4 * Copyright (C) 2002, Linus Torvalds.
8 * 04Jul2002 Andrew Morton
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
12 * 29Oct2002 Andrew Morton
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <asm/atomic.h>
41 * How many user pages to map in one call to get_user_pages(). This determines
42 * the size of a structure on the stack.
47 * This code generally works in units of "dio_blocks". A dio_block is
48 * somewhere between the hard sector size and the filesystem block size. it
49 * is determined on a per-invocation basis. When talking to the filesystem
50 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
51 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
52 * to bio_block quantities by shifting left by blkfactor.
54 * If blkfactor is zero then the user's request was aligned to the filesystem's
59 /* BIO submission state */
60 struct bio
*bio
; /* bio under assembly */
63 loff_t i_size
; /* i_size when submitted */
64 int flags
; /* doesn't change */
65 unsigned blkbits
; /* doesn't change */
66 unsigned blkfactor
; /* When we're using an alignment which
67 is finer than the filesystem's soft
68 blocksize, this specifies how much
69 finer. blkfactor=2 means 1/4-block
70 alignment. Does not change */
71 unsigned start_zero_done
; /* flag: sub-blocksize zeroing has
72 been performed at the start of a
74 int pages_in_io
; /* approximate total IO pages */
75 size_t size
; /* total request size (doesn't change)*/
76 sector_t block_in_file
; /* Current offset into the underlying
77 file in dio_block units. */
78 unsigned blocks_available
; /* At block_in_file. changes */
79 sector_t final_block_in_request
;/* doesn't change */
80 unsigned first_block_in_page
; /* doesn't change, Used only once */
81 int boundary
; /* prev block is at a boundary */
82 int reap_counter
; /* rate limit reaping */
83 get_block_t
*get_block
; /* block mapping function */
84 dio_iodone_t
*end_io
; /* IO completion function */
85 dio_submit_t
*submit_io
; /* IO submition function */
86 loff_t logical_offset_in_bio
; /* current first logical block in bio */
87 sector_t final_block_in_bio
; /* current final block in bio + 1 */
88 sector_t next_block_for_io
; /* next block to be put under IO,
89 in dio_blocks units */
90 struct buffer_head map_bh
; /* last get_block() result */
93 * Deferred addition of a page to the dio. These variables are
94 * private to dio_send_cur_page(), submit_page_section() and
97 struct page
*cur_page
; /* The page */
98 unsigned cur_page_offset
; /* Offset into it, in bytes */
99 unsigned cur_page_len
; /* Nr of bytes at cur_page_offset */
100 sector_t cur_page_block
; /* Where it starts */
101 loff_t cur_page_fs_offset
; /* Offset in file */
103 /* BIO completion state */
104 spinlock_t bio_lock
; /* protects BIO fields below */
105 unsigned long refcount
; /* direct_io_worker() and bios */
106 struct bio
*bio_list
; /* singly linked via bi_private */
107 struct task_struct
*waiter
; /* waiting task (NULL if none) */
109 /* AIO related stuff */
110 struct kiocb
*iocb
; /* kiocb */
111 int is_async
; /* is IO async ? */
112 int io_error
; /* IO error in completion path */
113 ssize_t result
; /* IO result */
116 * Page fetching state. These variables belong to dio_refill_pages().
118 int curr_page
; /* changes */
119 int total_pages
; /* doesn't change */
120 unsigned long curr_user_address
;/* changes */
123 * Page queue. These variables belong to dio_refill_pages() and
126 unsigned head
; /* next page to process */
127 unsigned tail
; /* last valid page + 1 */
128 int page_errors
; /* errno from get_user_pages() */
131 * pages[] (and any fields placed after it) are not zeroed out at
132 * allocation time. Don't add new fields after pages[] unless you
133 * wish that they not be zeroed.
135 struct page
*pages
[DIO_PAGES
]; /* page buffer */
138 static void __inode_dio_wait(struct inode
*inode
)
140 wait_queue_head_t
*wq
= bit_waitqueue(&inode
->i_state
, __I_DIO_WAKEUP
);
141 DEFINE_WAIT_BIT(q
, &inode
->i_state
, __I_DIO_WAKEUP
);
144 prepare_to_wait(wq
, &q
.wait
, TASK_UNINTERRUPTIBLE
);
145 if (atomic_read(&inode
->i_dio_count
))
147 } while (atomic_read(&inode
->i_dio_count
));
148 finish_wait(wq
, &q
.wait
);
152 * inode_dio_wait - wait for outstanding DIO requests to finish
153 * @inode: inode to wait for
155 * Waits for all pending direct I/O requests to finish so that we can
156 * proceed with a truncate or equivalent operation.
158 * Must be called under a lock that serializes taking new references
159 * to i_dio_count, usually by inode->i_mutex.
