2 * IOMMU API for ARM architected SMMU implementations.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 * Copyright (C) 2013 ARM Limited
19 * Author: Will Deacon <will.deacon@arm.com>
21 * This driver currently supports:
22 * - SMMUv1 and v2 implementations
23 * - Stream-matching and stream-indexing
24 * - v7/v8 long-descriptor format
25 * - Non-secure access to the SMMU
26 * - 4k and 64k pages, with contiguous pte hints.
27 * - Up to 39-bit addressing
28 * - Context fault reporting
31 #define pr_fmt(fmt) "arm-smmu: " fmt
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/err.h>
36 #include <linux/interrupt.h>
38 #include <linux/iommu.h>
40 #include <linux/module.h>
42 #include <linux/platform_device.h>
43 #include <linux/slab.h>
44 #include <linux/spinlock.h>
46 #include <linux/amba/bus.h>
48 #include <asm/pgalloc.h>
50 /* Maximum number of stream IDs assigned to a single device */
51 #define MAX_MASTER_STREAMIDS 8
53 /* Maximum number of context banks per SMMU */
54 #define ARM_SMMU_MAX_CBS 128
56 /* Maximum number of mapping groups per SMMU */
57 #define ARM_SMMU_MAX_SMRS 128
59 /* SMMU global address space */
60 #define ARM_SMMU_GR0(smmu) ((smmu)->base)
61 #define ARM_SMMU_GR1(smmu) ((smmu)->base + (smmu)->pagesize)
64 #define ARM_SMMU_PTE_PAGE (((pteval_t)3) << 0)
65 #define ARM_SMMU_PTE_CONT (((pteval_t)1) << 52)
66 #define ARM_SMMU_PTE_AF (((pteval_t)1) << 10)
67 #define ARM_SMMU_PTE_SH_NS (((pteval_t)0) << 8)
68 #define ARM_SMMU_PTE_SH_OS (((pteval_t)2) << 8)
69 #define ARM_SMMU_PTE_SH_IS (((pteval_t)3) << 8)
71 #if PAGE_SIZE == SZ_4K
72 #define ARM_SMMU_PTE_CONT_ENTRIES 16
73 #elif PAGE_SIZE == SZ_64K
74 #define ARM_SMMU_PTE_CONT_ENTRIES 32
76 #define ARM_SMMU_PTE_CONT_ENTRIES 1
79 #define ARM_SMMU_PTE_CONT_SIZE (PAGE_SIZE * ARM_SMMU_PTE_CONT_ENTRIES)
80 #define ARM_SMMU_PTE_CONT_MASK (~(ARM_SMMU_PTE_CONT_SIZE - 1))
81 #define ARM_SMMU_PTE_HWTABLE_SIZE (PTRS_PER_PTE * sizeof(pte_t))
84 #define ARM_SMMU_PTE_AP_UNPRIV (((pteval_t)1) << 6)
85 #define ARM_SMMU_PTE_AP_RDONLY (((pteval_t)2) << 6)
86 #define ARM_SMMU_PTE_ATTRINDX_SHIFT 2
87 #define ARM_SMMU_PTE_nG (((pteval_t)1) << 11)
90 #define ARM_SMMU_PTE_HAP_FAULT (((pteval_t)0) << 6)
91 #define ARM_SMMU_PTE_HAP_READ (((pteval_t)1) << 6)
92 #define ARM_SMMU_PTE_HAP_WRITE (((pteval_t)2) << 6)
93 #define ARM_SMMU_PTE_MEMATTR_OIWB (((pteval_t)0xf) << 2)
94 #define ARM_SMMU_PTE_MEMATTR_NC (((pteval_t)0x5) << 2)
95 #define ARM_SMMU_PTE_MEMATTR_DEV (((pteval_t)0x1) << 2)
97 /* Configuration registers */
98 #define ARM_SMMU_GR0_sCR0 0x0
99 #define sCR0_CLIENTPD (1 << 0)
100 #define sCR0_GFRE (1 << 1)
101 #define sCR0_GFIE (1 << 2)
102 #define sCR0_GCFGFRE (1 << 4)
103 #define sCR0_GCFGFIE (1 << 5)
104 #define sCR0_USFCFG (1 << 10)
105 #define sCR0_VMIDPNE (1 << 11)
106 #define sCR0_PTM (1 << 12)
107 #define sCR0_FB (1 << 13)
108 #define sCR0_BSU_SHIFT 14
109 #define sCR0_BSU_MASK 0x3
111 /* Identification registers */
112 #define ARM_SMMU_GR0_ID0 0x20
113 #define ARM_SMMU_GR0_ID1 0x24
114 #define ARM_SMMU_GR0_ID2 0x28
115 #define ARM_SMMU_GR0_ID3 0x2c
116 #define ARM_SMMU_GR0_ID4 0x30
117 #define ARM_SMMU_GR0_ID5 0x34
118 #define ARM_SMMU_GR0_ID6 0x38
119 #define ARM_SMMU_GR0_ID7 0x3c
120 #define ARM_SMMU_GR0_sGFSR 0x48
121 #define ARM_SMMU_GR0_sGFSYNR0 0x50
122 #define ARM_SMMU_GR0_sGFSYNR1 0x54
123 #define ARM_SMMU_GR0_sGFSYNR2 0x58
124 #define ARM_SMMU_GR0_PIDR0 0xfe0
125 #define ARM_SMMU_GR0_PIDR1 0xfe4
126 #define ARM_SMMU_GR0_PIDR2 0xfe8
128 #define ID0_S1TS (1 << 30)
129 #define ID0_S2TS (1 << 29)
130 #define ID0_NTS (1 << 28)
131 #define ID0_SMS (1 << 27)
132 #define ID0_PTFS_SHIFT 24
133 #define ID0_PTFS_MASK 0x2
134 #define ID0_PTFS_V8_ONLY 0x2
135 #define ID0_CTTW (1 << 14)
136 #define ID0_NUMIRPT_SHIFT 16
137 #define ID0_NUMIRPT_MASK 0xff
138 #define ID0_NUMSMRG_SHIFT 0
139 #define ID0_NUMSMRG_MASK 0xff
141 #define ID1_PAGESIZE (1 << 31)
142 #define ID1_NUMPAGENDXB_SHIFT 28
143 #define ID1_NUMPAGENDXB_MASK 7
144 #define ID1_NUMS2CB_SHIFT 16
145 #define ID1_NUMS2CB_MASK 0xff
146 #define ID1_NUMCB_SHIFT 0
147 #define ID1_NUMCB_MASK 0xff
149 #define ID2_OAS_SHIFT 4
150 #define ID2_OAS_MASK 0xf
151 #define ID2_IAS_SHIFT 0
152 #define ID2_IAS_MASK 0xf
153 #define ID2_UBS_SHIFT 8
154 #define ID2_UBS_MASK 0xf
155 #define ID2_PTFS_4K (1 << 12)
156 #define ID2_PTFS_16K (1 << 13)
157 #define ID2_PTFS_64K (1 << 14)
159 #define PIDR2_ARCH_SHIFT 4
160 #define PIDR2_ARCH_MASK 0xf
162 /* Global TLB invalidation */
163 #define ARM_SMMU_GR0_STLBIALL 0x60
164 #define ARM_SMMU_GR0_TLBIVMID 0x64
165 #define ARM_SMMU_GR0_TLBIALLNSNH 0x68
166 #define ARM_SMMU_GR0_TLBIALLH 0x6c
167 #define ARM_SMMU_GR0_sTLBGSYNC 0x70
168 #define ARM_SMMU_GR0_sTLBGSTATUS 0x74
169 #define sTLBGSTATUS_GSACTIVE (1 << 0)
170 #define TLB_LOOP_TIMEOUT 1000000 /* 1s! */
172 /* Stream mapping registers */
173 #define ARM_SMMU_GR0_SMR(n) (0x800 + ((n) << 2))
174 #define SMR_VALID (1 << 31)
175 #define SMR_MASK_SHIFT 16
176 #define SMR_MASK_MASK 0x7fff
177 #define SMR_ID_SHIFT 0
178 #define SMR_ID_MASK 0x7fff
180 #define ARM_SMMU_GR0_S2CR(n) (0xc00 + ((n) << 2))
181 #define S2CR_CBNDX_SHIFT 0
182 #define S2CR_CBNDX_MASK 0xff
183 #define S2CR_TYPE_SHIFT 16
184 #define S2CR_TYPE_MASK 0x3
185 #define S2CR_TYPE_TRANS (0 << S2CR_TYPE_SHIFT)
186 #define S2CR_TYPE_BYPASS (1 << S2CR_TYPE_SHIFT)
187 #define S2CR_TYPE_FAULT (2 << S2CR_TYPE_SHIFT)
189 /* Context bank attribute registers */
190 #define ARM_SMMU_GR1_CBAR(n) (0x0 + ((n) << 2))
191 #define CBAR_VMID_SHIFT 0
192 #define CBAR_VMID_MASK 0xff
193 #define CBAR_S1_MEMATTR_SHIFT 12
194 #define CBAR_S1_MEMATTR_MASK 0xf
195 #define CBAR_S1_MEMATTR_WB 0xf
196 #define CBAR_TYPE_SHIFT 16
197 #define CBAR_TYPE_MASK 0x3
198 #define CBAR_TYPE_S2_TRANS (0 << CBAR_TYPE_SHIFT)
199 #define CBAR_TYPE_S1_TRANS_S2_BYPASS (1 << CBAR_TYPE_SHIFT)
200 #define CBAR_TYPE_S1_TRANS_S2_FAULT (2 << CBAR_TYPE_SHIFT)
201 #define CBAR_TYPE_S1_TRANS_S2_TRANS (3 << CBAR_TYPE_SHIFT)
202 #define CBAR_IRPTNDX_SHIFT 24
