4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
43 * dcache->d_inode->i_lock protects:
44 * - i_dentry, d_alias, d_inode of aliases
45 * dcache_hash_bucket lock protects:
46 * - the dcache hash table
47 * s_anon bl list spinlock protects:
48 * - the s_anon list (see __d_drop)
49 * dcache_lru_lock protects:
50 * - the dcache lru lists and counters
57 * - d_parent and d_subdirs
58 * - childrens' d_child and d_parent
62 * dentry->d_inode->i_lock
65 * dcache_hash_bucket lock
68 * If there is an ancestor relationship:
69 * dentry->d_parent->...->d_parent->d_lock
71 * dentry->d_parent->d_lock
74 * If no ancestor relationship:
75 * if (dentry1 < dentry2)
79 int sysctl_vfs_cache_pressure __read_mostly
= 100;
80 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
82 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(dcache_lru_lock
);
83 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
85 EXPORT_SYMBOL(rename_lock
);
87 static struct kmem_cache
*dentry_cache __read_mostly
;
90 * This is the single most critical data structure when it comes
91 * to the dcache: the hashtable for lookups. Somebody should try
92 * to make this good - I've just made it work.
94 * This hash-function tries to avoid losing too many bits of hash
95 * information, yet avoid using a prime hash-size or similar.
97 #define D_HASHBITS d_hash_shift
98 #define D_HASHMASK d_hash_mask
100 static unsigned int d_hash_mask __read_mostly
;
101 static unsigned int d_hash_shift __read_mostly
;
103 static struct hlist_bl_head
*dentry_hashtable __read_mostly
;
105 static inline struct hlist_bl_head
*d_hash(struct dentry
*parent
,
108 hash
+= ((unsigned long) parent
^ GOLDEN_RATIO_PRIME
) / L1_CACHE_BYTES
;
109 hash
= hash
^ ((hash
^ GOLDEN_RATIO_PRIME
) >> D_HASHBITS
);
110 return dentry_hashtable
+ (hash
& D_HASHMASK
);
113 /* Statistics gathering. */
114 struct dentry_stat_t dentry_stat
= {
118 static DEFINE_PER_CPU(unsigned int, nr_dentry
);
120 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
121 static int get_nr_dentry(void)
125 for_each_possible_cpu(i
)
126 sum
+= per_cpu(nr_dentry
, i
);
127 return sum
< 0 ? 0 : sum
;
130 int proc_nr_dentry(ctl_table
*table
, int write
, void __user
*buffer
,
131 size_t *lenp
, loff_t
*ppos
)
133 dentry_stat
.nr_dentry
= get_nr_dentry();
134 return proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
138 static void __d_free(struct rcu_head
*head
)
140 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
142 WARN_ON(!list_empty(&dentry
->d_alias
));
143 if (dname_external(dentry
))
144 kfree(dentry
->d_name
.name
);
145 kmem_cache_free(dentry_cache
, dentry
);
151 static void d_free(struct dentry
*dentry
)
153 BUG_ON(dentry
->d_count
);
154 this_cpu_dec(nr_dentry
);
155 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
156 dentry
->d_op
->d_release(dentry
);
158 /* if dentry was never visible to RCU, immediate free is OK */
159 if (!(dentry
->d_flags
& DCACHE_RCUACCESS
))
160 __d_free(&dentry
->d_u
.d_rcu
);
162 call_rcu(&dentry
->d_u
.d_rcu
, __d_free
);
166 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
167 * @dentry: the target dentry
168 * After this call, in-progress rcu-walk path lookup will fail. This
169 * should be called after unhashing, and after changing d_inode (if
170 * the dentry has not already been unhashed).
172 static inline void dentry_rcuwalk_barrier(struct dentry
*dentry
)
174 assert_spin_locked(&dentry
->d_lock
);
175 /* Go through a barrier */
176 write_seqcount_barrier(&dentry
->d_seq
);
180 * Release the dentry's inode, using the filesystem
181 * d_iput() operation if defined. Dentry has no refcount
184 static void dentry_iput(struct dentry
* dentry
)
185 __releases(dentry
->d_lock
)
186 __releases(dentry
->d_inode
->i_lock
)
188 struct inode
*inode
= dentry
->d_inode
;
190 dentry
->d_inode
= NULL
;
191 list_del_init(&dentry
->d_alias
);
192 spin_unlock(&dentry
->d_lock
);
193 spin_unlock(&inode
->i_lock
);
195 fsnotify_inoderemove(inode
);
196 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
197 dentry
->d_op
->d_iput(dentry
, inode
);
201 spin_unlock(&dentry
->d_lock
);
206 * Release the dentry's inode, using the filesystem
207 * d_iput() operation if defined. dentry remains in-use.
209 static void dentry_unlink_inode(struct dentry
* dentry
)
210 __releases(dentry
->d_lock
)
211 __releases(dentry
->d_inode
->i_lock
)
213 struct inode
*inode
= dentry
->d_inode
;
214 dentry
->d_inode
= NULL
;
215 list_del_init(&dentry
->d_alias
);
216 dentry_rcuwalk_barrier(dentry
);
217 spin_unlock(&dentry
->d_lock
);
218 spin_unlock(&inode
->i_lock
);
220 fsnotify_inoderemove(inode
);
221 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
222 dentry
->d_op
->d_iput(dentry
, inode
);
228 * dentry_lru_(add|del|move_tail) must be called with d_lock held.
230 static void dentry_lru_add(struct dentry
*dentry
)
232 if (list_empty(&dentry
->d_lru
)) {
233 spin_lock(&dcache_lru_lock
);
234 list_add(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
235 dentry
->d_sb
->s_nr_dentry_unused
++;
236 dentry_stat
.nr_unused
++;
237 spin_unlock(&dcache_lru_lock
);
241 static void __dentry_lru_del(struct dentry
*dentry
)
243 list_del_init(&dentry
->d_lru
);
244 dentry
->d_sb
->s_nr_dentry_unused
--;
245 dentry_stat
.nr_unused
--;
248 static void dentry_lru_del(struct dentry
*dentry
)
250 if (!list_empty(&dentry
->d_lru
)) {
251 spin_lock(&dcache_lru_lock
);
252 __dentry_lru_del(dentry
);
253 spin_unlock(&dcache_lru_lock
);
257 static void dentry_lru_move_tail(struct dentry
*dentry
)
259 spin_lock(&dcache_lru_lock
);
260 if (list_empty(&dentry
->d_lru
)) {
261 list_add_tail(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
262 dentry
->d_sb
->s_nr_dentry_unused
++;
263 dentry_stat
.nr_unused
++;
265 list_move_tail(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
267 spin_unlock(&dcache_lru_lock
);
271 * d_kill - kill dentry and return parent
272 * @dentry: dentry to kill
273 * @parent: parent dentry
275 * The dentry must already be unhashed and removed from the LRU.
277 * If this is the root of the dentry tree, return NULL.
279 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
282 static struct dentry
*d_kill(struct dentry
*dentry
, struct dentry
*parent
)
283 __releases(dentry
->d_lock
)
284 __releases(parent
->d_lock
)
285 __releases(dentry
->d_inode
->i_lock
)
287 list_del(&dentry
->d_u
.d_child
);
289 * Inform try_to_ascend() that we are no longer attached to the
292 dentry
->d_flags
|= DCACHE_DISCONNECTED
;
294 spin_unlock(&parent
->d_lock
);
297 * dentry_iput drops the locks, at which point nobody (except
298 * transient RCU lookups) can reach this dentry.
305 * d_drop - drop a dentry
306 * @dentry: dentry to drop
308 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
309 * be found through a VFS lookup any more. Note that this is different from
310 * deleting the dentry - d_delete will try to mark the dentry negative if
311 * possible, giving a successful _negative_ lookup, while d_drop will
312 * just make the cache lookup fail.
314 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
315 * reason (NFS timeouts or autofs deletes).
317 * __d_drop requires dentry->d_lock.
319 void __d_drop(struct dentry
*dentry
)
321 if (!d_unhashed(dentry
)) {
322 struct hlist_bl_head
*b
;
323 if (unlikely(dentry
->d_flags
& DCACHE_DISCONNECTED
))
324 b
= &dentry
->d_sb
->s_anon
;
326 b
= d_hash(dentry
->d_parent
, dentry
->d_name
.hash
);
329 __hlist_bl_del(&dentry
->d_hash
);
330 dentry
->d_hash
.pprev
= NULL
;
333 dentry_rcuwalk_barrier(dentry
);
336 EXPORT_SYMBOL(__d_drop
);
338 void d_drop(struct dentry
*dentry
)
340 spin_lock(&dentry
->d_lock
);
342 spin_unlock(&dentry
->d_lock
);
344 EXPORT_SYMBOL(d_drop
);
347 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
348 * @dentry: dentry to drop
350 * This is called when we do a lookup on a placeholder dentry that needed to be
351 * looked up. The dentry should have been hashed in order for it to be found by
352 * the lookup code, but now needs to be unhashed while we do the actual lookup
353 * and clear the DCACHE_NEED_LOOKUP flag.
355 void d_clear_need_lookup(struct dentry
*dentry
)
357 spin_lock(&dentry
->d_lock
);
359 dentry
->d_flags
&= ~DCACHE_NEED_LOOKUP
;
360 spin_unlock(&dentry
->d_lock
);
362 EXPORT_SYMBOL(d_clear_need_lookup
);
365 * Finish off a dentry we've decided to kill.
366 * dentry->d_lock must be held, returns with it unlocked.
367 * If ref is non-zero, then decrement the refcount too.
368 * Returns dentry requiring refcount drop, or NULL if we're done.