161 void inode_dio_wait(struct inode
*inode
)
163 if (atomic_read(&inode
->i_dio_count
))
164 __inode_dio_wait(inode
);
166 EXPORT_SYMBOL_GPL(inode_dio_wait
);
169 * inode_dio_done - signal finish of a direct I/O requests
170 * @inode: inode the direct I/O happens on
172 * This is called once we've finished processing a direct I/O request,
173 * and is used to wake up callers waiting for direct I/O to be quiesced.
175 void inode_dio_done(struct inode
*inode
)
177 if (atomic_dec_and_test(&inode
->i_dio_count
))
178 wake_up_bit(&inode
->i_state
, __I_DIO_WAKEUP
);
180 EXPORT_SYMBOL_GPL(inode_dio_done
);
183 * How many pages are in the queue?
185 static inline unsigned dio_pages_present(struct dio
*dio
)
187 return dio
->tail
- dio
->head
;
191 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
193 static int dio_refill_pages(struct dio
*dio
)
198 nr_pages
= min(dio
->total_pages
- dio
->curr_page
, DIO_PAGES
);
199 ret
= get_user_pages_fast(
200 dio
->curr_user_address
, /* Where from? */
201 nr_pages
, /* How many pages? */
202 dio
->rw
== READ
, /* Write to memory? */
203 &dio
->pages
[0]); /* Put results here */
205 if (ret
< 0 && dio
->blocks_available
&& (dio
->rw
& WRITE
)) {
206 struct page
*page
= ZERO_PAGE(0);
208 * A memory fault, but the filesystem has some outstanding
209 * mapped blocks. We need to use those blocks up to avoid
210 * leaking stale data in the file.
212 if (dio
->page_errors
== 0)
213 dio
->page_errors
= ret
;
214 page_cache_get(page
);
215 dio
->pages
[0] = page
;
223 dio
->curr_user_address
+= ret
* PAGE_SIZE
;
224 dio
->curr_page
+= ret
;
234 * Get another userspace page. Returns an ERR_PTR on error. Pages are
235 * buffered inside the dio so that we can call get_user_pages() against a
236 * decent number of pages, less frequently. To provide nicer use of the
239 static struct page
*dio_get_page(struct dio
*dio
)
241 if (dio_pages_present(dio
) == 0) {
244 ret
= dio_refill_pages(dio
);
247 BUG_ON(dio_pages_present(dio
) == 0);
249 return dio
->pages
[dio
->head
++];
253 * dio_complete() - called when all DIO BIO I/O has been completed
254 * @offset: the byte offset in the file of the completed operation
256 * This releases locks as dictated by the locking type, lets interested parties
257 * know that a DIO operation has completed, and calculates the resulting return
258 * code for the operation.
260 * It lets the filesystem know if it registered an interest earlier via
261 * get_block. Pass the private field of the map buffer_head so that
262 * filesystems can use it to hold additional state between get_block calls and
265 static ssize_t
dio_complete(struct dio
*dio
, loff_t offset
, ssize_t ret
, bool is_async
)
267 ssize_t transferred
= 0;
270 * AIO submission can race with bio completion to get here while
271 * expecting to have the last io completed by bio completion.
272 * In that case -EIOCBQUEUED is in fact not an error we want
273 * to preserve through this call.
275 if (ret
== -EIOCBQUEUED
)
279 transferred
= dio
->result
;
281 /* Check for short read case */
282 if ((dio
->rw
== READ
) && ((offset
+ transferred
) > dio
->i_size
))
283 transferred
= dio
->i_size
- offset
;
287 ret
= dio
->page_errors
;
293 if (dio
->end_io
&& dio
->result
) {
294 dio
->end_io(dio
->iocb
, offset
, transferred
,
295 dio
->map_bh
.b_private
, ret
, is_async
);
298 aio_complete(dio
->iocb
, ret
, 0);
299 inode_dio_done(dio
->inode
);
305 static int dio_bio_complete(struct dio
*dio
, struct bio
*bio
);
307 * Asynchronous IO callback.
309 static void dio_bio_end_aio(struct bio
*bio
, int error
)
311 struct dio
*dio
= bio
->bi_private
;
312 unsigned long remaining
;
315 /* cleanup the bio */
316 dio_bio_complete(dio
, bio
);
318 spin_lock_irqsave(&dio
->bio_lock
, flags
);
319 remaining
= --dio
->refcount
;
320 if (remaining
== 1 && dio
->waiter
)
321 wake_up_process(dio
->waiter
);
322 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
324 if (remaining
== 0) {
325 dio_complete(dio
, dio
->iocb
->ki_pos
, 0, true);
331 * The BIO completion handler simply queues the BIO up for the process-context
334 * During I/O bi_private points at the dio. After I/O, bi_private is used to
335 * implement a singly-linked list of completed BIOs, at dio->bio_list.
