2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/export.h>
28 #include <linux/slab.h>
29 #include <linux/irq.h>
30 #include <linux/interrupt.h>
31 #include <linux/spinlock.h>
32 #include <linux/pci.h>
33 #include <linux/dmar.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mempool.h>
36 #include <linux/timer.h>
37 #include <linux/iova.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/tboot.h>
42 #include <linux/dmi.h>
43 #include <linux/pci-ats.h>
44 #include <linux/memblock.h>
45 #include <asm/irq_remapping.h>
46 #include <asm/cacheflush.h>
47 #include <asm/iommu.h>
49 #include "irq_remapping.h"
52 #define ROOT_SIZE VTD_PAGE_SIZE
53 #define CONTEXT_SIZE VTD_PAGE_SIZE
55 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
56 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
57 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
59 #define IOAPIC_RANGE_START (0xfee00000)
60 #define IOAPIC_RANGE_END (0xfeefffff)
61 #define IOVA_START_ADDR (0x1000)
63 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
65 #define MAX_AGAW_WIDTH 64
67 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
68 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
70 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
71 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
72 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
73 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
74 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
76 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
77 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
78 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
80 /* page table handling */
81 #define LEVEL_STRIDE (9)
82 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
85 * This bitmap is used to advertise the page sizes our hardware support
86 * to the IOMMU core, which will then use this information to split
87 * physically contiguous memory regions it is mapping into page sizes
90 * Traditionally the IOMMU core just handed us the mappings directly,
91 * after making sure the size is an order of a 4KiB page and that the
92 * mapping has natural alignment.
94 * To retain this behavior, we currently advertise that we support
95 * all page sizes that are an order of 4KiB.
97 * If at some point we'd like to utilize the IOMMU core's new behavior,
98 * we could change this to advertise the real page sizes we support.
100 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
102 static inline int agaw_to_level(int agaw
)
107 static inline int agaw_to_width(int agaw
)
109 return 30 + agaw
* LEVEL_STRIDE
;
112 static inline int width_to_agaw(int width
)
114 return (width
- 30) / LEVEL_STRIDE
;
117 static inline unsigned int level_to_offset_bits(int level
)
119 return (level
- 1) * LEVEL_STRIDE
;
122 static inline int pfn_level_offset(unsigned long pfn
, int level
)
124 return (pfn
>> level_to_offset_bits(level
)) & LEVEL_MASK
;
127 static inline unsigned long level_mask(int level
)
129 return -1UL << level_to_offset_bits(level
);
132 static inline unsigned long level_size(int level
)
134 return 1UL << level_to_offset_bits(level
);
137 static inline unsigned long align_to_level(unsigned long pfn
, int level
)
139 return (pfn
+ level_size(level
) - 1) & level_mask(level
);
142 static inline unsigned long lvl_to_nr_pages(unsigned int lvl
)
144 return 1 << ((lvl
- 1) * LEVEL_STRIDE
);
147 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
148 are never going to work. */
149 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn
)
151 return dma_pfn
>> (PAGE_SHIFT
- VTD_PAGE_SHIFT
);
154 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn
)
156 return mm_pfn
<< (PAGE_SHIFT
- VTD_PAGE_SHIFT
);
158 static inline unsigned long page_to_dma_pfn(struct page
*pg
)
160 return mm_to_dma_pfn(page_to_pfn(pg
));
162 static inline unsigned long virt_to_dma_pfn(void *p
)
164 return page_to_dma_pfn(virt_to_page(p
));
167 /* global iommu list, set NULL for ignored DMAR units */
168 static struct intel_iommu
**g_iommus
;
170 static void __init
check_tylersburg_isoch(void);
171 static int rwbf_quirk
;
174 * set to 1 to panic kernel if can't successfully enable VT-d
175 * (used when kernel is launched w/ TXT)
177 static int force_on
= 0;
182 * 12-63: Context Ptr (12 - (haw-1))
189 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
190 static inline bool root_present(struct root_entry
*root
)
192 return (root
->val
& 1);
194 static inline void set_root_present(struct root_entry
*root
)
198 static inline void set_root_value(struct root_entry
*root
, unsigned long value
)
200 root
->val
|= value
& VTD_PAGE_MASK
;
203 static inline struct context_entry
*
204 get_context_addr_from_root(struct root_entry
*root
)
206 return (struct context_entry
*)
207 (root_present(root
)?phys_to_virt(
208 root
->val
& VTD_PAGE_MASK
) :
215 * 1: fault processing disable
216 * 2-3: translation type
217 * 12-63: address space root
223 struct context_entry
{
228 static inline bool context_present(struct context_entry
*context
)
230 return (context
->lo
& 1);
232 static inline void context_set_present(struct context_entry
*context
)
237 static inline void context_set_fault_enable(struct context_entry
*context
)
239 context
->lo
&= (((u64
)-1) << 2) | 1;
242 static inline void context_set_translation_type(struct context_entry
*context
,
245 context
->lo
&= (((u64
)-1) << 4) | 3;
246 context
->lo
|= (value
& 3) << 2;
249 static inline void context_set_address_root(struct context_entry
*context
,
252 context
->lo
|= value
& VTD_PAGE_MASK
;
255 static inline void context_set_address_width(struct context_entry
*context
,
258 context
->hi
|= value
& 7;
261 static inline void context_set_domain_id(struct context_entry
*context
,
264 context
->hi
|= (value
& ((1 << 16) - 1)) << 8;
267 static inline void context_clear_entry(struct context_entry
*context
)
280 * 12-63: Host physcial address
286 static inline void dma_clear_pte(struct dma_pte
*pte
)
291 static inline void dma_set_pte_readable(struct dma_pte
*pte
)
293 pte
->val
|= DMA_PTE_READ
;
296 static inline void dma_set_pte_writable(struct dma_pte
*pte
)
298 pte
->val
|= DMA_PTE_WRITE
;
301 static inline void dma_set_pte_snp(struct dma_pte
*pte
)
303 pte
->val
|= DMA_PTE_SNP
;
306 static inline void dma_set_pte_prot(struct dma_pte
*pte
, unsigned long prot
)
308 pte
->val
= (pte
->val
& ~3) | (prot
& 3);
311 static inline u64
dma_pte_addr(struct dma_pte
*pte
)
314 return pte
->val
& VTD_PAGE_MASK
;
316 /* Must have a full atomic 64-bit read */
317 return __cmpxchg64(&pte
->val
, 0ULL, 0ULL) & VTD_PAGE_MASK
;
321 static inline void dma_set_pte_pfn(struct dma_pte
*pte
, unsigned long pfn
)
323 pte
->val
|= (uint64_t)pfn
<< VTD_PAGE_SHIFT
;
326 static inline bool dma_pte_present(struct dma_pte
*pte
)
328 return (pte
->val
& 3) != 0;
331 static inline bool dma_pte_superpage(struct dma_pte
*pte
)
333 return (pte
->val
& (1 << 7));
336 static inline int first_pte_in_page(struct dma_pte
*pte
)
338 return !((unsigned long)pte
& ~VTD_PAGE_MASK
);
342 * This domain is a statically identity mapping domain.
343 * 1. This domain creats a static 1:1 mapping to all usable memory.
344 * 2. It maps to each iommu if successful.
345 * 3. Each iommu mapps to this domain if successful.
347 static struct dmar_domain
*si_domain
;
348 static int hw_pass_through
= 1;
350 /* devices under the same p2p bridge are owned in one domain */
351 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
353 /* domain represents a virtual machine, more than one devices
354 * across iommus may be owned in one domain, e.g. kvm guest.
356 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
358 /* si_domain contains mulitple devices */
359 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
361 /* define the limit of IOMMUs supported in each domain */
363 # define IOMMU_UNITS_SUPPORTED MAX_IO_APICS
365 # define IOMMU_UNITS_SUPPORTED 64
369 int id
; /* domain id */
370 int nid
; /* node id */
371 DECLARE_BITMAP(iommu_bmp
, IOMMU_UNITS_SUPPORTED
);
372 /* bitmap of iommus this domain uses*/
374 struct list_head devices
; /* all devices' list */
375 struct iova_domain iovad
; /* iova's that belong to this domain */
377 struct dma_pte
*pgd
; /* virtual address */
378 int gaw
; /* max guest address width */
380 /* adjusted guest address width, 0 is level 2 30-bit */
383 int flags
; /* flags to find out type of domain */
385 int iommu_coherency
;/* indicate coherency of iommu access */
386 int iommu_snooping
; /* indicate snooping control feature*/
387 int iommu_count
; /* reference count of iommu */
388 int iommu_superpage
;/* Level of superpages supported:
389 0 == 4KiB (no superpages), 1 == 2MiB,
390 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
391 spinlock_t iommu_lock
; /* protect iommu set in domain */
392 u64 max_addr
; /* maximum mapped address */
395 /* PCI domain-device relationship */
396 struct device_domain_info
{
397 struct list_head link
; /* link to domain siblings */
398 struct list_head global
; /* link to global list */
399 int segment
; /* PCI domain */
400 u8 bus
; /* PCI bus number */
401 u8 devfn
; /* PCI devfn number */
402 struct pci_dev
*dev
; /* it's NULL for PCIe-to-PCI bridge */
403 struct intel_iommu
*iommu
; /* IOMMU used by this device */
404 struct dmar_domain
*domain
; /* pointer to domain */
407 static void flush_unmaps_timeout(unsigned long data
);
409 DEFINE_TIMER(unmap_timer
, flush_unmaps_timeout
, 0, 0);
411 #define HIGH_WATER_MARK 250
412 struct deferred_flush_tables
{
414 struct iova
*iova
[HIGH_WATER_MARK
];
415 struct dmar_domain
*domain
[HIGH_WATER_MARK
];
418 static struct deferred_flush_tables
*deferred_flush
;
420 /* bitmap for indexing intel_iommus */
421 static int g_num_of_iommus
;
423 static DEFINE_SPINLOCK(async_umap_flush_lock
);
424 static LIST_HEAD(unmaps_to_do
);
427 static long list_size
;
429 static void domain_remove_dev_info(struct dmar_domain
*domain
);
431 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
432 int dmar_disabled
= 0;
434 int dmar_disabled
= 1;
435 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
437 int intel_iommu_enabled
= 0;
438 EXPORT_SYMBOL_GPL(intel_iommu_enabled
);
440 static int dmar_map_gfx
= 1;
441 static int dmar_forcedac
;
442 static int intel_iommu_strict
;
443 static int intel_iommu_superpage
= 1;
445 int intel_iommu_gfx_mapped
;
446 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped
);
448 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
449 static DEFINE_SPINLOCK(device_domain_lock
);
450 static LIST_HEAD(device_domain_list
);
452 static struct iommu_ops intel_iommu_ops
;
454 static int __init
intel_iommu_setup(char *str
)
459 if (!strncmp(str
, "on", 2)) {
461 printk(KERN_INFO
"Intel-IOMMU: enabled\n");
462 } else if (!strncmp(str
, "off", 3)) {
464 printk(KERN_INFO
"Intel-IOMMU: disabled\n");
465 } else if (!strncmp(str
, "igfx_off", 8)) {
468 "Intel-IOMMU: disable GFX device mapping\n");
469 } else if (!strncmp(str
, "forcedac", 8)) {
471 "Intel-IOMMU: Forcing DAC for PCI devices\n");
473 } else if (!strncmp(str
, "strict", 6)) {
475 "Intel-IOMMU: disable batched IOTLB flush\n");
476 intel_iommu_strict
= 1;
477 } else if (!strncmp(str
, "sp_off", 6)) {
479 "Intel-IOMMU: disable supported super page\n");
480 intel_iommu_superpage
= 0;
483 str
+= strcspn(str
, ",");
489 __setup("intel_iommu=", intel_iommu_setup
);
491 static struct kmem_cache
*iommu_domain_cache
;
492 static struct kmem_cache
*iommu_devinfo_cache
;
493 static struct kmem_cache
*iommu_iova_cache
;
495 static inline void *alloc_pgtable_page(int node
)
500 page
= alloc_pages_node(node
, GFP_ATOMIC
| __GFP_ZERO
, 0);
502 vaddr
= page_address(page
);
506 static inline void free_pgtable_page(void *vaddr
)
508 free_page((unsigned long)vaddr
);
511 static inline void *alloc_domain_mem(void)
513 return kmem_cache_alloc(iommu_domain_cache
, GFP_ATOMIC
);
516 static void free_domain_mem(void *vaddr
)
518 kmem_cache_free(iommu_domain_cache
, vaddr
);
521 static inline void * alloc_devinfo_mem(void)
523 return kmem_cache_alloc(iommu_devinfo_cache
, GFP_ATOMIC
);
526 static inline void free_devinfo_mem(void *vaddr
)
528 kmem_cache_free(iommu_devinfo_cache
, vaddr
);
531 struct iova
*alloc_iova_mem(void)
533 return kmem_cache_alloc(iommu_iova_cache
, GFP_ATOMIC
);
536 void free_iova_mem(struct iova
*iova
)
538 kmem_cache_free(iommu_iova_cache
, iova
);
542 static int __iommu_calculate_agaw(struct intel_iommu
*iommu
, int max_gaw
)
547 sagaw
= cap_sagaw(iommu
->cap
);
548 for (agaw
= width_to_agaw(max_gaw
);
550 if (test_bit(agaw
, &sagaw
))
558 * Calculate max SAGAW for each iommu.
560 int iommu_calculate_max_sagaw(struct intel_iommu
*iommu
)
562 return __iommu_calculate_agaw(iommu
, MAX_AGAW_WIDTH
);
566 * calculate agaw for each iommu.
567 * "SAGAW" may be different across iommus, use a default agaw, and
568 * get a supported less agaw for iommus that don't support the default agaw.