203 #define CBAR_IRPTNDX_MASK 0xff
205 #define ARM_SMMU_GR1_CBA2R(n) (0x800 + ((n) << 2))
206 #define CBA2R_RW64_32BIT (0 << 0)
207 #define CBA2R_RW64_64BIT (1 << 0)
209 /* Translation context bank */
210 #define ARM_SMMU_CB_BASE(smmu) ((smmu)->base + ((smmu)->size >> 1))
211 #define ARM_SMMU_CB(smmu, n) ((n) * (smmu)->pagesize)
213 #define ARM_SMMU_CB_SCTLR 0x0
214 #define ARM_SMMU_CB_RESUME 0x8
215 #define ARM_SMMU_CB_TTBCR2 0x10
216 #define ARM_SMMU_CB_TTBR0_LO 0x20
217 #define ARM_SMMU_CB_TTBR0_HI 0x24
218 #define ARM_SMMU_CB_TTBCR 0x30
219 #define ARM_SMMU_CB_S1_MAIR0 0x38
220 #define ARM_SMMU_CB_FSR 0x58
221 #define ARM_SMMU_CB_FAR_LO 0x60
222 #define ARM_SMMU_CB_FAR_HI 0x64
223 #define ARM_SMMU_CB_FSYNR0 0x68
224 #define ARM_SMMU_CB_S1_TLBIASID 0x610
226 #define SCTLR_S1_ASIDPNE (1 << 12)
227 #define SCTLR_CFCFG (1 << 7)
228 #define SCTLR_CFIE (1 << 6)
229 #define SCTLR_CFRE (1 << 5)
230 #define SCTLR_E (1 << 4)
231 #define SCTLR_AFE (1 << 2)
232 #define SCTLR_TRE (1 << 1)
233 #define SCTLR_M (1 << 0)
234 #define SCTLR_EAE_SBOP (SCTLR_AFE | SCTLR_TRE)
236 #define RESUME_RETRY (0 << 0)
237 #define RESUME_TERMINATE (1 << 0)
239 #define TTBCR_EAE (1 << 31)
241 #define TTBCR_PASIZE_SHIFT 16
242 #define TTBCR_PASIZE_MASK 0x7
244 #define TTBCR_TG0_4K (0 << 14)
245 #define TTBCR_TG0_64K (1 << 14)
247 #define TTBCR_SH0_SHIFT 12
248 #define TTBCR_SH0_MASK 0x3
249 #define TTBCR_SH_NS 0
250 #define TTBCR_SH_OS 2
251 #define TTBCR_SH_IS 3
253 #define TTBCR_ORGN0_SHIFT 10
254 #define TTBCR_IRGN0_SHIFT 8
255 #define TTBCR_RGN_MASK 0x3
256 #define TTBCR_RGN_NC 0
257 #define TTBCR_RGN_WBWA 1
258 #define TTBCR_RGN_WT 2
259 #define TTBCR_RGN_WB 3
261 #define TTBCR_SL0_SHIFT 6
262 #define TTBCR_SL0_MASK 0x3
263 #define TTBCR_SL0_LVL_2 0
264 #define TTBCR_SL0_LVL_1 1
266 #define TTBCR_T1SZ_SHIFT 16
267 #define TTBCR_T0SZ_SHIFT 0
268 #define TTBCR_SZ_MASK 0xf
270 #define TTBCR2_SEP_SHIFT 15
271 #define TTBCR2_SEP_MASK 0x7
273 #define TTBCR2_PASIZE_SHIFT 0
274 #define TTBCR2_PASIZE_MASK 0x7
276 /* Common definitions for PASize and SEP fields */
277 #define TTBCR2_ADDR_32 0
278 #define TTBCR2_ADDR_36 1
279 #define TTBCR2_ADDR_40 2
280 #define TTBCR2_ADDR_42 3
281 #define TTBCR2_ADDR_44 4
282 #define TTBCR2_ADDR_48 5
284 #define TTBRn_HI_ASID_SHIFT 16
286 #define MAIR_ATTR_SHIFT(n) ((n) << 3)
287 #define MAIR_ATTR_MASK 0xff
288 #define MAIR_ATTR_DEVICE 0x04
289 #define MAIR_ATTR_NC 0x44
290 #define MAIR_ATTR_WBRWA 0xff
291 #define MAIR_ATTR_IDX_NC 0
292 #define MAIR_ATTR_IDX_CACHE 1
293 #define MAIR_ATTR_IDX_DEV 2
295 #define FSR_MULTI (1 << 31)
296 #define FSR_SS (1 << 30)
297 #define FSR_UUT (1 << 8)
298 #define FSR_ASF (1 << 7)
299 #define FSR_TLBLKF (1 << 6)
300 #define FSR_TLBMCF (1 << 5)
301 #define FSR_EF (1 << 4)
302 #define FSR_PF (1 << 3)
303 #define FSR_AFF (1 << 2)
304 #define FSR_TF (1 << 1)
306 #define FSR_IGN (FSR_AFF | FSR_ASF | FSR_TLBMCF | \
308 #define FSR_FAULT (FSR_MULTI | FSR_SS | FSR_UUT | \
309 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
311 #define FSYNR0_WNR (1 << 4)
313 struct arm_smmu_smr
{
319 struct arm_smmu_master
{
320 struct device_node
*of_node
;
323 * The following is specific to the master's position in the
328 u16 streamids
[MAX_MASTER_STREAMIDS
];
331 * We only need to allocate these on the root SMMU, as we
332 * configure unmatched streams to bypass translation.
334 struct arm_smmu_smr
*smrs
;
337 struct arm_smmu_device
{
339 struct device_node
*parent_of_node
;
343 unsigned long pagesize
;
345 #define ARM_SMMU_FEAT_COHERENT_WALK (1 << 0)
346 #define ARM_SMMU_FEAT_STREAM_MATCH (1 << 1)
347 #define ARM_SMMU_FEAT_TRANS_S1 (1 << 2)
348 #define ARM_SMMU_FEAT_TRANS_S2 (1 << 3)
349 #define ARM_SMMU_FEAT_TRANS_NESTED (1 << 4)
353 u32 num_context_banks
;
354 u32 num_s2_context_banks
;
355 DECLARE_BITMAP(context_map
, ARM_SMMU_MAX_CBS
);
358 u32 num_mapping_groups
;
359 DECLARE_BITMAP(smr_map
, ARM_SMMU_MAX_SMRS
);
361 unsigned long input_size
;
362 unsigned long s1_output_size
;
363 unsigned long s2_output_size
;
366 u32 num_context_irqs
;
369 struct list_head list
;
370 struct rb_root masters
;
373 struct arm_smmu_cfg
{
374 struct arm_smmu_device
*smmu
;
381 #define ARM_SMMU_CB_ASID(cfg) ((cfg)->cbndx)
382 #define ARM_SMMU_CB_VMID(cfg) ((cfg)->cbndx + 1)
384 struct arm_smmu_domain
{
386 * A domain can span across multiple, chained SMMUs and requires
387 * all devices within the domain to follow the same translation
390 struct arm_smmu_device
*leaf_smmu
;
391 struct arm_smmu_cfg root_cfg
;
392 phys_addr_t output_mask
;
397 static DEFINE_SPINLOCK(arm_smmu_devices_lock
);
398 static LIST_HEAD(arm_smmu_devices
);
400 static struct arm_smmu_master
*find_smmu_master(struct arm_smmu_device
*smmu
,
401 struct device_node
*dev_node
)
403 struct rb_node
*node
= smmu
->masters
.rb_node
;
406 struct arm_smmu_master
*master
;
407 master
= container_of(node
, struct arm_smmu_master
, node
);
409 if (dev_node
< master
->of_node
)
410 node
= node
->rb_left
;
411 else if (dev_node
> master
->of_node
)
412 node
= node
->rb_right
;
420 static int insert_smmu_master(struct arm_smmu_device
*smmu
,
421 struct arm_smmu_master
*master
)
423 struct rb_node
**new, *parent
;
425 new = &smmu
->masters
.rb_node
;
428 struct arm_smmu_master
*this;
429 this = container_of(*new, struct arm_smmu_master
, node
);
432 if (master
->of_node
< this->of_node
)
433 new = &((*new)->rb_left
);
434 else if (master
->of_node
> this->of_node
)
435 new = &((*new)->rb_right
);
440 rb_link_node(&master
->node
, parent
, new);
441 rb_insert_color(&master
->node
, &smmu
->masters
);
445 static int register_smmu_master(struct arm_smmu_device
*smmu
,
447 struct of_phandle_args
*masterspec
)
450 struct arm_smmu_master
*master
;
452 master
= find_smmu_master(smmu
, masterspec
->np
);
455 "rejecting multiple registrations for master device %s\n",
456 masterspec
->np
->name
);
460 if (masterspec
->args_count
> MAX_MASTER_STREAMIDS
) {
462 "reached maximum number (%d) of stream IDs for master device %s\n",