337 static void dio_bio_end_io(struct bio
*bio
, int error
)
339 struct dio
*dio
= bio
->bi_private
;
342 spin_lock_irqsave(&dio
->bio_lock
, flags
);
343 bio
->bi_private
= dio
->bio_list
;
345 if (--dio
->refcount
== 1 && dio
->waiter
)
346 wake_up_process(dio
->waiter
);
347 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
351 * dio_end_io - handle the end io action for the given bio
352 * @bio: The direct io bio thats being completed
353 * @error: Error if there was one
355 * This is meant to be called by any filesystem that uses their own dio_submit_t
356 * so that the DIO specific endio actions are dealt with after the filesystem
357 * has done it's completion work.
359 void dio_end_io(struct bio
*bio
, int error
)
361 struct dio
*dio
= bio
->bi_private
;
364 dio_bio_end_aio(bio
, error
);
366 dio_bio_end_io(bio
, error
);
368 EXPORT_SYMBOL_GPL(dio_end_io
);
371 dio_bio_alloc(struct dio
*dio
, struct block_device
*bdev
,
372 sector_t first_sector
, int nr_vecs
)
377 * bio_alloc() is guaranteed to return a bio when called with
378 * __GFP_WAIT and we request a valid number of vectors.
380 bio
= bio_alloc(GFP_KERNEL
, nr_vecs
);
383 bio
->bi_sector
= first_sector
;
385 bio
->bi_end_io
= dio_bio_end_aio
;
387 bio
->bi_end_io
= dio_bio_end_io
;
390 dio
->logical_offset_in_bio
= dio
->cur_page_fs_offset
;
394 * In the AIO read case we speculatively dirty the pages before starting IO.
395 * During IO completion, any of these pages which happen to have been written
396 * back will be redirtied by bio_check_pages_dirty().
398 * bios hold a dio reference between submit_bio and ->end_io.
400 static void dio_bio_submit(struct dio
*dio
)
402 struct bio
*bio
= dio
->bio
;
405 bio
->bi_private
= dio
;
407 spin_lock_irqsave(&dio
->bio_lock
, flags
);
409 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
411 if (dio
->is_async
&& dio
->rw
== READ
)
412 bio_set_pages_dirty(bio
);
415 dio
->submit_io(dio
->rw
, bio
, dio
->inode
,
416 dio
->logical_offset_in_bio
);
418 submit_bio(dio
->rw
, bio
);
422 dio
->logical_offset_in_bio
= 0;
426 * Release any resources in case of a failure
428 static void dio_cleanup(struct dio
*dio
)
430 while (dio_pages_present(dio
))
431 page_cache_release(dio_get_page(dio
));
435 * Wait for the next BIO to complete. Remove it and return it. NULL is
436 * returned once all BIOs have been completed. This must only be called once
437 * all bios have been issued so that dio->refcount can only decrease. This
438 * requires that that the caller hold a reference on the dio.
440 static struct bio
*dio_await_one(struct dio
*dio
)
443 struct bio
*bio
= NULL
;
445 spin_lock_irqsave(&dio
->bio_lock
, flags
);
448 * Wait as long as the list is empty and there are bios in flight. bio
449 * completion drops the count, maybe adds to the list, and wakes while
450 * holding the bio_lock so we don't need set_current_state()'s barrier
451 * and can call it after testing our condition.
453 while (dio
->refcount
> 1 && dio
->bio_list
== NULL
) {
454 __set_current_state(TASK_UNINTERRUPTIBLE
);
455 dio
->waiter
= current
;
456 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
458 /* wake up sets us TASK_RUNNING */
459 spin_lock_irqsave(&dio
->bio_lock
, flags
);
464 dio
->bio_list
= bio
->bi_private
;
466 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
471 * Process one completed BIO. No locks are held.
473 static int dio_bio_complete(struct dio
*dio
, struct bio
*bio
)
475 const int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
476 struct bio_vec
*bvec
= bio
->bi_io_vec
;
480 dio
->io_error
= -EIO
;
482 if (dio
->is_async
&& dio
->rw
== READ
) {
483 bio_check_pages_dirty(bio
); /* transfers ownership */
485 for (page_no
= 0; page_no
< bio
->bi_vcnt
; page_no
++) {
486 struct page
*page
= bvec
[page_no
].bv_page
;
488 if (dio
->rw
== READ
&& !PageCompound(page
))
489 set_page_dirty_lock(page
);
490 page_cache_release(page
);
494 return uptodate
? 0 : -EIO
;
498 * Wait on and process all in-flight BIOs. This must only be called once
499 * all bios have been issued so that the refcount can only decrease.