370 static inline struct dentry
*dentry_kill(struct dentry
*dentry
, int ref
)
371 __releases(dentry
->d_lock
)
374 struct dentry
*parent
;
376 inode
= dentry
->d_inode
;
377 if (inode
&& !spin_trylock(&inode
->i_lock
)) {
379 spin_unlock(&dentry
->d_lock
);
381 return dentry
; /* try again with same dentry */
386 parent
= dentry
->d_parent
;
387 if (parent
&& !spin_trylock(&parent
->d_lock
)) {
389 spin_unlock(&inode
->i_lock
);
395 /* if dentry was on the d_lru list delete it from there */
396 dentry_lru_del(dentry
);
397 /* if it was on the hash then remove it */
399 return d_kill(dentry
, parent
);
405 * This is complicated by the fact that we do not want to put
406 * dentries that are no longer on any hash chain on the unused
407 * list: we'd much rather just get rid of them immediately.
409 * However, that implies that we have to traverse the dentry
410 * tree upwards to the parents which might _also_ now be
411 * scheduled for deletion (it may have been only waiting for
412 * its last child to go away).
414 * This tail recursion is done by hand as we don't want to depend
415 * on the compiler to always get this right (gcc generally doesn't).
416 * Real recursion would eat up our stack space.
420 * dput - release a dentry
421 * @dentry: dentry to release
423 * Release a dentry. This will drop the usage count and if appropriate
424 * call the dentry unlink method as well as removing it from the queues and
425 * releasing its resources. If the parent dentries were scheduled for release
426 * they too may now get deleted.
428 void dput(struct dentry
*dentry
)
434 if (dentry
->d_count
== 1)
436 spin_lock(&dentry
->d_lock
);
437 BUG_ON(!dentry
->d_count
);
438 if (dentry
->d_count
> 1) {
440 spin_unlock(&dentry
->d_lock
);
444 if (dentry
->d_flags
& DCACHE_OP_DELETE
) {
445 if (dentry
->d_op
->d_delete(dentry
))
449 /* Unreachable? Get rid of it */
450 if (d_unhashed(dentry
))
454 * If this dentry needs lookup, don't set the referenced flag so that it
455 * is more likely to be cleaned up by the dcache shrinker in case of
458 if (!d_need_lookup(dentry
))
459 dentry
->d_flags
|= DCACHE_REFERENCED
;
460 dentry_lru_add(dentry
);
463 spin_unlock(&dentry
->d_lock
);
467 dentry
= dentry_kill(dentry
, 1);
474 * d_invalidate - invalidate a dentry
475 * @dentry: dentry to invalidate
477 * Try to invalidate the dentry if it turns out to be
478 * possible. If there are other dentries that can be
479 * reached through this one we can't delete it and we
480 * return -EBUSY. On success we return 0.
485 int d_invalidate(struct dentry
* dentry
)
488 * If it's already been dropped, return OK.
490 spin_lock(&dentry
->d_lock
);
491 if (d_unhashed(dentry
)) {
492 spin_unlock(&dentry
->d_lock
);
496 * Check whether to do a partial shrink_dcache
497 * to get rid of unused child entries.
499 if (!list_empty(&dentry
->d_subdirs
)) {
500 spin_unlock(&dentry
->d_lock
);
501 shrink_dcache_parent(dentry
);
502 spin_lock(&dentry
->d_lock
);
506 * Somebody else still using it?
508 * If it's a directory, we can't drop it
509 * for fear of somebody re-populating it
510 * with children (even though dropping it
511 * would make it unreachable from the root,
512 * we might still populate it if it was a
513 * working directory or similar).
515 if (dentry
->d_count
> 1) {
516 if (dentry
->d_inode
&& S_ISDIR(dentry
->d_inode
->i_mode
)) {
517 spin_unlock(&dentry
->d_lock
);
523 spin_unlock(&dentry
->d_lock
);
526 EXPORT_SYMBOL(d_invalidate
);
528 /* This must be called with d_lock held */
529 static inline void __dget_dlock(struct dentry
*dentry
)
534 static inline void __dget(struct dentry
*dentry
)
536 spin_lock(&dentry
->d_lock
);
537 __dget_dlock(dentry
);
538 spin_unlock(&dentry
->d_lock
);
541 struct dentry
*dget_parent(struct dentry
*dentry
)
547 * Don't need rcu_dereference because we re-check it was correct under
551 ret
= dentry
->d_parent
;
556 spin_lock(&ret
->d_lock
);
557 if (unlikely(ret
!= dentry
->d_parent
)) {
558 spin_unlock(&ret
->d_lock
);
563 BUG_ON(!ret
->d_count
);
565 spin_unlock(&ret
->d_lock
);
569 EXPORT_SYMBOL(dget_parent
);
572 * d_find_alias - grab a hashed alias of inode
573 * @inode: inode in question
574 * @want_discon: flag, used by d_splice_alias, to request
575 * that only a DISCONNECTED alias be returned.
577 * If inode has a hashed alias, or is a directory and has any alias,
578 * acquire the reference to alias and return it. Otherwise return NULL.
579 * Notice that if inode is a directory there can be only one alias and
580 * it can be unhashed only if it has no children, or if it is the root
583 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
584 * any other hashed alias over that one unless @want_discon is set,
585 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
587 static struct dentry
*__d_find_alias(struct inode
*inode
, int want_discon
)
589 struct dentry
*alias
, *discon_alias
;
593 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
594 spin_lock(&alias
->d_lock
);
595 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
596 if (IS_ROOT(alias
) &&
597 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
598 discon_alias
= alias
;
599 } else if (!want_discon
) {
601 spin_unlock(&alias
->d_lock
);
605 spin_unlock(&alias
->d_lock
);
608 alias
= discon_alias
;
609 spin_lock(&alias
->d_lock
);
610 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
611 if (IS_ROOT(alias
) &&
612 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
614 spin_unlock(&alias
->d_lock
);
618 spin_unlock(&alias
->d_lock
);
624 struct dentry
*d_find_alias(struct inode
*inode
)
626 struct dentry
*de
= NULL
;
628 if (!list_empty(&inode
->i_dentry
)) {
629 spin_lock(&inode
->i_lock
);
630 de
= __d_find_alias(inode
, 0);
631 spin_unlock(&inode
->i_lock
);
635 EXPORT_SYMBOL(d_find_alias
);
638 * Try to kill dentries associated with this inode.
639 * WARNING: you must own a reference to inode.
641 void d_prune_aliases(struct inode
*inode
)
643 struct dentry
*dentry
;
645 spin_lock(&inode
->i_lock
);
646 list_for_each_entry(dentry
, &inode
->i_dentry
, d_alias
) {
647 spin_lock(&dentry
->d_lock
);
648 if (!dentry
->d_count
) {
649 __dget_dlock(dentry
);
651 spin_unlock(&dentry
->d_lock
);
652 spin_unlock(&inode
->i_lock
);
656 spin_unlock(&dentry
->d_lock
);
658 spin_unlock(&inode
->i_lock
);
660 EXPORT_SYMBOL(d_prune_aliases
);
663 * Try to throw away a dentry - free the inode, dput the parent.
664 * Requires dentry->d_lock is held, and dentry->d_count == 0.
665 * Releases dentry->d_lock.
667 * This may fail if locks cannot be acquired no problem, just try again.
669 static void try_prune_one_dentry(struct dentry
*dentry
)
670 __releases(dentry
->d_lock
)
672 struct dentry
*parent
;
674 parent
= dentry_kill(dentry
, 0);
676 * If dentry_kill returns NULL, we have nothing more to do.
677 * if it returns the same dentry, trylocks failed. In either
678 * case, just loop again.
680 * Otherwise, we need to prune ancestors too. This is necessary
681 * to prevent quadratic behavior of shrink_dcache_parent(), but
682 * is also expected to be beneficial in reducing dentry cache
687 if (parent
== dentry
)
690 /* Prune ancestors. */
693 spin_lock(&dentry
->d_lock
);
694 if (dentry
->d_count
> 1) {
696 spin_unlock(&dentry
->d_lock
);
699 dentry
= dentry_kill(dentry
, 1);
703 static void shrink_dentry_list(struct list_head
*list
)
705 struct dentry
*dentry
;
709 dentry
= list_entry_rcu(list
->prev
, struct dentry
, d_lru
);
710 if (&dentry
->d_lru
== list
)
712 spin_lock(&dentry
->d_lock
);
713 if (dentry
!= list_entry(list
->prev
, struct dentry
, d_lru
)) {
714 spin_unlock(&dentry
->d_lock
);
719 * We found an inuse dentry which was not removed from
720 * the LRU because of laziness during lookup. Do not free
721 * it - just keep it off the LRU list.
723 if (dentry
->d_count
) {
724 dentry_lru_del(dentry
);
725 spin_unlock(&dentry
->d_lock
);
731 try_prune_one_dentry(dentry
);
739 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
740 * @sb: superblock to shrink dentry LRU.
741 * @count: number of entries to prune
742 * @flags: flags to control the dentry processing
744 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
746 static void __shrink_dcache_sb(struct super_block
*sb
, int count
, int flags
)
748 struct dentry
*dentry
;
749 LIST_HEAD(referenced
);
753 spin_lock(&dcache_lru_lock
);
754 while (!list_empty(&sb
->s_dentry_lru
)) {
755 dentry
= list_entry(sb
->s_dentry_lru
.prev
,
756 struct dentry
, d_lru
);
757 BUG_ON(dentry
->d_sb
!= sb
);
759 if (!spin_trylock(&dentry
->d_lock
)) {
760 spin_unlock(&dcache_lru_lock
);
766 * If we are honouring the DCACHE_REFERENCED flag and the
767 * dentry has this flag set, don't free it. Clear the flag
768 * and put it back on the LRU.
770 if (flags
& DCACHE_REFERENCED
&&
771 dentry
->d_flags
& DCACHE_REFERENCED
) {
772 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
773 list_move(&dentry
->d_lru
, &referenced
);
774 spin_unlock(&dentry
->d_lock
);
776 list_move_tail(&dentry
->d_lru
, &tmp
);
777 spin_unlock(&dentry
->d_lock
);
781 cond_resched_lock(&dcache_lru_lock
);
783 if (!list_empty(&referenced
))
784 list_splice(&referenced
, &sb
->s_dentry_lru
);
785 spin_unlock(&dcache_lru_lock
);
787 shrink_dentry_list(&tmp
);
791 * prune_dcache_sb - shrink the dcache
792 * @nr_to_scan: number of entries to try to free
794 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
795 * done when we need more memory an called from the superblock shrinker
798 * This function may fail to free any resources if all the dentries are in
801 void prune_dcache_sb(struct super_block
*sb
, int nr_to_scan
)
803 __shrink_dcache_sb(sb
, nr_to_scan
, DCACHE_REFERENCED
);
807 * shrink_dcache_sb - shrink dcache for a superblock
810 * Shrink the dcache for the specified super block. This is used to free
811 * the dcache before unmounting a file system.
