hugetlb, rmap: add reverse mapping for hugepage
[linux-2.6.git] / mm / hugetlb.c
blobaa3c517393782af5cd8741add7f88bf07c500ef1
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
23 #include <asm/page.h>
24 #include <asm/pgtable.h>
25 #include <asm/io.h>
27 #include <linux/hugetlb.h>
28 #include <linux/node.h>
29 #include "internal.h"
31 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
32 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
33 unsigned long hugepages_treat_as_movable;
35 static int max_hstate;
36 unsigned int default_hstate_idx;
37 struct hstate hstates[HUGE_MAX_HSTATE];
39 __initdata LIST_HEAD(huge_boot_pages);
41 /* for command line parsing */
42 static struct hstate * __initdata parsed_hstate;
43 static unsigned long __initdata default_hstate_max_huge_pages;
44 static unsigned long __initdata default_hstate_size;
46 #define for_each_hstate(h) \
47 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
50 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
52 static DEFINE_SPINLOCK(hugetlb_lock);
55 * Region tracking -- allows tracking of reservations and instantiated pages
56 * across the pages in a mapping.
58 * The region data structures are protected by a combination of the mmap_sem
59 * and the hugetlb_instantion_mutex. To access or modify a region the caller
60 * must either hold the mmap_sem for write, or the mmap_sem for read and
61 * the hugetlb_instantiation mutex:
63 * down_write(&mm->mmap_sem);
64 * or
65 * down_read(&mm->mmap_sem);
66 * mutex_lock(&hugetlb_instantiation_mutex);
68 struct file_region {
69 struct list_head link;
70 long from;
71 long to;
74 static long region_add(struct list_head *head, long f, long t)
76 struct file_region *rg, *nrg, *trg;
78 /* Locate the region we are either in or before. */
79 list_for_each_entry(rg, head, link)
80 if (f <= rg->to)
81 break;
83 /* Round our left edge to the current segment if it encloses us. */
84 if (f > rg->from)
85 f = rg->from;
87 /* Check for and consume any regions we now overlap with. */
88 nrg = rg;
89 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
90 if (&rg->link == head)
91 break;
92 if (rg->from > t)
93 break;
95 /* If this area reaches higher then extend our area to
96 * include it completely. If this is not the first area
97 * which we intend to reuse, free it. */
98 if (rg->to > t)
99 t = rg->to;
100 if (rg != nrg) {
101 list_del(&rg->link);
102 kfree(rg);
105 nrg->from = f;
106 nrg->to = t;
107 return 0;
110 static long region_chg(struct list_head *head, long f, long t)
112 struct file_region *rg, *nrg;
113 long chg = 0;
115 /* Locate the region we are before or in. */
116 list_for_each_entry(rg, head, link)
117 if (f <= rg->to)
118 break;
120 /* If we are below the current region then a new region is required.
121 * Subtle, allocate a new region at the position but make it zero
122 * size such that we can guarantee to record the reservation. */
123 if (&rg->link == head || t < rg->from) {
124 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
125 if (!nrg)
126 return -ENOMEM;
127 nrg->from = f;
128 nrg->to = f;
129 INIT_LIST_HEAD(&nrg->link);
130 list_add(&nrg->link, rg->link.prev);
132 return t - f;
135 /* Round our left edge to the current segment if it encloses us. */
136 if (f > rg->from)
137 f = rg->from;
138 chg = t - f;
140 /* Check for and consume any regions we now overlap with. */
141 list_for_each_entry(rg, rg->link.prev, link) {
142 if (&rg->link == head)
143 break;
144 if (rg->from > t)
145 return chg;
147 /* We overlap with this area, if it extends futher than
148 * us then we must extend ourselves. Account for its
149 * existing reservation. */
150 if (rg->to > t) {
151 chg += rg->to - t;
152 t = rg->to;
154 chg -= rg->to - rg->from;
156 return chg;
159 static long region_truncate(struct list_head *head, long end)
161 struct file_region *rg, *trg;
162 long chg = 0;
164 /* Locate the region we are either in or before. */
165 list_for_each_entry(rg, head, link)
166 if (end <= rg->to)
167 break;
168 if (&rg->link == head)
169 return 0;
171 /* If we are in the middle of a region then adjust it. */
172 if (end > rg->from) {
173 chg = rg->to - end;
174 rg->to = end;
175 rg = list_entry(rg->link.next, typeof(*rg), link);
178 /* Drop any remaining regions. */
179 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
180 if (&rg->link == head)
181 break;
182 chg += rg->to - rg->from;
183 list_del(&rg->link);
184 kfree(rg);
186 return chg;
189 static long region_count(struct list_head *head, long f, long t)
191 struct file_region *rg;
192 long chg = 0;
194 /* Locate each segment we overlap with, and count that overlap. */
195 list_for_each_entry(rg, head, link) {
196 int seg_from;
197 int seg_to;
199 if (rg->to <= f)
200 continue;
201 if (rg->from >= t)
202 break;
204 seg_from = max(rg->from, f);
205 seg_to = min(rg->to, t);
207 chg += seg_to - seg_from;
210 return chg;
214 * Convert the address within this vma to the page offset within
215 * the mapping, in pagecache page units; huge pages here.
217 static pgoff_t vma_hugecache_offset(struct hstate *h,
218 struct vm_area_struct *vma, unsigned long address)
220 return ((address - vma->vm_start) >> huge_page_shift(h)) +
221 (vma->vm_pgoff >> huge_page_order(h));
224 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
225 unsigned long address)
227 return vma_hugecache_offset(hstate_vma(vma), vma, address);
231 * Return the size of the pages allocated when backing a VMA. In the majority
232 * cases this will be same size as used by the page table entries.