463 MAX_MASTER_STREAMIDS
, masterspec
->np
->name
);
467 master
= devm_kzalloc(dev
, sizeof(*master
), GFP_KERNEL
);
471 master
->of_node
= masterspec
->np
;
472 master
->num_streamids
= masterspec
->args_count
;
474 for (i
= 0; i
< master
->num_streamids
; ++i
)
475 master
->streamids
[i
] = masterspec
->args
[i
];
477 return insert_smmu_master(smmu
, master
);
480 static struct arm_smmu_device
*find_parent_smmu(struct arm_smmu_device
*smmu
)
482 struct arm_smmu_device
*parent
;
484 if (!smmu
->parent_of_node
)
487 spin_lock(&arm_smmu_devices_lock
);
488 list_for_each_entry(parent
, &arm_smmu_devices
, list
)
489 if (parent
->dev
->of_node
== smmu
->parent_of_node
)
494 "Failed to find SMMU parent despite parent in DT\n");
496 spin_unlock(&arm_smmu_devices_lock
);
500 static int __arm_smmu_alloc_bitmap(unsigned long *map
, int start
, int end
)
505 idx
= find_next_zero_bit(map
, end
, start
);
508 } while (test_and_set_bit(idx
, map
));
513 static void __arm_smmu_free_bitmap(unsigned long *map
, int idx
)
518 /* Wait for any pending TLB invalidations to complete */
519 static void arm_smmu_tlb_sync(struct arm_smmu_device
*smmu
)
522 void __iomem
*gr0_base
= ARM_SMMU_GR0(smmu
);
524 writel_relaxed(0, gr0_base
+ ARM_SMMU_GR0_sTLBGSYNC
);
525 while (readl_relaxed(gr0_base
+ ARM_SMMU_GR0_sTLBGSTATUS
)
526 & sTLBGSTATUS_GSACTIVE
) {
528 if (++count
== TLB_LOOP_TIMEOUT
) {
529 dev_err_ratelimited(smmu
->dev
,
530 "TLB sync timed out -- SMMU may be deadlocked\n");
537 static void arm_smmu_tlb_inv_context(struct arm_smmu_cfg
*cfg
)
539 struct arm_smmu_device
*smmu
= cfg
->smmu
;
540 void __iomem
*base
= ARM_SMMU_GR0(smmu
);
541 bool stage1
= cfg
->cbar
!= CBAR_TYPE_S2_TRANS
;
544 base
= ARM_SMMU_CB_BASE(smmu
) + ARM_SMMU_CB(smmu
, cfg
->cbndx
);
545 writel_relaxed(ARM_SMMU_CB_ASID(cfg
),
546 base
+ ARM_SMMU_CB_S1_TLBIASID
);
548 base
= ARM_SMMU_GR0(smmu
);
549 writel_relaxed(ARM_SMMU_CB_VMID(cfg
),
550 base
+ ARM_SMMU_GR0_TLBIVMID
);
553 arm_smmu_tlb_sync(smmu
);
556 static irqreturn_t
arm_smmu_context_fault(int irq
, void *dev
)
559 u32 fsr
, far
, fsynr
, resume
;
561 struct iommu_domain
*domain
= dev
;
562 struct arm_smmu_domain
*smmu_domain
= domain
->priv
;
563 struct arm_smmu_cfg
*root_cfg
= &smmu_domain
->root_cfg
;
564 struct arm_smmu_device
*smmu
= root_cfg
->smmu
;
565 void __iomem
*cb_base
;
567 cb_base
= ARM_SMMU_CB_BASE(smmu
) + ARM_SMMU_CB(smmu
, root_cfg
->cbndx
);
568 fsr
= readl_relaxed(cb_base
+ ARM_SMMU_CB_FSR
);
570 if (!(fsr
& FSR_FAULT
))
574 dev_err_ratelimited(smmu
->dev
,
575 "Unexpected context fault (fsr 0x%u)\n",
578 fsynr
= readl_relaxed(cb_base
+ ARM_SMMU_CB_FSYNR0
);
579 flags
= fsynr
& FSYNR0_WNR
? IOMMU_FAULT_WRITE
: IOMMU_FAULT_READ
;
581 far
= readl_relaxed(cb_base
+ ARM_SMMU_CB_FAR_LO
);
584 far
= readl_relaxed(cb_base
+ ARM_SMMU_CB_FAR_HI
);
585 iova
|= ((unsigned long)far
<< 32);
588 if (!report_iommu_fault(domain
, smmu
->dev
, iova
, flags
)) {
590 resume
= RESUME_RETRY
;
593 resume
= RESUME_TERMINATE
;
596 /* Clear the faulting FSR */
597 writel(fsr
, cb_base
+ ARM_SMMU_CB_FSR
);
599 /* Retry or terminate any stalled transactions */
601 writel_relaxed(resume
, cb_base
+ ARM_SMMU_CB_RESUME
);
606 static irqreturn_t
arm_smmu_global_fault(int irq
, void *dev
)
608 u32 gfsr
, gfsynr0
, gfsynr1
, gfsynr2
;
609 struct arm_smmu_device
*smmu
= dev
;
610 void __iomem
*gr0_base
= ARM_SMMU_GR0(smmu
);
612 gfsr
= readl_relaxed(gr0_base
+ ARM_SMMU_GR0_sGFSR
);
616 gfsynr0
= readl_relaxed(gr0_base
+ ARM_SMMU_GR0_sGFSYNR0
);
617 gfsynr1
= readl_relaxed(gr0_base
+ ARM_SMMU_GR0_sGFSYNR1
);
618 gfsynr2
= readl_relaxed(gr0_base
+ ARM_SMMU_GR0_sGFSYNR2
);
620 dev_err_ratelimited(smmu
->dev
,
621 "Unexpected global fault, this could be serious\n");
622 dev_err_ratelimited(smmu
->dev
,
623 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
624 gfsr
, gfsynr0
, gfsynr1
, gfsynr2
);
626 writel(gfsr
, gr0_base
+ ARM_SMMU_GR0_sGFSR
);
630 static void arm_smmu_init_context_bank(struct arm_smmu_domain
*smmu_domain
)
634 struct arm_smmu_cfg
*root_cfg
= &smmu_domain
->root_cfg
;
635 struct arm_smmu_device
*smmu
= root_cfg
->smmu
;
636 void __iomem
*cb_base
, *gr0_base
, *gr1_base
;
638 gr0_base
= ARM_SMMU_GR0(smmu
);
639 gr1_base
= ARM_SMMU_GR1(smmu
);
640 stage1
= root_cfg
->cbar
!= CBAR_TYPE_S2_TRANS
;
641 cb_base
= ARM_SMMU_CB_BASE(smmu
) + ARM_SMMU_CB(smmu
, root_cfg
->cbndx
);
644 reg
= root_cfg
->cbar
;
645 if (smmu
->version
== 1)
646 reg
|= root_cfg
->irptndx
<< CBAR_IRPTNDX_SHIFT
;
648 /* Use the weakest memory type, so it is overridden by the pte */
650 reg
|= (CBAR_S1_MEMATTR_WB
<< CBAR_S1_MEMATTR_SHIFT
);
652 reg
|= ARM_SMMU_CB_VMID(root_cfg
) << CBAR_VMID_SHIFT
;
653 writel_relaxed(reg
, gr1_base
+ ARM_SMMU_GR1_CBAR(root_cfg
->cbndx
));
655 if (smmu
->version
> 1) {
658 reg
= CBA2R_RW64_64BIT
;
660 reg
= CBA2R_RW64_32BIT
;
663 gr1_base
+ ARM_SMMU_GR1_CBA2R(root_cfg
->cbndx
));
666 switch (smmu
->input_size
) {
668 reg
= (TTBCR2_ADDR_32
<< TTBCR2_SEP_SHIFT
);
671 reg
= (TTBCR2_ADDR_36
<< TTBCR2_SEP_SHIFT
);
674 reg
= (TTBCR2_ADDR_40
<< TTBCR2_SEP_SHIFT
);
677 reg
= (TTBCR2_ADDR_42
<< TTBCR2_SEP_SHIFT
);
680 reg
= (TTBCR2_ADDR_44
<< TTBCR2_SEP_SHIFT
);
683 reg
= (TTBCR2_ADDR_48
<< TTBCR2_SEP_SHIFT
);
687 switch (smmu
->s1_output_size
) {
689 reg
|= (TTBCR2_ADDR_32
<< TTBCR2_PASIZE_SHIFT
);
692 reg
|= (TTBCR2_ADDR_36
<< TTBCR2_PASIZE_SHIFT
);
695 reg
|= (TTBCR2_ADDR_40
<< TTBCR2_PASIZE_SHIFT
);
698 reg
|= (TTBCR2_ADDR_42
<< TTBCR2_PASIZE_SHIFT
);
701 reg
|= (TTBCR2_ADDR_44
<< TTBCR2_PASIZE_SHIFT
);
704 reg
|= (TTBCR2_ADDR_48
<< TTBCR2_PASIZE_SHIFT
);
709 writel_relaxed(reg
, cb_base
+ ARM_SMMU_CB_TTBCR2
);
713 reg
= __pa(root_cfg
->pgd
);
714 writel_relaxed(reg
, cb_base
+ ARM_SMMU_CB_TTBR0_LO
);
715 reg
= (phys_addr_t
)__pa(root_cfg
->pgd
) >> 32;
717 reg
|= ARM_SMMU_CB_ASID(root_cfg
) << TTBRn_HI_ASID_SHIFT
;
718 writel_relaxed(reg
, cb_base
+ ARM_SMMU_CB_TTBR0_HI
);
722 * We use long descriptor, with inner-shareable WBWA tables in TTBR0.
