vfsmount *p;
1551 for (p = mnt; p; p = next_mnt(p, mnt)) {
1552 if (IS_MNT_UNBINDABLE(p))
1553 return 1;
1555 return 0;
1558 static int do_move_mount(struct path *path, char *old_name)
1560 struct path old_path, parent_path;
1561 struct vfsmount *p;
1562 int err = 0;
1563 if (!capable(CAP_SYS_ADMIN))
1564 return -EPERM;
1565 if (!old_name || !*old_name)
1566 return -EINVAL;
1567 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1568 if (err)
1569 return err;
1571 down_write(&namespace_sem);
1572 while (d_mountpoint(path->dentry) &&
1573 follow_down(path))
1575 err = -EINVAL;
1576 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1577 goto out;
1579 err = -ENOENT;
1580 mutex_lock(&path->dentry->d_inode->i_mutex);
1581 if (IS_DEADDIR(path->dentry->d_inode))
1582 goto out1;
1584 if (d_unlinked(path->dentry))
1585 goto out1;
1587 err = -EINVAL;
1588 if (old_path.dentry != old_path.mnt->mnt_root)
1589 goto out1;
1591 if (old_path.mnt == old_path.mnt->mnt_parent)
1592 goto out1;
1594 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1595 S_ISDIR(old_path.dentry->d_inode->i_mode))
1596 goto out1;
1598 * Don't move a mount residing in a shared parent.
1600 if (old_path.mnt->mnt_parent &&
1601 IS_MNT_SHARED(old_path.mnt->mnt_parent))
1602 goto out1;
1604 * Don't move a mount tree containing unbindable mounts to a destination
1605 * mount which is shared.
1607 if (IS_MNT_SHARED(path->mnt) &&
1608 tree_contains_unbindable(old_path.mnt))
1609 goto out1;
1610 err = -ELOOP;
1611 for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1612 if (p == old_path.mnt)
1613 goto out1;
1615 err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
1616 if (err)
1617 goto out1;
1619 /* if the mount is moved, it should no longer be expire
1620 * automatically */
1621 list_del_init(&old_path.mnt->mnt_expire);
1622 out1:
1623 mutex_unlock(&path->dentry->d_inode->i_mutex);
1624 out:
1625 up_write(&namespace_sem);
1626 if (!err)
1627 path_put(&parent_path);
1628 path_put(&old_path);
1629 return err;
1633 * create a new mount for userspace and request it to be added into the
1634 * namespace's tree
1636 static int do_new_mount(struct path *path, char *type, int flags,
1637 int mnt_flags, char *name, void *data)
1639 struct vfsmount *mnt;
1641 if (!type || !memchr(type, 0, PAGE_SIZE))
1642 return -EINVAL;
1644 /* we need capabilities... */
1645 if (!capable(CAP_SYS_ADMIN))
1646 return -EPERM;
1648 lock_kernel();
1649 mnt = do_kern_mount(type, flags, name, data);
1650 unlock_kernel();
1651 if (IS_ERR(mnt))
1652 return PTR_ERR(mnt);
1654 return do_add_mount(mnt, path, mnt_flags, NULL);
1658 * add a mount into a namespace's mount tree
1659 * - provide the option of adding the new mount to an expiration list
1661 int do_add_mount(struct vfsmount *newmnt, struct path *path,
1662 int mnt_flags, struct list_head *fslist)
1664 int err;
1666 down_write(&namespace_sem);
1667 /* Something was mounted here while we slept */
1668 while (d_mountpoint(path->dentry) &&
1669 follow_down(path))
1671 err = -EINVAL;
1672 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1673 goto unlock;
1675 /* Refuse the same filesystem on the same mount point */
1676 err = -EBUSY;
1677 if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1678 path->mnt->mnt_root == path->dentry)
1679 goto unlock;
1681 err = -EINVAL;
1682 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1683 goto unlock;
1685 newmnt->mnt_flags = mnt_flags;
1686 if ((err = graft_tree(newmnt, path)))
1687 goto unlock;
1689 if (fslist) /* add to the specified expiration list */
1690 list_add_tail(&newmnt->mnt_expire, fslist);
1692 up_write(&namespace_sem);
1693 return 0;
1695 unlock:
1696 up_write(&namespace_sem);
1697 mntput(newmnt);
1698 return err;
1701 EXPORT_SYMBOL_GPL(do_add_mount);
1704 * process a list of expirable mountpoints with the intent of discarding any
1705 * mountpoints that aren't in use and haven't been touched since last we came
1706 * here
1708 void mark_mounts_for_expiry(struct list_head *mounts)
1710 struct vfsmount *mnt, *next;
1711 LIST_HEAD(graveyard);
1712 LIST_HEAD(umounts);
1714 if (list_empty(mounts))
1715 return;