570 int iommu_calculate_agaw(struct intel_iommu
*iommu
)
572 return __iommu_calculate_agaw(iommu
, DEFAULT_DOMAIN_ADDRESS_WIDTH
);
575 /* This functionin only returns single iommu in a domain */
576 static struct intel_iommu
*domain_get_iommu(struct dmar_domain
*domain
)
580 /* si_domain and vm domain should not get here. */
581 BUG_ON(domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
);
582 BUG_ON(domain
->flags
& DOMAIN_FLAG_STATIC_IDENTITY
);
584 iommu_id
= find_first_bit(domain
->iommu_bmp
, g_num_of_iommus
);
585 if (iommu_id
< 0 || iommu_id
>= g_num_of_iommus
)
588 return g_iommus
[iommu_id
];
591 static void domain_update_iommu_coherency(struct dmar_domain
*domain
)
595 i
= find_first_bit(domain
->iommu_bmp
, g_num_of_iommus
);
597 domain
->iommu_coherency
= i
< g_num_of_iommus
? 1 : 0;
599 for_each_set_bit(i
, domain
->iommu_bmp
, g_num_of_iommus
) {
600 if (!ecap_coherent(g_iommus
[i
]->ecap
)) {
601 domain
->iommu_coherency
= 0;
607 static void domain_update_iommu_snooping(struct dmar_domain
*domain
)
611 domain
->iommu_snooping
= 1;
613 for_each_set_bit(i
, domain
->iommu_bmp
, g_num_of_iommus
) {
614 if (!ecap_sc_support(g_iommus
[i
]->ecap
)) {
615 domain
->iommu_snooping
= 0;
621 static void domain_update_iommu_superpage(struct dmar_domain
*domain
)
623 struct dmar_drhd_unit
*drhd
;
624 struct intel_iommu
*iommu
= NULL
;
627 if (!intel_iommu_superpage
) {
628 domain
->iommu_superpage
= 0;
632 /* set iommu_superpage to the smallest common denominator */
633 for_each_active_iommu(iommu
, drhd
) {
634 mask
&= cap_super_page_val(iommu
->cap
);
639 domain
->iommu_superpage
= fls(mask
);
642 /* Some capabilities may be different across iommus */
643 static void domain_update_iommu_cap(struct dmar_domain
*domain
)
645 domain_update_iommu_coherency(domain
);
646 domain_update_iommu_snooping(domain
);
647 domain_update_iommu_superpage(domain
);
650 static struct intel_iommu
*device_to_iommu(int segment
, u8 bus
, u8 devfn
)
652 struct dmar_drhd_unit
*drhd
= NULL
;
655 for_each_drhd_unit(drhd
) {
658 if (segment
!= drhd
->segment
)
661 for (i
= 0; i
< drhd
->devices_cnt
; i
++) {
662 if (drhd
->devices
[i
] &&
663 drhd
->devices
[i
]->bus
->number
== bus
&&
664 drhd
->devices
[i
]->devfn
== devfn
)
666 if (drhd
->devices
[i
] &&
667 drhd
->devices
[i
]->subordinate
&&
668 drhd
->devices
[i
]->subordinate
->number
<= bus
&&
669 drhd
->devices
[i
]->subordinate
->busn_res
.end
>= bus
)
673 if (drhd
->include_all
)
680 static void domain_flush_cache(struct dmar_domain
*domain
,
681 void *addr
, int size
)
683 if (!domain
->iommu_coherency
)
684 clflush_cache_range(addr
, size
);
687 /* Gets context entry for a given bus and devfn */
688 static struct context_entry
* device_to_context_entry(struct intel_iommu
*iommu
,
691 struct root_entry
*root
;
692 struct context_entry
*context
;
693 unsigned long phy_addr
;
696 spin_lock_irqsave(&iommu
->lock
, flags
);
697 root
= &iommu
->root_entry
[bus
];
698 context
= get_context_addr_from_root(root
);
700 context
= (struct context_entry
*)
701 alloc_pgtable_page(iommu
->node
);
703 spin_unlock_irqrestore(&iommu
->lock
, flags
);
706 __iommu_flush_cache(iommu
, (void *)context
, CONTEXT_SIZE
);
707 phy_addr
= virt_to_phys((void *)context
);
708 set_root_value(root
, phy_addr
);
709 set_root_present(root
);
710 __iommu_flush_cache(iommu
, root
, sizeof(*root
));
712 spin_unlock_irqrestore(&iommu
->lock
, flags
);
713 return &context
[devfn
];
716 static int device_context_mapped(struct intel_iommu
*iommu
, u8 bus
, u8 devfn
)
718 struct root_entry
*root
;
719 struct context_entry
*context
;
723 spin_lock_irqsave(&iommu
->lock
, flags
);
724 root
= &iommu
->root_entry
[bus
];
725 context
= get_context_addr_from_root(root
);
730 ret
= context_present(&context
[devfn
]);
732 spin_unlock_irqrestore(&iommu
->lock
, flags
);
736 static void clear_context_table(struct intel_iommu
*iommu
, u8 bus
, u8 devfn
)
738 struct root_entry
*root
;
739 struct context_entry
*context
;
742 spin_lock_irqsave(&iommu
->lock
, flags
);
743 root
= &iommu
->root_entry
[bus
];
744 context
= get_context_addr_from_root(root
);
746 context_clear_entry(&context
[devfn
]);
747 __iommu_flush_cache(iommu
, &context
[devfn
], \
750 spin_unlock_irqrestore(&iommu
->lock
, flags
);
753 static void free_context_table(struct intel_iommu
*iommu
)
755 struct root_entry
*root
;
758 struct context_entry
*context
;
760 spin_lock_irqsave(&iommu
->lock
, flags
);
761 if (!iommu
->root_entry
) {
764 for (i
= 0; i
< ROOT_ENTRY_NR
; i
++) {
765 root
= &iommu
->root_entry
[i
];
766 context
= get_context_addr_from_root(root
);
768 free_pgtable_page(context
);
770 free_pgtable_page(iommu
->root_entry
);
771 iommu
->root_entry
= NULL
;
773 spin_unlock_irqrestore(&iommu
->lock
, flags
);
776 static struct dma_pte
*pfn_to_dma_pte(struct dmar_domain
*domain
,
777 unsigned long pfn
, int target_level
)
779 int addr_width
= agaw_to_width(domain
->agaw
) - VTD_PAGE_SHIFT
;
780 struct dma_pte
*parent
, *pte
= NULL
;
781 int level
= agaw_to_level(domain
->agaw
);
784 BUG_ON(!domain
->pgd
);
785 BUG_ON(addr_width
< BITS_PER_LONG
&& pfn
>> addr_width
);
786 parent
= domain
->pgd
;
791 offset
= pfn_level_offset(pfn
, level
);
792 pte
= &parent
[offset
];
793 if (!target_level
&& (dma_pte_superpage(pte
) || !dma_pte_present(pte
)))
795 if (level
== target_level
)
798 if (!dma_pte_present(pte
)) {
801 tmp_page
= alloc_pgtable_page(domain
->nid
);
806 domain_flush_cache(domain
, tmp_page
, VTD_PAGE_SIZE
);
807 pteval
= ((uint64_t)virt_to_dma_pfn(tmp_page
) << VTD_PAGE_SHIFT
) | DMA_PTE_READ
| DMA_PTE_WRITE
;
808 if (cmpxchg64(&pte
->val
, 0ULL, pteval
)) {
809 /* Someone else set it while we were thinking; use theirs. */
810 free_pgtable_page(tmp_page
);
813 domain_flush_cache(domain
, pte
, sizeof(*pte
));
816 parent
= phys_to_virt(dma_pte_addr(pte
));
824 /* return address's pte at specific level */
825 static struct dma_pte
*dma_pfn_level_pte(struct dmar_domain
*domain
,
827 int level
, int *large_page
)
829 struct dma_pte
*parent
, *pte
= NULL
;
830 int total
= agaw_to_level(domain
->agaw
);
833 parent
= domain
->pgd
;
834 while (level
<= total
) {
835 offset
= pfn_level_offset(pfn
, total
);
836 pte
= &parent
[offset
];
840 if (!dma_pte_present(pte
)) {
845 if (pte
->val
& DMA_PTE_LARGE_PAGE
) {
850 parent
= phys_to_virt(dma_pte_addr(pte
));
856 /* clear last level pte, a tlb flush should be followed */
857 static int dma_pte_clear_range(struct dmar_domain
*domain
,
858 unsigned long start_pfn
,
859 unsigned long last_pfn
)
861 int addr_width
= agaw_to_width(domain
->agaw
) - VTD_PAGE_SHIFT
;
862 unsigned int large_page
= 1;
863 struct dma_pte
*first_pte
, *pte
;
866 BUG_ON(addr_width
< BITS_PER_LONG
&& start_pfn
>> addr_width
);
867 BUG_ON(addr_width
< BITS_PER_LONG
&& last_pfn
>> addr_width
);
868 BUG_ON(start_pfn
> last_pfn
);
870 /* we don't need lock here; nobody else touches the iova range */
873 first_pte
= pte
= dma_pfn_level_pte(domain
, start_pfn
, 1, &large_page
);
875 start_pfn
= align_to_level(start_pfn
+ 1, large_page
+ 1);
880 start_pfn
+= lvl_to_nr_pages(large_page
);
882 } while (start_pfn
<= last_pfn
&& !first_pte_in_page(pte
));
884 domain_flush_cache(domain
, first_pte
,
885 (void *)pte
- (void *)first_pte
);
887 } while (start_pfn
&& start_pfn
<= last_pfn
);
889 order
= (large_page
- 1) * 9;
893 static void dma_pte_free_level(struct dmar_domain
*domain
, int level
,
894 struct dma_pte
*pte
, unsigned long pfn
,
895 unsigned long start_pfn
, unsigned long last_pfn
)
897 pfn
= max(start_pfn
, pfn
);
898 pte
= &pte
[pfn_level_offset(pfn
, level
)];
901 unsigned long level_pfn
;
902 struct dma_pte
*level_pte
;
904 if (!dma_pte_present(pte
) || dma_pte_superpage(pte
))
907 level_pfn
= pfn
& level_mask(level
- 1);
908 level_pte
= phys_to_virt(dma_pte_addr(pte
));
911 dma_pte_free_level(domain
, level
- 1, level_pte
,
912 level_pfn
, start_pfn
, last_pfn
);
914 /* If range covers entire pagetable, free it */
915 if (!(start_pfn
> level_pfn
||
916 last_pfn
< level_pfn
+ level_size(level
))) {
918 domain_flush_cache(domain
, pte
, sizeof(*pte
));
919 free_pgtable_page(level_pte
);
922 pfn
+= level_size(level
);
923 } while (!first_pte_in_page(++pte
) && pfn
<= last_pfn
);
926 /* free page table pages. last level pte should already be cleared */
927 static void dma_pte_free_pagetable(struct dmar_domain
*domain
,
928 unsigned long start_pfn
,
929 unsigned long last_pfn
)
931 int addr_width
= agaw_to_width(domain
->agaw
) - VTD_PAGE_SHIFT
;
933 BUG_ON(addr_width
< BITS_PER_LONG
&& start_pfn
>> addr_width
);
934 BUG_ON(addr_width
< BITS_PER_LONG
&& last_pfn
>> addr_width
);
935 BUG_ON(start_pfn
> last_pfn
);
937 /* We don't need lock here; nobody else touches the iova range */
938 dma_pte_free_level(domain
, agaw_to_level(domain
->agaw
),
939 domain
->pgd
, 0, start_pfn
, last_pfn
);
942 if (start_pfn
== 0 && last_pfn
== DOMAIN_MAX_PFN(domain
->gaw
)) {
943 free_pgtable_page(domain
->pgd
);
949 static int iommu_alloc_root_entry(struct intel_iommu
*iommu
)
951 struct root_entry
*root
;
954 root
= (struct root_entry
*)alloc_pgtable_page(iommu
->node
);
958 __iommu_flush_cache(iommu
, root
, ROOT_SIZE
);
960 spin_lock_irqsave(&iommu
->lock
, flags
);
961 iommu
->root_entry
= root
;
962 spin_unlock_irqrestore(&iommu
->lock
, flags
);
967 static void iommu_set_root_entry(struct intel_iommu
*iommu
)
973 addr
= iommu
->root_entry
;
975 raw_spin_lock_irqsave(&iommu
->register_lock
, flag
);
976 dmar_writeq(iommu
->reg
+ DMAR_RTADDR_REG
, virt_to_phys(addr
));
978 writel(iommu
->gcmd
| DMA_GCMD_SRTP
, iommu
->reg
+ DMAR_GCMD_REG
);
980 /* Make sure hardware complete it */
981 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
982 readl
, (sts
& DMA_GSTS_RTPS
), sts
);
984 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
987 static void iommu_flush_write_buffer(struct intel_iommu
*iommu
)
992 if (!rwbf_quirk
&& !cap_rwbf(iommu
->cap
))
995 raw_spin_lock_irqsave(&iommu
->register_lock
, flag
);
996 writel(iommu
->gcmd
| DMA_GCMD_WBF
, iommu
->reg
+ DMAR_GCMD_REG
);
998 /* Make sure hardware complete it */
999 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
1000 readl
, (!(val
& DMA_GSTS_WBFS
)), val
);
1002 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
1005 /* return value determine if we need a write buffer flush */
1006 static void __iommu_flush_context(struct intel_iommu
*iommu
,
1007 u16 did
, u16 source_id
, u8 function_mask
,
1014 case DMA_CCMD_GLOBAL_INVL
:
1015 val
= DMA_CCMD_GLOBAL_INVL
;
1017 case DMA_CCMD_DOMAIN_INVL
:
1018 val
= DMA_CCMD_DOMAIN_INVL
|DMA_CCMD_DID(did
);
1020 case DMA_CCMD_DEVICE_INVL
:
1021 val
= DMA_CCMD_DEVICE_INVL
|DMA_CCMD_DID(did
)
1022 | DMA_CCMD_SID(source_id
) | DMA_CCMD_FM(function_mask
);
1027 val
|= DMA_CCMD_ICC
;
1029 raw_spin_lock_irqsave(&iommu
->register_lock
, flag
);
1030 dmar_writeq(iommu
->reg
+ DMAR_CCMD_REG
, val
);
1032 /* Make sure hardware complete it */
1033 IOMMU_WAIT_OP(iommu
, DMAR_CCMD_REG
,
1034 dmar_readq
, (!(val
& DMA_CCMD_ICC
)), val
);
1036 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
1039 /* return value determine if we need a write buffer flush */
1040 static void __iommu_flush_iotlb(struct intel_iommu
*iommu
, u16 did
,
1041 u64 addr
, unsigned int size_order
, u64 type
)
1043 int tlb_offset
= ecap_iotlb_offset(iommu
->ecap
);
1044 u64 val
= 0, val_iva
= 0;
1048 case DMA_TLB_GLOBAL_FLUSH
:
1049 /* global flush doesn't need set IVA_REG */
1050 val
= DMA_TLB_GLOBAL_FLUSH
|DMA_TLB_IVT
;
1052 case DMA_TLB_DSI_FLUSH
:
1053 val
= DMA_TLB_DSI_FLUSH
|DMA_TLB_IVT
|DMA_TLB_DID(did
);
1055 case DMA_TLB_PSI_FLUSH
:
1056 val
= DMA_TLB_PSI_FLUSH
|DMA_TLB_IVT
|DMA_TLB_DID(did
);
1057 /* Note: always flush non-leaf currently */
1058 val_iva
= size_order
| addr
;
1063 /* Note: set drain read/write */
1066 * This is probably to be super secure.. Looks like we can
1067 * ignore it without any impact.
1069 if (cap_read_drain(iommu
->cap
))
1070 val
|= DMA_TLB_READ_DRAIN
;
1072 if (cap_write_drain(iommu
->cap
))
1073 val
|= DMA_TLB_WRITE_DRAIN
;
1075 raw_spin_lock_irqsave(&iommu
->register_lock
, flag
);
1076 /* Note: Only uses first TLB reg currently */
1078 dmar_writeq(iommu
->reg
+ tlb_offset
, val_iva
);
1079 dmar_writeq(iommu
->reg
+ tlb_offset
+ 8, val
);
1081 /* Make sure hardware complete it */
1082 IOMMU_WAIT_OP(iommu
, tlb_offset
+ 8,
1083 dmar_readq
, (!(val
& DMA_TLB_IVT
)), val
);
1085 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
1087 /* check IOTLB invalidation granularity */
1088 if (DMA_TLB_IAIG(val
) == 0)
1089 printk(KERN_ERR
"IOMMU: flush IOTLB failed\n");
1090 if (DMA_TLB_IAIG(val
) != DMA_TLB_IIRG(type
))
1091 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1092 (unsigned long long)DMA_TLB_IIRG(type
),
1093 (unsigned long long)DMA_TLB_IAIG(val
));
1096 static struct device_domain_info
*iommu_support_dev_iotlb(
1097 struct dmar_domain
*domain
, int segment
, u8 bus
, u8 devfn
)
1100 unsigned long flags
;
1101 struct device_domain_info
*info
;
1102 struct intel_iommu
*iommu
= device_to_iommu(segment
, bus
, devfn
);
1104 if (!ecap_dev_iotlb_support(iommu
->ecap
))
1110 spin_lock_irqsave(&device_domain_lock
, flags
);
1111 list_for_each_entry(info
, &domain
->devices
, link
)
1112 if (info
->bus
== bus
&& info
->devfn
== devfn
) {
1116 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1118 if (!found
|| !info
->dev
)
1121 if (!pci_find_ext_capability(info
->dev
, PCI_EXT_CAP_ID_ATS
))
1124 if (!dmar_find_matched_atsr_unit(info
->dev
))
1127 info
->iommu
= iommu
;
1132 static void iommu_enable_dev_iotlb(struct device_domain_info
*info
)
1137 pci_enable_ats(info
->dev
, VTD_PAGE_SHIFT
);
1140 static void iommu_disable_dev_iotlb(struct device_domain_info
*info
)
1142 if (!info
->dev
|| !pci_ats_enabled(info
->dev
))
1145 pci_disable_ats(info
->dev
);
1148 static void iommu_flush_dev_iotlb(struct dmar_domain
*domain
,
1149 u64 addr
, unsigned mask
)
1152 unsigned long flags
;
1153 struct device_domain_info
*info
;
1155 spin_lock_irqsave(&device_domain_lock
, flags
);
1156 list_for_each_entry(info
, &domain
->devices
, link
) {
1157 if (!info
->dev
|| !pci_ats_enabled(info
->dev
))
1160 sid
= info
->bus
<< 8 | info
->devfn
;
1161 qdep
= pci_ats_queue_depth(info
->dev
);
1162 qi_flush_dev_iotlb(info
->iommu
, sid
, qdep
, addr
, mask
);
1164 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1167 static void iommu_flush_iotlb_psi(struct intel_iommu
*iommu
, u16 did
,
1168 unsigned long pfn
, unsigned int pages
, int map
)
1170 unsigned int mask
= ilog2(__roundup_pow_of_two(pages
));
1171 uint64_t addr
= (uint64_t)pfn
<< VTD_PAGE_SHIFT
;
1176 * Fallback to domain selective flush if no PSI support or the size is
1178 * PSI requires page size to be 2 ^ x, and the base address is naturally
1179 * aligned to the size
1181 if (!cap_pgsel_inv(iommu
->cap
) || mask
> cap_max_amask_val(iommu
->cap
))
1182 iommu
->flush
.flush_iotlb(iommu
, did
, 0, 0,
1185 iommu
->flush
.flush_iotlb(iommu
, did
, addr
, mask
,
1189 * In caching mode, changes of pages from non-present to present require
1190 * flush. However, device IOTLB doesn't need to be flushed in this case.