500 * This just waits for all bios to make it through dio_bio_complete. IO
501 * errors are propagated through dio->io_error and should be propagated via
504 static void dio_await_completion(struct dio
*dio
)
508 bio
= dio_await_one(dio
);
510 dio_bio_complete(dio
, bio
);
515 * A really large O_DIRECT read or write can generate a lot of BIOs. So
516 * to keep the memory consumption sane we periodically reap any completed BIOs
517 * during the BIO generation phase.
519 * This also helps to limit the peak amount of pinned userspace memory.
521 static int dio_bio_reap(struct dio
*dio
)
525 if (dio
->reap_counter
++ >= 64) {
526 while (dio
->bio_list
) {
531 spin_lock_irqsave(&dio
->bio_lock
, flags
);
533 dio
->bio_list
= bio
->bi_private
;
534 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
535 ret2
= dio_bio_complete(dio
, bio
);
539 dio
->reap_counter
= 0;
545 * Call into the fs to map some more disk blocks. We record the current number
546 * of available blocks at dio->blocks_available. These are in units of the
547 * fs blocksize, (1 << inode->i_blkbits).
549 * The fs is allowed to map lots of blocks at once. If it wants to do that,
550 * it uses the passed inode-relative block number as the file offset, as usual.
552 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
553 * has remaining to do. The fs should not map more than this number of blocks.
555 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
556 * indicate how much contiguous disk space has been made available at
559 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
560 * This isn't very efficient...
562 * In the case of filesystem holes: the fs may return an arbitrarily-large
563 * hole by returning an appropriate value in b_size and by clearing
564 * buffer_mapped(). However the direct-io code will only process holes one
565 * block at a time - it will repeatedly call get_block() as it walks the hole.
567 static int get_more_blocks(struct dio
*dio
)
570 struct buffer_head
*map_bh
= &dio
->map_bh
;
571 sector_t fs_startblk
; /* Into file, in filesystem-sized blocks */
572 unsigned long fs_count
; /* Number of filesystem-sized blocks */
573 unsigned long dio_count
;/* Number of dio_block-sized blocks */
574 unsigned long blkmask
;
578 * If there was a memory error and we've overwritten all the
579 * mapped blocks then we can now return that memory error
581 ret
= dio
->page_errors
;
583 BUG_ON(dio
->block_in_file
>= dio
->final_block_in_request
);
584 fs_startblk
= dio
->block_in_file
>> dio
->blkfactor
;
585 dio_count
= dio
->final_block_in_request
- dio
->block_in_file
;
586 fs_count
= dio_count
>> dio
->blkfactor
;
587 blkmask
= (1 << dio
->blkfactor
) - 1;
588 if (dio_count
& blkmask
)
592 map_bh
->b_size
= fs_count
<< dio
->inode
->i_blkbits
;
595 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
596 * forbid block creations: only overwrites are permitted.
597 * We will return early to the caller once we see an
598 * unmapped buffer head returned, and the caller will fall
599 * back to buffered I/O.
601 * Otherwise the decision is left to the get_blocks method,
602 * which may decide to handle it or also return an unmapped
605 create
= dio
->rw
& WRITE
;
606 if (dio
->flags
& DIO_SKIP_HOLES
) {
607 if (dio
->block_in_file
< (i_size_read(dio
->inode
) >>
612 ret
= (*dio
->get_block
)(dio
->inode
, fs_startblk
,
619 * There is no bio. Make one now.
621 static int dio_new_bio(struct dio
*dio
, sector_t start_sector
)
626 ret
= dio_bio_reap(dio
);
629 sector
= start_sector
<< (dio
->blkbits
- 9);
630 nr_pages
= min(dio
->pages_in_io
, bio_get_nr_vecs(dio
->map_bh
.b_bdev
));
631 nr_pages
= min(nr_pages
, BIO_MAX_PAGES
);
632 BUG_ON(nr_pages
<= 0);
633 dio_bio_alloc(dio
, dio
->map_bh
.b_bdev
, sector
, nr_pages
);
640 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
641 * that was successful then update final_block_in_bio and take a ref against
642 * the just-added page.
644 * Return zero on success. Non-zero means the caller needs to start a new BIO.
646 static int dio_bio_add_page(struct dio
*dio
)
650 ret
= bio_add_page(dio
->bio
, dio
->cur_page
,
651 dio
->cur_page_len
, dio
->cur_page_offset
);
652 if (ret
== dio
->cur_page_len
) {
654 * Decrement count only, if we are done with this page
656 if ((dio
->cur_page_len
+ dio
->cur_page_offset
) == PAGE_SIZE
)
658 page_cache_get(dio
->cur_page
);
659 dio
->final_block_in_bio
= dio
->cur_page_block
+
660 (dio
->cur_page_len
>> dio
->blkbits
);
669 * Put cur_page under IO. The section of cur_page which is described by
670 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
671 * starts on-disk at cur_page_block.
673 * We take a ref against the page here (on behalf of its presence in the bio).