724 if (smmu
->version
> 1) {
725 if (PAGE_SIZE
== SZ_4K
)
731 switch (smmu
->s2_output_size
) {
733 reg
|= (TTBCR2_ADDR_32
<< TTBCR_PASIZE_SHIFT
);
736 reg
|= (TTBCR2_ADDR_36
<< TTBCR_PASIZE_SHIFT
);
739 reg
|= (TTBCR2_ADDR_40
<< TTBCR_PASIZE_SHIFT
);
742 reg
|= (TTBCR2_ADDR_42
<< TTBCR_PASIZE_SHIFT
);
745 reg
|= (TTBCR2_ADDR_44
<< TTBCR_PASIZE_SHIFT
);
748 reg
|= (TTBCR2_ADDR_48
<< TTBCR_PASIZE_SHIFT
);
752 reg
|= (64 - smmu
->s1_output_size
) << TTBCR_T0SZ_SHIFT
;
759 (TTBCR_SH_IS
<< TTBCR_SH0_SHIFT
) |
760 (TTBCR_RGN_WBWA
<< TTBCR_ORGN0_SHIFT
) |
761 (TTBCR_RGN_WBWA
<< TTBCR_IRGN0_SHIFT
) |
762 (TTBCR_SL0_LVL_1
<< TTBCR_SL0_SHIFT
);
763 writel_relaxed(reg
, cb_base
+ ARM_SMMU_CB_TTBCR
);
765 /* MAIR0 (stage-1 only) */
767 reg
= (MAIR_ATTR_NC
<< MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_NC
)) |
768 (MAIR_ATTR_WBRWA
<< MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_CACHE
)) |
769 (MAIR_ATTR_DEVICE
<< MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_DEV
));
770 writel_relaxed(reg
, cb_base
+ ARM_SMMU_CB_S1_MAIR0
);
774 reg
= SCTLR_CFCFG
| SCTLR_CFIE
| SCTLR_CFRE
| SCTLR_M
| SCTLR_EAE_SBOP
;
776 reg
|= SCTLR_S1_ASIDPNE
;
780 writel(reg
, cb_base
+ ARM_SMMU_CB_SCTLR
);
783 static int arm_smmu_init_domain_context(struct iommu_domain
*domain
,
787 struct arm_smmu_domain
*smmu_domain
= domain
->priv
;
788 struct arm_smmu_cfg
*root_cfg
= &smmu_domain
->root_cfg
;
789 struct arm_smmu_device
*smmu
, *parent
;
792 * Walk the SMMU chain to find the root device for this chain.
793 * We assume that no masters have translations which terminate
794 * early, and therefore check that the root SMMU does indeed have
795 * a StreamID for the master in question.
797 parent
= dev
->archdata
.iommu
;
798 smmu_domain
->output_mask
= -1;
801 smmu_domain
->output_mask
&= (1ULL << smmu
->s2_output_size
) - 1;
802 } while ((parent
= find_parent_smmu(smmu
)));
804 if (!find_smmu_master(smmu
, dev
->of_node
)) {
805 dev_err(dev
, "unable to find root SMMU for device\n");
809 if (smmu
->features
& ARM_SMMU_FEAT_TRANS_NESTED
) {
811 * We will likely want to change this if/when KVM gets
814 root_cfg
->cbar
= CBAR_TYPE_S1_TRANS_S2_BYPASS
;
815 start
= smmu
->num_s2_context_banks
;
816 } else if (smmu
->features
& ARM_SMMU_FEAT_TRANS_S2
) {
817 root_cfg
->cbar
= CBAR_TYPE_S2_TRANS
;
820 root_cfg
->cbar
= CBAR_TYPE_S1_TRANS_S2_BYPASS
;
821 start
= smmu
->num_s2_context_banks
;
824 ret
= __arm_smmu_alloc_bitmap(smmu
->context_map
, start
,
825 smmu
->num_context_banks
);
826 if (IS_ERR_VALUE(ret
))
829 root_cfg
->cbndx
= ret
;
830 if (smmu
->version
== 1) {
831 root_cfg
->irptndx
= atomic_inc_return(&smmu
->irptndx
);
832 root_cfg
->irptndx
%= smmu
->num_context_irqs
;
834 root_cfg
->irptndx
= root_cfg
->cbndx
;
837 irq
= smmu
->irqs
[smmu
->num_global_irqs
+ root_cfg
->irptndx
];
838 ret
= request_irq(irq
, arm_smmu_context_fault
, IRQF_SHARED
,
839 "arm-smmu-context-fault", domain
);
840 if (IS_ERR_VALUE(ret
)) {
841 dev_err(smmu
->dev
, "failed to request context IRQ %d (%u)\n",
842 root_cfg
->irptndx
, irq
);
843 root_cfg
->irptndx
= -1;
844 goto out_free_context
;
847 root_cfg
->smmu
= smmu
;
848 arm_smmu_init_context_bank(smmu_domain
);
852 __arm_smmu_free_bitmap(smmu
->context_map
, root_cfg
->cbndx
);
856 static void arm_smmu_destroy_domain_context(struct iommu_domain
*domain
)
858 struct arm_smmu_domain
*smmu_domain
= domain
->priv
;
859 struct arm_smmu_cfg
*root_cfg
= &smmu_domain
->root_cfg
;
860 struct arm_smmu_device
*smmu
= root_cfg
->smmu
;
861 void __iomem
*cb_base
;
867 /* Disable the context bank and nuke the TLB before freeing it. */
868 cb_base
= ARM_SMMU_CB_BASE(smmu
) + ARM_SMMU_CB(smmu
, root_cfg
->cbndx
);
869 writel_relaxed(0, cb_base
+ ARM_SMMU_CB_SCTLR
);
870 arm_smmu_tlb_inv_context(root_cfg
);
872 if (root_cfg
->irptndx
!= -1) {
873 irq
= smmu
->irqs
[smmu
->num_global_irqs
+ root_cfg
->irptndx
];
874 free_irq(irq
, domain
);
877 __arm_smmu_free_bitmap(smmu
->context_map
, root_cfg
->cbndx
);
880 static int arm_smmu_domain_init(struct iommu_domain
*domain
)
882 struct arm_smmu_domain
*smmu_domain
;
886 * Allocate the domain and initialise some of its data structures.
887 * We can't really do anything meaningful until we've added a
890 smmu_domain
= kzalloc(sizeof(*smmu_domain
), GFP_KERNEL
);
894 pgd
= kzalloc(PTRS_PER_PGD
* sizeof(pgd_t
), GFP_KERNEL
);
896 goto out_free_domain
;
897 smmu_domain
->root_cfg
.pgd
= pgd
;
899 spin_lock_init(&smmu_domain
->lock
);
900 domain
->priv
= smmu_domain
;
908 static void arm_smmu_free_ptes(pmd_t
*pmd
)
910 pgtable_t table
= pmd_pgtable(*pmd
);
911 pgtable_page_dtor(table
);
915 static void arm_smmu_free_pmds(pud_t
*pud
)
918 pmd_t
*pmd
, *pmd_base
= pmd_offset(pud
, 0);
921 for (i
= 0; i
< PTRS_PER_PMD
; ++i
) {
925 arm_smmu_free_ptes(pmd
);
929 pmd_free(NULL
, pmd_base
);
932 static void arm_smmu_free_puds(pgd_t
*pgd
)
935 pud_t
*pud
, *pud_base
= pud_offset(pgd
, 0);
938 for (i
= 0; i
< PTRS_PER_PUD
; ++i
) {
942 arm_smmu_free_pmds(pud
);
946 pud_free(NULL
, pud_base
);
949 static void arm_smmu_free_pgtables(struct arm_smmu_domain
*smmu_domain
)
952 struct arm_smmu_cfg
*root_cfg
= &smmu_domain
->root_cfg
;
953 pgd_t
*pgd
, *pgd_base
= root_cfg
->pgd
;
956 * Recursively free the page tables for this domain. We don't
957 * care about speculative TLB filling, because the TLB will be
958 * nuked next time this context bank is re-allocated and no devices
959 * currently map to these tables.
962 for (i
= 0; i
< PTRS_PER_PGD
; ++i
) {
965 arm_smmu_free_puds(pgd
);
972 static void arm_smmu_domain_destroy(struct iommu_domain
*domain
)
974 struct arm_smmu_domain
*smmu_domain
= domain
->priv
;
977 * Free the domain resources. We assume that all devices have
978 * already been detached.