234 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
236 struct hstate *hstate;
238 if (!is_vm_hugetlb_page(vma))
239 return PAGE_SIZE;
241 hstate = hstate_vma(vma);
243 return 1UL << (hstate->order + PAGE_SHIFT);
245 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
248 * Return the page size being used by the MMU to back a VMA. In the majority
249 * of cases, the page size used by the kernel matches the MMU size. On
250 * architectures where it differs, an architecture-specific version of this
251 * function is required.
253 #ifndef vma_mmu_pagesize
254 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
256 return vma_kernel_pagesize(vma);
258 #endif
261 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
262 * bits of the reservation map pointer, which are always clear due to
263 * alignment.
265 #define HPAGE_RESV_OWNER (1UL << 0)
266 #define HPAGE_RESV_UNMAPPED (1UL << 1)
267 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
270 * These helpers are used to track how many pages are reserved for
271 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
272 * is guaranteed to have their future faults succeed.
274 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
275 * the reserve counters are updated with the hugetlb_lock held. It is safe
276 * to reset the VMA at fork() time as it is not in use yet and there is no
277 * chance of the global counters getting corrupted as a result of the values.
279 * The private mapping reservation is represented in a subtly different
280 * manner to a shared mapping. A shared mapping has a region map associated
281 * with the underlying file, this region map represents the backing file
282 * pages which have ever had a reservation assigned which this persists even
283 * after the page is instantiated. A private mapping has a region map
284 * associated with the original mmap which is attached to all VMAs which
285 * reference it, this region map represents those offsets which have consumed
286 * reservation ie. where pages have been instantiated.
288 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
290 return (unsigned long)vma->vm_private_data;
293 static void set_vma_private_data(struct vm_area_struct *vma,
294 unsigned long value)
296 vma->vm_private_data = (void *)value;
299 struct resv_map {
300 struct kref refs;
301 struct list_head regions;
304 static struct resv_map *resv_map_alloc(void)
306 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
307 if (!resv_map)
308 return NULL;
310 kref_init(&resv_map->refs);
311 INIT_LIST_HEAD(&resv_map->regions);
313 return resv_map;
316 static void resv_map_release(struct kref *ref)
318 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
320 /* Clear out any active regions before we release the map. */
321 region_truncate(&resv_map->regions, 0);
322 kfree(resv_map);
325 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
327 VM_BUG_ON(!is_vm_hugetlb_page(vma));
328 if (!(vma->vm_flags & VM_MAYSHARE))
329 return (struct resv_map *)(get_vma_private_data(vma) &
330 ~HPAGE_RESV_MASK);
331 return NULL;
334 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
336 VM_BUG_ON(!is_vm_hugetlb_page(vma));
337 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
339 set_vma_private_data(vma, (get_vma_private_data(vma) &
340 HPAGE_RESV_MASK) | (unsigned long)map);
343 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
345 VM_BUG_ON(!is_vm_hugetlb_page(vma));
346 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
348 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
351 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
353 VM_BUG_ON(!is_vm_hugetlb_page(vma));
355 return (get_vma_private_data(vma) & flag) != 0;
358 /* Decrement the reserved pages in the hugepage pool by one */
359 static void decrement_hugepage_resv_vma(struct hstate *h,
360 struct vm_area_struct *vma)
362 if (vma->vm_flags & VM_NORESERVE)
363 return;
365 if (vma->vm_flags & VM_MAYSHARE) {
366 /* Shared mappings always use reserves */
367 h->resv_huge_pages--;
368 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
370 * Only the process that called mmap() has reserves for
371 * private mappings.
373 h->resv_huge_pages--;
377 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
378 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
380 VM_BUG_ON(!is_vm_hugetlb_page(vma));
381 if (!(vma->vm_flags & VM_MAYSHARE))
382 vma->vm_private_data = (void *)0;
385 /* Returns true if the VMA has associated reserve pages */
386 static int vma_has_reserves(struct vm_area_struct *vma)
388 if (vma->vm_flags & VM_MAYSHARE)
389 return 1;
390 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
391 return 1;
392 return 0;
395 static void clear_gigantic_page(struct page *page,
396 unsigned long addr, unsigned long sz)
398 int i;
399 struct page *p = page;
401 might_sleep();
402 for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
403 cond_resched();
404 clear_user_highpage(p, addr + i * PAGE_SIZE);
407 static void clear_huge_page(struct page *page,
408 unsigned long addr, unsigned long sz)
410 int i;
412 if (unlikely(sz/PAGE_SIZE > MAX_ORDER_NR_PAGES)) {
413 clear_gigantic_page(page, addr, sz);
414 return;
417 might_sleep();
418 for (i = 0; i < sz/PAGE_SIZE; i++) {
419 cond_resched();
420 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
424 static void copy_gigantic_page(struct page *dst, struct page *src,
425 unsigned long addr, struct vm_area_struct *vma)
427 int i;
428 struct hstate *h = hstate_vma(vma);
429 struct page *dst_base = dst;
430 struct page *src_base = src;
431 might_sleep();
432 for (i = 0; i < pages_per_huge_page(h); ) {
433 cond_resched();
434 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
436 i++;
437 dst = mem_map_next(dst, dst_base, i);
438 src = mem_map_next(src, src_base, i);
441 static void copy_huge_page(struct page *dst, struct page *src,
442 unsigned long addr, struct vm_area_struct *vma)
444 int i;
445 struct hstate *h = hstate_vma(vma);
447 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
448 copy_gigantic_page(dst, src, addr, vma);
449 return;
452 might_sleep();
453 for (i = 0; i < pages_per_huge_page(h); i++) {
454 cond_resched();
455 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
459 static void enqueue_huge_page(struct hstate *h, struct page *page)
461 int nid = page_to_nid(page);