675 * The caller of this function is responsible for removing cur_page from the
676 * dio, and for dropping the refcount which came from that presence.
678 static int dio_send_cur_page(struct dio
*dio
)
683 loff_t cur_offset
= dio
->cur_page_fs_offset
;
684 loff_t bio_next_offset
= dio
->logical_offset_in_bio
+
688 * See whether this new request is contiguous with the old.
690 * Btrfs cannot handle having logically non-contiguous requests
691 * submitted. For example if you have
693 * Logical: [0-4095][HOLE][8192-12287]
694 * Physical: [0-4095] [4096-8191]
696 * We cannot submit those pages together as one BIO. So if our
697 * current logical offset in the file does not equal what would
698 * be the next logical offset in the bio, submit the bio we
701 if (dio
->final_block_in_bio
!= dio
->cur_page_block
||
702 cur_offset
!= bio_next_offset
)
705 * Submit now if the underlying fs is about to perform a
708 else if (dio
->boundary
)
712 if (dio
->bio
== NULL
) {
713 ret
= dio_new_bio(dio
, dio
->cur_page_block
);
718 if (dio_bio_add_page(dio
) != 0) {
720 ret
= dio_new_bio(dio
, dio
->cur_page_block
);
722 ret
= dio_bio_add_page(dio
);
731 * An autonomous function to put a chunk of a page under deferred IO.
733 * The caller doesn't actually know (or care) whether this piece of page is in
734 * a BIO, or is under IO or whatever. We just take care of all possible
735 * situations here. The separation between the logic of do_direct_IO() and
736 * that of submit_page_section() is important for clarity. Please don't break.
738 * The chunk of page starts on-disk at blocknr.
740 * We perform deferred IO, by recording the last-submitted page inside our
741 * private part of the dio structure. If possible, we just expand the IO
742 * across that page here.
744 * If that doesn't work out then we put the old page into the bio and add this
745 * page to the dio instead.
748 submit_page_section(struct dio
*dio
, struct page
*page
,
749 unsigned offset
, unsigned len
, sector_t blocknr
)
753 if (dio
->rw
& WRITE
) {
755 * Read accounting is performed in submit_bio()
757 task_io_account_write(len
);
761 * Can we just grow the current page's presence in the dio?
763 if ( (dio
->cur_page
== page
) &&
764 (dio
->cur_page_offset
+ dio
->cur_page_len
== offset
) &&
765 (dio
->cur_page_block
+
766 (dio
->cur_page_len
>> dio
->blkbits
) == blocknr
)) {
767 dio
->cur_page_len
+= len
;
770 * If dio->boundary then we want to schedule the IO now to
771 * avoid metadata seeks.
774 ret
= dio_send_cur_page(dio
);
775 page_cache_release(dio
->cur_page
);
776 dio
->cur_page
= NULL
;
782 * If there's a deferred page already there then send it.
785 ret
= dio_send_cur_page(dio
);
786 page_cache_release(dio
->cur_page
);
787 dio
->cur_page
= NULL
;
792 page_cache_get(page
); /* It is in dio */
793 dio
->cur_page
= page
;
794 dio
->cur_page_offset
= offset
;
795 dio
->cur_page_len
= len
;
796 dio
->cur_page_block
= blocknr
;
797 dio
->cur_page_fs_offset
= dio
->block_in_file
<< dio
->blkbits
;
803 * Clean any dirty buffers in the blockdev mapping which alias newly-created
804 * file blocks. Only called for S_ISREG files - blockdevs do not set
807 static void clean_blockdev_aliases(struct dio
*dio
)
812 nblocks
= dio
->map_bh
.b_size
>> dio
->inode
->i_blkbits
;
814 for (i
= 0; i
< nblocks
; i
++) {
815 unmap_underlying_metadata(dio
->map_bh
.b_bdev
,
816 dio
->map_bh
.b_blocknr
+ i
);
821 * If we are not writing the entire block and get_block() allocated
822 * the block for us, we need to fill-in the unused portion of the
823 * block with zeros. This happens only if user-buffer, fileoffset or
824 * io length is not filesystem block-size multiple.
826 * `end' is zero if we're doing the start of the IO, 1 at the end of the
829 static void dio_zero_block(struct dio
*dio
, int end
)
831 unsigned dio_blocks_per_fs_block
;
832 unsigned this_chunk_blocks
; /* In dio_blocks */
833 unsigned this_chunk_bytes
;
836 dio
->start_zero_done
= 1;
837 if (!dio
->blkfactor
|| !buffer_new(&dio
->map_bh
))
840 dio_blocks_per_fs_block
= 1 << dio
->blkfactor
;
841 this_chunk_blocks
= dio
->block_in_file
& (dio_blocks_per_fs_block
- 1);
843 if (!this_chunk_blocks
)
847 * We need to zero out part of an fs block. It is either at the
848 * beginning or the end of the fs block.