813 void shrink_dcache_sb(struct super_block
*sb
)
817 spin_lock(&dcache_lru_lock
);
818 while (!list_empty(&sb
->s_dentry_lru
)) {
819 list_splice_init(&sb
->s_dentry_lru
, &tmp
);
820 spin_unlock(&dcache_lru_lock
);
821 shrink_dentry_list(&tmp
);
822 spin_lock(&dcache_lru_lock
);
824 spin_unlock(&dcache_lru_lock
);
826 EXPORT_SYMBOL(shrink_dcache_sb
);
829 * destroy a single subtree of dentries for unmount
830 * - see the comments on shrink_dcache_for_umount() for a description of the
833 static void shrink_dcache_for_umount_subtree(struct dentry
*dentry
)
835 struct dentry
*parent
;
836 unsigned detached
= 0;
838 BUG_ON(!IS_ROOT(dentry
));
840 /* detach this root from the system */
841 spin_lock(&dentry
->d_lock
);
842 dentry_lru_del(dentry
);
844 spin_unlock(&dentry
->d_lock
);
847 /* descend to the first leaf in the current subtree */
848 while (!list_empty(&dentry
->d_subdirs
)) {
851 /* this is a branch with children - detach all of them
852 * from the system in one go */
853 spin_lock(&dentry
->d_lock
);
854 list_for_each_entry(loop
, &dentry
->d_subdirs
,
856 spin_lock_nested(&loop
->d_lock
,
857 DENTRY_D_LOCK_NESTED
);
858 dentry_lru_del(loop
);
860 spin_unlock(&loop
->d_lock
);
862 spin_unlock(&dentry
->d_lock
);
864 /* move to the first child */
865 dentry
= list_entry(dentry
->d_subdirs
.next
,
866 struct dentry
, d_u
.d_child
);
869 /* consume the dentries from this leaf up through its parents
870 * until we find one with children or run out altogether */
874 if (dentry
->d_count
!= 0) {
876 "BUG: Dentry %p{i=%lx,n=%s}"
878 " [unmount of %s %s]\n",
881 dentry
->d_inode
->i_ino
: 0UL,
884 dentry
->d_sb
->s_type
->name
,
889 if (IS_ROOT(dentry
)) {
891 list_del(&dentry
->d_u
.d_child
);
893 parent
= dentry
->d_parent
;
894 spin_lock(&parent
->d_lock
);
896 list_del(&dentry
->d_u
.d_child
);
897 spin_unlock(&parent
->d_lock
);
902 inode
= dentry
->d_inode
;
904 dentry
->d_inode
= NULL
;
905 list_del_init(&dentry
->d_alias
);
906 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
907 dentry
->d_op
->d_iput(dentry
, inode
);
914 /* finished when we fall off the top of the tree,
915 * otherwise we ascend to the parent and move to the
916 * next sibling if there is one */
920 } while (list_empty(&dentry
->d_subdirs
));
922 dentry
= list_entry(dentry
->d_subdirs
.next
,
923 struct dentry
, d_u
.d_child
);
928 * destroy the dentries attached to a superblock on unmounting
929 * - we don't need to use dentry->d_lock because:
930 * - the superblock is detached from all mountings and open files, so the
931 * dentry trees will not be rearranged by the VFS
932 * - s_umount is write-locked, so the memory pressure shrinker will ignore
933 * any dentries belonging to this superblock that it comes across
934 * - the filesystem itself is no longer permitted to rearrange the dentries
937 void shrink_dcache_for_umount(struct super_block
*sb
)
939 struct dentry
*dentry
;
941 if (down_read_trylock(&sb
->s_umount
))
946 spin_lock(&dentry
->d_lock
);
948 spin_unlock(&dentry
->d_lock
);
949 shrink_dcache_for_umount_subtree(dentry
);
951 while (!hlist_bl_empty(&sb
->s_anon
)) {
952 dentry
= hlist_bl_entry(hlist_bl_first(&sb
->s_anon
), struct dentry
, d_hash
);
953 shrink_dcache_for_umount_subtree(dentry
);
958 * This tries to ascend one level of parenthood, but
959 * we can race with renaming, so we need to re-check
960 * the parenthood after dropping the lock and check
961 * that the sequence number still matches.
963 static struct dentry
*try_to_ascend(struct dentry
*old
, int locked
, unsigned seq
)
965 struct dentry
*new = old
->d_parent
;
968 spin_unlock(&old
->d_lock
);
969 spin_lock(&new->d_lock
);
972 * might go back up the wrong parent if we have had a rename
975 if (new != old
->d_parent
||
976 (old
->d_flags
& DCACHE_DISCONNECTED
) ||
977 (!locked
&& read_seqretry(&rename_lock
, seq
))) {
978 spin_unlock(&new->d_lock
);
987 * Search for at least 1 mount point in the dentry's subdirs.
988 * We descend to the next level whenever the d_subdirs
989 * list is non-empty and continue searching.
993 * have_submounts - check for mounts over a dentry
994 * @parent: dentry to check.
996 * Return true if the parent or its subdirectories contain
999 int have_submounts(struct dentry
*parent
)
1001 struct dentry
*this_parent
;
1002 struct list_head
*next
;
1006 seq
= read_seqbegin(&rename_lock
);
1008 this_parent
= parent
;
1010 if (d_mountpoint(parent
))
1012 spin_lock(&this_parent
->d_lock
);
1014 next
= this_parent
->d_subdirs
.next
;
1016 while (next
!= &this_parent
->d_subdirs
) {
1017 struct list_head
*tmp
= next
;
1018 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1021 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1022 /* Have we found a mount point ? */
1023 if (d_mountpoint(dentry
)) {
1024 spin_unlock(&dentry
->d_lock
);
1025 spin_unlock(&this_parent
->d_lock
);
1028 if (!list_empty(&dentry
->d_subdirs
)) {
1029 spin_unlock(&this_parent
->d_lock
);
1030 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1031 this_parent
= dentry
;
1032 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1035 spin_unlock(&dentry
->d_lock
);
1038 * All done at this level ... ascend and resume the search.
1040 if (this_parent
!= parent
) {
1041 struct dentry
*child
= this_parent
;
1042 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
1045 next
= child
->d_u
.d_child
.next
;
1048 spin_unlock(&this_parent
->d_lock
);
1049 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1052 write_sequnlock(&rename_lock
);
1053 return 0; /* No mount points found in tree */
1055 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1058 write_sequnlock(&rename_lock
);
1063 write_seqlock(&rename_lock
);
1066 EXPORT_SYMBOL(have_submounts
);
1069 * Search the dentry child list for the specified parent,
1070 * and move any unused dentries to the end of the unused
1071 * list for prune_dcache(). We descend to the next level
1072 * whenever the d_subdirs list is non-empty and continue
1075 * It returns zero iff there are no unused children,
1076 * otherwise it returns the number of children moved to
1077 * the end of the unused list. This may not be the total
1078 * number of unused children, because select_parent can
1079 * drop the lock and return early due to latency
1082 static int select_parent(struct dentry
* parent
)
1084 struct dentry
*this_parent
;
1085 struct list_head
*next
;
1090 seq
= read_seqbegin(&rename_lock
);
1092 this_parent
= parent
;
1093 spin_lock(&this_parent
->d_lock
);
1095 next
= this_parent
->d_subdirs
.next
;
1097 while (next
!= &this_parent
->d_subdirs
) {
1098 struct list_head
*tmp
= next
;
1099 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1102 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1105 * move only zero ref count dentries to the end
1106 * of the unused list for prune_dcache
1108 if (!dentry
->d_count
) {
1109 dentry_lru_move_tail(dentry
);
1112 dentry_lru_del(dentry
);
1116 * We can return to the caller if we have found some (this
1117 * ensures forward progress). We'll be coming back to find
1120 if (found
&& need_resched()) {
1121 spin_unlock(&dentry
->d_lock
);
1126 * Descend a level if the d_subdirs list is non-empty.
1128 if (!list_empty(&dentry
->d_subdirs
)) {
1129 spin_unlock(&this_parent
->d_lock
);
1130 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1131 this_parent
= dentry
;
1132 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1136 spin_unlock(&dentry
->d_lock
);
1139 * All done at this level ... ascend and resume the search.
1141 if (this_parent
!= parent
) {
1142 struct dentry
*child
= this_parent
;
1143 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
1146 next
= child
->d_u
.d_child
.next
;
1150 spin_unlock(&this_parent
->d_lock
);
1151 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1154 write_sequnlock(&rename_lock
);
1161 write_seqlock(&rename_lock
);
1166 * shrink_dcache_parent - prune dcache
1167 * @parent: parent of entries to prune
1169 * Prune the dcache to remove unused children of the parent dentry.
1172 void shrink_dcache_parent(struct dentry
* parent
)
1174 struct super_block
*sb
= parent
->d_sb
;
1177 while ((found
= select_parent(parent
)) != 0)
1178 __shrink_dcache_sb(sb
, found
, 0);
1180 EXPORT_SYMBOL(shrink_dcache_parent
);
1183 * __d_alloc - allocate a dcache entry
1184 * @sb: filesystem it will belong to
1185 * @name: qstr of the name
1187 * Allocates a dentry. It returns %NULL if there is insufficient memory
1188 * available. On a success the dentry is returned. The name passed in is
1189 * copied and the copy passed in may be reused after this call.