1192 if (!cap_caching_mode(iommu
->cap
) || !map
)
1193 iommu_flush_dev_iotlb(iommu
->domains
[did
], addr
, mask
);
1196 static void iommu_disable_protect_mem_regions(struct intel_iommu
*iommu
)
1199 unsigned long flags
;
1201 raw_spin_lock_irqsave(&iommu
->register_lock
, flags
);
1202 pmen
= readl(iommu
->reg
+ DMAR_PMEN_REG
);
1203 pmen
&= ~DMA_PMEN_EPM
;
1204 writel(pmen
, iommu
->reg
+ DMAR_PMEN_REG
);
1206 /* wait for the protected region status bit to clear */
1207 IOMMU_WAIT_OP(iommu
, DMAR_PMEN_REG
,
1208 readl
, !(pmen
& DMA_PMEN_PRS
), pmen
);
1210 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flags
);
1213 static int iommu_enable_translation(struct intel_iommu
*iommu
)
1216 unsigned long flags
;
1218 raw_spin_lock_irqsave(&iommu
->register_lock
, flags
);
1219 iommu
->gcmd
|= DMA_GCMD_TE
;
1220 writel(iommu
->gcmd
, iommu
->reg
+ DMAR_GCMD_REG
);
1222 /* Make sure hardware complete it */
1223 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
1224 readl
, (sts
& DMA_GSTS_TES
), sts
);
1226 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flags
);
1230 static int iommu_disable_translation(struct intel_iommu
*iommu
)
1235 raw_spin_lock_irqsave(&iommu
->register_lock
, flag
);
1236 iommu
->gcmd
&= ~DMA_GCMD_TE
;
1237 writel(iommu
->gcmd
, iommu
->reg
+ DMAR_GCMD_REG
);
1239 /* Make sure hardware complete it */
1240 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
1241 readl
, (!(sts
& DMA_GSTS_TES
)), sts
);
1243 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
1248 static int iommu_init_domains(struct intel_iommu
*iommu
)
1250 unsigned long ndomains
;
1251 unsigned long nlongs
;
1253 ndomains
= cap_ndoms(iommu
->cap
);
1254 pr_debug("IOMMU %d: Number of Domains supported <%ld>\n", iommu
->seq_id
,
1256 nlongs
= BITS_TO_LONGS(ndomains
);
1258 spin_lock_init(&iommu
->lock
);
1260 /* TBD: there might be 64K domains,
1261 * consider other allocation for future chip
1263 iommu
->domain_ids
= kcalloc(nlongs
, sizeof(unsigned long), GFP_KERNEL
);
1264 if (!iommu
->domain_ids
) {
1265 printk(KERN_ERR
"Allocating domain id array failed\n");
1268 iommu
->domains
= kcalloc(ndomains
, sizeof(struct dmar_domain
*),
1270 if (!iommu
->domains
) {
1271 printk(KERN_ERR
"Allocating domain array failed\n");
1276 * if Caching mode is set, then invalid translations are tagged
1277 * with domainid 0. Hence we need to pre-allocate it.
1279 if (cap_caching_mode(iommu
->cap
))
1280 set_bit(0, iommu
->domain_ids
);
1285 static void domain_exit(struct dmar_domain
*domain
);
1286 static void vm_domain_exit(struct dmar_domain
*domain
);
1288 void free_dmar_iommu(struct intel_iommu
*iommu
)
1290 struct dmar_domain
*domain
;
1292 unsigned long flags
;
1294 if ((iommu
->domains
) && (iommu
->domain_ids
)) {
1295 for_each_set_bit(i
, iommu
->domain_ids
, cap_ndoms(iommu
->cap
)) {
1296 domain
= iommu
->domains
[i
];
1297 clear_bit(i
, iommu
->domain_ids
);
1299 spin_lock_irqsave(&domain
->iommu_lock
, flags
);
1300 if (--domain
->iommu_count
== 0) {
1301 if (domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
)
1302 vm_domain_exit(domain
);
1304 domain_exit(domain
);
1306 spin_unlock_irqrestore(&domain
->iommu_lock
, flags
);
1310 if (iommu
->gcmd
& DMA_GCMD_TE
)
1311 iommu_disable_translation(iommu
);
1314 irq_set_handler_data(iommu
->irq
, NULL
);
1315 /* This will mask the irq */
1316 free_irq(iommu
->irq
, iommu
);
1317 destroy_irq(iommu
->irq
);
1320 kfree(iommu
->domains
);
1321 kfree(iommu
->domain_ids
);
1323 g_iommus
[iommu
->seq_id
] = NULL
;
1325 /* if all iommus are freed, free g_iommus */
1326 for (i
= 0; i
< g_num_of_iommus
; i
++) {
1331 if (i
== g_num_of_iommus
)
1334 /* free context mapping */
1335 free_context_table(iommu
);
1338 static struct dmar_domain
*alloc_domain(void)
1340 struct dmar_domain
*domain
;
1342 domain
= alloc_domain_mem();
1347 memset(domain
->iommu_bmp
, 0, sizeof(domain
->iommu_bmp
));
1353 static int iommu_attach_domain(struct dmar_domain
*domain
,
1354 struct intel_iommu
*iommu
)
1357 unsigned long ndomains
;
1358 unsigned long flags
;
1360 ndomains
= cap_ndoms(iommu
->cap
);
1362 spin_lock_irqsave(&iommu
->lock
, flags
);
1364 num
= find_first_zero_bit(iommu
->domain_ids
, ndomains
);
1365 if (num
>= ndomains
) {
1366 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1367 printk(KERN_ERR
"IOMMU: no free domain ids\n");
1372 set_bit(num
, iommu
->domain_ids
);
1373 set_bit(iommu
->seq_id
, domain
->iommu_bmp
);
1374 iommu
->domains
[num
] = domain
;
1375 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1380 static void iommu_detach_domain(struct dmar_domain
*domain
,
1381 struct intel_iommu
*iommu
)
1383 unsigned long flags
;
1387 spin_lock_irqsave(&iommu
->lock
, flags
);
1388 ndomains
= cap_ndoms(iommu
->cap
);
1389 for_each_set_bit(num
, iommu
->domain_ids
, ndomains
) {
1390 if (iommu
->domains
[num
] == domain
) {
1397 clear_bit(num
, iommu
->domain_ids
);
1398 clear_bit(iommu
->seq_id
, domain
->iommu_bmp
);
1399 iommu
->domains
[num
] = NULL
;
1401 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1404 static struct iova_domain reserved_iova_list
;
1405 static struct lock_class_key reserved_rbtree_key
;
1407 static int dmar_init_reserved_ranges(void)
1409 struct pci_dev
*pdev
= NULL
;
1413 init_iova_domain(&reserved_iova_list
, DMA_32BIT_PFN
);
1415 lockdep_set_class(&reserved_iova_list
.iova_rbtree_lock
,
1416 &reserved_rbtree_key
);
1418 /* IOAPIC ranges shouldn't be accessed by DMA */
1419 iova
= reserve_iova(&reserved_iova_list
, IOVA_PFN(IOAPIC_RANGE_START
),
1420 IOVA_PFN(IOAPIC_RANGE_END
));
1422 printk(KERN_ERR
"Reserve IOAPIC range failed\n");
1426 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1427 for_each_pci_dev(pdev
) {
1430 for (i
= 0; i
< PCI_NUM_RESOURCES
; i
++) {
1431 r
= &pdev
->resource
[i
];
1432 if (!r
->flags
|| !(r
->flags
& IORESOURCE_MEM
))
1434 iova
= reserve_iova(&reserved_iova_list
,
1438 printk(KERN_ERR
"Reserve iova failed\n");
1446 static void domain_reserve_special_ranges(struct dmar_domain
*domain
)
1448 copy_reserved_iova(&reserved_iova_list
, &domain
->iovad
);
1451 static inline int guestwidth_to_adjustwidth(int gaw
)
1454 int r
= (gaw
- 12) % 9;
1465 static int domain_init(struct dmar_domain
*domain
, int guest_width
)
1467 struct intel_iommu
*iommu
;
1468 int adjust_width
, agaw
;
1469 unsigned long sagaw
;
1471 init_iova_domain(&domain
->iovad
, DMA_32BIT_PFN
);
1472 spin_lock_init(&domain
->iommu_lock
);
1474 domain_reserve_special_ranges(domain
);
1476 /* calculate AGAW */
1477 iommu
= domain_get_iommu(domain
);
1478 if (guest_width
> cap_mgaw(iommu
->cap
))
1479 guest_width
= cap_mgaw(iommu
->cap
);
1480 domain
->gaw
= guest_width
;
1481 adjust_width
= guestwidth_to_adjustwidth(guest_width
);
1482 agaw
= width_to_agaw(adjust_width
);
1483 sagaw
= cap_sagaw(iommu
->cap
);
1484 if (!test_bit(agaw
, &sagaw
)) {
1485 /* hardware doesn't support it, choose a bigger one */
1486 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw
);
1487 agaw
= find_next_bit(&sagaw
, 5, agaw
);
1491 domain
->agaw
= agaw
;
1492 INIT_LIST_HEAD(&domain
->devices
);
1494 if (ecap_coherent(iommu
->ecap
))
1495 domain
->iommu_coherency
= 1;
1497 domain
->iommu_coherency
= 0;
1499 if (ecap_sc_support(iommu
->ecap
))
1500 domain
->iommu_snooping
= 1;
1502 domain
->iommu_snooping
= 0;
1504 domain
->iommu_superpage
= fls(cap_super_page_val(iommu
->cap
));
1505 domain
->iommu_count
= 1;
1506 domain
->nid
= iommu
->node
;
1508 /* always allocate the top pgd */
1509 domain
->pgd
= (struct dma_pte
*)alloc_pgtable_page(domain
->nid
);
1512 __iommu_flush_cache(iommu
, domain
->pgd
, PAGE_SIZE
);
1516 static void domain_exit(struct dmar_domain
*domain
)
1518 struct dmar_drhd_unit
*drhd
;
1519 struct intel_iommu
*iommu
;
1521 /* Domain 0 is reserved, so dont process it */
1525 /* Flush any lazy unmaps that may reference this domain */
1526 if (!intel_iommu_strict
)
1527 flush_unmaps_timeout(0);
1529 domain_remove_dev_info(domain
);
1531 put_iova_domain(&domain
->iovad
);
1534 dma_pte_clear_range(domain
, 0, DOMAIN_MAX_PFN(domain
->gaw
));
1536 /* free page tables */
1537 dma_pte_free_pagetable(domain
, 0, DOMAIN_MAX_PFN(domain
->gaw
));
1539 for_each_active_iommu(iommu
, drhd
)
1540 if (test_bit(iommu
->seq_id
, domain
->iommu_bmp
))
1541 iommu_detach_domain(domain
, iommu
);
1543 free_domain_mem(domain
);
1546 static int domain_context_mapping_one(struct dmar_domain
*domain
, int segment
,
1547 u8 bus
, u8 devfn
, int translation
)
1549 struct context_entry
*context
;
1550 unsigned long flags
;
1551 struct intel_iommu
*iommu
;
1552 struct dma_pte
*pgd
;
1554 unsigned long ndomains
;
1557 struct device_domain_info
*info
= NULL
;
1559 pr_debug("Set context mapping for %02x:%02x.%d\n",
1560 bus
, PCI_SLOT(devfn
), PCI_FUNC(devfn
));
1562 BUG_ON(!domain
->pgd
);
1563 BUG_ON(translation
!= CONTEXT_TT_PASS_THROUGH
&&
1564 translation
!= CONTEXT_TT_MULTI_LEVEL
);
1566 iommu
= device_to_iommu(segment
, bus
, devfn
);
1570 context
= device_to_context_entry(iommu
, bus
, devfn
);
1573 spin_lock_irqsave(&iommu
->lock
, flags
);
1574 if (context_present(context
)) {
1575 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1582 if (domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
||
1583 domain
->flags
& DOMAIN_FLAG_STATIC_IDENTITY
) {
1586 /* find an available domain id for this device in iommu */
1587 ndomains
= cap_ndoms(iommu
->cap
);
1588 for_each_set_bit(num
, iommu
->domain_ids
, ndomains
) {
1589 if (iommu
->domains
[num
] == domain
) {
1597 num
= find_first_zero_bit(iommu
->domain_ids
, ndomains
);
1598 if (num
>= ndomains
) {
1599 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1600 printk(KERN_ERR
"IOMMU: no free domain ids\n");
1604 set_bit(num
, iommu
->domain_ids
);
1605 iommu
->domains
[num
] = domain
;
1609 /* Skip top levels of page tables for
1610 * iommu which has less agaw than default.
1611 * Unnecessary for PT mode.
1613 if (translation
!= CONTEXT_TT_PASS_THROUGH
) {
1614 for (agaw
= domain
->agaw
; agaw
!= iommu
->agaw
; agaw
--) {
1615 pgd
= phys_to_virt(dma_pte_addr(pgd
));
1616 if (!dma_pte_present(pgd
)) {
1617 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1624 context_set_domain_id(context
, id
);
1626 if (translation
!= CONTEXT_TT_PASS_THROUGH
) {
1627 info
= iommu_support_dev_iotlb(domain
, segment
, bus
, devfn
);
1628 translation
= info
? CONTEXT_TT_DEV_IOTLB
:
1629 CONTEXT_TT_MULTI_LEVEL
;
1632 * In pass through mode, AW must be programmed to indicate the largest
1633 * AGAW value supported by hardware. And ASR is ignored by hardware.