1717 down_write(&namespace_sem);
1718 spin_lock(&vfsmount_lock);
1720 /* extract from the expiration list every vfsmount that matches the
1721 * following criteria:
1722 * - only referenced by its parent vfsmount
1723 * - still marked for expiry (marked on the last call here; marks are
1724 * cleared by mntput())
1726 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1727 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1728 propagate_mount_busy(mnt, 1))
1729 continue;
1730 list_move(&mnt->mnt_expire, &graveyard);
1732 while (!list_empty(&graveyard)) {
1733 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1734 touch_mnt_namespace(mnt->mnt_ns);
1735 umount_tree(mnt, 1, &umounts);
1737 spin_unlock(&vfsmount_lock);
1738 up_write(&namespace_sem);
1740 release_mounts(&umounts);
1743 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1746 * Ripoff of 'select_parent()'
1748 * search the list of submounts for a given mountpoint, and move any
1749 * shrinkable submounts to the 'graveyard' list.
1751 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1753 struct vfsmount *this_parent = parent;
1754 struct list_head *next;
1755 int found = 0;
1757 repeat:
1758 next = this_parent->mnt_mounts.next;
1759 resume:
1760 while (next != &this_parent->mnt_mounts) {
1761 struct list_head *tmp = next;
1762 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1764 next = tmp->next;
1765 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1766 continue;
1768 * Descend a level if the d_mounts list is non-empty.
1770 if (!list_empty(&mnt->mnt_mounts)) {
1771 this_parent = mnt;
1772 goto repeat;
1775 if (!propagate_mount_busy(mnt, 1)) {
1776 list_move_tail(&mnt->mnt_expire, graveyard);
1777 found++;
1781 * All done at this level ... ascend and resume the search
1783 if (this_parent != parent) {
1784 next = this_parent->mnt_child.next;
1785 this_parent = this_parent->mnt_parent;
1786 goto resume;
1788 return found;
1792 * process a list of expirable mountpoints with the intent of discarding any
1793 * submounts of a specific parent mountpoint
1795 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
1797 LIST_HEAD(graveyard);
1798 struct vfsmount *m;
1800 /* extract submounts of 'mountpoint' from the expiration list */
1801 while (select_submounts(mnt, &graveyard)) {
1802 while (!list_empty(&graveyard)) {
1803 m = list_first_entry(&graveyard, struct vfsmount,
1804 mnt_expire);
1805 touch_mnt_namespace(m->mnt_ns);
1806 umount_tree(m, 1, umounts);
1812 * Some copy_from_user() implementations do not return the exact number of
1813 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1814 * Note that this function differs from copy_from_user() in that it will oops
1815 * on bad values of `to', rather than returning a short copy.
1817 static long exact_copy_from_user(void *to, const void __user * from,
1818 unsigned long n)
1820 char *t = to;
1821 const char __user *f = from;
1822 char c;
1824 if (!access_ok(VERIFY_READ, from, n))
1825 return n;
1827 while (n) {
1828 if (__get_user(c, f)) {
1829 memset(t, 0, n);
1830 break;
1832 *t++ = c;
1833 f++;
1834 n--;
1836 return n;
1839 int copy_mount_options(const void __user * data, unsigned long *where)
1841 int i;
1842 unsigned long page;
1843 unsigned long size;
1845 *where = 0;
1846 if (!data)
1847 return 0;
1849 if (!(page = __get_free_page(GFP_KERNEL)))
1850 return -ENOMEM;
1852 /* We only care that *some* data at the address the user
1853 * gave us is valid. Just in case, we'll zero
1854 * the remainder of the page.
1856 /* copy_from_user cannot cross TASK_SIZE ! */
1857 size = TASK_SIZE - (unsigned long)data;
1858 if (size > PAGE_SIZE)
1859 size = PAGE_SIZE;
1861 i = size - exact_copy_from_user((void *)page, data, size);
1862 if (!i) {
1863 free_page(page);
1864 return -EFAULT;
1866 if (i != PAGE_SIZE)
1867 memset((char *)page + i, 0, PAGE_SIZE - i);
1868 *where = page;
1869 return 0;
1873 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1874 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1876 * data is a (void *) that can point to any structure up to
1877 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1878 * information (or be NULL).