462 list_add(&page->lru, &h->hugepage_freelists[nid]);
463 h->free_huge_pages++;
464 h->free_huge_pages_node[nid]++;
467 static struct page *dequeue_huge_page_vma(struct hstate *h,
468 struct vm_area_struct *vma,
469 unsigned long address, int avoid_reserve)
471 int nid;
472 struct page *page = NULL;
473 struct mempolicy *mpol;
474 nodemask_t *nodemask;
475 struct zonelist *zonelist;
476 struct zone *zone;
477 struct zoneref *z;
479 get_mems_allowed();
480 zonelist = huge_zonelist(vma, address,
481 htlb_alloc_mask, &mpol, &nodemask);
483 * A child process with MAP_PRIVATE mappings created by their parent
484 * have no page reserves. This check ensures that reservations are
485 * not "stolen". The child may still get SIGKILLed
487 if (!vma_has_reserves(vma) &&
488 h->free_huge_pages - h->resv_huge_pages == 0)
489 goto err;
491 /* If reserves cannot be used, ensure enough pages are in the pool */
492 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
493 goto err;;
495 for_each_zone_zonelist_nodemask(zone, z, zonelist,
496 MAX_NR_ZONES - 1, nodemask) {
497 nid = zone_to_nid(zone);
498 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
499 !list_empty(&h->hugepage_freelists[nid])) {
500 page = list_entry(h->hugepage_freelists[nid].next,
501 struct page, lru);
502 list_del(&page->lru);
503 h->free_huge_pages--;
504 h->free_huge_pages_node[nid]--;
506 if (!avoid_reserve)
507 decrement_hugepage_resv_vma(h, vma);
509 break;
512 err:
513 mpol_cond_put(mpol);
514 put_mems_allowed();
515 return page;
518 static void update_and_free_page(struct hstate *h, struct page *page)
520 int i;
522 VM_BUG_ON(h->order >= MAX_ORDER);
524 h->nr_huge_pages--;
525 h->nr_huge_pages_node[page_to_nid(page)]--;
526 for (i = 0; i < pages_per_huge_page(h); i++) {
527 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
528 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
529 1 << PG_private | 1<< PG_writeback);
531 set_compound_page_dtor(page, NULL);
532 set_page_refcounted(page);
533 arch_release_hugepage(page);
534 __free_pages(page, huge_page_order(h));
537 struct hstate *size_to_hstate(unsigned long size)
539 struct hstate *h;
541 for_each_hstate(h) {
542 if (huge_page_size(h) == size)
543 return h;
545 return NULL;
548 static void free_huge_page(struct page *page)
551 * Can't pass hstate in here because it is called from the
552 * compound page destructor.
554 struct hstate *h = page_hstate(page);
555 int nid = page_to_nid(page);
556 struct address_space *mapping;
558 mapping = (struct address_space *) page_private(page);
559 set_page_private(page, 0);
560 page->mapping = NULL;
561 BUG_ON(page_count(page));
562 BUG_ON(page_mapcount(page));
563 INIT_LIST_HEAD(&page->lru);
565 spin_lock(&hugetlb_lock);
566 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
567 update_and_free_page(h, page);
568 h->surplus_huge_pages--;
569 h->surplus_huge_pages_node[nid]--;
570 } else {
571 enqueue_huge_page(h, page);
573 spin_unlock(&hugetlb_lock);
574 if (mapping)
575 hugetlb_put_quota(mapping, 1);
578 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
580 set_compound_page_dtor(page, free_huge_page);
581 spin_lock(&hugetlb_lock);
582 h->nr_huge_pages++;
583 h->nr_huge_pages_node[nid]++;
584 spin_unlock(&hugetlb_lock);
585 put_page(page); /* free it into the hugepage allocator */
588 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
590 int i;
591 int nr_pages = 1 << order;
592 struct page *p = page + 1;
594 /* we rely on prep_new_huge_page to set the destructor */
595 set_compound_order(page, order);
596 __SetPageHead(page);
597 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
598 __SetPageTail(p);
599 p->first_page = page;
603 int PageHuge(struct page *page)
605 compound_page_dtor *dtor;
607 if (!PageCompound(page))
608 return 0;
610 page = compound_head(page);
611 dtor = get_compound_page_dtor(page);
613 return dtor == free_huge_page;
616 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
618 struct page *page;
620 if (h->order >= MAX_ORDER)
621 return NULL;
623 page = alloc_pages_exact_node(nid,
624 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
625 __GFP_REPEAT|__GFP_NOWARN,
626 huge_page_order(h));
627 if (page) {
628 if (arch_prepare_hugepage(page)) {
629 __free_pages(page, huge_page_order(h));
630 return NULL;
632 prep_new_huge_page(h, page, nid);
635 return page;
639 * common helper functions for hstate_next_node_to_{alloc|free}.
640 * We may have allocated or freed a huge page based on a different
641 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
642 * be outside of *nodes_allowed. Ensure that we use an allowed
643 * node for alloc or free.
645 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
647 nid = next_node(nid, *nodes_allowed);
648 if (nid == MAX_NUMNODES)
649 nid = first_node(*nodes_allowed);
650 VM_BUG_ON(nid >= MAX_NUMNODES);
652 return nid;
655 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
657 if (!node_isset(nid, *nodes_allowed))
658 nid = next_node_allowed(nid, nodes_allowed);
659 return nid;
663 * returns the previously saved node ["this node"] from which to
664 * allocate a persistent huge page for the pool and advance the
665 * next node from which to allocate, handling wrap at end of node
666 * mask.
668 static int hstate_next_node_to_alloc(struct hstate *h,
669 nodemask_t *nodes_allowed)
671 int nid;
673 VM_BUG_ON(!nodes_allowed);
675 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
676 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
678 return nid;
681 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
683 struct page *page;
684 int start_nid;
685 int next_nid;
686 int ret = 0;
688 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
689 next_nid = start_nid;
691 do {
692 page = alloc_fresh_huge_page_node(h, next_nid);
693 if (page) {
694 ret = 1;
695 break;
697 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
698 } while (next_nid != start_nid);
700 if (ret)
701 count_vm_event(HTLB_BUDDY_PGALLOC);
702 else
703 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
705 return ret;
709 * helper for free_pool_huge_page() - return the previously saved
710 * node ["this node"] from which to free a huge page. Advance the
711 * next node id whether or not we find a free huge page to free so
712 * that the next attempt to free addresses the next node.