1635 if (unlikely(translation
== CONTEXT_TT_PASS_THROUGH
))
1636 context_set_address_width(context
, iommu
->msagaw
);
1638 context_set_address_root(context
, virt_to_phys(pgd
));
1639 context_set_address_width(context
, iommu
->agaw
);
1642 context_set_translation_type(context
, translation
);
1643 context_set_fault_enable(context
);
1644 context_set_present(context
);
1645 domain_flush_cache(domain
, context
, sizeof(*context
));
1648 * It's a non-present to present mapping. If hardware doesn't cache
1649 * non-present entry we only need to flush the write-buffer. If the
1650 * _does_ cache non-present entries, then it does so in the special
1651 * domain #0, which we have to flush:
1653 if (cap_caching_mode(iommu
->cap
)) {
1654 iommu
->flush
.flush_context(iommu
, 0,
1655 (((u16
)bus
) << 8) | devfn
,
1656 DMA_CCMD_MASK_NOBIT
,
1657 DMA_CCMD_DEVICE_INVL
);
1658 iommu
->flush
.flush_iotlb(iommu
, domain
->id
, 0, 0, DMA_TLB_DSI_FLUSH
);
1660 iommu_flush_write_buffer(iommu
);
1662 iommu_enable_dev_iotlb(info
);
1663 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1665 spin_lock_irqsave(&domain
->iommu_lock
, flags
);
1666 if (!test_and_set_bit(iommu
->seq_id
, domain
->iommu_bmp
)) {
1667 domain
->iommu_count
++;
1668 if (domain
->iommu_count
== 1)
1669 domain
->nid
= iommu
->node
;
1670 domain_update_iommu_cap(domain
);
1672 spin_unlock_irqrestore(&domain
->iommu_lock
, flags
);
1677 domain_context_mapping(struct dmar_domain
*domain
, struct pci_dev
*pdev
,
1681 struct pci_dev
*tmp
, *parent
;
1683 ret
= domain_context_mapping_one(domain
, pci_domain_nr(pdev
->bus
),
1684 pdev
->bus
->number
, pdev
->devfn
,
1689 /* dependent device mapping */
1690 tmp
= pci_find_upstream_pcie_bridge(pdev
);
1693 /* Secondary interface's bus number and devfn 0 */
1694 parent
= pdev
->bus
->self
;
1695 while (parent
!= tmp
) {
1696 ret
= domain_context_mapping_one(domain
,
1697 pci_domain_nr(parent
->bus
),
1698 parent
->bus
->number
,
1699 parent
->devfn
, translation
);
1702 parent
= parent
->bus
->self
;
1704 if (pci_is_pcie(tmp
)) /* this is a PCIe-to-PCI bridge */
1705 return domain_context_mapping_one(domain
,
1706 pci_domain_nr(tmp
->subordinate
),
1707 tmp
->subordinate
->number
, 0,
1709 else /* this is a legacy PCI bridge */
1710 return domain_context_mapping_one(domain
,
1711 pci_domain_nr(tmp
->bus
),
1717 static int domain_context_mapped(struct pci_dev
*pdev
)
1720 struct pci_dev
*tmp
, *parent
;
1721 struct intel_iommu
*iommu
;
1723 iommu
= device_to_iommu(pci_domain_nr(pdev
->bus
), pdev
->bus
->number
,
1728 ret
= device_context_mapped(iommu
, pdev
->bus
->number
, pdev
->devfn
);
1731 /* dependent device mapping */
1732 tmp
= pci_find_upstream_pcie_bridge(pdev
);
1735 /* Secondary interface's bus number and devfn 0 */
1736 parent
= pdev
->bus
->self
;
1737 while (parent
!= tmp
) {
1738 ret
= device_context_mapped(iommu
, parent
->bus
->number
,
1742 parent
= parent
->bus
->self
;
1744 if (pci_is_pcie(tmp
))
1745 return device_context_mapped(iommu
, tmp
->subordinate
->number
,
1748 return device_context_mapped(iommu
, tmp
->bus
->number
,
1752 /* Returns a number of VTD pages, but aligned to MM page size */
1753 static inline unsigned long aligned_nrpages(unsigned long host_addr
,
1756 host_addr
&= ~PAGE_MASK
;
1757 return PAGE_ALIGN(host_addr
+ size
) >> VTD_PAGE_SHIFT
;
1760 /* Return largest possible superpage level for a given mapping */
1761 static inline int hardware_largepage_caps(struct dmar_domain
*domain
,
1762 unsigned long iov_pfn
,
1763 unsigned long phy_pfn
,
1764 unsigned long pages
)
1766 int support
, level
= 1;
1767 unsigned long pfnmerge
;
1769 support
= domain
->iommu_superpage
;
1771 /* To use a large page, the virtual *and* physical addresses
1772 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
1773 of them will mean we have to use smaller pages. So just
1774 merge them and check both at once. */
1775 pfnmerge
= iov_pfn
| phy_pfn
;
1777 while (support
&& !(pfnmerge
& ~VTD_STRIDE_MASK
)) {
1778 pages
>>= VTD_STRIDE_SHIFT
;
1781 pfnmerge
>>= VTD_STRIDE_SHIFT
;
1788 static int __domain_mapping(struct dmar_domain
*domain
, unsigned long iov_pfn
,
1789 struct scatterlist
*sg
, unsigned long phys_pfn
,
1790 unsigned long nr_pages
, int prot
)
1792 struct dma_pte
*first_pte
= NULL
, *pte
= NULL
;
1793 phys_addr_t
uninitialized_var(pteval
);
1794 int addr_width
= agaw_to_width(domain
->agaw
) - VTD_PAGE_SHIFT
;
1795 unsigned long sg_res
;
1796 unsigned int largepage_lvl
= 0;
1797 unsigned long lvl_pages
= 0;
1799 BUG_ON(addr_width
< BITS_PER_LONG
&& (iov_pfn
+ nr_pages
- 1) >> addr_width
);
1801 if ((prot
& (DMA_PTE_READ
|DMA_PTE_WRITE
)) == 0)
1804 prot
&= DMA_PTE_READ
| DMA_PTE_WRITE
| DMA_PTE_SNP
;
1809 sg_res
= nr_pages
+ 1;
1810 pteval
= ((phys_addr_t
)phys_pfn
<< VTD_PAGE_SHIFT
) | prot
;
1813 while (nr_pages
> 0) {
1817 sg_res
= aligned_nrpages(sg
->offset
, sg
->length
);
1818 sg
->dma_address
= ((dma_addr_t
)iov_pfn
<< VTD_PAGE_SHIFT
) + sg
->offset
;
1819 sg
->dma_length
= sg
->length
;
1820 pteval
= page_to_phys(sg_page(sg
)) | prot
;
1821 phys_pfn
= pteval
>> VTD_PAGE_SHIFT
;
1825 largepage_lvl
= hardware_largepage_caps(domain
, iov_pfn
, phys_pfn
, sg_res
);
1827 first_pte
= pte
= pfn_to_dma_pte(domain
, iov_pfn
, largepage_lvl
);
1830 /* It is large page*/
1831 if (largepage_lvl
> 1) {
1832 pteval
|= DMA_PTE_LARGE_PAGE
;
1833 /* Ensure that old small page tables are removed to make room
1834 for superpage, if they exist. */
1835 dma_pte_clear_range(domain
, iov_pfn
,
1836 iov_pfn
+ lvl_to_nr_pages(largepage_lvl
) - 1);
1837 dma_pte_free_pagetable(domain
, iov_pfn
,
1838 iov_pfn
+ lvl_to_nr_pages(largepage_lvl
) - 1);
1840 pteval
&= ~(uint64_t)DMA_PTE_LARGE_PAGE
;
1844 /* We don't need lock here, nobody else
1845 * touches the iova range
1847 tmp
= cmpxchg64_local(&pte
->val
, 0ULL, pteval
);
1849 static int dumps
= 5;
1850 printk(KERN_CRIT
"ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1851 iov_pfn
, tmp
, (unsigned long long)pteval
);
1854 debug_dma_dump_mappings(NULL
);
1859 lvl_pages
= lvl_to_nr_pages(largepage_lvl
);
1861 BUG_ON(nr_pages
< lvl_pages
);
1862 BUG_ON(sg_res
< lvl_pages
);
1864 nr_pages
-= lvl_pages
;
1865 iov_pfn
+= lvl_pages
;
1866 phys_pfn
+= lvl_pages
;
1867 pteval
+= lvl_pages
* VTD_PAGE_SIZE
;
1868 sg_res
-= lvl_pages
;
1870 /* If the next PTE would be the first in a new page, then we
1871 need to flush the cache on the entries we've just written.
1872 And then we'll need to recalculate 'pte', so clear it and
1873 let it get set again in the if (!pte) block above.
1875 If we're done (!nr_pages) we need to flush the cache too.
1877 Also if we've been setting superpages, we may need to
1878 recalculate 'pte' and switch back to smaller pages for the
1879 end of the mapping, if the trailing size is not enough to
1880 use another superpage (i.e. sg_res < lvl_pages). */
1882 if (!nr_pages
|| first_pte_in_page(pte
) ||
1883 (largepage_lvl
> 1 && sg_res
< lvl_pages
)) {
1884 domain_flush_cache(domain
, first_pte
,
1885 (void *)pte
- (void *)first_pte
);
1889 if (!sg_res
&& nr_pages
)
1895 static inline int domain_sg_mapping(struct dmar_domain
*domain
, unsigned long iov_pfn
,
1896 struct scatterlist
*sg
, unsigned long nr_pages
,
1899 return __domain_mapping(domain
, iov_pfn
, sg
, 0, nr_pages
, prot
);
1902 static inline int domain_pfn_mapping(struct dmar_domain
*domain
, unsigned long iov_pfn
,
1903 unsigned long phys_pfn
, unsigned long nr_pages
,
1906 return __domain_mapping(domain
, iov_pfn
, NULL
, phys_pfn
, nr_pages
, prot
);
1909 static void iommu_detach_dev(struct intel_iommu
*iommu
, u8 bus
, u8 devfn
)
1914 clear_context_table(iommu
, bus
, devfn
);
1915 iommu
->flush
.flush_context(iommu
, 0, 0, 0,
1916 DMA_CCMD_GLOBAL_INVL
);
1917 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH
);
1920 static inline void unlink_domain_info(struct device_domain_info
*info
)
1922 assert_spin_locked(&device_domain_lock
);
1923 list_del(&info
->link
);
1924 list_del(&info
->global
);
1926 info
->dev
->dev
.archdata
.iommu
= NULL
;
1929 static void domain_remove_dev_info(struct dmar_domain
*domain
)
1931 struct device_domain_info
*info
;
1932 unsigned long flags
;
1933 struct intel_iommu
*iommu
;
1935 spin_lock_irqsave(&device_domain_lock
, flags
);
1936 while (!list_empty(&domain
->devices
)) {
1937 info
= list_entry(domain
->devices
.next
,
1938 struct device_domain_info
, link
);
1939 unlink_domain_info(info
);
1940 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1942 iommu_disable_dev_iotlb(info
);
1943 iommu
= device_to_iommu(info
->segment
, info
->bus
, info
->devfn
);
1944 iommu_detach_dev(iommu
, info
->bus
, info
->devfn
);
1945 free_devinfo_mem(info
);
1947 spin_lock_irqsave(&device_domain_lock
, flags
);
1949 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1954 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1956 static struct dmar_domain
*
1957 find_domain(struct pci_dev
*pdev
)
1959 struct device_domain_info
*info
;
1961 /* No lock here, assumes no domain exit in normal case */
1962 info
= pdev
->dev
.archdata
.iommu
;
1964 return info
->domain
;
1968 /* domain is initialized */
1969 static struct dmar_domain
*get_domain_for_dev(struct pci_dev
*pdev
, int gaw
)
1971 struct dmar_domain
*domain
, *found
= NULL
;
1972 struct intel_iommu
*iommu
;
1973 struct dmar_drhd_unit
*drhd
;
1974 struct device_domain_info
*info
, *tmp
;
1975 struct pci_dev
*dev_tmp
;
1976 unsigned long flags
;
1977 int bus
= 0, devfn
= 0;
1981 domain
= find_domain(pdev
);
1985 segment
= pci_domain_nr(pdev
->bus
);
1987 dev_tmp
= pci_find_upstream_pcie_bridge(pdev
);
1989 if (pci_is_pcie(dev_tmp
)) {
1990 bus
= dev_tmp
->subordinate
->number
;
1993 bus
= dev_tmp
->bus
->number
;
1994 devfn
= dev_tmp
->devfn
;
1996 spin_lock_irqsave(&device_domain_lock
, flags
);
1997 list_for_each_entry(info
, &device_domain_list
, global
) {
1998 if (info
->segment
== segment
&&
1999 info
->bus
== bus
&& info
->devfn
== devfn
) {
2000 found
= info
->domain
;
2004 spin_unlock_irqrestore(&device_domain_lock
, flags
);
2005 /* pcie-pci bridge already has a domain, uses it */
2012 domain
= alloc_domain();
2016 /* Allocate new domain for the device */
2017 drhd
= dmar_find_matched_drhd_unit(pdev
);
2019 printk(KERN_ERR
"IOMMU: can't find DMAR for device %s\n",
2021 free_domain_mem(domain
);
2024 iommu
= drhd
->iommu
;
2026 ret
= iommu_attach_domain(domain
, iommu
);
2028 free_domain_mem(domain
);
2032 if (domain_init(domain
, gaw
)) {
2033 domain_exit(domain
);
2037 /* register pcie-to-pci device */
2039 info
= alloc_devinfo_mem();
2041 domain_exit(domain
);
2044 info
->segment
= segment
;
2046 info
->devfn
= devfn
;
2048 info
->domain
= domain
;
2049 /* This domain is shared by devices under p2p bridge */
2050 domain
->flags
|= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES
;
2052 /* pcie-to-pci bridge already has a domain, uses it */
2054 spin_lock_irqsave(&device_domain_lock
, flags
);
2055 list_for_each_entry(tmp
, &device_domain_list
, global
) {
2056 if (tmp
->segment
== segment
&&
2057 tmp
->bus
== bus
&& tmp
->devfn
== devfn
) {
2058 found
= tmp
->domain
;
2063 spin_unlock_irqrestore(&device_domain_lock
, flags
);
2064 free_devinfo_mem(info
);
2065 domain_exit(domain
);
2068 list_add(&info
->link
, &domain
->devices
);
2069 list_add(&info
->global
, &device_domain_list
);
2070 spin_unlock_irqrestore(&device_domain_lock
, flags
);
2075 info
= alloc_devinfo_mem();
2078 info
->segment
= segment
;
2079 info
->bus
= pdev
->bus
->number
;
2080 info
->devfn
= pdev
->devfn
;
2082 info
->domain
= domain
;
2083 spin_lock_irqsave(&device_domain_lock
, flags
);
2084 /* somebody is fast */
2085 found
= find_domain(pdev
);
2086 if (found
!= NULL
) {
2087 spin_unlock_irqrestore(&device_domain_lock
, flags
);
2088 if (found
!= domain
) {
2089 domain_exit(domain
);
2092 free_devinfo_mem(info
);
2095 list_add(&info
->link
, &domain
->devices
);
2096 list_add(&info
->global
, &device_domain_list
);
2097 pdev
->dev
.archdata
.iommu
= info
;
2098 spin_unlock_irqrestore(&device_domain_lock
, flags
);
2101 /* recheck it here, maybe others set it */
2102 return find_domain(pdev
);
2105 static int iommu_identity_mapping
;
2106 #define IDENTMAP_ALL 1
2107 #define IDENTMAP_GFX 2
2108 #define IDENTMAP_AZALIA 4
2110 static int iommu_domain_identity_map(struct dmar_domain
*domain
,
2111 unsigned long long start
,
2112 unsigned long long end
)
2114 unsigned long first_vpfn
= start
>> VTD_PAGE_SHIFT
;
2115 unsigned long last_vpfn
= end
>> VTD_PAGE_SHIFT
;
2117 if (!reserve_iova(&domain
->iovad
, dma_to_mm_pfn(first_vpfn
),
2118 dma_to_mm_pfn(last_vpfn
))) {
2119 printk(KERN_ERR
"IOMMU: reserve iova failed\n");
2123 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2124 start
, end
, domain
->id
);
2126 * RMRR range might have overlap with physical memory range,
2129 dma_pte_clear_range(domain
, first_vpfn
, last_vpfn
);
2131 return domain_pfn_mapping(domain
, first_vpfn
, first_vpfn
,
2132 last_vpfn
- first_vpfn
+ 1,
2133 DMA_PTE_READ
|DMA_PTE_WRITE
);
2136 static int iommu_prepare_identity_map(struct pci_dev
*pdev
,
2137 unsigned long long start
,
2138 unsigned long long end
)
2140 struct dmar_domain
*domain
;
2143 domain
= get_domain_for_dev(pdev
, DEFAULT_DOMAIN_ADDRESS_WIDTH
);
2147 /* For _hardware_ passthrough, don't bother. But for software
2148 passthrough, we do it anyway -- it may indicate a memory
2149 range which is reserved in E820, so which didn't get set
2150 up to start with in si_domain */
2151 if (domain
== si_domain
&& hw_pass_through
) {
2152 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2153 pci_name(pdev
), start
, end
);
2158 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2159 pci_name(pdev
), start
, end
);
2162 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2163 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2164 dmi_get_system_info(DMI_BIOS_VENDOR
),
2165 dmi_get_system_info(DMI_BIOS_VERSION
),
2166 dmi_get_system_info(DMI_PRODUCT_VERSION
));
2171 if (end
>> agaw_to_width(domain
->agaw
)) {
2172 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2173 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2174 agaw_to_width(domain
->agaw
),
2175 dmi_get_system_info(DMI_BIOS_VENDOR
),
2176 dmi_get_system_info(DMI_BIOS_VERSION
),
2177 dmi_get_system_info(DMI_PRODUCT_VERSION
));
2182 ret
= iommu_domain_identity_map(domain
, start
, end
);
2186 /* context entry init */
2187 ret
= domain_context_mapping(domain
, pdev
, CONTEXT_TT_MULTI_LEVEL
);
2194 domain_exit(domain
);
2198 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit
*rmrr
,
2199 struct pci_dev
*pdev
)
2201 if (pdev
->dev
.archdata
.iommu
== DUMMY_DEVICE_DOMAIN_INFO
)
2203 return iommu_prepare_identity_map(pdev
, rmrr
->base_address
,
2207 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2208 static inline void iommu_prepare_isa(void)
2210 struct pci_dev
*pdev
;
2213 pdev
= pci_get_class(PCI_CLASS_BRIDGE_ISA
<< 8, NULL
);
2217 printk(KERN_INFO
"IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2218 ret
= iommu_prepare_identity_map(pdev
, 0, 16*1024*1024 - 1);
2221 printk(KERN_ERR
"IOMMU: Failed to create 0-16MiB identity map; "
2222 "floppy might not work\n");
2226 static inline void iommu_prepare_isa(void)
2230 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2232 static int md_domain_init(struct dmar_domain
*domain
, int guest_width
);
2234 static int __init
si_domain_init(int hw
)
2236 struct dmar_drhd_unit
*drhd
;
2237 struct intel_iommu
*iommu
;
2240 si_domain
= alloc_domain();
2244 pr_debug("Identity mapping domain is domain %d\n", si_domain
->id
);
2246 for_each_active_iommu(iommu
, drhd
) {
2247 ret
= iommu_attach_domain(si_domain
, iommu
);
2249 domain_exit(si_domain
);
2254 if (md_domain_init(si_domain
, DEFAULT_DOMAIN_ADDRESS_WIDTH
)) {
2255 domain_exit(si_domain
);
2259 si_domain
->flags
= DOMAIN_FLAG_STATIC_IDENTITY
;
2264 for_each_online_node(nid
) {
2265 unsigned long start_pfn
, end_pfn
;
2268 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
2269 ret
= iommu_domain_identity_map(si_domain
,
2270 PFN_PHYS(start_pfn
), PFN_PHYS(end_pfn
));
2279 static void domain_remove_one_dev_info(struct dmar_domain
*domain
,
2280 struct pci_dev
*pdev
);
2281 static int identity_mapping(struct pci_dev
*pdev
)
2283 struct device_domain_info
*info
;
2285 if (likely(!iommu_identity_mapping
))
2288 info
= pdev
->dev
.archdata
.iommu
;
2289 if (info
&& info
!= DUMMY_DEVICE_DOMAIN_INFO
)
2290 return (info
->domain
== si_domain
);
2295 static int domain_add_dev_info(struct dmar_domain
*domain
,
2296 struct pci_dev
*pdev
,
2299 struct device_domain_info
*info
;
2300 unsigned long flags
;
2303 info
= alloc_devinfo_mem();
2307 info
->segment
= pci_domain_nr(pdev
->bus
);
2308 info
->bus
= pdev
->bus
->number
;
2309 info
->devfn
= pdev
->devfn
;
2311 info
->domain
= domain
;
2313 spin_lock_irqsave(&device_domain_lock
, flags
);
2314 list_add(&info
->link
, &domain
->devices
);
2315 list_add(&info
->global
, &device_domain_list
);
2316 pdev
->dev
.archdata
.iommu
= info
;
2317 spin_unlock_irqrestore(&device_domain_lock
, flags
);
2319 ret
= domain_context_mapping(domain
, pdev
, translation
);
2321 spin_lock_irqsave(&device_domain_lock
, flags
);
2322 unlink_domain_info(info
);
2323 spin_unlock_irqrestore(&device_domain_lock
, flags
);
2324 free_devinfo_mem(info
);
2331 static bool device_has_rmrr(struct pci_dev
*dev
)
2333 struct dmar_rmrr_unit
*rmrr
;
2336 for_each_rmrr_units(rmrr
) {
2337 for (i
= 0; i
< rmrr
->devices_cnt
; i
++) {
2339 * Return TRUE if this RMRR contains the device that
2342 if (rmrr
->devices
[i
] == dev
)
2349 static int iommu_should_identity_map(struct pci_dev
*pdev
, int startup
)
2353 * We want to prevent any device associated with an RMRR from
2354 * getting placed into the SI Domain. This is done because
2355 * problems exist when devices are moved in and out of domains
2356 * and their respective RMRR info is lost. We exempt USB devices
2357 * from this process due to their usage of RMRRs that are known
2358 * to not be needed after BIOS hand-off to OS.