1880 * Pre-0.97 versions of mount() didn't have a flags word.
1881 * When the flags word was introduced its top half was required
1882 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1883 * Therefore, if this magic number is present, it carries no information
1884 * and must be discarded.
1886 long do_mount(char *dev_name, char *dir_name, char *type_page,
1887 unsigned long flags, void *data_page)
1889 struct path path;
1890 int retval = 0;
1891 int mnt_flags = 0;
1893 /* Discard magic */
1894 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1895 flags &= ~MS_MGC_MSK;
1897 /* Basic sanity checks */
1899 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1900 return -EINVAL;
1901 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1902 return -EINVAL;
1904 if (data_page)
1905 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1907 /* Default to relatime unless overriden */
1908 if (!(flags & MS_NOATIME))
1909 mnt_flags |= MNT_RELATIME;
1911 /* Separate the per-mountpoint flags */
1912 if (flags & MS_NOSUID)
1913 mnt_flags |= MNT_NOSUID;
1914 if (flags & MS_NODEV)
1915 mnt_flags |= MNT_NODEV;
1916 if (flags & MS_NOEXEC)
1917 mnt_flags |= MNT_NOEXEC;
1918 if (flags & MS_NOATIME)
1919 mnt_flags |= MNT_NOATIME;
1920 if (flags & MS_NODIRATIME)
1921 mnt_flags |= MNT_NODIRATIME;
1922 if (flags & MS_STRICTATIME)
1923 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
1924 if (flags & MS_RDONLY)
1925 mnt_flags |= MNT_READONLY;
1927 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1928 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
1929 MS_STRICTATIME);
1931 /* ... and get the mountpoint */
1932 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
1933 if (retval)
1934 return retval;
1936 retval = security_sb_mount(dev_name, &path,
1937 type_page, flags, data_page);
1938 if (retval)
1939 goto dput_out;
1941 if (flags & MS_REMOUNT)
1942 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1943 data_page);
1944 else if (flags & MS_BIND)
1945 retval = do_loopback(&path, dev_name, flags & MS_REC);
1946 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1947 retval = do_change_type(&path, flags);
1948 else if (flags & MS_MOVE)
1949 retval = do_move_mount(&path, dev_name);
1950 else
1951 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1952 dev_name, data_page);
1953 dput_out:
1954 path_put(&path);
1955 return retval;
1958 static struct mnt_namespace *alloc_mnt_ns(void)
1960 struct mnt_namespace *new_ns;
1962 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1963 if (!new_ns)
1964 return ERR_PTR(-ENOMEM);
1965 atomic_set(&new_ns->count, 1);
1966 new_ns->root = NULL;
1967 INIT_LIST_HEAD(&new_ns->list);
1968 init_waitqueue_head(&new_ns->poll);
1969 new_ns->event = 0;
1970 return new_ns;
1974 * Allocate a new namespace structure and populate it with contents
1975 * copied from the namespace of the passed in task structure.
1977 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
1978 struct fs_struct *fs)
1980 struct mnt_namespace *new_ns;
1981 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
1982 struct vfsmount *p, *q;
1984 new_ns = alloc_mnt_ns();
1985 if (IS_ERR(new_ns))
1986 return new_ns;
1988 down_write(&namespace_sem);
1989 /* First pass: copy the tree topology */
1990 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
1991 CL_COPY_ALL | CL_EXPIRE);
1992 if (!new_ns->root) {
1993 up_write(&namespace_sem);
1994 kfree(new_ns);
1995 return ERR_PTR(-ENOMEM);
1997 spin_lock(&vfsmount_lock);
1998 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1999 spin_unlock(&vfsmount_lock);
2002 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2003 * as belonging to new namespace. We have already acquired a private
2004 * fs_struct, so tsk->fs->lock is not needed.