714 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
716 int nid;
718 VM_BUG_ON(!nodes_allowed);
720 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
721 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
723 return nid;
727 * Free huge page from pool from next node to free.
728 * Attempt to keep persistent huge pages more or less
729 * balanced over allowed nodes.
730 * Called with hugetlb_lock locked.
732 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
733 bool acct_surplus)
735 int start_nid;
736 int next_nid;
737 int ret = 0;
739 start_nid = hstate_next_node_to_free(h, nodes_allowed);
740 next_nid = start_nid;
742 do {
744 * If we're returning unused surplus pages, only examine
745 * nodes with surplus pages.
747 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
748 !list_empty(&h->hugepage_freelists[next_nid])) {
749 struct page *page =
750 list_entry(h->hugepage_freelists[next_nid].next,
751 struct page, lru);
752 list_del(&page->lru);
753 h->free_huge_pages--;
754 h->free_huge_pages_node[next_nid]--;
755 if (acct_surplus) {
756 h->surplus_huge_pages--;
757 h->surplus_huge_pages_node[next_nid]--;
759 update_and_free_page(h, page);
760 ret = 1;
761 break;
763 next_nid = hstate_next_node_to_free(h, nodes_allowed);
764 } while (next_nid != start_nid);
766 return ret;
769 static struct page *alloc_buddy_huge_page(struct hstate *h,
770 struct vm_area_struct *vma, unsigned long address)
772 struct page *page;
773 unsigned int nid;
775 if (h->order >= MAX_ORDER)
776 return NULL;
779 * Assume we will successfully allocate the surplus page to
780 * prevent racing processes from causing the surplus to exceed
781 * overcommit
783 * This however introduces a different race, where a process B
784 * tries to grow the static hugepage pool while alloc_pages() is
785 * called by process A. B will only examine the per-node
786 * counters in determining if surplus huge pages can be
787 * converted to normal huge pages in adjust_pool_surplus(). A
788 * won't be able to increment the per-node counter, until the
789 * lock is dropped by B, but B doesn't drop hugetlb_lock until
790 * no more huge pages can be converted from surplus to normal
791 * state (and doesn't try to convert again). Thus, we have a
792 * case where a surplus huge page exists, the pool is grown, and
793 * the surplus huge page still exists after, even though it
794 * should just have been converted to a normal huge page. This
795 * does not leak memory, though, as the hugepage will be freed
796 * once it is out of use. It also does not allow the counters to
797 * go out of whack in adjust_pool_surplus() as we don't modify
798 * the node values until we've gotten the hugepage and only the
799 * per-node value is checked there.
801 spin_lock(&hugetlb_lock);
802 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
803 spin_unlock(&hugetlb_lock);
804 return NULL;
805 } else {
806 h->nr_huge_pages++;
807 h->surplus_huge_pages++;
809 spin_unlock(&hugetlb_lock);
811 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
812 __GFP_REPEAT|__GFP_NOWARN,
813 huge_page_order(h));
815 if (page && arch_prepare_hugepage(page)) {
816 __free_pages(page, huge_page_order(h));
817 return NULL;
820 spin_lock(&hugetlb_lock);
821 if (page) {
823 * This page is now managed by the hugetlb allocator and has
824 * no users -- drop the buddy allocator's reference.
826 put_page_testzero(page);
827 VM_BUG_ON(page_count(page));
828 nid = page_to_nid(page);
829 set_compound_page_dtor(page, free_huge_page);
831 * We incremented the global counters already
833 h->nr_huge_pages_node[nid]++;
834 h->surplus_huge_pages_node[nid]++;
835 __count_vm_event(HTLB_BUDDY_PGALLOC);
836 } else {
837 h->nr_huge_pages--;
838 h->surplus_huge_pages--;
839 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
841 spin_unlock(&hugetlb_lock);
843 return page;
847 * Increase the hugetlb pool such that it can accomodate a reservation
848 * of size 'delta'.
850 static int gather_surplus_pages(struct hstate *h, int delta)
852 struct list_head surplus_list;
853 struct page *page, *tmp;
854 int ret, i;
855 int needed, allocated;
857 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
858 if (needed <= 0) {
859 h->resv_huge_pages += delta;
860 return 0;
863 allocated = 0;
864 INIT_LIST_HEAD(&surplus_list);
866 ret = -ENOMEM;
867 retry:
868 spin_unlock(&hugetlb_lock);
869 for (i = 0; i < needed; i++) {
870 page = alloc_buddy_huge_page(h, NULL, 0);
871 if (!page) {
873 * We were not able to allocate enough pages to
874 * satisfy the entire reservation so we free what
875 * we've allocated so far.
877 spin_lock(&hugetlb_lock);
878 needed = 0;
879 goto free;
882 list_add(&page->lru, &surplus_list);
884 allocated += needed;
887 * After retaking hugetlb_lock, we need to recalculate 'needed'
888 * because either resv_huge_pages or free_huge_pages may have changed.
890 spin_lock(&hugetlb_lock);
891 needed = (h->resv_huge_pages + delta) -
892 (h->free_huge_pages + allocated);
893 if (needed > 0)
894 goto retry;
897 * The surplus_list now contains _at_least_ the number of extra pages
898 * needed to accomodate the reservation. Add the appropriate number
899 * of pages to the hugetlb pool and free the extras back to the buddy
900 * allocator. Commit the entire reservation here to prevent another
901 * process from stealing the pages as they are added to the pool but
902 * before they are reserved.