2360 if (device_has_rmrr(pdev
) &&
2361 (pdev
->class >> 8) != PCI_CLASS_SERIAL_USB
)
2364 if ((iommu_identity_mapping
& IDENTMAP_AZALIA
) && IS_AZALIA(pdev
))
2367 if ((iommu_identity_mapping
& IDENTMAP_GFX
) && IS_GFX_DEVICE(pdev
))
2370 if (!(iommu_identity_mapping
& IDENTMAP_ALL
))
2374 * We want to start off with all devices in the 1:1 domain, and
2375 * take them out later if we find they can't access all of memory.
2377 * However, we can't do this for PCI devices behind bridges,
2378 * because all PCI devices behind the same bridge will end up
2379 * with the same source-id on their transactions.
2381 * Practically speaking, we can't change things around for these
2382 * devices at run-time, because we can't be sure there'll be no
2383 * DMA transactions in flight for any of their siblings.
2385 * So PCI devices (unless they're on the root bus) as well as
2386 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2387 * the 1:1 domain, just in _case_ one of their siblings turns out
2388 * not to be able to map all of memory.
2390 if (!pci_is_pcie(pdev
)) {
2391 if (!pci_is_root_bus(pdev
->bus
))
2393 if (pdev
->class >> 8 == PCI_CLASS_BRIDGE_PCI
)
2395 } else if (pci_pcie_type(pdev
) == PCI_EXP_TYPE_PCI_BRIDGE
)
2399 * At boot time, we don't yet know if devices will be 64-bit capable.
2400 * Assume that they will -- if they turn out not to be, then we can
2401 * take them out of the 1:1 domain later.
2405 * If the device's dma_mask is less than the system's memory
2406 * size then this is not a candidate for identity mapping.
2408 u64 dma_mask
= pdev
->dma_mask
;
2410 if (pdev
->dev
.coherent_dma_mask
&&
2411 pdev
->dev
.coherent_dma_mask
< dma_mask
)
2412 dma_mask
= pdev
->dev
.coherent_dma_mask
;
2414 return dma_mask
>= dma_get_required_mask(&pdev
->dev
);
2420 static int __init
iommu_prepare_static_identity_mapping(int hw
)
2422 struct pci_dev
*pdev
= NULL
;
2425 ret
= si_domain_init(hw
);
2429 for_each_pci_dev(pdev
) {
2430 if (iommu_should_identity_map(pdev
, 1)) {
2431 ret
= domain_add_dev_info(si_domain
, pdev
,
2432 hw
? CONTEXT_TT_PASS_THROUGH
:
2433 CONTEXT_TT_MULTI_LEVEL
);
2435 /* device not associated with an iommu */
2440 pr_info("IOMMU: %s identity mapping for device %s\n",
2441 hw
? "hardware" : "software", pci_name(pdev
));
2448 static int __init
init_dmars(void)
2450 struct dmar_drhd_unit
*drhd
;
2451 struct dmar_rmrr_unit
*rmrr
;
2452 struct pci_dev
*pdev
;
2453 struct intel_iommu
*iommu
;
2459 * initialize and program root entry to not present
2462 for_each_drhd_unit(drhd
) {
2464 * lock not needed as this is only incremented in the single
2465 * threaded kernel __init code path all other access are read
2468 if (g_num_of_iommus
< IOMMU_UNITS_SUPPORTED
) {
2472 printk_once(KERN_ERR
"intel-iommu: exceeded %d IOMMUs\n",
2473 IOMMU_UNITS_SUPPORTED
);
2476 g_iommus
= kcalloc(g_num_of_iommus
, sizeof(struct intel_iommu
*),
2479 printk(KERN_ERR
"Allocating global iommu array failed\n");
2484 deferred_flush
= kzalloc(g_num_of_iommus
*
2485 sizeof(struct deferred_flush_tables
), GFP_KERNEL
);
2486 if (!deferred_flush
) {
2491 for_each_drhd_unit(drhd
) {
2495 iommu
= drhd
->iommu
;
2496 g_iommus
[iommu
->seq_id
] = iommu
;
2498 ret
= iommu_init_domains(iommu
);
2504 * we could share the same root & context tables
2505 * among all IOMMU's. Need to Split it later.
2507 ret
= iommu_alloc_root_entry(iommu
);
2509 printk(KERN_ERR
"IOMMU: allocate root entry failed\n");
2512 if (!ecap_pass_through(iommu
->ecap
))
2513 hw_pass_through
= 0;
2517 * Start from the sane iommu hardware state.
2519 for_each_drhd_unit(drhd
) {
2523 iommu
= drhd
->iommu
;
2526 * If the queued invalidation is already initialized by us
2527 * (for example, while enabling interrupt-remapping) then
2528 * we got the things already rolling from a sane state.
2534 * Clear any previous faults.
2536 dmar_fault(-1, iommu
);
2538 * Disable queued invalidation if supported and already enabled
2539 * before OS handover.
2541 dmar_disable_qi(iommu
);
2544 for_each_drhd_unit(drhd
) {
2548 iommu
= drhd
->iommu
;
2550 if (dmar_enable_qi(iommu
)) {
2552 * Queued Invalidate not enabled, use Register Based
2555 iommu
->flush
.flush_context
= __iommu_flush_context
;
2556 iommu
->flush
.flush_iotlb
= __iommu_flush_iotlb
;
2557 printk(KERN_INFO
"IOMMU %d 0x%Lx: using Register based "
2560 (unsigned long long)drhd
->reg_base_addr
);
2562 iommu
->flush
.flush_context
= qi_flush_context
;
2563 iommu
->flush
.flush_iotlb
= qi_flush_iotlb
;
2564 printk(KERN_INFO
"IOMMU %d 0x%Lx: using Queued "
2567 (unsigned long long)drhd
->reg_base_addr
);
2571 if (iommu_pass_through
)
2572 iommu_identity_mapping
|= IDENTMAP_ALL
;
2574 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2575 iommu_identity_mapping
|= IDENTMAP_GFX
;
2578 check_tylersburg_isoch();
2581 * If pass through is not set or not enabled, setup context entries for
2582 * identity mappings for rmrr, gfx, and isa and may fall back to static
2583 * identity mapping if iommu_identity_mapping is set.
2585 if (iommu_identity_mapping
) {
2586 ret
= iommu_prepare_static_identity_mapping(hw_pass_through
);
2588 printk(KERN_CRIT
"Failed to setup IOMMU pass-through\n");
2594 * for each dev attached to rmrr
2596 * locate drhd for dev, alloc domain for dev
2597 * allocate free domain
2598 * allocate page table entries for rmrr
2599 * if context not allocated for bus
2600 * allocate and init context
2601 * set present in root table for this bus
2602 * init context with domain, translation etc
2606 printk(KERN_INFO
"IOMMU: Setting RMRR:\n");
2607 for_each_rmrr_units(rmrr
) {
2608 for (i
= 0; i
< rmrr
->devices_cnt
; i
++) {
2609 pdev
= rmrr
->devices
[i
];
2611 * some BIOS lists non-exist devices in DMAR
2616 ret
= iommu_prepare_rmrr_dev(rmrr
, pdev
);
2619 "IOMMU: mapping reserved region failed\n");
2623 iommu_prepare_isa();
2628 * global invalidate context cache
2629 * global invalidate iotlb
2630 * enable translation
2632 for_each_drhd_unit(drhd
) {
2633 if (drhd
->ignored
) {
2635 * we always have to disable PMRs or DMA may fail on
2639 iommu_disable_protect_mem_regions(drhd
->iommu
);
2642 iommu
= drhd
->iommu
;
2644 iommu_flush_write_buffer(iommu
);
2646 ret
= dmar_set_interrupt(iommu
);
2650 iommu_set_root_entry(iommu
);
2652 iommu
->flush
.flush_context(iommu
, 0, 0, 0, DMA_CCMD_GLOBAL_INVL
);
2653 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH
);
2655 ret
= iommu_enable_translation(iommu
);
2659 iommu_disable_protect_mem_regions(iommu
);
2664 for_each_drhd_unit(drhd
) {
2667 iommu
= drhd
->iommu
;
2674 /* This takes a number of _MM_ pages, not VTD pages */
2675 static struct iova
*intel_alloc_iova(struct device
*dev
,
2676 struct dmar_domain
*domain
,
2677 unsigned long nrpages
, uint64_t dma_mask
)
2679 struct pci_dev
*pdev
= to_pci_dev(dev
);
2680 struct iova
*iova
= NULL
;
2682 /* Restrict dma_mask to the width that the iommu can handle */
2683 dma_mask
= min_t(uint64_t, DOMAIN_MAX_ADDR(domain
->gaw
), dma_mask
);
2685 if (!dmar_forcedac
&& dma_mask
> DMA_BIT_MASK(32)) {
2687 * First try to allocate an io virtual address in
2688 * DMA_BIT_MASK(32) and if that fails then try allocating
2691 iova
= alloc_iova(&domain
->iovad
, nrpages
,
2692 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2696 iova
= alloc_iova(&domain
->iovad
, nrpages
, IOVA_PFN(dma_mask
), 1);
2697 if (unlikely(!iova
)) {
2698 printk(KERN_ERR
"Allocating %ld-page iova for %s failed",
2699 nrpages
, pci_name(pdev
));
2706 static struct dmar_domain
*__get_valid_domain_for_dev(struct pci_dev
*pdev
)
2708 struct dmar_domain
*domain
;
2711 domain
= get_domain_for_dev(pdev
,
2712 DEFAULT_DOMAIN_ADDRESS_WIDTH
);
2715 "Allocating domain for %s failed", pci_name(pdev
));
2719 /* make sure context mapping is ok */
2720 if (unlikely(!domain_context_mapped(pdev
))) {
2721 ret
= domain_context_mapping(domain
, pdev
,
2722 CONTEXT_TT_MULTI_LEVEL
);
2725 "Domain context map for %s failed",
2734 static inline struct dmar_domain
*get_valid_domain_for_dev(struct pci_dev
*dev
)
2736 struct device_domain_info
*info
;
2738 /* No lock here, assumes no domain exit in normal case */
2739 info
= dev
->dev
.archdata
.iommu
;
2741 return info
->domain
;
2743 return __get_valid_domain_for_dev(dev
);
2746 static int iommu_dummy(struct pci_dev
*pdev
)
2748 return pdev
->dev
.archdata
.iommu
== DUMMY_DEVICE_DOMAIN_INFO
;
2751 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2752 static int iommu_no_mapping(struct device
*dev
)
2754 struct pci_dev
*pdev
;
2757 if (unlikely(dev
->bus
!= &pci_bus_type
))
2760 pdev
= to_pci_dev(dev
);
2761 if (iommu_dummy(pdev
))
2764 if (!iommu_identity_mapping
)
2767 found
= identity_mapping(pdev
);
2769 if (iommu_should_identity_map(pdev
, 0))
2773 * 32 bit DMA is removed from si_domain and fall back
2774 * to non-identity mapping.
2776 domain_remove_one_dev_info(si_domain
, pdev
);
2777 printk(KERN_INFO
"32bit %s uses non-identity mapping\n",
2783 * In case of a detached 64 bit DMA device from vm, the device
2784 * is put into si_domain for identity mapping.