1192 struct dentry
*__d_alloc(struct super_block
*sb
, const struct qstr
*name
)
1194 struct dentry
*dentry
;
1197 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
1201 if (name
->len
> DNAME_INLINE_LEN
-1) {
1202 dname
= kmalloc(name
->len
+ 1, GFP_KERNEL
);
1204 kmem_cache_free(dentry_cache
, dentry
);
1208 dname
= dentry
->d_iname
;
1210 dentry
->d_name
.name
= dname
;
1212 dentry
->d_name
.len
= name
->len
;
1213 dentry
->d_name
.hash
= name
->hash
;
1214 memcpy(dname
, name
->name
, name
->len
);
1215 dname
[name
->len
] = 0;
1217 dentry
->d_count
= 1;
1218 dentry
->d_flags
= 0;
1219 spin_lock_init(&dentry
->d_lock
);
1220 seqcount_init(&dentry
->d_seq
);
1221 dentry
->d_inode
= NULL
;
1222 dentry
->d_parent
= dentry
;
1224 dentry
->d_op
= NULL
;
1225 dentry
->d_fsdata
= NULL
;
1226 INIT_HLIST_BL_NODE(&dentry
->d_hash
);
1227 INIT_LIST_HEAD(&dentry
->d_lru
);
1228 INIT_LIST_HEAD(&dentry
->d_subdirs
);
1229 INIT_LIST_HEAD(&dentry
->d_alias
);
1230 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
1231 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1233 this_cpu_inc(nr_dentry
);
1239 * d_alloc - allocate a dcache entry
1240 * @parent: parent of entry to allocate
1241 * @name: qstr of the name
1243 * Allocates a dentry. It returns %NULL if there is insufficient memory
1244 * available. On a success the dentry is returned. The name passed in is
1245 * copied and the copy passed in may be reused after this call.
1247 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
1249 struct dentry
*dentry
= __d_alloc(parent
->d_sb
, name
);
1253 spin_lock(&parent
->d_lock
);
1255 * don't need child lock because it is not subject
1256 * to concurrency here
1258 __dget_dlock(parent
);
1259 dentry
->d_parent
= parent
;
1260 list_add(&dentry
->d_u
.d_child
, &parent
->d_subdirs
);
1261 spin_unlock(&parent
->d_lock
);
1265 EXPORT_SYMBOL(d_alloc
);
1267 struct dentry
*d_alloc_pseudo(struct super_block
*sb
, const struct qstr
*name
)
1269 struct dentry
*dentry
= __d_alloc(sb
, name
);
1271 dentry
->d_flags
|= DCACHE_DISCONNECTED
;
1274 EXPORT_SYMBOL(d_alloc_pseudo
);
1276 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
1281 q
.len
= strlen(name
);
1282 q
.hash
= full_name_hash(q
.name
, q
.len
);
1283 return d_alloc(parent
, &q
);
1285 EXPORT_SYMBOL(d_alloc_name
);
1287 void d_set_d_op(struct dentry
*dentry
, const struct dentry_operations
*op
)
1289 WARN_ON_ONCE(dentry
->d_op
);
1290 WARN_ON_ONCE(dentry
->d_flags
& (DCACHE_OP_HASH
|
1292 DCACHE_OP_REVALIDATE
|
1293 DCACHE_OP_DELETE
));
1298 dentry
->d_flags
|= DCACHE_OP_HASH
;
1300 dentry
->d_flags
|= DCACHE_OP_COMPARE
;
1301 if (op
->d_revalidate
)
1302 dentry
->d_flags
|= DCACHE_OP_REVALIDATE
;
1304 dentry
->d_flags
|= DCACHE_OP_DELETE
;
1307 EXPORT_SYMBOL(d_set_d_op
);
1309 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
1311 spin_lock(&dentry
->d_lock
);
1313 if (unlikely(IS_AUTOMOUNT(inode
)))
1314 dentry
->d_flags
|= DCACHE_NEED_AUTOMOUNT
;
1315 list_add(&dentry
->d_alias
, &inode
->i_dentry
);
1317 dentry
->d_inode
= inode
;
1318 dentry_rcuwalk_barrier(dentry
);
1319 spin_unlock(&dentry
->d_lock
);
1320 fsnotify_d_instantiate(dentry
, inode
);
1324 * d_instantiate - fill in inode information for a dentry
1325 * @entry: dentry to complete
1326 * @inode: inode to attach to this dentry
1328 * Fill in inode information in the entry.
1330 * This turns negative dentries into productive full members
1333 * NOTE! This assumes that the inode count has been incremented
1334 * (or otherwise set) by the caller to indicate that it is now
1335 * in use by the dcache.
1338 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1340 BUG_ON(!list_empty(&entry
->d_alias
));
1342 spin_lock(&inode
->i_lock
);
1343 __d_instantiate(entry
, inode
);
1345 spin_unlock(&inode
->i_lock
);
1346 security_d_instantiate(entry
, inode
);
1348 EXPORT_SYMBOL(d_instantiate
);
1351 * d_instantiate_unique - instantiate a non-aliased dentry
1352 * @entry: dentry to instantiate
1353 * @inode: inode to attach to this dentry
1355 * Fill in inode information in the entry. On success, it returns NULL.
1356 * If an unhashed alias of "entry" already exists, then we return the
1357 * aliased dentry instead and drop one reference to inode.
1359 * Note that in order to avoid conflicts with rename() etc, the caller
1360 * had better be holding the parent directory semaphore.
1362 * This also assumes that the inode count has been incremented
1363 * (or otherwise set) by the caller to indicate that it is now
1364 * in use by the dcache.
1366 static struct dentry
*__d_instantiate_unique(struct dentry
*entry
,
1367 struct inode
*inode
)
1369 struct dentry
*alias
;
1370 int len
= entry
->d_name
.len
;
1371 const char *name
= entry
->d_name
.name
;
1372 unsigned int hash
= entry
->d_name
.hash
;
1375 __d_instantiate(entry
, NULL
);
1379 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
1380 struct qstr
*qstr
= &alias
->d_name
;
1383 * Don't need alias->d_lock here, because aliases with
1384 * d_parent == entry->d_parent are not subject to name or
1385 * parent changes, because the parent inode i_mutex is held.
1387 if (qstr
->hash
!= hash
)
1389 if (alias
->d_parent
!= entry
->d_parent
)
1391 if (dentry_cmp(qstr
->name
, qstr
->len
, name
, len
))
1397 __d_instantiate(entry
, inode
);
1401 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
1403 struct dentry
*result
;
1405 BUG_ON(!list_empty(&entry
->d_alias
));
1408 spin_lock(&inode
->i_lock
);
1409 result
= __d_instantiate_unique(entry
, inode
);
1411 spin_unlock(&inode
->i_lock
);
1414 security_d_instantiate(entry
, inode
);
1418 BUG_ON(!d_unhashed(result
));
1423 EXPORT_SYMBOL(d_instantiate_unique
);
1426 * d_alloc_root - allocate root dentry
1427 * @root_inode: inode to allocate the root for
1429 * Allocate a root ("/") dentry for the inode given. The inode is
1430 * instantiated and returned. %NULL is returned if there is insufficient
1431 * memory or the inode passed is %NULL.
1434 struct dentry
* d_alloc_root(struct inode
* root_inode
)
1436 struct dentry
*res
= NULL
;
1439 static const struct qstr name
= { .name
= "/", .len
= 1 };
1441 res
= __d_alloc(root_inode
->i_sb
, &name
);
1443 d_instantiate(res
, root_inode
);
1447 EXPORT_SYMBOL(d_alloc_root
);
1449 static struct dentry
* __d_find_any_alias(struct inode
*inode
)
1451 struct dentry
*alias
;
1453 if (list_empty(&inode
->i_dentry
))
1455 alias
= list_first_entry(&inode
->i_dentry
, struct dentry
, d_alias
);
1460 static struct dentry
* d_find_any_alias(struct inode
*inode
)
1464 spin_lock(&inode
->i_lock
);
1465 de
= __d_find_any_alias(inode
);
1466 spin_unlock(&inode
->i_lock
);
1472 * d_obtain_alias - find or allocate a dentry for a given inode
1473 * @inode: inode to allocate the dentry for
1475 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1476 * similar open by handle operations. The returned dentry may be anonymous,
1477 * or may have a full name (if the inode was already in the cache).
1479 * When called on a directory inode, we must ensure that the inode only ever
1480 * has one dentry. If a dentry is found, that is returned instead of
1481 * allocating a new one.
1483 * On successful return, the reference to the inode has been transferred
1484 * to the dentry. In case of an error the reference on the inode is released.
1485 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1486 * be passed in and will be the error will be propagate to the return value,
1487 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1489 struct dentry
*d_obtain_alias(struct inode
*inode
)
1491 static const struct qstr anonstring
= { .name
= "" };
1496 return ERR_PTR(-ESTALE
);
1498 return ERR_CAST(inode
);
1500 res
= d_find_any_alias(inode
);
1504 tmp
= __d_alloc(inode
->i_sb
, &anonstring
);
1506 res
= ERR_PTR(-ENOMEM
);
1510 spin_lock(&inode
->i_lock
);
1511 res
= __d_find_any_alias(inode
);
1513 spin_unlock(&inode
->i_lock
);
1518 /* attach a disconnected dentry */
1519 spin_lock(&tmp
->d_lock
);
1520 tmp
->d_inode
= inode
;
1521 tmp
->d_flags
|= DCACHE_DISCONNECTED
;
1522 list_add(&tmp
->d_alias
, &inode
->i_dentry
);
1523 hlist_bl_lock(&tmp
->d_sb
->s_anon
);
1524 hlist_bl_add_head(&tmp
->d_hash
, &tmp
->d_sb
->s_anon
);
1525 hlist_bl_unlock(&tmp
->d_sb
->s_anon
);
1526 spin_unlock(&tmp
->d_lock
);
1527 spin_unlock(&inode
->i_lock
);
1528 security_d_instantiate(tmp
, inode
);
1533 if (res
&& !IS_ERR(res
))
1534 security_d_instantiate(res
, inode
);
1538 EXPORT_SYMBOL(d_obtain_alias
);
1541 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1542 * @inode: the inode which may have a disconnected dentry
1543 * @dentry: a negative dentry which we want to point to the inode.