980 arm_smmu_destroy_domain_context(domain
);
981 arm_smmu_free_pgtables(smmu_domain
);
985 static int arm_smmu_master_configure_smrs(struct arm_smmu_device
*smmu
,
986 struct arm_smmu_master
*master
)
989 struct arm_smmu_smr
*smrs
;
990 void __iomem
*gr0_base
= ARM_SMMU_GR0(smmu
);
992 if (!(smmu
->features
& ARM_SMMU_FEAT_STREAM_MATCH
))
998 smrs
= kmalloc(sizeof(*smrs
) * master
->num_streamids
, GFP_KERNEL
);
1000 dev_err(smmu
->dev
, "failed to allocate %d SMRs for master %s\n",
1001 master
->num_streamids
, master
->of_node
->name
);
1005 /* Allocate the SMRs on the root SMMU */
1006 for (i
= 0; i
< master
->num_streamids
; ++i
) {
1007 int idx
= __arm_smmu_alloc_bitmap(smmu
->smr_map
, 0,
1008 smmu
->num_mapping_groups
);
1009 if (IS_ERR_VALUE(idx
)) {
1010 dev_err(smmu
->dev
, "failed to allocate free SMR\n");
1014 smrs
[i
] = (struct arm_smmu_smr
) {
1016 .mask
= 0, /* We don't currently share SMRs */
1017 .id
= master
->streamids
[i
],
1021 /* It worked! Now, poke the actual hardware */
1022 for (i
= 0; i
< master
->num_streamids
; ++i
) {
1023 u32 reg
= SMR_VALID
| smrs
[i
].id
<< SMR_ID_SHIFT
|
1024 smrs
[i
].mask
<< SMR_MASK_SHIFT
;
1025 writel_relaxed(reg
, gr0_base
+ ARM_SMMU_GR0_SMR(smrs
[i
].idx
));
1028 master
->smrs
= smrs
;
1033 __arm_smmu_free_bitmap(smmu
->smr_map
, smrs
[i
].idx
);
1038 static void arm_smmu_master_free_smrs(struct arm_smmu_device
*smmu
,
1039 struct arm_smmu_master
*master
)
1042 void __iomem
*gr0_base
= ARM_SMMU_GR0(smmu
);
1043 struct arm_smmu_smr
*smrs
= master
->smrs
;
1045 /* Invalidate the SMRs before freeing back to the allocator */
1046 for (i
= 0; i
< master
->num_streamids
; ++i
) {
1047 u8 idx
= smrs
[i
].idx
;
1048 writel_relaxed(~SMR_VALID
, gr0_base
+ ARM_SMMU_GR0_SMR(idx
));
1049 __arm_smmu_free_bitmap(smmu
->smr_map
, idx
);
1052 master
->smrs
= NULL
;
1056 static void arm_smmu_bypass_stream_mapping(struct arm_smmu_device
*smmu
,
1057 struct arm_smmu_master
*master
)
1060 void __iomem
*gr0_base
= ARM_SMMU_GR0(smmu
);
1062 for (i
= 0; i
< master
->num_streamids
; ++i
) {
1063 u16 sid
= master
->streamids
[i
];
1064 writel_relaxed(S2CR_TYPE_BYPASS
,
1065 gr0_base
+ ARM_SMMU_GR0_S2CR(sid
));
1069 static int arm_smmu_domain_add_master(struct arm_smmu_domain
*smmu_domain
,
1070 struct arm_smmu_master
*master
)
1073 struct arm_smmu_device
*parent
, *smmu
= smmu_domain
->root_cfg
.smmu
;
1074 void __iomem
*gr0_base
= ARM_SMMU_GR0(smmu
);
1076 ret
= arm_smmu_master_configure_smrs(smmu
, master
);
1080 /* Bypass the leaves */
1081 smmu
= smmu_domain
->leaf_smmu
;
1082 while ((parent
= find_parent_smmu(smmu
))) {
1084 * We won't have a StreamID match for anything but the root
1085 * smmu, so we only need to worry about StreamID indexing,
1086 * where we must install bypass entries in the S2CRs.
1088 if (smmu
->features
& ARM_SMMU_FEAT_STREAM_MATCH
)
1091 arm_smmu_bypass_stream_mapping(smmu
, master
);
1095 /* Now we're at the root, time to point at our context bank */
1096 for (i
= 0; i
< master
->num_streamids
; ++i
) {
1098 idx
= master
->smrs
? master
->smrs
[i
].idx
: master
->streamids
[i
];
1099 s2cr
= (S2CR_TYPE_TRANS
<< S2CR_TYPE_SHIFT
) |
1100 (smmu_domain
->root_cfg
.cbndx
<< S2CR_CBNDX_SHIFT
);
1101 writel_relaxed(s2cr
, gr0_base
+ ARM_SMMU_GR0_S2CR(idx
));
1107 static void arm_smmu_domain_remove_master(struct arm_smmu_domain
*smmu_domain
,
1108 struct arm_smmu_master
*master
)
1110 struct arm_smmu_device
*smmu
= smmu_domain
->root_cfg
.smmu
;
1113 * We *must* clear the S2CR first, because freeing the SMR means
1114 * that it can be re-allocated immediately.
1116 arm_smmu_bypass_stream_mapping(smmu
, master
);
1117 arm_smmu_master_free_smrs(smmu
, master
);
1120 static int arm_smmu_attach_dev(struct iommu_domain
*domain
, struct device
*dev
)
1123 struct arm_smmu_domain
*smmu_domain
= domain
->priv
;
1124 struct arm_smmu_device
*device_smmu
= dev
->archdata
.iommu
;
1125 struct arm_smmu_master
*master
;
1128 dev_err(dev
, "cannot attach to SMMU, is it on the same bus?\n");
1133 * Sanity check the domain. We don't currently support domains
1134 * that cross between different SMMU chains.
1136 spin_lock(&smmu_domain
->lock
);
1137 if (!smmu_domain
->leaf_smmu
) {
1138 /* Now that we have a master, we can finalise the domain */
1139 ret
= arm_smmu_init_domain_context(domain
, dev
);
1140 if (IS_ERR_VALUE(ret
))
1143 smmu_domain
->leaf_smmu
= device_smmu
;
1144 } else if (smmu_domain
->leaf_smmu
!= device_smmu
) {
1146 "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1147 dev_name(smmu_domain
->leaf_smmu
->dev
),
1148 dev_name(device_smmu
->dev
));
1151 spin_unlock(&smmu_domain
->lock
);
1153 /* Looks ok, so add the device to the domain */
1154 master
= find_smmu_master(smmu_domain
->leaf_smmu
, dev
->of_node
);
1158 return arm_smmu_domain_add_master(smmu_domain
, master
);
1161 spin_unlock(&smmu_domain
->lock
);
1165 static void arm_smmu_detach_dev(struct iommu_domain
*domain
, struct device
*dev
)
1167 struct arm_smmu_domain
*smmu_domain
= domain
->priv
;
1168 struct arm_smmu_master
*master
;
1170 master
= find_smmu_master(smmu_domain
->leaf_smmu
, dev
->of_node
);
1172 arm_smmu_domain_remove_master(smmu_domain
, master
);
1175 static void arm_smmu_flush_pgtable(struct arm_smmu_device
*smmu
, void *addr
,
1178 unsigned long offset
= (unsigned long)addr
& ~PAGE_MASK
;
1181 * If the SMMU can't walk tables in the CPU caches, treat them
1182 * like non-coherent DMA since we need to flush the new entries
1183 * all the way out to memory. There's no possibility of recursion
1184 * here as the SMMU table walker will not be wired through another
1187 if (!(smmu
->features
& ARM_SMMU_FEAT_COHERENT_WALK
))
1188 dma_map_page(smmu
->dev
, virt_to_page(addr
), offset
, size
,
1192 static bool arm_smmu_pte_is_contiguous_range(unsigned long addr
,
1195 return !(addr
& ~ARM_SMMU_PTE_CONT_MASK
) &&
1196 (addr
+ ARM_SMMU_PTE_CONT_SIZE
<= end
);
1199 static int arm_smmu_alloc_init_pte(struct arm_smmu_device
*smmu
, pmd_t
*pmd
,
1200 unsigned long addr
, unsigned long end
,
1201 unsigned long pfn
, int flags
, int stage
)
1204 pteval_t pteval
= ARM_SMMU_PTE_PAGE
| ARM_SMMU_PTE_AF
;
1206 if (pmd_none(*pmd
)) {
1207 /* Allocate a new set of tables */
1208 pgtable_t table
= alloc_page(PGALLOC_GFP
);
1212 arm_smmu_flush_pgtable(smmu
, page_address(table
),
1213 ARM_SMMU_PTE_HWTABLE_SIZE
);
1214 pgtable_page_ctor(table
);
1215 pmd_populate(NULL
, pmd
, table
);
1216 arm_smmu_flush_pgtable(smmu
, pmd
, sizeof(*pmd
));
1220 pteval
|= ARM_SMMU_PTE_AP_UNPRIV
| ARM_SMMU_PTE_nG
;
1221 if (!(flags
& IOMMU_WRITE
) && (flags
& IOMMU_READ
))
1222 pteval
|= ARM_SMMU_PTE_AP_RDONLY
;
1224 if (flags
& IOMMU_CACHE
)
1225 pteval
|= (MAIR_ATTR_IDX_CACHE
<<
1226 ARM_SMMU_PTE_ATTRINDX_SHIFT
);
1228 pteval
|= ARM_SMMU_PTE_HAP_FAULT
;
1229 if (flags
& IOMMU_READ
)
1230 pteval
|= ARM_SMMU_PTE_HAP_READ
;
1231 if (flags
& IOMMU_WRITE
)
1232 pteval
|= ARM_SMMU_PTE_HAP_WRITE
;
1233 if (flags
& IOMMU_CACHE
)
1234 pteval
|= ARM_SMMU_PTE_MEMATTR_OIWB
;
1236 pteval
|= ARM_SMMU_PTE_MEMATTR_NC
;
1239 /* If no access, create a faulting entry to avoid TLB fills */
1240 if (!(flags
& (IOMMU_READ
| IOMMU_WRITE
)))
1241 pteval
&= ~ARM_SMMU_PTE_PAGE
;
1243 pteval
|= ARM_SMMU_PTE_SH_IS
;
1244 start
= pmd_page_vaddr(*pmd
) + pte_index(addr
);
1248 * Install the page table entries. This is fairly complicated
1249 * since we attempt to make use of the contiguous hint in the
1250 * ptes where possible. The contiguous hint indicates a series
1251 * of ARM_SMMU_PTE_CONT_ENTRIES ptes mapping a physically
1252 * contiguous region with the following constraints:
1254 * - The region start is aligned to ARM_SMMU_PTE_CONT_SIZE
1255 * - Each pte in the region has the contiguous hint bit set
1257 * This complicates unmapping (also handled by this code, when
1258 * neither IOMMU_READ or IOMMU_WRITE are set) because it is
1259 * possible, yet highly unlikely, that a client may unmap only
1260 * part of a contiguous range. This requires clearing of the
1261 * contiguous hint bits in the range before installing the new
1264 * Note that re-mapping an address range without first unmapping
1265 * it is not supported, so TLB invalidation is not required here
1266 * and is instead performed at unmap and domain-init time.