2006 p = mnt_ns->root;
2007 q = new_ns->root;
2008 while (p) {
2009 q->mnt_ns = new_ns;
2010 if (fs) {
2011 if (p == fs->root.mnt) {
2012 rootmnt = p;
2013 fs->root.mnt = mntget(q);
2015 if (p == fs->pwd.mnt) {
2016 pwdmnt = p;
2017 fs->pwd.mnt = mntget(q);
2020 p = next_mnt(p, mnt_ns->root);
2021 q = next_mnt(q, new_ns->root);
2023 up_write(&namespace_sem);
2025 if (rootmnt)
2026 mntput(rootmnt);
2027 if (pwdmnt)
2028 mntput(pwdmnt);
2030 return new_ns;
2033 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2034 struct fs_struct *new_fs)
2036 struct mnt_namespace *new_ns;
2038 BUG_ON(!ns);
2039 get_mnt_ns(ns);
2041 if (!(flags & CLONE_NEWNS))
2042 return ns;
2044 new_ns = dup_mnt_ns(ns, new_fs);
2046 put_mnt_ns(ns);
2047 return new_ns;
2051 * create_mnt_ns - creates a private namespace and adds a root filesystem
2052 * @mnt: pointer to the new root filesystem mountpoint
2054 struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
2056 struct mnt_namespace *new_ns;
2058 new_ns = alloc_mnt_ns();
2059 if (!IS_ERR(new_ns)) {
2060 mnt->mnt_ns = new_ns;
2061 new_ns->root = mnt;
2062 list_add(&new_ns->list, &new_ns->root->mnt_list);
2064 return new_ns;
2066 EXPORT_SYMBOL(create_mnt_ns);
2068 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2069 char __user *, type, unsigned long, flags, void __user *, data)
2071 int retval;
2072 unsigned long data_page;
2073 unsigned long type_page;
2074 unsigned long dev_page;
2075 char *dir_page;
2077 retval = copy_mount_options(type, &type_page);
2078 if (retval < 0)
2079 return retval;
2081 dir_page = getname(dir_name);
2082 retval = PTR_ERR(dir_page);
2083 if (IS_ERR(dir_page))
2084 goto out1;
2086 retval = copy_mount_options(dev_name, &dev_page);
2087 if (retval < 0)
2088 goto out2;
2090 retval = copy_mount_options(data, &data_page);
2091 if (retval < 0)
2092 goto out3;
2094 retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
2095 flags, (void *)data_page);
2096 free_page(data_page);
2098 out3:
2099 free_page(dev_page);
2100 out2:
2101 putname(dir_page);
2102 out1:
2103 free_page(type_page);
2104 return retval;
2108 * pivot_root Semantics:
2109 * Moves the root file system of the current process to the directory put_old,
2110 * makes new_root as the new root file system of the current process, and sets
2111 * root/cwd of all processes which had them on the current root to new_root.
2113 * Restrictions:
2114 * The new_root and put_old must be directories, and must not be on the
2115 * same file system as the current process root. The put_old must be
2116 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2117 * pointed to by put_old must yield the same directory as new_root. No other
2118 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2120 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2121 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2122 * in this situation.
2124 * Notes:
2125 * - we don't move root/cwd if they are not at the root (reason: if something
2126 * cared enough to change them, it's probably wrong to force them elsewhere)
2127 * - it's okay to pick a root that isn't the root of a file system, e.g.
2128 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2129 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2130 * first.
2132 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2133 const char __user *, put_old)
2135 struct vfsmount *tmp;
2136 struct path new, old, parent_path, root_parent, root;
2137 int error;
2139 if (!capable(CAP_SYS_ADMIN))
2140 return -EPERM;
2142 error = user_path_dir(new_root, &new);
2143 if (error)
2144 goto out0;
2145 error = -EINVAL;
2146 if (!check_mnt(new.mnt))
2147 goto out1;
2149 error = user_path_dir(put_old, &old);
2150 if (error)
2151 goto out1;
2153 error = security_sb_pivotroot(&old, &new);
2154 if (error) {
2155 path_put(&old);
2156 goto out1;
2159 read_lock(&current->fs->lock);
2160 root = current->fs->root;
2161 path_get(&current->fs->root);