1545 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1546 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1547 * and return it, else simply d_add the inode to the dentry and return NULL.
1549 * This is needed in the lookup routine of any filesystem that is exportable
1550 * (via knfsd) so that we can build dcache paths to directories effectively.
1552 * If a dentry was found and moved, then it is returned. Otherwise NULL
1553 * is returned. This matches the expected return value of ->lookup.
1556 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
1558 struct dentry
*new = NULL
;
1561 return ERR_CAST(inode
);
1563 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1564 spin_lock(&inode
->i_lock
);
1565 new = __d_find_alias(inode
, 1);
1567 BUG_ON(!(new->d_flags
& DCACHE_DISCONNECTED
));
1568 spin_unlock(&inode
->i_lock
);
1569 security_d_instantiate(new, inode
);
1570 d_move(new, dentry
);
1573 /* already taking inode->i_lock, so d_add() by hand */
1574 __d_instantiate(dentry
, inode
);
1575 spin_unlock(&inode
->i_lock
);
1576 security_d_instantiate(dentry
, inode
);
1580 d_add(dentry
, inode
);
1583 EXPORT_SYMBOL(d_splice_alias
);
1586 * d_add_ci - lookup or allocate new dentry with case-exact name
1587 * @inode: the inode case-insensitive lookup has found
1588 * @dentry: the negative dentry that was passed to the parent's lookup func
1589 * @name: the case-exact name to be associated with the returned dentry
1591 * This is to avoid filling the dcache with case-insensitive names to the
1592 * same inode, only the actual correct case is stored in the dcache for
1593 * case-insensitive filesystems.
1595 * For a case-insensitive lookup match and if the the case-exact dentry
1596 * already exists in in the dcache, use it and return it.
1598 * If no entry exists with the exact case name, allocate new dentry with
1599 * the exact case, and return the spliced entry.
1601 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
1605 struct dentry
*found
;
1609 * First check if a dentry matching the name already exists,
1610 * if not go ahead and create it now.
1612 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
1614 new = d_alloc(dentry
->d_parent
, name
);
1620 found
= d_splice_alias(inode
, new);
1629 * If a matching dentry exists, and it's not negative use it.
1631 * Decrement the reference count to balance the iget() done
1634 if (found
->d_inode
) {
1635 if (unlikely(found
->d_inode
!= inode
)) {
1636 /* This can't happen because bad inodes are unhashed. */
1637 BUG_ON(!is_bad_inode(inode
));
1638 BUG_ON(!is_bad_inode(found
->d_inode
));
1645 * We are going to instantiate this dentry, unhash it and clear the
1646 * lookup flag so we can do that.
1648 if (unlikely(d_need_lookup(found
)))
1649 d_clear_need_lookup(found
);
1652 * Negative dentry: instantiate it unless the inode is a directory and
1653 * already has a dentry.
1655 spin_lock(&inode
->i_lock
);
1656 if (!S_ISDIR(inode
->i_mode
) || list_empty(&inode
->i_dentry
)) {
1657 __d_instantiate(found
, inode
);
1658 spin_unlock(&inode
->i_lock
);
1659 security_d_instantiate(found
, inode
);
1664 * In case a directory already has a (disconnected) entry grab a
1665 * reference to it, move it in place and use it.
1667 new = list_entry(inode
->i_dentry
.next
, struct dentry
, d_alias
);
1669 spin_unlock(&inode
->i_lock
);
1670 security_d_instantiate(found
, inode
);
1678 return ERR_PTR(error
);
1680 EXPORT_SYMBOL(d_add_ci
);
1683 * __d_lookup_rcu - search for a dentry (racy, store-free)
1684 * @parent: parent dentry
1685 * @name: qstr of name we wish to find
1686 * @seq: returns d_seq value at the point where the dentry was found
1687 * @inode: returns dentry->d_inode when the inode was found valid.
1688 * Returns: dentry, or NULL
1690 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1691 * resolution (store-free path walking) design described in
1692 * Documentation/filesystems/path-lookup.txt.
1694 * This is not to be used outside core vfs.
1696 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1697 * held, and rcu_read_lock held. The returned dentry must not be stored into
1698 * without taking d_lock and checking d_seq sequence count against @seq
1701 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1704 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1705 * the returned dentry, so long as its parent's seqlock is checked after the
1706 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1707 * is formed, giving integrity down the path walk.
1709 struct dentry
*__d_lookup_rcu(struct dentry
*parent
, struct qstr
*name
,
1710 unsigned *seq
, struct inode
**inode
)
1712 unsigned int len
= name
->len
;
1713 unsigned int hash
= name
->hash
;
1714 const unsigned char *str
= name
->name
;
1715 struct hlist_bl_head
*b
= d_hash(parent
, hash
);
1716 struct hlist_bl_node
*node
;
1717 struct dentry
*dentry
;
1720 * Note: There is significant duplication with __d_lookup_rcu which is
1721 * required to prevent single threaded performance regressions
1722 * especially on architectures where smp_rmb (in seqcounts) are costly.
1723 * Keep the two functions in sync.
1727 * The hash list is protected using RCU.
1729 * Carefully use d_seq when comparing a candidate dentry, to avoid
1730 * races with d_move().
1732 * It is possible that concurrent renames can mess up our list
1733 * walk here and result in missing our dentry, resulting in the
1734 * false-negative result. d_lookup() protects against concurrent
1735 * renames using rename_lock seqlock.
1737 * See Documentation/filesystems/path-lookup.txt for more details.
1739 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
1744 if (dentry
->d_name
.hash
!= hash
)
1748 *seq
= read_seqcount_begin(&dentry
->d_seq
);
1749 if (dentry
->d_parent
!= parent
)
1751 if (d_unhashed(dentry
))
1753 tlen
= dentry
->d_name
.len
;
1754 tname
= dentry
->d_name
.name
;
1755 i
= dentry
->d_inode
;
1760 * This seqcount check is required to ensure name and
1761 * len are loaded atomically, so as not to walk off the
1762 * edge of memory when walking. If we could load this
1763 * atomically some other way, we could drop this check.
1765 if (read_seqcount_retry(&dentry
->d_seq
, *seq
))
1767 if (parent
->d_flags
& DCACHE_OP_COMPARE
) {
1768 if (parent
->d_op
->d_compare(parent
, *inode
,
1773 if (dentry_cmp(tname
, tlen
, str
, len
))
1777 * No extra seqcount check is required after the name
1778 * compare. The caller must perform a seqcount check in
1779 * order to do anything useful with the returned dentry
1789 * d_lookup - search for a dentry
1790 * @parent: parent dentry
1791 * @name: qstr of name we wish to find
1792 * Returns: dentry, or NULL
1794 * d_lookup searches the children of the parent dentry for the name in
1795 * question. If the dentry is found its reference count is incremented and the
1796 * dentry is returned. The caller must use dput to free the entry when it has
1797 * finished using it. %NULL is returned if the dentry does not exist.
1799 struct dentry
*d_lookup(struct dentry
*parent
, struct qstr
*name
)
1801 struct dentry
*dentry
;
1805 seq
= read_seqbegin(&rename_lock
);
1806 dentry
= __d_lookup(parent
, name
);
1809 } while (read_seqretry(&rename_lock
, seq
));
1812 EXPORT_SYMBOL(d_lookup
);
1815 * __d_lookup - search for a dentry (racy)
1816 * @parent: parent dentry
1817 * @name: qstr of name we wish to find
1818 * Returns: dentry, or NULL
1820 * __d_lookup is like d_lookup, however it may (rarely) return a
1821 * false-negative result due to unrelated rename activity.
1823 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1824 * however it must be used carefully, eg. with a following d_lookup in
1825 * the case of failure.
1827 * __d_lookup callers must be commented.
1829 struct dentry
*__d_lookup(struct dentry
*parent
, struct qstr
*name
)
1831 unsigned int len
= name
->len
;
1832 unsigned int hash
= name
->hash
;
1833 const unsigned char *str
= name
->name
;
1834 struct hlist_bl_head
*b
= d_hash(parent
, hash
);
1835 struct hlist_bl_node
*node
;
1836 struct dentry
*found
= NULL
;
1837 struct dentry
*dentry
;
1840 * Note: There is significant duplication with __d_lookup_rcu which is
1841 * required to prevent single threaded performance regressions
1842 * especially on architectures where smp_rmb (in seqcounts) are costly.
1843 * Keep the two functions in sync.
1847 * The hash list is protected using RCU.
1849 * Take d_lock when comparing a candidate dentry, to avoid races
1852 * It is possible that concurrent renames can mess up our list
1853 * walk here and result in missing our dentry, resulting in the
1854 * false-negative result. d_lookup() protects against concurrent
1855 * renames using rename_lock seqlock.
1857 * See Documentation/filesystems/path-lookup.txt for more details.
1861 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
1865 if (dentry
->d_name
.hash
!= hash
)
1868 spin_lock(&dentry
->d_lock
);
1869 if (dentry
->d_parent
!= parent
)
1871 if (d_unhashed(dentry
))
1875 * It is safe to compare names since d_move() cannot
1876 * change the qstr (protected by d_lock).
1878 tlen
= dentry
->d_name
.len
;
1879 tname
= dentry
->d_name
.name
;
1880 if (parent
->d_flags
& DCACHE_OP_COMPARE
) {
1881 if (parent
->d_op
->d_compare(parent
, parent
->d_inode
,
1882 dentry
, dentry
->d_inode
,
1886 if (dentry_cmp(tname
, tlen
, str
, len
))
1892 spin_unlock(&dentry
->d_lock
);
1895 spin_unlock(&dentry
->d_lock
);
1903 * d_hash_and_lookup - hash the qstr then search for a dentry
1904 * @dir: Directory to search in
1905 * @name: qstr of name we wish to find
1907 * On hash failure or on lookup failure NULL is returned.