851 this_chunk_blocks
= dio_blocks_per_fs_block
- this_chunk_blocks
;
853 this_chunk_bytes
= this_chunk_blocks
<< dio
->blkbits
;
856 if (submit_page_section(dio
, page
, 0, this_chunk_bytes
,
857 dio
->next_block_for_io
))
860 dio
->next_block_for_io
+= this_chunk_blocks
;
864 * Walk the user pages, and the file, mapping blocks to disk and generating
865 * a sequence of (page,offset,len,block) mappings. These mappings are injected
866 * into submit_page_section(), which takes care of the next stage of submission
868 * Direct IO against a blockdev is different from a file. Because we can
869 * happily perform page-sized but 512-byte aligned IOs. It is important that
870 * blockdev IO be able to have fine alignment and large sizes.
872 * So what we do is to permit the ->get_block function to populate bh.b_size
873 * with the size of IO which is permitted at this offset and this i_blkbits.
875 * For best results, the blockdev should be set up with 512-byte i_blkbits and
876 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
877 * fine alignment but still allows this function to work in PAGE_SIZE units.
879 static int do_direct_IO(struct dio
*dio
)
881 const unsigned blkbits
= dio
->blkbits
;
882 const unsigned blocks_per_page
= PAGE_SIZE
>> blkbits
;
884 unsigned block_in_page
;
885 struct buffer_head
*map_bh
= &dio
->map_bh
;
888 /* The I/O can start at any block offset within the first page */
889 block_in_page
= dio
->first_block_in_page
;
891 while (dio
->block_in_file
< dio
->final_block_in_request
) {
892 page
= dio_get_page(dio
);
898 while (block_in_page
< blocks_per_page
) {
899 unsigned offset_in_page
= block_in_page
<< blkbits
;
900 unsigned this_chunk_bytes
; /* # of bytes mapped */
901 unsigned this_chunk_blocks
; /* # of blocks */
904 if (dio
->blocks_available
== 0) {
906 * Need to go and map some more disk
908 unsigned long blkmask
;
909 unsigned long dio_remainder
;
911 ret
= get_more_blocks(dio
);
913 page_cache_release(page
);
916 if (!buffer_mapped(map_bh
))
919 dio
->blocks_available
=
920 map_bh
->b_size
>> dio
->blkbits
;
921 dio
->next_block_for_io
=
922 map_bh
->b_blocknr
<< dio
->blkfactor
;
923 if (buffer_new(map_bh
))
924 clean_blockdev_aliases(dio
);
929 blkmask
= (1 << dio
->blkfactor
) - 1;
930 dio_remainder
= (dio
->block_in_file
& blkmask
);
933 * If we are at the start of IO and that IO
934 * starts partway into a fs-block,
935 * dio_remainder will be non-zero. If the IO
936 * is a read then we can simply advance the IO
937 * cursor to the first block which is to be
938 * read. But if the IO is a write and the
939 * block was newly allocated we cannot do that;
940 * the start of the fs block must be zeroed out
943 if (!buffer_new(map_bh
))
944 dio
->next_block_for_io
+= dio_remainder
;
945 dio
->blocks_available
-= dio_remainder
;
949 if (!buffer_mapped(map_bh
)) {
950 loff_t i_size_aligned
;
952 /* AKPM: eargh, -ENOTBLK is a hack */
953 if (dio
->rw
& WRITE
) {
954 page_cache_release(page
);
959 * Be sure to account for a partial block as the
960 * last block in the file
962 i_size_aligned
= ALIGN(i_size_read(dio
->inode
),
964 if (dio
->block_in_file
>=
965 i_size_aligned
>> blkbits
) {
967 page_cache_release(page
);
970 zero_user(page
, block_in_page
<< blkbits
,
972 dio
->block_in_file
++;
978 * If we're performing IO which has an alignment which
979 * is finer than the underlying fs, go check to see if
980 * we must zero out the start of this block.