2786 if (iommu_should_identity_map(pdev
, 0)) {
2788 ret
= domain_add_dev_info(si_domain
, pdev
,
2790 CONTEXT_TT_PASS_THROUGH
:
2791 CONTEXT_TT_MULTI_LEVEL
);
2793 printk(KERN_INFO
"64bit %s uses identity mapping\n",
2803 static dma_addr_t
__intel_map_single(struct device
*hwdev
, phys_addr_t paddr
,
2804 size_t size
, int dir
, u64 dma_mask
)
2806 struct pci_dev
*pdev
= to_pci_dev(hwdev
);
2807 struct dmar_domain
*domain
;
2808 phys_addr_t start_paddr
;
2812 struct intel_iommu
*iommu
;
2813 unsigned long paddr_pfn
= paddr
>> PAGE_SHIFT
;
2815 BUG_ON(dir
== DMA_NONE
);
2817 if (iommu_no_mapping(hwdev
))
2820 domain
= get_valid_domain_for_dev(pdev
);
2824 iommu
= domain_get_iommu(domain
);
2825 size
= aligned_nrpages(paddr
, size
);
2827 iova
= intel_alloc_iova(hwdev
, domain
, dma_to_mm_pfn(size
), dma_mask
);
2832 * Check if DMAR supports zero-length reads on write only
2835 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
|| \
2836 !cap_zlr(iommu
->cap
))
2837 prot
|= DMA_PTE_READ
;
2838 if (dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
2839 prot
|= DMA_PTE_WRITE
;
2841 * paddr - (paddr + size) might be partial page, we should map the whole
2842 * page. Note: if two part of one page are separately mapped, we
2843 * might have two guest_addr mapping to the same host paddr, but this
2844 * is not a big problem
2846 ret
= domain_pfn_mapping(domain
, mm_to_dma_pfn(iova
->pfn_lo
),
2847 mm_to_dma_pfn(paddr_pfn
), size
, prot
);
2851 /* it's a non-present to present mapping. Only flush if caching mode */
2852 if (cap_caching_mode(iommu
->cap
))
2853 iommu_flush_iotlb_psi(iommu
, domain
->id
, mm_to_dma_pfn(iova
->pfn_lo
), size
, 1);
2855 iommu_flush_write_buffer(iommu
);
2857 start_paddr
= (phys_addr_t
)iova
->pfn_lo
<< PAGE_SHIFT
;
2858 start_paddr
+= paddr
& ~PAGE_MASK
;
2863 __free_iova(&domain
->iovad
, iova
);
2864 printk(KERN_ERR
"Device %s request: %zx@%llx dir %d --- failed\n",
2865 pci_name(pdev
), size
, (unsigned long long)paddr
, dir
);
2869 static dma_addr_t
intel_map_page(struct device
*dev
, struct page
*page
,
2870 unsigned long offset
, size_t size
,
2871 enum dma_data_direction dir
,
2872 struct dma_attrs
*attrs
)
2874 return __intel_map_single(dev
, page_to_phys(page
) + offset
, size
,
2875 dir
, to_pci_dev(dev
)->dma_mask
);
2878 static void flush_unmaps(void)
2884 /* just flush them all */
2885 for (i
= 0; i
< g_num_of_iommus
; i
++) {
2886 struct intel_iommu
*iommu
= g_iommus
[i
];
2890 if (!deferred_flush
[i
].next
)
2893 /* In caching mode, global flushes turn emulation expensive */
2894 if (!cap_caching_mode(iommu
->cap
))
2895 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0,
2896 DMA_TLB_GLOBAL_FLUSH
);
2897 for (j
= 0; j
< deferred_flush
[i
].next
; j
++) {
2899 struct iova
*iova
= deferred_flush
[i
].iova
[j
];
2900 struct dmar_domain
*domain
= deferred_flush
[i
].domain
[j
];
2902 /* On real hardware multiple invalidations are expensive */
2903 if (cap_caching_mode(iommu
->cap
))
2904 iommu_flush_iotlb_psi(iommu
, domain
->id
,
2905 iova
->pfn_lo
, iova
->pfn_hi
- iova
->pfn_lo
+ 1, 0);
2907 mask
= ilog2(mm_to_dma_pfn(iova
->pfn_hi
- iova
->pfn_lo
+ 1));
2908 iommu_flush_dev_iotlb(deferred_flush
[i
].domain
[j
],
2909 (uint64_t)iova
->pfn_lo
<< PAGE_SHIFT
, mask
);
2911 __free_iova(&deferred_flush
[i
].domain
[j
]->iovad
, iova
);
2913 deferred_flush
[i
].next
= 0;
2919 static void flush_unmaps_timeout(unsigned long data
)
2921 unsigned long flags
;
2923 spin_lock_irqsave(&async_umap_flush_lock
, flags
);
2925 spin_unlock_irqrestore(&async_umap_flush_lock
, flags
);
2928 static void add_unmap(struct dmar_domain
*dom
, struct iova
*iova
)
2930 unsigned long flags
;
2932 struct intel_iommu
*iommu
;
2934 spin_lock_irqsave(&async_umap_flush_lock
, flags
);
2935 if (list_size
== HIGH_WATER_MARK
)
2938 iommu
= domain_get_iommu(dom
);
2939 iommu_id
= iommu
->seq_id
;
2941 next
= deferred_flush
[iommu_id
].next
;
2942 deferred_flush
[iommu_id
].domain
[next
] = dom
;
2943 deferred_flush
[iommu_id
].iova
[next
] = iova
;
2944 deferred_flush
[iommu_id
].next
++;
2947 mod_timer(&unmap_timer
, jiffies
+ msecs_to_jiffies(10));
2951 spin_unlock_irqrestore(&async_umap_flush_lock
, flags
);
2954 static void intel_unmap_page(struct device
*dev
, dma_addr_t dev_addr
,
2955 size_t size
, enum dma_data_direction dir
,
2956 struct dma_attrs
*attrs
)
2958 struct pci_dev
*pdev
= to_pci_dev(dev
);
2959 struct dmar_domain
*domain
;
2960 unsigned long start_pfn
, last_pfn
;
2962 struct intel_iommu
*iommu
;
2964 if (iommu_no_mapping(dev
))
2967 domain
= find_domain(pdev
);
2970 iommu
= domain_get_iommu(domain
);
2972 iova
= find_iova(&domain
->iovad
, IOVA_PFN(dev_addr
));
2973 if (WARN_ONCE(!iova
, "Driver unmaps unmatched page at PFN %llx\n",
2974 (unsigned long long)dev_addr
))
2977 start_pfn
= mm_to_dma_pfn(iova
->pfn_lo
);
2978 last_pfn
= mm_to_dma_pfn(iova
->pfn_hi
+ 1) - 1;
2980 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2981 pci_name(pdev
), start_pfn
, last_pfn
);
2983 /* clear the whole page */
2984 dma_pte_clear_range(domain
, start_pfn
, last_pfn
);
2986 /* free page tables */
2987 dma_pte_free_pagetable(domain
, start_pfn
, last_pfn
);
2989 if (intel_iommu_strict
) {
2990 iommu_flush_iotlb_psi(iommu
, domain
->id
, start_pfn
,
2991 last_pfn
- start_pfn
+ 1, 0);
2993 __free_iova(&domain
->iovad
, iova
);
2995 add_unmap(domain
, iova
);
2997 * queue up the release of the unmap to save the 1/6th of the
2998 * cpu used up by the iotlb flush operation...
3003 static void *intel_alloc_coherent(struct device
*hwdev
, size_t size
,
3004 dma_addr_t
*dma_handle
, gfp_t flags
,
3005 struct dma_attrs
*attrs
)
3010 size
= PAGE_ALIGN(size
);
3011 order
= get_order(size
);
3013 if (!iommu_no_mapping(hwdev
))
3014 flags
&= ~(GFP_DMA
| GFP_DMA32
);
3015 else if (hwdev
->coherent_dma_mask
< dma_get_required_mask(hwdev
)) {
3016 if (hwdev
->coherent_dma_mask
< DMA_BIT_MASK(32))
3022 vaddr
= (void *)__get_free_pages(flags
, order
);
3025 memset(vaddr
, 0, size
);
3027 *dma_handle
= __intel_map_single(hwdev
, virt_to_bus(vaddr
), size
,
3029 hwdev
->coherent_dma_mask
);
3032 free_pages((unsigned long)vaddr
, order
);
3036 static void intel_free_coherent(struct device
*hwdev
, size_t size
, void *vaddr
,
3037 dma_addr_t dma_handle
, struct dma_attrs
*attrs
)
3041 size
= PAGE_ALIGN(size
);
3042 order
= get_order(size
);
3044 intel_unmap_page(hwdev
, dma_handle
, size
, DMA_BIDIRECTIONAL
, NULL
);
3045 free_pages((unsigned long)vaddr
, order
);
3048 static void intel_unmap_sg(struct device
*hwdev
, struct scatterlist
*sglist
,
3049 int nelems
, enum dma_data_direction dir
,
3050 struct dma_attrs
*attrs
)
3052 struct pci_dev
*pdev
= to_pci_dev(hwdev
);
3053 struct dmar_domain
*domain
;
3054 unsigned long start_pfn
, last_pfn
;
3056 struct intel_iommu
*iommu
;
3058 if (iommu_no_mapping(hwdev
))
3061 domain
= find_domain(pdev
);
3064 iommu
= domain_get_iommu(domain
);
3066 iova
= find_iova(&domain
->iovad
, IOVA_PFN(sglist
[0].dma_address
));
3067 if (WARN_ONCE(!iova
, "Driver unmaps unmatched sglist at PFN %llx\n",
3068 (unsigned long long)sglist
[0].dma_address
))
3071 start_pfn
= mm_to_dma_pfn(iova
->pfn_lo
);
3072 last_pfn
= mm_to_dma_pfn(iova
->pfn_hi
+ 1) - 1;
3074 /* clear the whole page */
3075 dma_pte_clear_range(domain
, start_pfn
, last_pfn
);
3077 /* free page tables */
3078 dma_pte_free_pagetable(domain
, start_pfn
, last_pfn
);
3080 if (intel_iommu_strict
) {
3081 iommu_flush_iotlb_psi(iommu
, domain
->id
, start_pfn
,
3082 last_pfn
- start_pfn
+ 1, 0);
3084 __free_iova(&domain
->iovad
, iova
);
3086 add_unmap(domain
, iova
);
3088 * queue up the release of the unmap to save the 1/6th of the
3089 * cpu used up by the iotlb flush operation...
3094 static int intel_nontranslate_map_sg(struct device
*hddev
,
3095 struct scatterlist
*sglist
, int nelems
, int dir
)
3098 struct scatterlist
*sg
;
3100 for_each_sg(sglist
, sg
, nelems
, i
) {
3101 BUG_ON(!sg_page(sg
));
3102 sg
->dma_address
= page_to_phys(sg_page(sg
)) + sg
->offset
;
3103 sg
->dma_length
= sg
->length
;
3108 static int intel_map_sg(struct device
*hwdev
, struct scatterlist
*sglist
, int nelems
,
3109 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
3112 struct pci_dev
*pdev
= to_pci_dev(hwdev
);
3113 struct dmar_domain
*domain
;
3116 struct iova
*iova
= NULL
;
3118 struct scatterlist
*sg
;
3119 unsigned long start_vpfn
;
3120 struct intel_iommu
*iommu
;
3122 BUG_ON(dir
== DMA_NONE
);
3123 if (iommu_no_mapping(hwdev
))
3124 return intel_nontranslate_map_sg(hwdev
, sglist
, nelems
, dir
);
3126 domain
= get_valid_domain_for_dev(pdev
);
3130 iommu
= domain_get_iommu(domain
);
3132 for_each_sg(sglist
, sg
, nelems
, i
)
3133 size
+= aligned_nrpages(sg
->offset
, sg
->length
);
3135 iova
= intel_alloc_iova(hwdev
, domain
, dma_to_mm_pfn(size
),
3138 sglist
->dma_length
= 0;
3143 * Check if DMAR supports zero-length reads on write only
3146 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
|| \
3147 !cap_zlr(iommu
->cap
))
3148 prot
|= DMA_PTE_READ
;
3149 if (dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
3150 prot
|= DMA_PTE_WRITE
;
3152 start_vpfn
= mm_to_dma_pfn(iova
->pfn_lo
);
3154 ret
= domain_sg_mapping(domain
, start_vpfn
, sglist
, size
, prot
);
3155 if (unlikely(ret
)) {
3156 /* clear the page */
3157 dma_pte_clear_range(domain
, start_vpfn
,
3158 start_vpfn
+ size
- 1);
3159 /* free page tables */
3160 dma_pte_free_pagetable(domain
, start_vpfn
,
3161 start_vpfn
+ size
- 1);
3163 __free_iova(&domain
->iovad
, iova
);
3167 /* it's a non-present to present mapping. Only flush if caching mode */
3168 if (cap_caching_mode(iommu
->cap
))
3169 iommu_flush_iotlb_psi(iommu
, domain
->id
, start_vpfn
, size
, 1);
3171 iommu_flush_write_buffer(iommu
);
3176 static int intel_mapping_error(struct device
*dev
, dma_addr_t dma_addr
)
3181 struct dma_map_ops intel_dma_ops
= {
3182 .alloc
= intel_alloc_coherent
,
3183 .free
= intel_free_coherent
,
3184 .map_sg
= intel_map_sg
,
3185 .unmap_sg
= intel_unmap_sg
,
3186 .map_page
= intel_map_page
,
3187 .unmap_page
= intel_unmap_page
,
3188 .mapping_error
= intel_mapping_error
,
3191 static inline int iommu_domain_cache_init(void)
3195 iommu_domain_cache
= kmem_cache_create("iommu_domain",
3196 sizeof(struct dmar_domain
),
3201 if (!iommu_domain_cache
) {
3202 printk(KERN_ERR
"Couldn't create iommu_domain cache\n");
3209 static inline int iommu_devinfo_cache_init(void)
3213 iommu_devinfo_cache
= kmem_cache_create("iommu_devinfo",
3214 sizeof(struct device_domain_info
),
3218 if (!iommu_devinfo_cache
) {
3219 printk(KERN_ERR
"Couldn't create devinfo cache\n");
3226 static inline int iommu_iova_cache_init(void)
3230 iommu_iova_cache
= kmem_cache_create("iommu_iova",
3231 sizeof(struct iova
),
3235 if (!iommu_iova_cache
) {
3236 printk(KERN_ERR
"Couldn't create iova cache\n");
3243 static int __init
iommu_init_mempool(void)
3246 ret
= iommu_iova_cache_init();
3250 ret
= iommu_domain_cache_init();
3254 ret
= iommu_devinfo_cache_init();
3258 kmem_cache_destroy(iommu_domain_cache
);
3260 kmem_cache_destroy(iommu_iova_cache
);
3265 static void __init
iommu_exit_mempool(void)
3267 kmem_cache_destroy(iommu_devinfo_cache
);
3268 kmem_cache_destroy(iommu_domain_cache
);
3269 kmem_cache_destroy(iommu_iova_cache
);
3273 static void quirk_ioat_snb_local_iommu(struct pci_dev
*pdev
)
3275 struct dmar_drhd_unit
*drhd
;
3279 /* We know that this device on this chipset has its own IOMMU.
3280 * If we find it under a different IOMMU, then the BIOS is lying
3281 * to us. Hope that the IOMMU for this device is actually
3282 * disabled, and it needs no translation...