1909 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
1911 struct dentry
*dentry
= NULL
;
1914 * Check for a fs-specific hash function. Note that we must
1915 * calculate the standard hash first, as the d_op->d_hash()
1916 * routine may choose to leave the hash value unchanged.
1918 name
->hash
= full_name_hash(name
->name
, name
->len
);
1919 if (dir
->d_flags
& DCACHE_OP_HASH
) {
1920 if (dir
->d_op
->d_hash(dir
, dir
->d_inode
, name
) < 0)
1923 dentry
= d_lookup(dir
, name
);
1929 * d_validate - verify dentry provided from insecure source (deprecated)
1930 * @dentry: The dentry alleged to be valid child of @dparent
1931 * @dparent: The parent dentry (known to be valid)
1933 * An insecure source has sent us a dentry, here we verify it and dget() it.
1934 * This is used by ncpfs in its readdir implementation.
1935 * Zero is returned in the dentry is invalid.
1937 * This function is slow for big directories, and deprecated, do not use it.
1939 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
1941 struct dentry
*child
;
1943 spin_lock(&dparent
->d_lock
);
1944 list_for_each_entry(child
, &dparent
->d_subdirs
, d_u
.d_child
) {
1945 if (dentry
== child
) {
1946 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1947 __dget_dlock(dentry
);
1948 spin_unlock(&dentry
->d_lock
);
1949 spin_unlock(&dparent
->d_lock
);
1953 spin_unlock(&dparent
->d_lock
);
1957 EXPORT_SYMBOL(d_validate
);
1960 * When a file is deleted, we have two options:
1961 * - turn this dentry into a negative dentry
1962 * - unhash this dentry and free it.
1964 * Usually, we want to just turn this into
1965 * a negative dentry, but if anybody else is
1966 * currently using the dentry or the inode
1967 * we can't do that and we fall back on removing
1968 * it from the hash queues and waiting for
1969 * it to be deleted later when it has no users
1973 * d_delete - delete a dentry
1974 * @dentry: The dentry to delete
1976 * Turn the dentry into a negative dentry if possible, otherwise
1977 * remove it from the hash queues so it can be deleted later
1980 void d_delete(struct dentry
* dentry
)
1982 struct inode
*inode
;
1985 * Are we the only user?
1988 spin_lock(&dentry
->d_lock
);
1989 inode
= dentry
->d_inode
;
1990 isdir
= S_ISDIR(inode
->i_mode
);
1991 if (dentry
->d_count
== 1) {
1992 if (inode
&& !spin_trylock(&inode
->i_lock
)) {
1993 spin_unlock(&dentry
->d_lock
);
1997 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
1998 dentry_unlink_inode(dentry
);
1999 fsnotify_nameremove(dentry
, isdir
);
2003 if (!d_unhashed(dentry
))
2006 spin_unlock(&dentry
->d_lock
);
2008 fsnotify_nameremove(dentry
, isdir
);
2010 EXPORT_SYMBOL(d_delete
);
2012 static void __d_rehash(struct dentry
* entry
, struct hlist_bl_head
*b
)
2014 BUG_ON(!d_unhashed(entry
));
2016 entry
->d_flags
|= DCACHE_RCUACCESS
;
2017 hlist_bl_add_head_rcu(&entry
->d_hash
, b
);
2021 static void _d_rehash(struct dentry
* entry
)
2023 __d_rehash(entry
, d_hash(entry
->d_parent
, entry
->d_name
.hash
));
2027 * d_rehash - add an entry back to the hash
2028 * @entry: dentry to add to the hash
2030 * Adds a dentry to the hash according to its name.
2033 void d_rehash(struct dentry
* entry
)
2035 spin_lock(&entry
->d_lock
);
2037 spin_unlock(&entry
->d_lock
);
2039 EXPORT_SYMBOL(d_rehash
);
2042 * dentry_update_name_case - update case insensitive dentry with a new name
2043 * @dentry: dentry to be updated
2046 * Update a case insensitive dentry with new case of name.
2048 * dentry must have been returned by d_lookup with name @name. Old and new
2049 * name lengths must match (ie. no d_compare which allows mismatched name
2052 * Parent inode i_mutex must be held over d_lookup and into this call (to
2053 * keep renames and concurrent inserts, and readdir(2) away).
2055 void dentry_update_name_case(struct dentry
*dentry
, struct qstr
*name
)
2057 BUG_ON(!mutex_is_locked(&dentry
->d_parent
->d_inode
->i_mutex
));
2058 BUG_ON(dentry
->d_name
.len
!= name
->len
); /* d_lookup gives this */
2060 spin_lock(&dentry
->d_lock
);
2061 write_seqcount_begin(&dentry
->d_seq
);
2062 memcpy((unsigned char *)dentry
->d_name
.name
, name
->name
, name
->len
);
2063 write_seqcount_end(&dentry
->d_seq
);
2064 spin_unlock(&dentry
->d_lock
);
2066 EXPORT_SYMBOL(dentry_update_name_case
);
2068 static void switch_names(struct dentry
*dentry
, struct dentry
*target
)
2070 if (dname_external(target
)) {
2071 if (dname_external(dentry
)) {
2073 * Both external: swap the pointers
2075 swap(target
->d_name
.name
, dentry
->d_name
.name
);
2078 * dentry:internal, target:external. Steal target's
2079 * storage and make target internal.
2081 memcpy(target
->d_iname
, dentry
->d_name
.name
,
2082 dentry
->d_name
.len
+ 1);
2083 dentry
->d_name
.name
= target
->d_name
.name
;
2084 target
->d_name
.name
= target
->d_iname
;
2087 if (dname_external(dentry
)) {
2089 * dentry:external, target:internal. Give dentry's
2090 * storage to target and make dentry internal
2092 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2093 target
->d_name
.len
+ 1);
2094 target
->d_name
.name
= dentry
->d_name
.name
;
2095 dentry
->d_name
.name
= dentry
->d_iname
;
2098 * Both are internal. Just copy target to dentry
2100 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2101 target
->d_name
.len
+ 1);
2102 dentry
->d_name
.len
= target
->d_name
.len
;
2106 swap(dentry
->d_name
.len
, target
->d_name
.len
);
2109 static void dentry_lock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2112 * XXXX: do we really need to take target->d_lock?
2114 if (IS_ROOT(dentry
) || dentry
->d_parent
== target
->d_parent
)
2115 spin_lock(&target
->d_parent
->d_lock
);
2117 if (d_ancestor(dentry
->d_parent
, target
->d_parent
)) {
2118 spin_lock(&dentry
->d_parent
->d_lock
);
2119 spin_lock_nested(&target
->d_parent
->d_lock
,
2120 DENTRY_D_LOCK_NESTED
);
2122 spin_lock(&target
->d_parent
->d_lock
);
2123 spin_lock_nested(&dentry
->d_parent
->d_lock
,
2124 DENTRY_D_LOCK_NESTED
);
2127 if (target
< dentry
) {
2128 spin_lock_nested(&target
->d_lock
, 2);
2129 spin_lock_nested(&dentry
->d_lock
, 3);
2131 spin_lock_nested(&dentry
->d_lock
, 2);
2132 spin_lock_nested(&target
->d_lock
, 3);
2136 static void dentry_unlock_parents_for_move(struct dentry
*dentry
,
2137 struct dentry
*target
)
2139 if (target
->d_parent
!= dentry
->d_parent
)
2140 spin_unlock(&dentry
->d_parent
->d_lock
);
2141 if (target
->d_parent
!= target
)
2142 spin_unlock(&target
->d_parent
->d_lock
);
2146 * When switching names, the actual string doesn't strictly have to
2147 * be preserved in the target - because we're dropping the target
2148 * anyway. As such, we can just do a simple memcpy() to copy over
2149 * the new name before we switch.
2151 * Note that we have to be a lot more careful about getting the hash
2152 * switched - we have to switch the hash value properly even if it
2153 * then no longer matches the actual (corrupted) string of the target.
2154 * The hash value has to match the hash queue that the dentry is on..
2157 * __d_move - move a dentry
2158 * @dentry: entry to move
2159 * @target: new dentry
2161 * Update the dcache to reflect the move of a file name. Negative
2162 * dcache entries should not be moved in this way. Caller hold
2165 static void __d_move(struct dentry
* dentry
, struct dentry
* target
)
2167 if (!dentry
->d_inode
)
2168 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
2170 BUG_ON(d_ancestor(dentry
, target
));
2171 BUG_ON(d_ancestor(target
, dentry
));
2173 dentry_lock_for_move(dentry
, target
);
2175 write_seqcount_begin(&dentry
->d_seq
);
2176 write_seqcount_begin(&target
->d_seq
);
2178 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2181 * Move the dentry to the target hash queue. Don't bother checking
2182 * for the same hash queue because of how unlikely it is.
2185 __d_rehash(dentry
, d_hash(target
->d_parent
, target
->d_name
.hash
));
2187 /* Unhash the target: dput() will then get rid of it */
2190 list_del(&dentry
->d_u
.d_child
);
2191 list_del(&target
->d_u
.d_child
);
2193 /* Switch the names.. */
2194 switch_names(dentry
, target
);
2195 swap(dentry
->d_name
.hash
, target
->d_name
.hash
);
2197 /* ... and switch the parents */
2198 if (IS_ROOT(dentry
)) {
2199 dentry
->d_parent
= target
->d_parent
;
2200 target
->d_parent
= target
;
2201 INIT_LIST_HEAD(&target
->d_u
.d_child
);
2203 swap(dentry
->d_parent
, target
->d_parent
);
2205 /* And add them back to the (new) parent lists */
2206 list_add(&target
->d_u
.d_child
, &target
->d_parent
->d_subdirs
);
2209 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
2211 write_seqcount_end(&target
->d_seq
);
2212 write_seqcount_end(&dentry
->d_seq
);
2214 dentry_unlock_parents_for_move(dentry
, target
);
2215 spin_unlock(&target
->d_lock
);
2216 fsnotify_d_move(dentry
);
2217 spin_unlock(&dentry
->d_lock
);
2221 * d_move - move a dentry
2222 * @dentry: entry to move
2223 * @target: new dentry
2225 * Update the dcache to reflect the move of a file name. Negative
2226 * dcache entries should not be moved in this way.