982 if (unlikely(dio
->blkfactor
&& !dio
->start_zero_done
))
983 dio_zero_block(dio
, 0);
986 * Work out, in this_chunk_blocks, how much disk we
987 * can add to this page
989 this_chunk_blocks
= dio
->blocks_available
;
990 u
= (PAGE_SIZE
- offset_in_page
) >> blkbits
;
991 if (this_chunk_blocks
> u
)
992 this_chunk_blocks
= u
;
993 u
= dio
->final_block_in_request
- dio
->block_in_file
;
994 if (this_chunk_blocks
> u
)
995 this_chunk_blocks
= u
;
996 this_chunk_bytes
= this_chunk_blocks
<< blkbits
;
997 BUG_ON(this_chunk_bytes
== 0);
999 dio
->boundary
= buffer_boundary(map_bh
);
1000 ret
= submit_page_section(dio
, page
, offset_in_page
,
1001 this_chunk_bytes
, dio
->next_block_for_io
);
1003 page_cache_release(page
);
1006 dio
->next_block_for_io
+= this_chunk_blocks
;
1008 dio
->block_in_file
+= this_chunk_blocks
;
1009 block_in_page
+= this_chunk_blocks
;
1010 dio
->blocks_available
-= this_chunk_blocks
;
1012 BUG_ON(dio
->block_in_file
> dio
->final_block_in_request
);
1013 if (dio
->block_in_file
== dio
->final_block_in_request
)
1017 /* Drop the ref which was taken in get_user_pages() */
1018 page_cache_release(page
);
1026 direct_io_worker(int rw
, struct kiocb
*iocb
, struct inode
*inode
,
1027 const struct iovec
*iov
, loff_t offset
, unsigned long nr_segs
,
1028 unsigned blkbits
, get_block_t get_block
, dio_iodone_t end_io
,
1029 dio_submit_t submit_io
, struct dio
*dio
)
1031 unsigned long user_addr
;
1032 unsigned long flags
;
1040 dio
->blkbits
= blkbits
;
1041 dio
->blkfactor
= inode
->i_blkbits
- blkbits
;
1042 dio
->block_in_file
= offset
>> blkbits
;
1044 dio
->get_block
= get_block
;
1045 dio
->end_io
= end_io
;
1046 dio
->submit_io
= submit_io
;
1047 dio
->final_block_in_bio
= -1;
1048 dio
->next_block_for_io
= -1;
1051 dio
->i_size
= i_size_read(inode
);
1053 spin_lock_init(&dio
->bio_lock
);
1057 * In case of non-aligned buffers, we may need 2 more
1058 * pages since we need to zero out first and last block.
1060 if (unlikely(dio
->blkfactor
))
1061 dio
->pages_in_io
= 2;
1063 for (seg
= 0; seg
< nr_segs
; seg
++) {
1064 user_addr
= (unsigned long)iov
[seg
].iov_base
;
1066 ((user_addr
+iov
[seg
].iov_len
+PAGE_SIZE
-1)/PAGE_SIZE
1067 - user_addr
/PAGE_SIZE
);
1070 for (seg
= 0; seg
< nr_segs
; seg
++) {
1071 user_addr
= (unsigned long)iov
[seg
].iov_base
;
1072 dio
->size
+= bytes
= iov
[seg
].iov_len
;
1074 /* Index into the first page of the first block */
1075 dio
->first_block_in_page
= (user_addr
& ~PAGE_MASK
) >> blkbits
;
1076 dio
->final_block_in_request
= dio
->block_in_file
+
1078 /* Page fetching state */
1083 dio
->total_pages
= 0;
1084 if (user_addr
& (PAGE_SIZE
-1)) {
1086 bytes
-= PAGE_SIZE
- (user_addr
& (PAGE_SIZE
- 1));
1088 dio
->total_pages
+= (bytes
+ PAGE_SIZE
- 1) / PAGE_SIZE
;
1089 dio
->curr_user_address
= user_addr
;
1091 ret
= do_direct_IO(dio
);
1093 dio
->result
+= iov
[seg
].iov_len
-
1094 ((dio
->final_block_in_request
- dio
->block_in_file
) <<
1101 } /* end iovec loop */
1103 if (ret
== -ENOTBLK
) {
1105 * The remaining part of the request will be
1106 * be handled by buffered I/O when we return
1111 * There may be some unwritten disk at the end of a part-written
1112 * fs-block-sized block. Go zero that now.
1114 dio_zero_block(dio
, 1);
1116 if (dio
->cur_page
) {
1117 ret2
= dio_send_cur_page(dio
);
1120 page_cache_release(dio
->cur_page
);
1121 dio
->cur_page
= NULL
;
1124 dio_bio_submit(dio
);
1127 * It is possible that, we return short IO due to end of file.
1128 * In that case, we need to release all the pages we got hold on.
1133 * All block lookups have been performed. For READ requests
1134 * we can let i_mutex go now that its achieved its purpose
1135 * of protecting us from looking up uninitialized blocks.
1137 if (rw
== READ
&& (dio
->flags
& DIO_LOCKING
))
1138 mutex_unlock(&dio
->inode
->i_mutex
);
1141 * The only time we want to leave bios in flight is when a successful
1142 * partial aio read or full aio write have been setup. In that case
1143 * bio completion will call aio_complete. The only time it's safe to
1144 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1145 * This had *better* be the only place that raises -EIOCBQUEUED.