1270 pteval
&= ~ARM_SMMU_PTE_CONT
;
1272 if (arm_smmu_pte_is_contiguous_range(addr
, end
)) {
1273 i
= ARM_SMMU_PTE_CONT_ENTRIES
;
1274 pteval
|= ARM_SMMU_PTE_CONT
;
1275 } else if (pte_val(*pte
) &
1276 (ARM_SMMU_PTE_CONT
| ARM_SMMU_PTE_PAGE
)) {
1279 unsigned long idx
= pte_index(addr
);
1281 idx
&= ~(ARM_SMMU_PTE_CONT_ENTRIES
- 1);
1282 cont_start
= pmd_page_vaddr(*pmd
) + idx
;
1283 for (j
= 0; j
< ARM_SMMU_PTE_CONT_ENTRIES
; ++j
)
1284 pte_val(*(cont_start
+ j
)) &= ~ARM_SMMU_PTE_CONT
;
1286 arm_smmu_flush_pgtable(smmu
, cont_start
,
1288 ARM_SMMU_PTE_CONT_ENTRIES
);
1292 *pte
= pfn_pte(pfn
, __pgprot(pteval
));
1293 } while (pte
++, pfn
++, addr
+= PAGE_SIZE
, --i
);
1294 } while (addr
!= end
);
1296 arm_smmu_flush_pgtable(smmu
, start
, sizeof(*pte
) * (pte
- start
));
1300 static int arm_smmu_alloc_init_pmd(struct arm_smmu_device
*smmu
, pud_t
*pud
,
1301 unsigned long addr
, unsigned long end
,
1302 phys_addr_t phys
, int flags
, int stage
)
1306 unsigned long next
, pfn
= __phys_to_pfn(phys
);
1308 #ifndef __PAGETABLE_PMD_FOLDED
1309 if (pud_none(*pud
)) {
1310 pmd
= pmd_alloc_one(NULL
, addr
);
1315 pmd
= pmd_offset(pud
, addr
);
1318 next
= pmd_addr_end(addr
, end
);
1319 ret
= arm_smmu_alloc_init_pte(smmu
, pmd
, addr
, end
, pfn
,
1321 pud_populate(NULL
, pud
, pmd
);
1322 arm_smmu_flush_pgtable(smmu
, pud
, sizeof(*pud
));
1323 phys
+= next
- addr
;
1324 } while (pmd
++, addr
= next
, addr
< end
);
1329 static int arm_smmu_alloc_init_pud(struct arm_smmu_device
*smmu
, pgd_t
*pgd
,
1330 unsigned long addr
, unsigned long end
,
1331 phys_addr_t phys
, int flags
, int stage
)
1337 #ifndef __PAGETABLE_PUD_FOLDED
1338 if (pgd_none(*pgd
)) {
1339 pud
= pud_alloc_one(NULL
, addr
);
1344 pud
= pud_offset(pgd
, addr
);
1347 next
= pud_addr_end(addr
, end
);
1348 ret
= arm_smmu_alloc_init_pmd(smmu
, pud
, addr
, next
, phys
,
1350 pgd_populate(NULL
, pud
, pgd
);
1351 arm_smmu_flush_pgtable(smmu
, pgd
, sizeof(*pgd
));
1352 phys
+= next
- addr
;
1353 } while (pud
++, addr
= next
, addr
< end
);
1358 static int arm_smmu_handle_mapping(struct arm_smmu_domain
*smmu_domain
,
1359 unsigned long iova
, phys_addr_t paddr
,
1360 size_t size
, int flags
)
1364 phys_addr_t input_mask
, output_mask
;
1365 struct arm_smmu_cfg
*root_cfg
= &smmu_domain
->root_cfg
;
1366 pgd_t
*pgd
= root_cfg
->pgd
;
1367 struct arm_smmu_device
*smmu
= root_cfg
->smmu
;
1369 if (root_cfg
->cbar
== CBAR_TYPE_S2_TRANS
) {
1371 output_mask
= (1ULL << smmu
->s2_output_size
) - 1;
1374 output_mask
= (1ULL << smmu
->s1_output_size
) - 1;
1380 if (size
& ~PAGE_MASK
)
1383 input_mask
= (1ULL << smmu
->input_size
) - 1;
1384 if ((phys_addr_t
)iova
& ~input_mask
)
1387 if (paddr
& ~output_mask
)
1390 spin_lock(&smmu_domain
->lock
);
1391 pgd
+= pgd_index(iova
);
1394 unsigned long next
= pgd_addr_end(iova
, end
);
1396 ret
= arm_smmu_alloc_init_pud(smmu
, pgd
, iova
, next
, paddr
,
1401 paddr
+= next
- iova
;
1403 } while (pgd
++, iova
!= end
);
1406 spin_unlock(&smmu_domain
->lock
);
1408 /* Ensure new page tables are visible to the hardware walker */
1409 if (smmu
->features
& ARM_SMMU_FEAT_COHERENT_WALK
)
1415 static int arm_smmu_map(struct iommu_domain
*domain
, unsigned long iova
,
1416 phys_addr_t paddr
, size_t size
, int flags
)
1418 struct arm_smmu_domain
*smmu_domain
= domain
->priv
;
1419 struct arm_smmu_device
*smmu
= smmu_domain
->leaf_smmu
;
1421 if (!smmu_domain
|| !smmu
)
1424 /* Check for silent address truncation up the SMMU chain. */
1425 if ((phys_addr_t
)iova
& ~smmu_domain
->output_mask
)
1428 return arm_smmu_handle_mapping(smmu_domain
, iova
, paddr
, size
, flags
);
1431 static size_t arm_smmu_unmap(struct iommu_domain
*domain
, unsigned long iova
,
1435 struct arm_smmu_domain
*smmu_domain
= domain
->priv
;
1437 ret
= arm_smmu_handle_mapping(smmu_domain
, iova
, 0, size
, 0);
1438 arm_smmu_tlb_inv_context(&smmu_domain
->root_cfg
);
1439 return ret
? ret
: size
;
1442 static phys_addr_t
arm_smmu_iova_to_phys(struct iommu_domain
*domain
,
1449 struct arm_smmu_domain
*smmu_domain
= domain
->priv
;
1450 struct arm_smmu_cfg
*root_cfg
= &smmu_domain
->root_cfg
;
1451 struct arm_smmu_device
*smmu
= root_cfg
->smmu
;
1453 spin_lock(&smmu_domain
->lock
);
1454 pgd
= root_cfg
->pgd
;
1458 pgd
+= pgd_index(iova
);
1459 if (pgd_none_or_clear_bad(pgd
))
1462 pud
= pud_offset(pgd
, iova
);
1463 if (pud_none_or_clear_bad(pud
))
1466 pmd
= pmd_offset(pud
, iova
);
1467 if (pmd_none_or_clear_bad(pmd
))
1470 pte
= pmd_page_vaddr(*pmd
) + pte_index(iova
);
1474 spin_unlock(&smmu_domain
->lock
);
1475 return __pfn_to_phys(pte_pfn(*pte
)) | (iova
& ~PAGE_MASK
);
1478 spin_unlock(&smmu_domain
->lock
);
1480 "invalid (corrupt?) page tables detected for iova 0x%llx\n",
1481 (unsigned long long)iova
);
1485 static int arm_smmu_domain_has_cap(struct iommu_domain
*domain
,
1488 unsigned long caps
= 0;
1489 struct arm_smmu_domain
*smmu_domain
= domain
->priv
;
1491 if (smmu_domain
->root_cfg
.smmu
->features
& ARM_SMMU_FEAT_COHERENT_WALK
)
1492 caps
|= IOMMU_CAP_CACHE_COHERENCY
;
1494 return !!(cap
& caps
);
1497 static int arm_smmu_add_device(struct device
*dev
)
1499 struct arm_smmu_device
*child
, *parent
, *smmu
;
1500 struct arm_smmu_master
*master
= NULL
;
1502 spin_lock(&arm_smmu_devices_lock
);
1503 list_for_each_entry(parent
, &arm_smmu_devices
, list
) {
1506 /* Try to find a child of the current SMMU. */
1507 list_for_each_entry(child
, &arm_smmu_devices
, list
) {
1508 if (child
->parent_of_node
== parent
->dev