2228 void d_move(struct dentry
*dentry
, struct dentry
*target
)
2230 write_seqlock(&rename_lock
);
2231 __d_move(dentry
, target
);
2232 write_sequnlock(&rename_lock
);
2234 EXPORT_SYMBOL(d_move
);
2237 * d_ancestor - search for an ancestor
2238 * @p1: ancestor dentry
2241 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2242 * an ancestor of p2, else NULL.
2244 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
2248 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
2249 if (p
->d_parent
== p1
)
2256 * This helper attempts to cope with remotely renamed directories
2258 * It assumes that the caller is already holding
2259 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2261 * Note: If ever the locking in lock_rename() changes, then please
2262 * remember to update this too...
2264 static struct dentry
*__d_unalias(struct inode
*inode
,
2265 struct dentry
*dentry
, struct dentry
*alias
)
2267 struct mutex
*m1
= NULL
, *m2
= NULL
;
2270 /* If alias and dentry share a parent, then no extra locks required */
2271 if (alias
->d_parent
== dentry
->d_parent
)
2274 /* See lock_rename() */
2275 ret
= ERR_PTR(-EBUSY
);
2276 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
2278 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
2279 if (!mutex_trylock(&alias
->d_parent
->d_inode
->i_mutex
))
2281 m2
= &alias
->d_parent
->d_inode
->i_mutex
;
2283 __d_move(alias
, dentry
);
2286 spin_unlock(&inode
->i_lock
);
2295 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2296 * named dentry in place of the dentry to be replaced.
2297 * returns with anon->d_lock held!
2299 static void __d_materialise_dentry(struct dentry
*dentry
, struct dentry
*anon
)
2301 struct dentry
*dparent
, *aparent
;
2303 dentry_lock_for_move(anon
, dentry
);
2305 write_seqcount_begin(&dentry
->d_seq
);
2306 write_seqcount_begin(&anon
->d_seq
);
2308 dparent
= dentry
->d_parent
;
2309 aparent
= anon
->d_parent
;
2311 switch_names(dentry
, anon
);
2312 swap(dentry
->d_name
.hash
, anon
->d_name
.hash
);
2314 dentry
->d_parent
= (aparent
== anon
) ? dentry
: aparent
;
2315 list_del(&dentry
->d_u
.d_child
);
2316 if (!IS_ROOT(dentry
))
2317 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
2319 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
2321 anon
->d_parent
= (dparent
== dentry
) ? anon
: dparent
;
2322 list_del(&anon
->d_u
.d_child
);
2324 list_add(&anon
->d_u
.d_child
, &anon
->d_parent
->d_subdirs
);
2326 INIT_LIST_HEAD(&anon
->d_u
.d_child
);
2328 write_seqcount_end(&dentry
->d_seq
);
2329 write_seqcount_end(&anon
->d_seq
);
2331 dentry_unlock_parents_for_move(anon
, dentry
);
2332 spin_unlock(&dentry
->d_lock
);
2334 /* anon->d_lock still locked, returns locked */
2335 anon
->d_flags
&= ~DCACHE_DISCONNECTED
;
2339 * d_materialise_unique - introduce an inode into the tree
2340 * @dentry: candidate dentry
2341 * @inode: inode to bind to the dentry, to which aliases may be attached
2343 * Introduces an dentry into the tree, substituting an extant disconnected
2344 * root directory alias in its place if there is one
2346 struct dentry
*d_materialise_unique(struct dentry
*dentry
, struct inode
*inode
)
2348 struct dentry
*actual
;
2350 BUG_ON(!d_unhashed(dentry
));
2354 __d_instantiate(dentry
, NULL
);
2359 spin_lock(&inode
->i_lock
);
2361 if (S_ISDIR(inode
->i_mode
)) {
2362 struct dentry
*alias
;
2364 /* Does an aliased dentry already exist? */
2365 alias
= __d_find_alias(inode
, 0);
2368 write_seqlock(&rename_lock
);
2370 if (d_ancestor(alias
, dentry
)) {
2371 /* Check for loops */
2372 actual
= ERR_PTR(-ELOOP
);
2373 } else if (IS_ROOT(alias
)) {
2374 /* Is this an anonymous mountpoint that we
2375 * could splice into our tree? */
2376 __d_materialise_dentry(dentry
, alias
);
2377 write_sequnlock(&rename_lock
);
2381 /* Nope, but we must(!) avoid directory
2383 actual
= __d_unalias(inode
, dentry
, alias
);
2385 write_sequnlock(&rename_lock
);
2392 /* Add a unique reference */
2393 actual
= __d_instantiate_unique(dentry
, inode
);
2397 BUG_ON(!d_unhashed(actual
));
2399 spin_lock(&actual
->d_lock
);
2402 spin_unlock(&actual
->d_lock
);
2403 spin_unlock(&inode
->i_lock
);
2405 if (actual
== dentry
) {
2406 security_d_instantiate(dentry
, inode
);
2413 EXPORT_SYMBOL_GPL(d_materialise_unique
);
2415 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
2419 return -ENAMETOOLONG
;
2421 memcpy(*buffer
, str
, namelen
);
2425 static int prepend_name(char **buffer
, int *buflen
, struct qstr
*name
)
2427 return prepend(buffer
, buflen
, name
->name
, name
->len
);
2431 * prepend_path - Prepend path string to a buffer
2432 * @path: the dentry/vfsmount to report
2433 * @root: root vfsmnt/dentry (may be modified by this function)
2434 * @buffer: pointer to the end of the buffer
2435 * @buflen: pointer to buffer length
2437 * Caller holds the rename_lock.
2439 * If path is not reachable from the supplied root, then the value of
2440 * root is changed (without modifying refcounts).
2442 static int prepend_path(const struct path
*path
, struct path
*root
,
2443 char **buffer
, int *buflen
)
2445 struct dentry
*dentry
= path
->dentry
;
2446 struct vfsmount
*vfsmnt
= path
->mnt
;
2450 br_read_lock(vfsmount_lock
);
2451 while (dentry
!= root
->dentry
|| vfsmnt
!= root
->mnt
) {
2452 struct dentry
* parent
;
2454 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
2456 if (vfsmnt
->mnt_parent
== vfsmnt
) {
2459 dentry
= vfsmnt
->mnt_mountpoint
;
2460 vfsmnt
= vfsmnt
->mnt_parent
;
2463 parent
= dentry
->d_parent
;
2465 spin_lock(&dentry
->d_lock
);
2466 error
= prepend_name(buffer
, buflen
, &dentry
->d_name
);
2467 spin_unlock(&dentry
->d_lock
);
2469 error
= prepend(buffer
, buflen
, "/", 1);
2478 if (!error
&& !slash
)
2479 error
= prepend(buffer
, buflen
, "/", 1);
2481 br_read_unlock(vfsmount_lock
);
2486 * Filesystems needing to implement special "root names"
2487 * should do so with ->d_dname()
2489 if (IS_ROOT(dentry
) &&
2490 (dentry
->d_name
.len
!= 1 || dentry
->d_name
.name
[0] != '/')) {
2491 WARN(1, "Root dentry has weird name <%.*s>\n",
2492 (int) dentry
->d_name
.len
, dentry
->d_name
.name
);
2495 root
->dentry
= dentry
;
2500 * __d_path - return the path of a dentry
2501 * @path: the dentry/vfsmount to report
2502 * @root: root vfsmnt/dentry (may be modified by this function)
2503 * @buf: buffer to return value in
2504 * @buflen: buffer length
2506 * Convert a dentry into an ASCII path name.
2508 * Returns a pointer into the buffer or an error code if the
2509 * path was too long.
2511 * "buflen" should be positive.
2513 * If path is not reachable from the supplied root, then the value of
2514 * root is changed (without modifying refcounts).
2516 char *__d_path(const struct path
*path
, struct path
*root
,
2517 char *buf
, int buflen
)
2519 char *res
= buf
+ buflen
;
2522 prepend(&res
, &buflen
, "\0", 1);
2523 write_seqlock(&rename_lock
);
2524 error
= prepend_path(path
, root
, &res
, &buflen
);
2525 write_sequnlock(&rename_lock
);
2528 return ERR_PTR(error
);
2533 * same as __d_path but appends "(deleted)" for unlinked files.
2535 static int path_with_deleted(const struct path
*path
, struct path
*root
,
2536 char **buf
, int *buflen
)
2538 prepend(buf
, buflen
, "\0", 1);
2539 if (d_unlinked(path
->dentry
)) {
2540 int error
= prepend(buf
, buflen
, " (deleted)", 10);
2545 return prepend_path(path
, root
, buf
, buflen
);
2548 static int prepend_unreachable(char **buffer
, int *buflen
)
2550 return prepend(buffer
, buflen
, "(unreachable)", 13);
2554 * d_path - return the path of a dentry
2555 * @path: path to report
2556 * @buf: buffer to return value in
2557 * @buflen: buffer length
2559 * Convert a dentry into an ASCII path name. If the entry has been deleted
2560 * the string " (deleted)" is appended. Note that this is ambiguous.
2562 * Returns a pointer into the buffer or an error code if the path was
2563 * too long. Note: Callers should use the returned pointer, not the passed
2564 * in buffer, to use the name! The implementation often starts at an offset
2565 * into the buffer, and may leave 0 bytes at the start.
2567 * "buflen" should be positive.