1147 BUG_ON(ret
== -EIOCBQUEUED
);
1148 if (dio
->is_async
&& ret
== 0 && dio
->result
&&
1149 ((rw
& READ
) || (dio
->result
== dio
->size
)))
1152 if (ret
!= -EIOCBQUEUED
)
1153 dio_await_completion(dio
);
1156 * Sync will always be dropping the final ref and completing the
1157 * operation. AIO can if it was a broken operation described above or
1158 * in fact if all the bios race to complete before we get here. In
1159 * that case dio_complete() translates the EIOCBQUEUED into the proper
1160 * return code that the caller will hand to aio_complete().
1162 * This is managed by the bio_lock instead of being an atomic_t so that
1163 * completion paths can drop their ref and use the remaining count to
1164 * decide to wake the submission path atomically.
1166 spin_lock_irqsave(&dio
->bio_lock
, flags
);
1167 ret2
= --dio
->refcount
;
1168 spin_unlock_irqrestore(&dio
->bio_lock
, flags
);
1171 ret
= dio_complete(dio
, offset
, ret
, false);
1174 BUG_ON(ret
!= -EIOCBQUEUED
);
1180 * This is a library function for use by filesystem drivers.
1182 * The locking rules are governed by the flags parameter:
1183 * - if the flags value contains DIO_LOCKING we use a fancy locking
1184 * scheme for dumb filesystems.
1185 * For writes this function is called under i_mutex and returns with
1186 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1187 * taken and dropped again before returning.
1188 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1189 * internal locking but rather rely on the filesystem to synchronize
1190 * direct I/O reads/writes versus each other and truncate.
1192 * To help with locking against truncate we incremented the i_dio_count
1193 * counter before starting direct I/O, and decrement it once we are done.
1194 * Truncate can wait for it to reach zero to provide exclusion. It is
1195 * expected that filesystem provide exclusion between new direct I/O
1196 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1197 * but other filesystems need to take care of this on their own.
1200 __blockdev_direct_IO(int rw
, struct kiocb
*iocb
, struct inode
*inode
,
1201 struct block_device
*bdev
, const struct iovec
*iov
, loff_t offset
,
1202 unsigned long nr_segs
, get_block_t get_block
, dio_iodone_t end_io
,
1203 dio_submit_t submit_io
, int flags
)
1208 unsigned blkbits
= inode
->i_blkbits
;
1209 unsigned bdev_blkbits
= 0;
1210 unsigned blocksize_mask
= (1 << blkbits
) - 1;
1211 ssize_t retval
= -EINVAL
;
1212 loff_t end
= offset
;
1219 bdev_blkbits
= blksize_bits(bdev_logical_block_size(bdev
));
1221 if (offset
& blocksize_mask
) {
1223 blkbits
= bdev_blkbits
;
1224 blocksize_mask
= (1 << blkbits
) - 1;
1225 if (offset
& blocksize_mask
)
1229 /* Check the memory alignment. Blocks cannot straddle pages */
1230 for (seg
= 0; seg
< nr_segs
; seg
++) {
1231 addr
= (unsigned long)iov
[seg
].iov_base
;
1232 size
= iov
[seg
].iov_len
;
1234 if ((addr
& blocksize_mask
) || (size
& blocksize_mask
)) {
1236 blkbits
= bdev_blkbits
;
1237 blocksize_mask
= (1 << blkbits
) - 1;
1238 if ((addr
& blocksize_mask
) || (size
& blocksize_mask
))
1243 /* watch out for a 0 len io from a tricksy fs */
1244 if (rw
== READ
&& end
== offset
)
1247 dio
= kmalloc(sizeof(*dio
), GFP_KERNEL
);
1252 * Believe it or not, zeroing out the page array caused a .5%
1253 * performance regression in a database benchmark. So, we take
1254 * care to only zero out what's needed.
1256 memset(dio
, 0, offsetof(struct dio
, pages
));
1259 if (dio
->flags
& DIO_LOCKING
) {
1261 struct address_space
*mapping
=
1262 iocb
->ki_filp
->f_mapping
;
1264 /* will be released by direct_io_worker */
1265 mutex_lock(&inode
->i_mutex
);
1267 retval
= filemap_write_and_wait_range(mapping
, offset
,
1270 mutex_unlock(&inode
->i_mutex
);
1278 * Will be decremented at I/O completion time.
1280 atomic_inc(&inode
->i_dio_count
);
1283 * For file extending writes updating i_size before data
1284 * writeouts complete can expose uninitialized blocks. So
1285 * even for AIO, we need to wait for i/o to complete before
1286 * returning in this case.
1288 dio
->is_async
= !is_sync_kiocb(iocb
) && !((rw
& WRITE
) &&
1289 (end
> i_size_read(inode
)));
1291 retval
= direct_io_worker(rw
, iocb
, inode
, iov
, offset
,
1292 nr_segs
, blkbits
, get_block
, end_io
,
1298 EXPORT_SYMBOL(__blockdev_direct_IO
);