904 needed += allocated;
905 h->resv_huge_pages += delta;
906 ret = 0;
907 free:
908 /* Free the needed pages to the hugetlb pool */
909 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
910 if ((--needed) < 0)
911 break;
912 list_del(&page->lru);
913 enqueue_huge_page(h, page);
916 /* Free unnecessary surplus pages to the buddy allocator */
917 if (!list_empty(&surplus_list)) {
918 spin_unlock(&hugetlb_lock);
919 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
920 list_del(&page->lru);
922 * The page has a reference count of zero already, so
923 * call free_huge_page directly instead of using
924 * put_page. This must be done with hugetlb_lock
925 * unlocked which is safe because free_huge_page takes
926 * hugetlb_lock before deciding how to free the page.
928 free_huge_page(page);
930 spin_lock(&hugetlb_lock);
933 return ret;
937 * When releasing a hugetlb pool reservation, any surplus pages that were
938 * allocated to satisfy the reservation must be explicitly freed if they were
939 * never used.
940 * Called with hugetlb_lock held.
942 static void return_unused_surplus_pages(struct hstate *h,
943 unsigned long unused_resv_pages)
945 unsigned long nr_pages;
947 /* Uncommit the reservation */
948 h->resv_huge_pages -= unused_resv_pages;
950 /* Cannot return gigantic pages currently */
951 if (h->order >= MAX_ORDER)
952 return;
954 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
957 * We want to release as many surplus pages as possible, spread
958 * evenly across all nodes with memory. Iterate across these nodes
959 * until we can no longer free unreserved surplus pages. This occurs
960 * when the nodes with surplus pages have no free pages.
961 * free_pool_huge_page() will balance the the freed pages across the
962 * on-line nodes with memory and will handle the hstate accounting.
964 while (nr_pages--) {
965 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
966 break;
971 * Determine if the huge page at addr within the vma has an associated
972 * reservation. Where it does not we will need to logically increase
973 * reservation and actually increase quota before an allocation can occur.
974 * Where any new reservation would be required the reservation change is
975 * prepared, but not committed. Once the page has been quota'd allocated
976 * an instantiated the change should be committed via vma_commit_reservation.
977 * No action is required on failure.
979 static long vma_needs_reservation(struct hstate *h,
980 struct vm_area_struct *vma, unsigned long addr)
982 struct address_space *mapping = vma->vm_file->f_mapping;
983 struct inode *inode = mapping->host;
985 if (vma->vm_flags & VM_MAYSHARE) {
986 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
987 return region_chg(&inode->i_mapping->private_list,
988 idx, idx + 1);
990 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
991 return 1;
993 } else {
994 long err;
995 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
996 struct resv_map *reservations = vma_resv_map(vma);
998 err = region_chg(&reservations->regions, idx, idx + 1);
999 if (err < 0)
1000 return err;
1001 return 0;
1004 static void vma_commit_reservation(struct hstate *h,
1005 struct vm_area_struct *vma, unsigned long addr)
1007 struct address_space *mapping = vma->vm_file->f_mapping;
1008 struct inode *inode = mapping->host;
1010 if (vma->vm_flags & VM_MAYSHARE) {
1011 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1012 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1014 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1015 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1016 struct resv_map *reservations = vma_resv_map(vma);
1018 /* Mark this page used in the map. */
1019 region_add(&reservations->regions, idx, idx + 1);
1023 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1024 unsigned long addr, int avoid_reserve)
1026 struct hstate *h = hstate_vma(vma);
1027 struct page *page;
1028 struct address_space *mapping = vma->vm_file->f_mapping;
1029 struct inode *inode = mapping->host;
1030 long chg;
1033 * Processes that did not create the mapping will have no reserves and
1034 * will not have accounted against quota. Check that the quota can be
1035 * made before satisfying the allocation
1036 * MAP_NORESERVE mappings may also need pages and quota allocated
1037 * if no reserve mapping overlaps.
1039 chg = vma_needs_reservation(h, vma, addr);
1040 if (chg < 0)
1041 return ERR_PTR(chg);
1042 if (chg)
1043 if (hugetlb_get_quota(inode->i_mapping, chg))
1044 return ERR_PTR(-ENOSPC);
1046 spin_lock(&hugetlb_lock);
1047 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1048 spin_unlock(&hugetlb_lock);
1050 if (!page) {
1051 page = alloc_buddy_huge_page(h, vma, addr);
1052 if (!page) {
1053 hugetlb_put_quota(inode->i_mapping, chg);
1054 return ERR_PTR(-VM_FAULT_SIGBUS);
1058 set_page_refcounted(page);
1059 set_page_private(page, (unsigned long) mapping);
1061 vma_commit_reservation(h, vma, addr);
1063 return page;
1066 int __weak alloc_bootmem_huge_page(struct hstate *h)
1068 struct huge_bootmem_page *m;
1069 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1071 while (nr_nodes) {
1072 void *addr;
1074 addr = __alloc_bootmem_node_nopanic(
1075 NODE_DATA(hstate_next_node_to_alloc(h,
1076 &node_states[N_HIGH_MEMORY])),
1077 huge_page_size(h), huge_page_size(h), 0);
1079 if (addr) {
1081 * Use the beginning of the huge page to store the
1082 * huge_bootmem_page struct (until gather_bootmem
1083 * puts them into the mem_map).