2569 char *d_path(const struct path
*path
, char *buf
, int buflen
)
2571 char *res
= buf
+ buflen
;
2577 * We have various synthetic filesystems that never get mounted. On
2578 * these filesystems dentries are never used for lookup purposes, and
2579 * thus don't need to be hashed. They also don't need a name until a
2580 * user wants to identify the object in /proc/pid/fd/. The little hack
2581 * below allows us to generate a name for these objects on demand:
2583 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
)
2584 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
2586 get_fs_root(current
->fs
, &root
);
2587 write_seqlock(&rename_lock
);
2589 error
= path_with_deleted(path
, &tmp
, &res
, &buflen
);
2591 res
= ERR_PTR(error
);
2592 write_sequnlock(&rename_lock
);
2596 EXPORT_SYMBOL(d_path
);
2599 * d_path_with_unreachable - return the path of a dentry
2600 * @path: path to report
2601 * @buf: buffer to return value in
2602 * @buflen: buffer length
2604 * The difference from d_path() is that this prepends "(unreachable)"
2605 * to paths which are unreachable from the current process' root.
2607 char *d_path_with_unreachable(const struct path
*path
, char *buf
, int buflen
)
2609 char *res
= buf
+ buflen
;
2614 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
)
2615 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
2617 get_fs_root(current
->fs
, &root
);
2618 write_seqlock(&rename_lock
);
2620 error
= path_with_deleted(path
, &tmp
, &res
, &buflen
);
2621 if (!error
&& !path_equal(&tmp
, &root
))
2622 error
= prepend_unreachable(&res
, &buflen
);
2623 write_sequnlock(&rename_lock
);
2626 res
= ERR_PTR(error
);
2632 * Helper function for dentry_operations.d_dname() members
2634 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
2635 const char *fmt
, ...)
2641 va_start(args
, fmt
);
2642 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
2645 if (sz
> sizeof(temp
) || sz
> buflen
)
2646 return ERR_PTR(-ENAMETOOLONG
);
2648 buffer
+= buflen
- sz
;
2649 return memcpy(buffer
, temp
, sz
);
2653 * Write full pathname from the root of the filesystem into the buffer.
2655 static char *__dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2657 char *end
= buf
+ buflen
;
2660 prepend(&end
, &buflen
, "\0", 1);
2667 while (!IS_ROOT(dentry
)) {
2668 struct dentry
*parent
= dentry
->d_parent
;
2672 spin_lock(&dentry
->d_lock
);
2673 error
= prepend_name(&end
, &buflen
, &dentry
->d_name
);
2674 spin_unlock(&dentry
->d_lock
);
2675 if (error
!= 0 || prepend(&end
, &buflen
, "/", 1) != 0)
2683 return ERR_PTR(-ENAMETOOLONG
);
2686 char *dentry_path_raw(struct dentry
*dentry
, char *buf
, int buflen
)
2690 write_seqlock(&rename_lock
);
2691 retval
= __dentry_path(dentry
, buf
, buflen
);
2692 write_sequnlock(&rename_lock
);
2696 EXPORT_SYMBOL(dentry_path_raw
);
2698 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2703 write_seqlock(&rename_lock
);
2704 if (d_unlinked(dentry
)) {
2706 if (prepend(&p
, &buflen
, "//deleted", 10) != 0)
2710 retval
= __dentry_path(dentry
, buf
, buflen
);
2711 write_sequnlock(&rename_lock
);
2712 if (!IS_ERR(retval
) && p
)
2713 *p
= '/'; /* restore '/' overriden with '\0' */
2716 return ERR_PTR(-ENAMETOOLONG
);
2720 * NOTE! The user-level library version returns a
2721 * character pointer. The kernel system call just
2722 * returns the length of the buffer filled (which
2723 * includes the ending '\0' character), or a negative
2724 * error value. So libc would do something like
2726 * char *getcwd(char * buf, size_t size)
2730 * retval = sys_getcwd(buf, size);
2737 SYSCALL_DEFINE2(getcwd
, char __user
*, buf
, unsigned long, size
)
2740 struct path pwd
, root
;
2741 char *page
= (char *) __get_free_page(GFP_USER
);
2746 get_fs_root_and_pwd(current
->fs
, &root
, &pwd
);
2749 write_seqlock(&rename_lock
);
2750 if (!d_unlinked(pwd
.dentry
)) {
2752 struct path tmp
= root
;
2753 char *cwd
= page
+ PAGE_SIZE
;
2754 int buflen
= PAGE_SIZE
;
2756 prepend(&cwd
, &buflen
, "\0", 1);
2757 error
= prepend_path(&pwd
, &tmp
, &cwd
, &buflen
);
2758 write_sequnlock(&rename_lock
);
2763 /* Unreachable from current root */
2764 if (!path_equal(&tmp
, &root
)) {
2765 error
= prepend_unreachable(&cwd
, &buflen
);
2771 len
= PAGE_SIZE
+ page
- cwd
;
2774 if (copy_to_user(buf
, cwd
, len
))
2778 write_sequnlock(&rename_lock
);
2784 free_page((unsigned long) page
);
2789 * Test whether new_dentry is a subdirectory of old_dentry.
2791 * Trivially implemented using the dcache structure
2795 * is_subdir - is new dentry a subdirectory of old_dentry
2796 * @new_dentry: new dentry
2797 * @old_dentry: old dentry
2799 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2800 * Returns 0 otherwise.
2801 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2804 int is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
2809 if (new_dentry
== old_dentry
)
2813 /* for restarting inner loop in case of seq retry */
2814 seq
= read_seqbegin(&rename_lock
);
2816 * Need rcu_readlock to protect against the d_parent trashing
2820 if (d_ancestor(old_dentry
, new_dentry
))
2825 } while (read_seqretry(&rename_lock
, seq
));
2830 int path_is_under(struct path
*path1
, struct path
*path2
)
2832 struct vfsmount
*mnt
= path1
->mnt
;
2833 struct dentry
*dentry
= path1
->dentry
;
2836 br_read_lock(vfsmount_lock
);
2837 if (mnt
!= path2
->mnt
) {
2839 if (mnt
->mnt_parent
== mnt
) {
2840 br_read_unlock(vfsmount_lock
);
2843 if (mnt
->mnt_parent
== path2
->mnt
)
2845 mnt
= mnt
->mnt_parent
;
2847 dentry
= mnt
->mnt_mountpoint
;
2849 res
= is_subdir(dentry
, path2
->dentry
);
2850 br_read_unlock(vfsmount_lock
);
2853 EXPORT_SYMBOL(path_is_under
);
2855 void d_genocide(struct dentry
*root
)
2857 struct dentry
*this_parent
;
2858 struct list_head
*next
;
2862 seq
= read_seqbegin(&rename_lock
);
2865 spin_lock(&this_parent
->d_lock
);
2867 next
= this_parent
->d_subdirs
.next
;
2869 while (next
!= &this_parent
->d_subdirs
) {
2870 struct list_head
*tmp
= next
;
2871 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
2874 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
2875 if (d_unhashed(dentry
) || !dentry
->d_inode
) {
2876 spin_unlock(&dentry
->d_lock
);
2879 if (!list_empty(&dentry
->d_subdirs
)) {
2880 spin_unlock(&this_parent
->d_lock
);
2881 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
2882 this_parent
= dentry
;
2883 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
2886 if (!(dentry
->d_flags
& DCACHE_GENOCIDE
)) {
2887 dentry
->d_flags
|= DCACHE_GENOCIDE
;
2890 spin_unlock(&dentry
->d_lock
);
2892 if (this_parent
!= root
) {
2893 struct dentry
*child
= this_parent
;
2894 if (!(this_parent
->d_flags
& DCACHE_GENOCIDE
)) {
2895 this_parent
->d_flags
|= DCACHE_GENOCIDE
;
2896 this_parent
->d_count
--;
2898 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
2901 next
= child
->d_u
.d_child
.next
;
2904 spin_unlock(&this_parent
->d_lock
);
2905 if (!locked
&& read_seqretry(&rename_lock
, seq
))
2908 write_sequnlock(&rename_lock
);
2913 write_seqlock(&rename_lock
);
2918 * find_inode_number - check for dentry with name
2919 * @dir: directory to check
2920 * @name: Name to find.
2922 * Check whether a dentry already exists for the given name,
2923 * and return the inode number if it has an inode. Otherwise
2926 * This routine is used to post-process directory listings for
2927 * filesystems using synthetic inode numbers, and is necessary
2928 * to keep getcwd() working.
2931 ino_t
find_inode_number(struct dentry
*dir
, struct qstr
*name
)
2933 struct dentry
* dentry
;
2936 dentry
= d_hash_and_lookup(dir
, name
);
2938 if (dentry
->d_inode
)
2939 ino
= dentry
->d_inode
->i_ino
;
2944 EXPORT_SYMBOL(find_inode_number
);
2946 static __initdata
unsigned long dhash_entries
;
2947 static int __init
set_dhash_entries(char *str
)
2951 dhash_entries
= simple_strtoul(str
, &str
, 0);
2954 __setup("dhash_entries=", set_dhash_entries
);
2956 static void __init
dcache_init_early(void)
2960 /* If hashes are distributed across NUMA nodes, defer
2961 * hash allocation until vmalloc space is available.
2967 alloc_large_system_hash("Dentry cache",
2968 sizeof(struct hlist_bl_head
),
2976 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
2977 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
2980 static void __init
dcache_init(void)
2985 * A constructor could be added for stable state like the lists,
2986 * but it is probably not worth it because of the cache nature
2989 dentry_cache
= KMEM_CACHE(dentry
,
2990 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
);
2992 /* Hash may have been set up in dcache_init_early */
2997 alloc_large_system_hash("Dentry cache",
2998 sizeof(struct hlist_bl_head
),
3006 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
3007 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3010 /* SLAB cache for __getname() consumers */
3011 struct kmem_cache
*names_cachep __read_mostly
;
3012 EXPORT_SYMBOL(names_cachep
);
3014 EXPORT_SYMBOL(d_genocide
);
3016 void __init
vfs_caches_init_early(void)
3018 dcache_init_early();
3022 void __init
vfs_caches_init(unsigned long mempages
)
3024 unsigned long reserve
;
3026 /* Base hash sizes on available memory, with a reserve equal to
3027 150% of current kernel size */
3029 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
3030 mempages
-= reserve
;
3032 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
3033 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3037 files_init(mempages
);