2162 read_unlock(&current->fs->lock);
2163 down_write(&namespace_sem);
2164 mutex_lock(&old.dentry->d_inode->i_mutex);
2165 error = -EINVAL;
2166 if (IS_MNT_SHARED(old.mnt) ||
2167 IS_MNT_SHARED(new.mnt->mnt_parent) ||
2168 IS_MNT_SHARED(root.mnt->mnt_parent))
2169 goto out2;
2170 if (!check_mnt(root.mnt))
2171 goto out2;
2172 error = -ENOENT;
2173 if (IS_DEADDIR(new.dentry->d_inode))
2174 goto out2;
2175 if (d_unlinked(new.dentry))
2176 goto out2;
2177 if (d_unlinked(old.dentry))
2178 goto out2;
2179 error = -EBUSY;
2180 if (new.mnt == root.mnt ||
2181 old.mnt == root.mnt)
2182 goto out2; /* loop, on the same file system */
2183 error = -EINVAL;
2184 if (root.mnt->mnt_root != root.dentry)
2185 goto out2; /* not a mountpoint */
2186 if (root.mnt->mnt_parent == root.mnt)
2187 goto out2; /* not attached */
2188 if (new.mnt->mnt_root != new.dentry)
2189 goto out2; /* not a mountpoint */
2190 if (new.mnt->mnt_parent == new.mnt)
2191 goto out2; /* not attached */
2192 /* make sure we can reach put_old from new_root */
2193 tmp = old.mnt;
2194 spin_lock(&vfsmount_lock);
2195 if (tmp != new.mnt) {
2196 for (;;) {
2197 if (tmp->mnt_parent == tmp)
2198 goto out3; /* already mounted on put_old */
2199 if (tmp->mnt_parent == new.mnt)
2200 break;
2201 tmp = tmp->mnt_parent;
2203 if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
2204 goto out3;
2205 } else if (!is_subdir(old.dentry, new.dentry))
2206 goto out3;
2207 detach_mnt(new.mnt, &parent_path);
2208 detach_mnt(root.mnt, &root_parent);
2209 /* mount old root on put_old */
2210 attach_mnt(root.mnt, &old);
2211 /* mount new_root on / */
2212 attach_mnt(new.mnt, &root_parent);
2213 touch_mnt_namespace(current->nsproxy->mnt_ns);
2214 spin_unlock(&vfsmount_lock);
2215 chroot_fs_refs(&root, &new);
2216 security_sb_post_pivotroot(&root, &new);
2217 error = 0;
2218 path_put(&root_parent);
2219 path_put(&parent_path);
2220 out2:
2221 mutex_unlock(&old.dentry->d_inode->i_mutex);
2222 up_write(&namespace_sem);
2223 path_put(&root);
2224 path_put(&old);
2225 out1:
2226 path_put(&new);
2227 out0:
2228 return error;
2229 out3:
2230 spin_unlock(&vfsmount_lock);
2231 goto out2;
2234 static void __init init_mount_tree(void)
2236 struct vfsmount *mnt;
2237 struct mnt_namespace *ns;
2238 struct path root;
2240 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2241 if (IS_ERR(mnt))
2242 panic("Can't create rootfs");
2243 ns = create_mnt_ns(mnt);
2244 if (IS_ERR(ns))
2245 panic("Can't allocate initial namespace");
2247 init_task.nsproxy->mnt_ns = ns;
2248 get_mnt_ns(ns);
2250 root.mnt = ns->root;
2251 root.dentry = ns->root->mnt_root;
2253 set_fs_pwd(current->fs, &root);
2254 set_fs_root(current->fs, &root);
2257 void __init mnt_init(void)
2259 unsigned u;
2260 int err;
2262 init_rwsem(&namespace_sem);
2264 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2265 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2267 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2269 if (!mount_hashtable)
2270 panic("Failed to allocate mount hash table\n");
2272 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2274 for (u = 0; u < HASH_SIZE; u++)
2275 INIT_LIST_HEAD(&mount_hashtable[u]);
2277 err = sysfs_init();
2278 if (err)
2279 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2280 __func__, err);
2281 fs_kobj = kobject_create_and_add("fs", NULL);
2282 if (!fs_kobj)
2283 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2284 init_rootfs();
2285 init_mount_tree();
2288 void put_mnt_ns(struct mnt_namespace *ns)
2290 struct vfsmount *root;
2291 LIST_HEAD(umount_list);
2293 if (!atomic_dec_and_lock(&ns->count, &vfsmount_lock))
2294 return;
2295 root = ns->root;
2296 ns->root = NULL;
2297 spin_unlock(&vfsmount_lock);
2298 down_write(&namespace_sem);
2299 spin_lock(&vfsmount_lock);
2300 umount_tree(root, 0, &umount_list);
2301 spin_unlock(&vfsmount_lock);
2302 up_write(&namespace_sem);
2303 release_mounts(&umount_list);
2304 kfree(ns);
2306 EXPORT_SYMBOL(put_mnt_ns);