1085 m = addr;
1086 goto found;
1088 nr_nodes--;
1090 return 0;
1092 found:
1093 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1094 /* Put them into a private list first because mem_map is not up yet */
1095 list_add(&m->list, &huge_boot_pages);
1096 m->hstate = h;
1097 return 1;
1100 static void prep_compound_huge_page(struct page *page, int order)
1102 if (unlikely(order > (MAX_ORDER - 1)))
1103 prep_compound_gigantic_page(page, order);
1104 else
1105 prep_compound_page(page, order);
1108 /* Put bootmem huge pages into the standard lists after mem_map is up */
1109 static void __init gather_bootmem_prealloc(void)
1111 struct huge_bootmem_page *m;
1113 list_for_each_entry(m, &huge_boot_pages, list) {
1114 struct page *page = virt_to_page(m);
1115 struct hstate *h = m->hstate;
1116 __ClearPageReserved(page);
1117 WARN_ON(page_count(page) != 1);
1118 prep_compound_huge_page(page, h->order);
1119 prep_new_huge_page(h, page, page_to_nid(page));
1123 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1125 unsigned long i;
1127 for (i = 0; i < h->max_huge_pages; ++i) {
1128 if (h->order >= MAX_ORDER) {
1129 if (!alloc_bootmem_huge_page(h))
1130 break;
1131 } else if (!alloc_fresh_huge_page(h,
1132 &node_states[N_HIGH_MEMORY]))
1133 break;
1135 h->max_huge_pages = i;
1138 static void __init hugetlb_init_hstates(void)
1140 struct hstate *h;
1142 for_each_hstate(h) {
1143 /* oversize hugepages were init'ed in early boot */
1144 if (h->order < MAX_ORDER)
1145 hugetlb_hstate_alloc_pages(h);
1149 static char * __init memfmt(char *buf, unsigned long n)
1151 if (n >= (1UL << 30))
1152 sprintf(buf, "%lu GB", n >> 30);
1153 else if (n >= (1UL << 20))
1154 sprintf(buf, "%lu MB", n >> 20);
1155 else
1156 sprintf(buf, "%lu KB", n >> 10);
1157 return buf;
1160 static void __init report_hugepages(void)
1162 struct hstate *h;
1164 for_each_hstate(h) {
1165 char buf[32];
1166 printk(KERN_INFO "HugeTLB registered %s page size, "
1167 "pre-allocated %ld pages\n",
1168 memfmt(buf, huge_page_size(h)),
1169 h->free_huge_pages);
1173 #ifdef CONFIG_HIGHMEM
1174 static void try_to_free_low(struct hstate *h, unsigned long count,
1175 nodemask_t *nodes_allowed)
1177 int i;
1179 if (h->order >= MAX_ORDER)
1180 return;
1182 for_each_node_mask(i, *nodes_allowed) {
1183 struct page *page, *next;
1184 struct list_head *freel = &h->hugepage_freelists[i];
1185 list_for_each_entry_safe(page, next, freel, lru) {
1186 if (count >= h->nr_huge_pages)
1187 return;
1188 if (PageHighMem(page))
1189 continue;
1190 list_del(&page->lru);
1191 update_and_free_page(h, page);
1192 h->free_huge_pages--;
1193 h->free_huge_pages_node[page_to_nid(page)]--;
1197 #else
1198 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1199 nodemask_t *nodes_allowed)
1202 #endif
1205 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1206 * balanced by operating on them in a round-robin fashion.
1207 * Returns 1 if an adjustment was made.
1209 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1210 int delta)
1212 int start_nid, next_nid;
1213 int ret = 0;
1215 VM_BUG_ON(delta != -1 && delta != 1);
1217 if (delta < 0)
1218 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1219 else
1220 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1221 next_nid = start_nid;
1223 do {
1224 int nid = next_nid;
1225 if (delta < 0) {
1227 * To shrink on this node, there must be a surplus page
1229 if (!h->surplus_huge_pages_node[nid]) {
1230 next_nid = hstate_next_node_to_alloc(h,
1231 nodes_allowed);
1232 continue;
1235 if (delta > 0) {
1237 * Surplus cannot exceed the total number of pages
1239 if (h->surplus_huge_pages_node[nid] >=
1240 h->nr_huge_pages_node[nid]) {
1241 next_nid = hstate_next_node_to_free(h,
1242 nodes_allowed);
1243 continue;
1247 h->surplus_huge_pages += delta;
1248 h->surplus_huge_pages_node[nid] += delta;
1249 ret = 1;
1250 break;
1251 } while (next_nid != start_nid);
1253 return ret;
1256 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1257 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1258 nodemask_t *nodes_allowed)
1260 unsigned long min_count, ret;
1262 if (h->order >= MAX_ORDER)
1263 return h->max_huge_pages;
1266 * Increase the pool size
1267 * First take pages out of surplus state. Then make up the
1268 * remaining difference by allocating fresh huge pages.
1270 * We might race with alloc_buddy_huge_page() here and be unable
1271 * to convert a surplus huge page to a normal huge page. That is
1272 * not critical, though, it just means the overall size of the
1273 * pool might be one hugepage larger than it needs to be, but
1274 * within all the constraints specified by the sysctls.
1276 spin_lock(&hugetlb_lock);
1277 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1278 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1279 break;
1282 while (count > persistent_huge_pages(h)) {
1284 * If this allocation races such that we no longer need the
1285 * page, free_huge_page will handle it by freeing the page
1286 * and reducing the surplus.
1288 spin_unlock(&hugetlb_lock);
1289 ret = alloc_fresh_huge_page(h, nodes_allowed);
1290 spin_lock(&hugetlb_lock);
1291 if (!ret)
1292 goto out;
1294 /* Bail for signals. Probably ctrl-c from user */
1295 if (signal_pending(current))
1296 goto out;
1300 * Decrease the pool size
1301 * First return free pages to the buddy allocator (being careful
1302 * to keep enough around to satisfy reservations). Then place
1303 * pages into surplus state as needed so the pool will shrink
1304 * to the desired size as pages become free.
1306 * By placing pages into the surplus state independent of the
1307 * overcommit value, we are allowing the surplus pool size to
1308 * exceed overcommit. There are few sane options here. Since
1309 * alloc_buddy_huge_page() is checking the global counter,
1310 * though, we'll note that we're not allowed to exceed surplus
1311 * and won't grow the pool anywhere else. Not until one of the
1312 * sysctls are changed, or the surplus pages go out of use.