3284 rc
= pci_bus_read_config_dword(pdev
->bus
, PCI_DEVFN(0, 0), 0xb0, &vtbar
);
3286 /* "can't" happen */
3287 dev_info(&pdev
->dev
, "failed to run vt-d quirk\n");
3290 vtbar
&= 0xffff0000;
3292 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3293 drhd
= dmar_find_matched_drhd_unit(pdev
);
3294 if (WARN_TAINT_ONCE(!drhd
|| drhd
->reg_base_addr
- vtbar
!= 0xa000,
3295 TAINT_FIRMWARE_WORKAROUND
,
3296 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3297 pdev
->dev
.archdata
.iommu
= DUMMY_DEVICE_DOMAIN_INFO
;
3299 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_INTEL_IOAT_SNB
, quirk_ioat_snb_local_iommu
);
3301 static void __init
init_no_remapping_devices(void)
3303 struct dmar_drhd_unit
*drhd
;
3305 for_each_drhd_unit(drhd
) {
3306 if (!drhd
->include_all
) {
3308 for (i
= 0; i
< drhd
->devices_cnt
; i
++)
3309 if (drhd
->devices
[i
] != NULL
)
3311 /* ignore DMAR unit if no pci devices exist */
3312 if (i
== drhd
->devices_cnt
)
3317 for_each_drhd_unit(drhd
) {
3319 if (drhd
->ignored
|| drhd
->include_all
)
3322 for (i
= 0; i
< drhd
->devices_cnt
; i
++)
3323 if (drhd
->devices
[i
] &&
3324 !IS_GFX_DEVICE(drhd
->devices
[i
]))
3327 if (i
< drhd
->devices_cnt
)
3330 /* This IOMMU has *only* gfx devices. Either bypass it or
3331 set the gfx_mapped flag, as appropriate */
3333 intel_iommu_gfx_mapped
= 1;
3336 for (i
= 0; i
< drhd
->devices_cnt
; i
++) {
3337 if (!drhd
->devices
[i
])
3339 drhd
->devices
[i
]->dev
.archdata
.iommu
= DUMMY_DEVICE_DOMAIN_INFO
;
3345 #ifdef CONFIG_SUSPEND
3346 static int init_iommu_hw(void)
3348 struct dmar_drhd_unit
*drhd
;
3349 struct intel_iommu
*iommu
= NULL
;
3351 for_each_active_iommu(iommu
, drhd
)
3353 dmar_reenable_qi(iommu
);
3355 for_each_iommu(iommu
, drhd
) {
3356 if (drhd
->ignored
) {
3358 * we always have to disable PMRs or DMA may fail on
3362 iommu_disable_protect_mem_regions(iommu
);
3366 iommu_flush_write_buffer(iommu
);
3368 iommu_set_root_entry(iommu
);
3370 iommu
->flush
.flush_context(iommu
, 0, 0, 0,
3371 DMA_CCMD_GLOBAL_INVL
);
3372 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0,
3373 DMA_TLB_GLOBAL_FLUSH
);
3374 if (iommu_enable_translation(iommu
))
3376 iommu_disable_protect_mem_regions(iommu
);
3382 static void iommu_flush_all(void)
3384 struct dmar_drhd_unit
*drhd
;
3385 struct intel_iommu
*iommu
;
3387 for_each_active_iommu(iommu
, drhd
) {
3388 iommu
->flush
.flush_context(iommu
, 0, 0, 0,
3389 DMA_CCMD_GLOBAL_INVL
);
3390 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0,
3391 DMA_TLB_GLOBAL_FLUSH
);
3395 static int iommu_suspend(void)
3397 struct dmar_drhd_unit
*drhd
;
3398 struct intel_iommu
*iommu
= NULL
;
3401 for_each_active_iommu(iommu
, drhd
) {
3402 iommu
->iommu_state
= kzalloc(sizeof(u32
) * MAX_SR_DMAR_REGS
,
3404 if (!iommu
->iommu_state
)
3410 for_each_active_iommu(iommu
, drhd
) {
3411 iommu_disable_translation(iommu
);
3413 raw_spin_lock_irqsave(&iommu
->register_lock
, flag
);
3415 iommu
->iommu_state
[SR_DMAR_FECTL_REG
] =
3416 readl(iommu
->reg
+ DMAR_FECTL_REG
);
3417 iommu
->iommu_state
[SR_DMAR_FEDATA_REG
] =
3418 readl(iommu
->reg
+ DMAR_FEDATA_REG
);
3419 iommu
->iommu_state
[SR_DMAR_FEADDR_REG
] =
3420 readl(iommu
->reg
+ DMAR_FEADDR_REG
);
3421 iommu
->iommu_state
[SR_DMAR_FEUADDR_REG
] =
3422 readl(iommu
->reg
+ DMAR_FEUADDR_REG
);
3424 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
3429 for_each_active_iommu(iommu
, drhd
)
3430 kfree(iommu
->iommu_state
);
3435 static void iommu_resume(void)
3437 struct dmar_drhd_unit
*drhd
;
3438 struct intel_iommu
*iommu
= NULL
;
3441 if (init_iommu_hw()) {
3443 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3445 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3449 for_each_active_iommu(iommu
, drhd
) {
3451 raw_spin_lock_irqsave(&iommu
->register_lock
, flag
);
3453 writel(iommu
->iommu_state
[SR_DMAR_FECTL_REG
],
3454 iommu
->reg
+ DMAR_FECTL_REG
);
3455 writel(iommu
->iommu_state
[SR_DMAR_FEDATA_REG
],
3456 iommu
->reg
+ DMAR_FEDATA_REG
);
3457 writel(iommu
->iommu_state
[SR_DMAR_FEADDR_REG
],
3458 iommu
->reg
+ DMAR_FEADDR_REG
);
3459 writel(iommu
->iommu_state
[SR_DMAR_FEUADDR_REG
],
3460 iommu
->reg
+ DMAR_FEUADDR_REG
);
3462 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
3465 for_each_active_iommu(iommu
, drhd
)
3466 kfree(iommu
->iommu_state
);
3469 static struct syscore_ops iommu_syscore_ops
= {
3470 .resume
= iommu_resume
,
3471 .suspend
= iommu_suspend
,
3474 static void __init
init_iommu_pm_ops(void)
3476 register_syscore_ops(&iommu_syscore_ops
);
3480 static inline void init_iommu_pm_ops(void) {}
3481 #endif /* CONFIG_PM */
3483 LIST_HEAD(dmar_rmrr_units
);
3485 static void __init
dmar_register_rmrr_unit(struct dmar_rmrr_unit
*rmrr
)
3487 list_add(&rmrr
->list
, &dmar_rmrr_units
);
3491 int __init
dmar_parse_one_rmrr(struct acpi_dmar_header
*header
)
3493 struct acpi_dmar_reserved_memory
*rmrr
;
3494 struct dmar_rmrr_unit
*rmrru
;
3496 rmrru
= kzalloc(sizeof(*rmrru
), GFP_KERNEL
);
3500 rmrru
->hdr
= header
;
3501 rmrr
= (struct acpi_dmar_reserved_memory
*)header
;
3502 rmrru
->base_address
= rmrr
->base_address
;
3503 rmrru
->end_address
= rmrr
->end_address
;
3505 dmar_register_rmrr_unit(rmrru
);
3510 rmrr_parse_dev(struct dmar_rmrr_unit
*rmrru
)
3512 struct acpi_dmar_reserved_memory
*rmrr
;
3515 rmrr
= (struct acpi_dmar_reserved_memory
*) rmrru
->hdr
;
3516 ret
= dmar_parse_dev_scope((void *)(rmrr
+ 1),
3517 ((void *)rmrr
) + rmrr
->header
.length
,
3518 &rmrru
->devices_cnt
, &rmrru
->devices
, rmrr
->segment
);
3520 if (ret
|| (rmrru
->devices_cnt
== 0)) {
3521 list_del(&rmrru
->list
);
3527 static LIST_HEAD(dmar_atsr_units
);
3529 int __init
dmar_parse_one_atsr(struct acpi_dmar_header
*hdr
)
3531 struct acpi_dmar_atsr
*atsr
;
3532 struct dmar_atsr_unit
*atsru
;
3534 atsr
= container_of(hdr
, struct acpi_dmar_atsr
, header
);
3535 atsru
= kzalloc(sizeof(*atsru
), GFP_KERNEL
);
3540 atsru
->include_all
= atsr
->flags
& 0x1;
3542 list_add(&atsru
->list
, &dmar_atsr_units
);
3547 static int __init
atsr_parse_dev(struct dmar_atsr_unit
*atsru
)
3550 struct acpi_dmar_atsr
*atsr
;
3552 if (atsru
->include_all
)
3555 atsr
= container_of(atsru
->hdr
, struct acpi_dmar_atsr
, header
);
3556 rc
= dmar_parse_dev_scope((void *)(atsr
+ 1),
3557 (void *)atsr
+ atsr
->header
.length
,
3558 &atsru
->devices_cnt
, &atsru
->devices
,
3560 if (rc
|| !atsru
->devices_cnt
) {
3561 list_del(&atsru
->list
);
3568 int dmar_find_matched_atsr_unit(struct pci_dev
*dev
)
3571 struct pci_bus
*bus
;
3572 struct acpi_dmar_atsr
*atsr
;
3573 struct dmar_atsr_unit
*atsru
;
3575 dev
= pci_physfn(dev
);
3577 list_for_each_entry(atsru
, &dmar_atsr_units
, list
) {
3578 atsr
= container_of(atsru
->hdr
, struct acpi_dmar_atsr
, header
);
3579 if (atsr
->segment
== pci_domain_nr(dev
->bus
))
3586 for (bus
= dev
->bus
; bus
; bus
= bus
->parent
) {
3587 struct pci_dev
*bridge
= bus
->self
;
3589 if (!bridge
|| !pci_is_pcie(bridge
) ||
3590 pci_pcie_type(bridge
) == PCI_EXP_TYPE_PCI_BRIDGE
)
3593 if (pci_pcie_type(bridge
) == PCI_EXP_TYPE_ROOT_PORT
) {
3594 for (i
= 0; i
< atsru
->devices_cnt
; i
++)
3595 if (atsru
->devices
[i
] == bridge
)
3601 if (atsru
->include_all
)
3607 int __init
dmar_parse_rmrr_atsr_dev(void)
3609 struct dmar_rmrr_unit
*rmrr
, *rmrr_n
;
3610 struct dmar_atsr_unit
*atsr
, *atsr_n
;
3613 list_for_each_entry_safe(rmrr
, rmrr_n
, &dmar_rmrr_units
, list
) {
3614 ret
= rmrr_parse_dev(rmrr
);
3619 list_for_each_entry_safe(atsr
, atsr_n
, &dmar_atsr_units
, list
) {
3620 ret
= atsr_parse_dev(atsr
);
3629 * Here we only respond to action of unbound device from driver.
3631 * Added device is not attached to its DMAR domain here yet. That will happen
3632 * when mapping the device to iova.
3634 static int device_notifier(struct notifier_block
*nb
,
3635 unsigned long action
, void *data
)
3637 struct device
*dev
= data
;
3638 struct pci_dev
*pdev
= to_pci_dev(dev
);
3639 struct dmar_domain
*domain
;
3641 if (iommu_no_mapping(dev
))
3644 domain
= find_domain(pdev
);
3648 if (action
== BUS_NOTIFY_UNBOUND_DRIVER
&& !iommu_pass_through
) {
3649 domain_remove_one_dev_info(domain
, pdev
);
3651 if (!(domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
) &&
3652 !(domain
->flags
& DOMAIN_FLAG_STATIC_IDENTITY
) &&
3653 list_empty(&domain
->devices
))
3654 domain_exit(domain
);
3660 static struct notifier_block device_nb
= {
3661 .notifier_call
= device_notifier
,
3664 int __init
intel_iommu_init(void)
3667 struct dmar_drhd_unit
*drhd
;
3669 /* VT-d is required for a TXT/tboot launch, so enforce that */
3670 force_on
= tboot_force_iommu();
3672 if (dmar_table_init()) {
3674 panic("tboot: Failed to initialize DMAR table\n");
3679 * Disable translation if already enabled prior to OS handover.
3681 for_each_drhd_unit(drhd
) {
3682 struct intel_iommu
*iommu
;
3687 iommu
= drhd
->iommu
;
3688 if (iommu
->gcmd
& DMA_GCMD_TE
)
3689 iommu_disable_translation(iommu
);
3692 if (dmar_dev_scope_init() < 0) {
3694 panic("tboot: Failed to initialize DMAR device scope\n");
3698 if (no_iommu
|| dmar_disabled
)
3701 if (iommu_init_mempool()) {
3703 panic("tboot: Failed to initialize iommu memory\n");
3707 if (list_empty(&dmar_rmrr_units
))
3708 printk(KERN_INFO
"DMAR: No RMRR found\n");
3710 if (list_empty(&dmar_atsr_units
))
3711 printk(KERN_INFO
"DMAR: No ATSR found\n");
3713 if (dmar_init_reserved_ranges()) {
3715 panic("tboot: Failed to reserve iommu ranges\n");
3719 init_no_remapping_devices();
3724 panic("tboot: Failed to initialize DMARs\n");
3725 printk(KERN_ERR
"IOMMU: dmar init failed\n");
3726 put_iova_domain(&reserved_iova_list
);
3727 iommu_exit_mempool();
3731 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3733 init_timer(&unmap_timer
);
3734 #ifdef CONFIG_SWIOTLB
3737 dma_ops
= &intel_dma_ops
;
3739 init_iommu_pm_ops();
3741 bus_set_iommu(&pci_bus_type
, &intel_iommu_ops
);
3743 bus_register_notifier(&pci_bus_type
, &device_nb
);
3745 intel_iommu_enabled
= 1;
3750 static void iommu_detach_dependent_devices(struct intel_iommu
*iommu
,
3751 struct pci_dev
*pdev
)
3753 struct pci_dev
*tmp
, *parent
;
3755 if (!iommu
|| !pdev
)
3758 /* dependent device detach */
3759 tmp
= pci_find_upstream_pcie_bridge(pdev
);
3760 /* Secondary interface's bus number and devfn 0 */
3762 parent
= pdev
->bus
->self
;
3763 while (parent
!= tmp
) {
3764 iommu_detach_dev(iommu
, parent
->bus
->number
,
3766 parent
= parent
->bus
->self
;
3768 if (pci_is_pcie(tmp
)) /* this is a PCIe-to-PCI bridge */
3769 iommu_detach_dev(iommu
,
3770 tmp
->subordinate
->number
, 0);
3771 else /* this is a legacy PCI bridge */
3772 iommu_detach_dev(iommu
, tmp
->bus
->number
,
3777 static void domain_remove_one_dev_info(struct dmar_domain
*domain
,
3778 struct pci_dev
*pdev
)
3780 struct device_domain_info
*info
;
3781 struct intel_iommu
*iommu
;
3782 unsigned long flags
;
3784 struct list_head
*entry
, *tmp
;
3786 iommu
= device_to_iommu(pci_domain_nr(pdev
->bus
), pdev
->bus
->number
,
3791 spin_lock_irqsave(&device_domain_lock
, flags
);
3792 list_for_each_safe(entry
, tmp
, &domain
->devices
) {
3793 info
= list_entry(entry
, struct device_domain_info
, link
);
3794 if (info
->segment
== pci_domain_nr(pdev
->bus
) &&
3795 info
->bus
== pdev
->bus
->number
&&
3796 info
->devfn
== pdev
->devfn
) {
3797 unlink_domain_info(info
);
3798 spin_unlock_irqrestore(&device_domain_lock
, flags
);
3800 iommu_disable_dev_iotlb(info
);
3801 iommu_detach_dev(iommu
, info
->bus
, info
->devfn
);
3802 iommu_detach_dependent_devices(iommu
, pdev
);
3803 free_devinfo_mem(info
);
3805 spin_lock_irqsave(&device_domain_lock
, flags
);
3813 /* if there is no other devices under the same iommu
3814 * owned by this domain, clear this iommu in iommu_bmp
3815 * update iommu count and coherency
3817 if (iommu
== device_to_iommu(info
->segment
, info
->bus
,
3822 spin_unlock_irqrestore(&device_domain_lock
, flags
);
3825 unsigned long tmp_flags
;
3826 spin_lock_irqsave(&domain
->iommu_lock
, tmp_flags
);
3827 clear_bit(iommu
->seq_id
, domain
->iommu_bmp
);
3828 domain
->iommu_count
--;
3829 domain_update_iommu_cap(domain
);
3830 spin_unlock_irqrestore(&domain
->iommu_lock
, tmp_flags
);
3832 if (!(domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
) &&
3833 !(domain
->flags
& DOMAIN_FLAG_STATIC_IDENTITY
)) {
3834 spin_lock_irqsave(&iommu
->lock
, tmp_flags
);
3835 clear_bit(domain
->id
, iommu
->domain_ids
);
3836 iommu
->domains
[domain
->id
] = NULL
;
3837 spin_unlock_irqrestore(&iommu
->lock
, tmp_flags
);
3842 static void vm_domain_remove_all_dev_info(struct dmar_domain
*domain
)
3844 struct device_domain_info
*info
;
3845 struct intel_iommu
*iommu
;
3846 unsigned long flags1
, flags2
;
3848 spin_lock_irqsave(&device_domain_lock
, flags1
);
3849 while (!list_empty(&domain
->devices
)) {
3850 info
= list_entry(domain
->devices
.next
,
3851 struct device_domain_info
, link
);
3852 unlink_domain_info(info
);
3853 spin_unlock_irqrestore(&device_domain_lock
, flags1
);
3855 iommu_disable_dev_iotlb(info
);
3856 iommu
= device_to_iommu(info
->segment
, info
->bus
, info
->devfn
);
3857 iommu_detach_dev(iommu
, info
->bus
, info
->devfn
);
3858 iommu_detach_dependent_devices(iommu
, info
->dev
);
3860 /* clear this iommu in iommu_bmp, update iommu count
3863 spin_lock_irqsave(&domain
->iommu_lock
, flags2
);
3864 if (test_and_clear_bit(iommu
->seq_id
,
3865 domain
->iommu_bmp
)) {
3866 domain
->iommu_count
--;
3867 domain_update_iommu_cap(domain
);
3869 spin_unlock_irqrestore(&domain
->iommu_lock
, flags2
);
3871 free_devinfo_mem(info
);
3872 spin_lock_irqsave(&device_domain_lock
, flags1
);
3874 spin_unlock_irqrestore(&device_domain_lock
, flags1
);
3877 /* domain id for virtual machine, it won't be set in context */
3878 static unsigned long vm_domid
;
3880 static struct dmar_domain
*iommu_alloc_vm_domain(void)
3882 struct dmar_domain
*domain
;
3884 domain
= alloc_domain_mem();