->of_node
) {
1509 /* Does the child sit above our master? */
1510 master
= find_smmu_master(child
, dev
->of_node
);
1518 /* We found some children, so keep searching. */
1524 master
= find_smmu_master(smmu
, dev
->of_node
);
1528 spin_unlock(&arm_smmu_devices_lock
);
1533 dev
->archdata
.iommu
= smmu
;
1537 static void arm_smmu_remove_device(struct device
*dev
)
1539 dev
->archdata
.iommu
= NULL
;
1542 static struct iommu_ops arm_smmu_ops
= {
1543 .domain_init
= arm_smmu_domain_init
,
1544 .domain_destroy
= arm_smmu_domain_destroy
,
1545 .attach_dev
= arm_smmu_attach_dev
,
1546 .detach_dev
= arm_smmu_detach_dev
,
1547 .map
= arm_smmu_map
,
1548 .unmap
= arm_smmu_unmap
,
1549 .iova_to_phys
= arm_smmu_iova_to_phys
,
1550 .domain_has_cap
= arm_smmu_domain_has_cap
,
1551 .add_device
= arm_smmu_add_device
,
1552 .remove_device
= arm_smmu_remove_device
,
1553 .pgsize_bitmap
= (SECTION_SIZE
|
1554 ARM_SMMU_PTE_CONT_SIZE
|
1558 static void arm_smmu_device_reset(struct arm_smmu_device
*smmu
)
1560 void __iomem
*gr0_base
= ARM_SMMU_GR0(smmu
);
1561 void __iomem
*sctlr_base
= ARM_SMMU_CB_BASE(smmu
) + ARM_SMMU_CB_SCTLR
;
1563 u32 scr0
= readl_relaxed(gr0_base
+ ARM_SMMU_GR0_sCR0
);
1565 /* Mark all SMRn as invalid and all S2CRn as bypass */
1566 for (i
= 0; i
< smmu
->num_mapping_groups
; ++i
) {
1567 writel_relaxed(~SMR_VALID
, gr0_base
+ ARM_SMMU_GR0_SMR(i
));
1568 writel_relaxed(S2CR_TYPE_BYPASS
, gr0_base
+ ARM_SMMU_GR0_S2CR(i
));
1571 /* Make sure all context banks are disabled */
1572 for (i
= 0; i
< smmu
->num_context_banks
; ++i
)
1573 writel_relaxed(0, sctlr_base
+ ARM_SMMU_CB(smmu
, i
));
1575 /* Invalidate the TLB, just in case */
1576 writel_relaxed(0, gr0_base
+ ARM_SMMU_GR0_STLBIALL
);
1577 writel_relaxed(0, gr0_base
+ ARM_SMMU_GR0_TLBIALLH
);
1578 writel_relaxed(0, gr0_base
+ ARM_SMMU_GR0_TLBIALLNSNH
);
1580 /* Enable fault reporting */
1581 scr0
|= (sCR0_GFRE
| sCR0_GFIE
| sCR0_GCFGFRE
| sCR0_GCFGFIE
);
1583 /* Disable TLB broadcasting. */
1584 scr0
|= (sCR0_VMIDPNE
| sCR0_PTM
);
1586 /* Enable client access, but bypass when no mapping is found */
1587 scr0
&= ~(sCR0_CLIENTPD
| sCR0_USFCFG
);
1589 /* Disable forced broadcasting */
1592 /* Don't upgrade barriers */
1593 scr0
&= ~(sCR0_BSU_MASK
<< sCR0_BSU_SHIFT
);
1595 /* Push the button */
1596 arm_smmu_tlb_sync(smmu
);
1597 writel(scr0
, gr0_base
+ ARM_SMMU_GR0_sCR0
);
1600 static int arm_smmu_id_size_to_bits(int size
)
1619 static int arm_smmu_device_cfg_probe(struct arm_smmu_device
*smmu
)
1622 void __iomem
*gr0_base
= ARM_SMMU_GR0(smmu
);
1625 dev_notice(smmu
->dev
, "probing hardware configuration...\n");
1628 id
= readl_relaxed(gr0_base
+ ARM_SMMU_GR0_PIDR2
);
1629 smmu
->version
= ((id
>> PIDR2_ARCH_SHIFT
) & PIDR2_ARCH_MASK
) + 1;
1630 dev_notice(smmu
->dev
, "SMMUv%d with:\n", smmu
->version
);
1633 id
= readl_relaxed(gr0_base
+ ARM_SMMU_GR0_ID0
);
1634 #ifndef CONFIG_64BIT
1635 if (((id
>> ID0_PTFS_SHIFT
) & ID0_PTFS_MASK
) == ID0_PTFS_V8_ONLY
) {
1636 dev_err(smmu
->dev
, "\tno v7 descriptor support!\n");
1640 if (id
& ID0_S1TS
) {
1641 smmu
->features
|= ARM_SMMU_FEAT_TRANS_S1
;
1642 dev_notice(smmu
->dev
, "\tstage 1 translation\n");
1645 if (id
& ID0_S2TS
) {
1646 smmu
->features
|= ARM_SMMU_FEAT_TRANS_S2
;
1647 dev_notice(smmu
->dev
, "\tstage 2 translation\n");
1651 smmu
->features
|= ARM_SMMU_FEAT_TRANS_NESTED
;
1652 dev_notice(smmu
->dev
, "\tnested translation\n");
1655 if (!(smmu
->features
&
1656 (ARM_SMMU_FEAT_TRANS_S1
| ARM_SMMU_FEAT_TRANS_S2
|
1657 ARM_SMMU_FEAT_TRANS_NESTED
))) {
1658 dev_err(smmu
->dev
, "\tno translation support!\n");
1662 if (id
& ID0_CTTW
) {
1663 smmu
->features
|= ARM_SMMU_FEAT_COHERENT_WALK
;
1664 dev_notice(smmu
->dev
, "\tcoherent table walk\n");
1670 smmu
->features
|= ARM_SMMU_FEAT_STREAM_MATCH
;
1671 smmu
->num_mapping_groups
= (id
>> ID0_NUMSMRG_SHIFT
) &
1673 if (smmu
->num_mapping_groups
== 0) {
1675 "stream-matching supported, but no SMRs present!\n");
1679 smr
= SMR_MASK_MASK
<< SMR_MASK_SHIFT
;
1680 smr
|= (SMR_ID_MASK
<< SMR_ID_SHIFT
);
1681 writel_relaxed(smr
, gr0_base
+ ARM_SMMU_GR0_SMR(0));
1682 smr
= readl_relaxed(gr0_base
+ ARM_SMMU_GR0_SMR(0));
1684 mask
= (smr
>> SMR_MASK_SHIFT
) & SMR_MASK_MASK
;
1685 sid
= (smr
>> SMR_ID_SHIFT
) & SMR_ID_MASK
;
1686 if ((mask
& sid
) != sid
) {
1688 "SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
1693 dev_notice(smmu
->dev
,
1694 "\tstream matching with %u register groups, mask 0x%x",
1695 smmu
->num_mapping_groups
, mask
);
1699 id
= readl_relaxed(gr0_base
+ ARM_SMMU_GR0_ID1
);
1700 smmu
->pagesize
= (id
& ID1_PAGESIZE
) ? SZ_64K
: SZ_4K
;
1702 /* Check that we ioremapped enough */
1703 size
= 1 << (((id
>> ID1_NUMPAGENDXB_SHIFT
) & ID1_NUMPAGENDXB_MASK
) + 1);
1704 size
*= (smmu
->pagesize
<< 1);
1705 if (smmu
->size
< size
)
1707 "device is 0x%lx bytes but only mapped 0x%lx!\n",
1710 smmu
->num_s2_context_banks
= (id
>> ID1_NUMS2CB_SHIFT
) &
1712 smmu
->num_context_banks
= (id
>> ID1_NUMCB_SHIFT
) & ID1_NUMCB_MASK
;
1713 if (smmu
->num_s2_context_banks
> smmu
->num_context_banks
) {
1714 dev_err(smmu
->dev
, "impossible number of S2 context banks!\n");
1717 dev_notice(smmu
->dev
, "\t%u context banks (%u stage-2 only)\n",
1718 smmu
->num_context_banks
, smmu
->num_s2_context_banks
);
1721 id
= readl_relaxed(gr0_base
+ ARM_SMMU_GR0_ID2
);
1722 size
= arm_smmu_id_size_to_bits((id
>> ID2_IAS_SHIFT
) & ID2_IAS_MASK
);
1725 * Stage-1 output limited by stage-2 input size due to pgd
1726 * allocation (PTRS_PER_PGD).