1314 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1315 min_count = max(count, min_count);
1316 try_to_free_low(h, min_count, nodes_allowed);
1317 while (min_count < persistent_huge_pages(h)) {
1318 if (!free_pool_huge_page(h, nodes_allowed, 0))
1319 break;
1321 while (count < persistent_huge_pages(h)) {
1322 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1323 break;
1325 out:
1326 ret = persistent_huge_pages(h);
1327 spin_unlock(&hugetlb_lock);
1328 return ret;
1331 #define HSTATE_ATTR_RO(_name) \
1332 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1334 #define HSTATE_ATTR(_name) \
1335 static struct kobj_attribute _name##_attr = \
1336 __ATTR(_name, 0644, _name##_show, _name##_store)
1338 static struct kobject *hugepages_kobj;
1339 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1341 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1343 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1345 int i;
1347 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1348 if (hstate_kobjs[i] == kobj) {
1349 if (nidp)
1350 *nidp = NUMA_NO_NODE;
1351 return &hstates[i];
1354 return kobj_to_node_hstate(kobj, nidp);
1357 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1358 struct kobj_attribute *attr, char *buf)
1360 struct hstate *h;
1361 unsigned long nr_huge_pages;
1362 int nid;
1364 h = kobj_to_hstate(kobj, &nid);
1365 if (nid == NUMA_NO_NODE)
1366 nr_huge_pages = h->nr_huge_pages;
1367 else
1368 nr_huge_pages = h->nr_huge_pages_node[nid];
1370 return sprintf(buf, "%lu\n", nr_huge_pages);
1372 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1373 struct kobject *kobj, struct kobj_attribute *attr,
1374 const char *buf, size_t len)
1376 int err;
1377 int nid;
1378 unsigned long count;
1379 struct hstate *h;
1380 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1382 err = strict_strtoul(buf, 10, &count);
1383 if (err)
1384 return 0;
1386 h = kobj_to_hstate(kobj, &nid);
1387 if (nid == NUMA_NO_NODE) {
1389 * global hstate attribute
1391 if (!(obey_mempolicy &&
1392 init_nodemask_of_mempolicy(nodes_allowed))) {
1393 NODEMASK_FREE(nodes_allowed);
1394 nodes_allowed = &node_states[N_HIGH_MEMORY];
1396 } else if (nodes_allowed) {
1398 * per node hstate attribute: adjust count to global,
1399 * but restrict alloc/free to the specified node.
1401 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1402 init_nodemask_of_node(nodes_allowed, nid);
1403 } else
1404 nodes_allowed = &node_states[N_HIGH_MEMORY];
1406 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1408 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1409 NODEMASK_FREE(nodes_allowed);
1411 return len;
1414 static ssize_t nr_hugepages_show(struct kobject *kobj,
1415 struct kobj_attribute *attr, char *buf)
1417 return nr_hugepages_show_common(kobj, attr, buf);
1420 static ssize_t nr_hugepages_store(struct kobject *kobj,
1421 struct kobj_attribute *attr, const char *buf, size_t len)
1423 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1425 HSTATE_ATTR(nr_hugepages);
1427 #ifdef CONFIG_NUMA
1430 * hstate attribute for optionally mempolicy-based constraint on persistent
1431 * huge page alloc/free.
1433 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1434 struct kobj_attribute *attr, char *buf)
1436 return nr_hugepages_show_common(kobj, attr, buf);
1439 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1440 struct kobj_attribute *attr, const char *buf, size_t len)
1442 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1444 HSTATE_ATTR(nr_hugepages_mempolicy);
1445 #endif
1448 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1449 struct kobj_attribute *attr, char *buf)
1451 struct hstate *h = kobj_to_hstate(kobj, NULL);
1452 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1454 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1455 struct kobj_attribute *attr, const char *buf, size_t count)
1457 int err;
1458 unsigned long input;
1459 struct hstate *h = kobj_to_hstate(kobj, NULL);
1461 err = strict_strtoul(buf, 10, &input);
1462 if (err)
1463 return 0;
1465 spin_lock(&hugetlb_lock);
1466 h->nr_overcommit_huge_pages = input;
1467 spin_unlock(&hugetlb_lock);
1469 return count;
1471 HSTATE_ATTR(nr_overcommit_hugepages);
1473 static ssize_t free_hugepages_show(struct kobject *kobj,
1474 struct kobj_attribute *attr, char *buf)
1476 struct hstate *h;
1477 unsigned long free_huge_pages;
1478 int nid;
1480 h = kobj_to_hstate(kobj, &nid);
1481 if (nid == NUMA_NO_NODE)
1482 free_huge_pages = h->free_huge_pages;
1483 else
1484 free_huge_pages = h->free_huge_pages_node[nid];
1486 return sprintf(buf, "%lu\n", free_huge_pages);
1488 HSTATE_ATTR_RO(free_hugepages);
1490 static ssize_t resv_hugepages_show(struct kobject *kobj,
1491 struct kobj_attribute *attr, char *buf)
1493 struct hstate *h = kobj_to_hstate(kobj, NULL);
1494 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1496 HSTATE_ATTR_RO(resv_hugepages);
1498 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1499 struct kobj_attribute *attr, char *buf)
1501 struct hstate *h;
1502 unsigned long surplus_huge_pages;
1503 int nid;
1505 h = kobj_to_hstate(kobj, &nid);
1506 if (nid == NUMA_NO_NODE)
1507 surplus_huge_pages = h->surplus_huge_pages;
1508 else
1509 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1511 return sprintf(buf, "%lu\n", surplus_huge_pages);
1513 HSTATE_ATTR_RO(surplus_hugepages);
1515 static struct attribute *hstate_attrs[] = {
1516 &nr_hugepages_attr.attr,
1517 &nr_overcommit_hugepages_attr.attr,
1518 &free_hugepages_attr.attr,
1519 &resv_hugepages_attr.attr,
1520 &surplus_hugepages_attr.attr,
1521 #ifdef CONFIG_NUMA
1522 &nr_hugepages_mempolicy_attr.attr,
1523 #endif
1524 NULL,
1527 static struct attribute_group hstate_attr_group = {
1528 .attrs = hstate_attrs,
1531 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1532 struct kobject **hstate_kobjs,
1533 struct attribute_group *hstate_attr_group)
1535 int retval;
1536 int hi = h - hstates;
1538 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1539 if (!hstate_kobjs[hi])
1540 return -ENOMEM;
1542 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1543 if (retval)
1544 kobject_put(hstate_kobjs[hi]);
1546 return retval;
1549 static void __init hugetlb_sysfs_init(void)
1551 struct hstate *h;
1552 int err;
1554 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1555 if (!hugepages_kobj)
1556 return;
1558 for_each_hstate(h) {
1559 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1560 hstate_kobjs, &hstate_attr_group);
1561 if (err)
1562 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1563 h->name);
1567 #ifdef CONFIG_NUMA
1570 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1571 * with node sysdevs in node_devices[] using a parallel array. The array
1572 * index of a node sysdev or _hstate == node id.