3888 domain
->id
= vm_domid
++;
3890 memset(domain
->iommu_bmp
, 0, sizeof(domain
->iommu_bmp
));
3891 domain
->flags
= DOMAIN_FLAG_VIRTUAL_MACHINE
;
3896 static int md_domain_init(struct dmar_domain
*domain
, int guest_width
)
3900 init_iova_domain(&domain
->iovad
, DMA_32BIT_PFN
);
3901 spin_lock_init(&domain
->iommu_lock
);
3903 domain_reserve_special_ranges(domain
);
3905 /* calculate AGAW */
3906 domain
->gaw
= guest_width
;
3907 adjust_width
= guestwidth_to_adjustwidth(guest_width
);
3908 domain
->agaw
= width_to_agaw(adjust_width
);
3910 INIT_LIST_HEAD(&domain
->devices
);
3912 domain
->iommu_count
= 0;
3913 domain
->iommu_coherency
= 0;
3914 domain
->iommu_snooping
= 0;
3915 domain
->iommu_superpage
= 0;
3916 domain
->max_addr
= 0;
3919 /* always allocate the top pgd */
3920 domain
->pgd
= (struct dma_pte
*)alloc_pgtable_page(domain
->nid
);
3923 domain_flush_cache(domain
, domain
->pgd
, PAGE_SIZE
);
3927 static void iommu_free_vm_domain(struct dmar_domain
*domain
)
3929 unsigned long flags
;
3930 struct dmar_drhd_unit
*drhd
;
3931 struct intel_iommu
*iommu
;
3933 unsigned long ndomains
;
3935 for_each_drhd_unit(drhd
) {
3938 iommu
= drhd
->iommu
;
3940 ndomains
= cap_ndoms(iommu
->cap
);
3941 for_each_set_bit(i
, iommu
->domain_ids
, ndomains
) {
3942 if (iommu
->domains
[i
] == domain
) {
3943 spin_lock_irqsave(&iommu
->lock
, flags
);
3944 clear_bit(i
, iommu
->domain_ids
);
3945 iommu
->domains
[i
] = NULL
;
3946 spin_unlock_irqrestore(&iommu
->lock
, flags
);
3953 static void vm_domain_exit(struct dmar_domain
*domain
)
3955 /* Domain 0 is reserved, so dont process it */
3959 vm_domain_remove_all_dev_info(domain
);
3961 put_iova_domain(&domain
->iovad
);
3964 dma_pte_clear_range(domain
, 0, DOMAIN_MAX_PFN(domain
->gaw
));
3966 /* free page tables */
3967 dma_pte_free_pagetable(domain
, 0, DOMAIN_MAX_PFN(domain
->gaw
));
3969 iommu_free_vm_domain(domain
);
3970 free_domain_mem(domain
);
3973 static int intel_iommu_domain_init(struct iommu_domain
*domain
)
3975 struct dmar_domain
*dmar_domain
;
3977 dmar_domain
= iommu_alloc_vm_domain();
3980 "intel_iommu_domain_init: dmar_domain == NULL\n");
3983 if (md_domain_init(dmar_domain
, DEFAULT_DOMAIN_ADDRESS_WIDTH
)) {
3985 "intel_iommu_domain_init() failed\n");
3986 vm_domain_exit(dmar_domain
);
3989 domain_update_iommu_cap(dmar_domain
);
3990 domain
->priv
= dmar_domain
;
3992 domain
->geometry
.aperture_start
= 0;
3993 domain
->geometry
.aperture_end
= __DOMAIN_MAX_ADDR(dmar_domain
->gaw
);
3994 domain
->geometry
.force_aperture
= true;
3999 static void intel_iommu_domain_destroy(struct iommu_domain
*domain
)
4001 struct dmar_domain
*dmar_domain
= domain
->priv
;
4003 domain
->priv
= NULL
;
4004 vm_domain_exit(dmar_domain
);
4007 static int intel_iommu_attach_device(struct iommu_domain
*domain
,
4010 struct dmar_domain
*dmar_domain
= domain
->priv
;
4011 struct pci_dev
*pdev
= to_pci_dev(dev
);
4012 struct intel_iommu
*iommu
;
4015 /* normally pdev is not mapped */
4016 if (unlikely(domain_context_mapped(pdev
))) {
4017 struct dmar_domain
*old_domain
;
4019 old_domain
= find_domain(pdev
);
4021 if (dmar_domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
||
4022 dmar_domain
->flags
& DOMAIN_FLAG_STATIC_IDENTITY
)
4023 domain_remove_one_dev_info(old_domain
, pdev
);
4025 domain_remove_dev_info(old_domain
);
4029 iommu
= device_to_iommu(pci_domain_nr(pdev
->bus
), pdev
->bus
->number
,
4034 /* check if this iommu agaw is sufficient for max mapped address */
4035 addr_width
= agaw_to_width(iommu
->agaw
);
4036 if (addr_width
> cap_mgaw(iommu
->cap
))
4037 addr_width
= cap_mgaw(iommu
->cap
);
4039 if (dmar_domain
->max_addr
> (1LL << addr_width
)) {
4040 printk(KERN_ERR
"%s: iommu width (%d) is not "
4041 "sufficient for the mapped address (%llx)\n",
4042 __func__
, addr_width
, dmar_domain
->max_addr
);
4045 dmar_domain
->gaw
= addr_width
;
4048 * Knock out extra levels of page tables if necessary
4050 while (iommu
->agaw
< dmar_domain
->agaw
) {
4051 struct dma_pte
*pte
;
4053 pte
= dmar_domain
->pgd
;
4054 if (dma_pte_present(pte
)) {
4055 dmar_domain
->pgd
= (struct dma_pte
*)
4056 phys_to_virt(dma_pte_addr(pte
));
4057 free_pgtable_page(pte
);
4059 dmar_domain
->agaw
--;
4062 return domain_add_dev_info(dmar_domain
, pdev
, CONTEXT_TT_MULTI_LEVEL
);
4065 static void intel_iommu_detach_device(struct iommu_domain
*domain
,
4068 struct dmar_domain
*dmar_domain
= domain
->priv
;
4069 struct pci_dev
*pdev
= to_pci_dev(dev
);
4071 domain_remove_one_dev_info(dmar_domain
, pdev
);
4074 static int intel_iommu_map(struct iommu_domain
*domain
,
4075 unsigned long iova
, phys_addr_t hpa
,
4076 size_t size
, int iommu_prot
)
4078 struct dmar_domain
*dmar_domain
= domain
->priv
;
4083 if (iommu_prot
& IOMMU_READ
)
4084 prot
|= DMA_PTE_READ
;
4085 if (iommu_prot
& IOMMU_WRITE
)
4086 prot
|= DMA_PTE_WRITE
;
4087 if ((iommu_prot
& IOMMU_CACHE
) && dmar_domain
->iommu_snooping
)
4088 prot
|= DMA_PTE_SNP
;
4090 max_addr
= iova
+ size
;
4091 if (dmar_domain
->max_addr
< max_addr
) {
4094 /* check if minimum agaw is sufficient for mapped address */
4095 end
= __DOMAIN_MAX_ADDR(dmar_domain
->gaw
) + 1;
4096 if (end
< max_addr
) {
4097 printk(KERN_ERR
"%s: iommu width (%d) is not "
4098 "sufficient for the mapped address (%llx)\n",
4099 __func__
, dmar_domain
->gaw
, max_addr
);
4102 dmar_domain
->max_addr
= max_addr
;
4104 /* Round up size to next multiple of PAGE_SIZE, if it and
4105 the low bits of hpa would take us onto the next page */
4106 size
= aligned_nrpages(hpa
, size
);
4107 ret
= domain_pfn_mapping(dmar_domain
, iova
>> VTD_PAGE_SHIFT
,
4108 hpa
>> VTD_PAGE_SHIFT
, size
, prot
);
4112 static size_t intel_iommu_unmap(struct iommu_domain
*domain
,
4113 unsigned long iova
, size_t size
)
4115 struct dmar_domain
*dmar_domain
= domain
->priv
;
4118 order
= dma_pte_clear_range(dmar_domain
, iova
>> VTD_PAGE_SHIFT
,
4119 (iova
+ size
- 1) >> VTD_PAGE_SHIFT
);
4121 if (dmar_domain
->max_addr
== iova
+ size
)
4122 dmar_domain
->max_addr
= iova
;
4124 return PAGE_SIZE
<< order
;
4127 static phys_addr_t
intel_iommu_iova_to_phys(struct iommu_domain
*domain
,
4130 struct dmar_domain
*dmar_domain
= domain
->priv
;
4131 struct dma_pte
*pte
;
4134 pte
= pfn_to_dma_pte(dmar_domain
, iova
>> VTD_PAGE_SHIFT
, 0);
4136 phys
= dma_pte_addr(pte
);
4141 static int intel_iommu_domain_has_cap(struct iommu_domain
*domain
,
4144 struct dmar_domain
*dmar_domain
= domain
->priv
;
4146 if (cap
== IOMMU_CAP_CACHE_COHERENCY
)
4147 return dmar_domain
->iommu_snooping
;
4148 if (cap
== IOMMU_CAP_INTR_REMAP
)
4149 return irq_remapping_enabled
;
4154 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
4156 static int intel_iommu_add_device(struct device
*dev
)
4158 struct pci_dev
*pdev
= to_pci_dev(dev
);
4159 struct pci_dev
*bridge
, *dma_pdev
= NULL
;
4160 struct iommu_group
*group
;
4163 if (!device_to_iommu(pci_domain_nr(pdev
->bus
),
4164 pdev
->bus
->number
, pdev
->devfn
))
4167 bridge
= pci_find_upstream_pcie_bridge(pdev
);
4169 if (pci_is_pcie(bridge
))
4170 dma_pdev
= pci_get_domain_bus_and_slot(
4171 pci_domain_nr(pdev
->bus
),
4172 bridge
->subordinate
->number
, 0);
4174 dma_pdev
= pci_dev_get(bridge
);
4176 dma_pdev
= pci_dev_get(pdev
);
4178 /* Account for quirked devices */
4179 swap_pci_ref(&dma_pdev
, pci_get_dma_source(dma_pdev
));
4182 * If it's a multifunction device that does not support our
4183 * required ACS flags, add to the same group as lowest numbered
4184 * function that also does not suport the required ACS flags.
4186 if (dma_pdev
->multifunction
&&
4187 !pci_acs_enabled(dma_pdev
, REQ_ACS_FLAGS
)) {
4188 u8 i
, slot
= PCI_SLOT(dma_pdev
->devfn
);
4190 for (i
= 0; i
< 8; i
++) {
4191 struct pci_dev
*tmp
;
4193 tmp
= pci_get_slot(dma_pdev
->bus
, PCI_DEVFN(slot
, i
));
4197 if (!pci_acs_enabled(tmp
, REQ_ACS_FLAGS
)) {
4198 swap_pci_ref(&dma_pdev
, tmp
);
4206 * Devices on the root bus go through the iommu. If that's not us,
4207 * find the next upstream device and test ACS up to the root bus.
4208 * Finding the next device may require skipping virtual buses.
4210 while (!pci_is_root_bus(dma_pdev
->bus
)) {
4211 struct pci_bus
*bus
= dma_pdev
->bus
;
4213 while (!bus
->self
) {
4214 if (!pci_is_root_bus(bus
))
4220 if (pci_acs_path_enabled(bus
->self
, NULL
, REQ_ACS_FLAGS
))
4223 swap_pci_ref(&dma_pdev
, pci_dev_get(bus
->self
));
4227 group
= iommu_group_get(&dma_pdev
->dev
);
4228 pci_dev_put(dma_pdev
);
4230 group
= iommu_group_alloc();
4232 return PTR_ERR(group
);
4235 ret
= iommu_group_add_device(group
, dev
);
4237 iommu_group_put(group
);
4241 static void intel_iommu_remove_device(struct device
*dev
)
4243 iommu_group_remove_device(dev
);
4246 static struct iommu_ops intel_iommu_ops
= {
4247 .domain_init
= intel_iommu_domain_init
,
4248 .domain_destroy
= intel_iommu_domain_destroy
,
4249 .attach_dev
= intel_iommu_attach_device
,
4250 .detach_dev
= intel_iommu_detach_device
,
4251 .map
= intel_iommu_map
,
4252 .unmap
= intel_iommu_unmap
,
4253 .iova_to_phys
= intel_iommu_iova_to_phys
,
4254 .domain_has_cap
= intel_iommu_domain_has_cap
,
4255 .add_device
= intel_iommu_add_device
,
4256 .remove_device
= intel_iommu_remove_device
,
4257 .pgsize_bitmap
= INTEL_IOMMU_PGSIZES
,
4260 static void quirk_iommu_g4x_gfx(struct pci_dev
*dev
)
4262 /* G4x/GM45 integrated gfx dmar support is totally busted. */
4263 printk(KERN_INFO
"DMAR: Disabling IOMMU for graphics on this chipset\n");
4267 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2a40, quirk_iommu_g4x_gfx
);
4268 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e00, quirk_iommu_g4x_gfx
);
4269 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e10, quirk_iommu_g4x_gfx
);
4270 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e20, quirk_iommu_g4x_gfx
);
4271 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e30, quirk_iommu_g4x_gfx
);
4272 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e40, quirk_iommu_g4x_gfx
);
4273 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e90, quirk_iommu_g4x_gfx
);
4275 static void quirk_iommu_rwbf(struct pci_dev
*dev
)
4278 * Mobile 4 Series Chipset neglects to set RWBF capability,
4279 * but needs it. Same seems to hold for the desktop versions.
4281 printk(KERN_INFO
"DMAR: Forcing write-buffer flush capability\n");
4285 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2a40, quirk_iommu_rwbf
);
4286 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e00, quirk_iommu_rwbf
);
4287 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e10, quirk_iommu_rwbf
);
4288 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e20, quirk_iommu_rwbf
);
4289 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e30, quirk_iommu_rwbf
);
4290 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e40, quirk_iommu_rwbf
);
4291 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e90, quirk_iommu_rwbf
);
4294 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
4295 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
4296 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
4297 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
4298 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
4299 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
4300 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
4301 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
4303 static void quirk_calpella_no_shadow_gtt(struct pci_dev
*dev
)
4307 if (pci_read_config_word(dev
, GGC
, &ggc
))
4310 if (!(ggc
& GGC_MEMORY_VT_ENABLED
)) {
4311 printk(KERN_INFO
"DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4313 } else if (dmar_map_gfx
) {
4314 /* we have to ensure the gfx device is idle before we flush */
4315 printk(KERN_INFO
"DMAR: Disabling batched IOTLB flush on Ironlake\n");
4316 intel_iommu_strict
= 1;
4319 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x0040, quirk_calpella_no_shadow_gtt
);
4320 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x0044, quirk_calpella_no_shadow_gtt
);
4321 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x0062, quirk_calpella_no_shadow_gtt
);
4322 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x006a, quirk_calpella_no_shadow_gtt
);
4324 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4325 ISOCH DMAR unit for the Azalia sound device, but not give it any
4326 TLB entries, which causes it to deadlock. Check for that. We do
4327 this in a function called from init_dmars(), instead of in a PCI
4328 quirk, because we don't want to print the obnoxious "BIOS broken"
4329 message if VT-d is actually disabled.
4331 static void __init
check_tylersburg_isoch(void)
4333 struct pci_dev
*pdev
;
4334 uint32_t vtisochctrl
;
4336 /* If there's no Azalia in the system anyway, forget it. */
4337 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
, 0x3a3e, NULL
);
4342 /* System Management Registers. Might be hidden, in which case
4343 we can't do the sanity check. But that's OK, because the
4344 known-broken BIOSes _don't_ actually hide it, so far. */
4345 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
, 0x342e, NULL
);
4349 if (pci_read_config_dword(pdev
, 0x188, &vtisochctrl
)) {
4356 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4357 if (vtisochctrl
& 1)
4360 /* Drop all bits other than the number of TLB entries */
4361 vtisochctrl
&= 0x1c;
4363 /* If we have the recommended number of TLB entries (16), fine. */
4364 if (vtisochctrl
== 0x10)
4367 /* Zero TLB entries? You get to ride the short bus to school. */
4369 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4370 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4371 dmi_get_system_info(DMI_BIOS_VENDOR
),
4372 dmi_get_system_info(DMI_BIOS_VERSION
),
4373 dmi_get_system_info(DMI_PRODUCT_VERSION
));
4374 iommu_identity_mapping
|= IDENTMAP_AZALIA
;
4378 printk(KERN_WARNING
"DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",