1729 /* Current maximum output size of 39 bits */
1730 smmu
->s1_output_size
= min(39UL, size
);
1732 smmu
->s1_output_size
= min(32UL, size
);
1735 /* The stage-2 output mask is also applied for bypass */
1736 size
= arm_smmu_id_size_to_bits((id
>> ID2_OAS_SHIFT
) & ID2_OAS_MASK
);
1737 smmu
->s2_output_size
= min((unsigned long)PHYS_MASK_SHIFT
, size
);
1739 if (smmu
->version
== 1) {
1740 smmu
->input_size
= 32;
1743 size
= (id
>> ID2_UBS_SHIFT
) & ID2_UBS_MASK
;
1744 size
= min(39, arm_smmu_id_size_to_bits(size
));
1748 smmu
->input_size
= size
;
1750 if ((PAGE_SIZE
== SZ_4K
&& !(id
& ID2_PTFS_4K
)) ||
1751 (PAGE_SIZE
== SZ_64K
&& !(id
& ID2_PTFS_64K
)) ||
1752 (PAGE_SIZE
!= SZ_4K
&& PAGE_SIZE
!= SZ_64K
)) {
1753 dev_err(smmu
->dev
, "CPU page size 0x%lx unsupported\n",
1759 dev_notice(smmu
->dev
,
1760 "\t%lu-bit VA, %lu-bit IPA, %lu-bit PA\n",
1761 smmu
->input_size
, smmu
->s1_output_size
, smmu
->s2_output_size
);
1765 static int arm_smmu_device_dt_probe(struct platform_device
*pdev
)
1767 struct resource
*res
;
1768 struct arm_smmu_device
*smmu
;
1769 struct device_node
*dev_node
;
1770 struct device
*dev
= &pdev
->dev
;
1771 struct rb_node
*node
;
1772 struct of_phandle_args masterspec
;
1773 int num_irqs
, i
, err
;
1775 smmu
= devm_kzalloc(dev
, sizeof(*smmu
), GFP_KERNEL
);
1777 dev_err(dev
, "failed to allocate arm_smmu_device\n");
1782 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1784 dev_err(dev
, "missing base address/size\n");
1788 smmu
->size
= resource_size(res
);
1789 smmu
->base
= devm_request_and_ioremap(dev
, res
);
1791 return -EADDRNOTAVAIL
;
1793 if (of_property_read_u32(dev
->of_node
, "#global-interrupts",
1794 &smmu
->num_global_irqs
)) {
1795 dev_err(dev
, "missing #global-interrupts property\n");
1800 while ((res
= platform_get_resource(pdev
, IORESOURCE_IRQ
, num_irqs
))) {
1802 if (num_irqs
> smmu
->num_global_irqs
)
1803 smmu
->num_context_irqs
++;
1806 if (num_irqs
< smmu
->num_global_irqs
) {
1807 dev_warn(dev
, "found %d interrupts but expected at least %d\n",
1808 num_irqs
, smmu
->num_global_irqs
);
1809 smmu
->num_global_irqs
= num_irqs
;
1811 smmu
->num_context_irqs
= num_irqs
- smmu
->num_global_irqs
;
1813 smmu
->irqs
= devm_kzalloc(dev
, sizeof(*smmu
->irqs
) * num_irqs
,
1816 dev_err(dev
, "failed to allocate %d irqs\n", num_irqs
);
1820 for (i
= 0; i
< num_irqs
; ++i
) {
1821 int irq
= platform_get_irq(pdev
, i
);
1823 dev_err(dev
, "failed to get irq index %d\n", i
);
1826 smmu
->irqs
[i
] = irq
;
1830 smmu
->masters
= RB_ROOT
;
1831 while (!of_parse_phandle_with_args(dev
->of_node
, "mmu-masters",
1832 "#stream-id-cells", i
,
1834 err
= register_smmu_master(smmu
, dev
, &masterspec
);
1836 dev_err(dev
, "failed to add master %s\n",
1837 masterspec
.np
->name
);
1838 goto out_put_masters
;
1843 dev_notice(dev
, "registered %d master devices\n", i
);
1845 if ((dev_node
= of_parse_phandle(dev
->of_node
, "smmu-parent", 0)))
1846 smmu
->parent_of_node
= dev_node
;
1848 err
= arm_smmu_device_cfg_probe(smmu
);
1850 goto out_put_parent
;
1852 if (smmu
->version
> 1 &&
1853 smmu
->num_context_banks
!= smmu
->num_context_irqs
) {
1855 "found only %d context interrupt(s) but %d required\n",
1856 smmu
->num_context_irqs
, smmu
->num_context_banks
);
1857 goto out_put_parent
;
1860 arm_smmu_device_reset(smmu
);
1862 for (i
= 0; i
< smmu
->num_global_irqs
; ++i
) {
1863 err
= request_irq(smmu
->irqs
[i
],
1864 arm_smmu_global_fault
,
1866 "arm-smmu global fault",
1869 dev_err(dev
, "failed to request global IRQ %d (%u)\n",
1875 INIT_LIST_HEAD(&smmu
->list
);
1876 spin_lock(&arm_smmu_devices_lock
);
1877 list_add(&smmu
->list
, &arm_smmu_devices
);
1878 spin_unlock(&arm_smmu_devices_lock
);
1883 free_irq(smmu
->irqs
[i
], smmu
);
1886 if (smmu
->parent_of_node
)
1887 of_node_put(smmu
->parent_of_node
);
1890 for (node
= rb_first(&smmu
->masters
); node
; node
= rb_next(node
)) {
1891 struct arm_smmu_master
*master
;
1892 master
= container_of(node
, struct arm_smmu_master
, node
);
1893 of_node_put(master
->of_node
);
1899 static int arm_smmu_device_remove(struct platform_device
*pdev
)
1902 struct device
*dev
= &pdev
->dev
;
1903 struct arm_smmu_device
*curr
, *smmu
= NULL
;
1904 struct rb_node
*node
;
1906 spin_lock(&arm_smmu_devices_lock
);
1907 list_for_each_entry(curr
, &arm_smmu_devices
, list
) {
1908 if (curr
->dev
== dev
) {
1910 list_del(&smmu
->list
);
1914 spin_unlock(&arm_smmu_devices_lock
);
1919 if (smmu
->parent_of_node
)
1920 of_node_put(smmu
->parent_of_node
);
1922 for (node
= rb_first(&smmu
->masters
); node
; node
= rb_next(node
)) {
1923 struct arm_smmu_master
*master
;
1924 master
= container_of(node
, struct arm_smmu_master
, node
);
1925 of_node_put(master
->of_node
);
1928 if (!bitmap_empty(smmu
->context_map
, ARM_SMMU_MAX_CBS
))
1929 dev_err(dev
, "removing device with active domains!\n");
1931 for (i
= 0; i
< smmu
->num_global_irqs
; ++i
)
1932 free_irq(smmu
->irqs
[i
], smmu
);
1934 /* Turn the thing off */
1935 writel(sCR0_CLIENTPD
, ARM_SMMU_GR0(smmu
) + ARM_SMMU_GR0_sCR0
);
1940 static struct of_device_id arm_smmu_of_match
[] = {
1941 { .compatible
= "arm,smmu-v1", },
1942 { .compatible
= "arm,smmu-v2", },
1943 { .compatible
= "arm,mmu-400", },
1944 { .compatible
= "arm,mmu-500", },
1947 MODULE_DEVICE_TABLE(of
, arm_smmu_of_match
);
1950 static struct platform_driver arm_smmu_driver
= {
1952 .owner
= THIS_MODULE
,
1954 .of_match_table
= of_match_ptr(arm_smmu_of_match
),
1956 .probe
= arm_smmu_device_dt_probe
,
1957 .remove
= arm_smmu_device_remove
,
1960 static int __init
arm_smmu_init(void)
1964 ret
= platform_driver_register(&arm_smmu_driver
);
1968 /* Oh, for a proper bus abstraction */
1969 if (!iommu_present(&platform_bus_type
));
1970 bus_set_iommu(&platform_bus_type
, &arm_smmu_ops
);
1972 if (!iommu_present(&amba_bustype
));
1973 bus_set_iommu(&amba_bustype
, &arm_smmu_ops
);
1978 static void __exit
arm_smmu_exit(void)
1980 return platform_driver_unregister(&arm_smmu_driver
);
1983 module_init(arm_smmu_init
);
1984 module_exit(arm_smmu_exit
);
1986 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
1987 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1988 MODULE_LICENSE("GPL v2");