1573 * This is here to avoid any static dependency of the node sysdev driver, in
1574 * the base kernel, on the hugetlb module.
1576 struct node_hstate {
1577 struct kobject *hugepages_kobj;
1578 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1580 struct node_hstate node_hstates[MAX_NUMNODES];
1583 * A subset of global hstate attributes for node sysdevs
1585 static struct attribute *per_node_hstate_attrs[] = {
1586 &nr_hugepages_attr.attr,
1587 &free_hugepages_attr.attr,
1588 &surplus_hugepages_attr.attr,
1589 NULL,
1592 static struct attribute_group per_node_hstate_attr_group = {
1593 .attrs = per_node_hstate_attrs,
1597 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1598 * Returns node id via non-NULL nidp.
1600 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1602 int nid;
1604 for (nid = 0; nid < nr_node_ids; nid++) {
1605 struct node_hstate *nhs = &node_hstates[nid];
1606 int i;
1607 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1608 if (nhs->hstate_kobjs[i] == kobj) {
1609 if (nidp)
1610 *nidp = nid;
1611 return &hstates[i];
1615 BUG();
1616 return NULL;
1620 * Unregister hstate attributes from a single node sysdev.
1621 * No-op if no hstate attributes attached.
1623 void hugetlb_unregister_node(struct node *node)
1625 struct hstate *h;
1626 struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1628 if (!nhs->hugepages_kobj)
1629 return; /* no hstate attributes */
1631 for_each_hstate(h)
1632 if (nhs->hstate_kobjs[h - hstates]) {
1633 kobject_put(nhs->hstate_kobjs[h - hstates]);
1634 nhs->hstate_kobjs[h - hstates] = NULL;
1637 kobject_put(nhs->hugepages_kobj);
1638 nhs->hugepages_kobj = NULL;
1642 * hugetlb module exit: unregister hstate attributes from node sysdevs
1643 * that have them.
1645 static void hugetlb_unregister_all_nodes(void)
1647 int nid;
1650 * disable node sysdev registrations.
1652 register_hugetlbfs_with_node(NULL, NULL);
1655 * remove hstate attributes from any nodes that have them.
1657 for (nid = 0; nid < nr_node_ids; nid++)
1658 hugetlb_unregister_node(&node_devices[nid]);
1662 * Register hstate attributes for a single node sysdev.
1663 * No-op if attributes already registered.
1665 void hugetlb_register_node(struct node *node)
1667 struct hstate *h;
1668 struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1669 int err;
1671 if (nhs->hugepages_kobj)
1672 return; /* already allocated */
1674 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1675 &node->sysdev.kobj);
1676 if (!nhs->hugepages_kobj)
1677 return;
1679 for_each_hstate(h) {
1680 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1681 nhs->hstate_kobjs,
1682 &per_node_hstate_attr_group);
1683 if (err) {
1684 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1685 " for node %d\n",
1686 h->name, node->sysdev.id);
1687 hugetlb_unregister_node(node);
1688 break;
1694 * hugetlb init time: register hstate attributes for all registered node
1695 * sysdevs of nodes that have memory. All on-line nodes should have
1696 * registered their associated sysdev by this time.
1698 static void hugetlb_register_all_nodes(void)
1700 int nid;
1702 for_each_node_state(nid, N_HIGH_MEMORY) {
1703 struct node *node = &node_devices[nid];
1704 if (node->sysdev.id == nid)
1705 hugetlb_register_node(node);
1709 * Let the node sysdev driver know we're here so it can
1710 * [un]register hstate attributes on node hotplug.
1712 register_hugetlbfs_with_node(hugetlb_register_node,
1713 hugetlb_unregister_node);
1715 #else /* !CONFIG_NUMA */
1717 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1719 BUG();
1720 if (nidp)
1721 *nidp = -1;
1722 return NULL;
1725 static void hugetlb_unregister_all_nodes(void) { }
1727 static void hugetlb_register_all_nodes(void) { }
1729 #endif
1731 static void __exit hugetlb_exit(void)
1733 struct hstate *h;
1735 hugetlb_unregister_all_nodes();
1737 for_each_hstate(h) {
1738 kobject_put(hstate_kobjs[h - hstates]);
1741 kobject_put(hugepages_kobj);
1743 module_exit(hugetlb_exit);
1745 static int __init hugetlb_init(void)
1747 /* Some platform decide whether they support huge pages at boot
1748 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1749 * there is no such support
1751 if (HPAGE_SHIFT == 0)
1752 return 0;
1754 if (!size_to_hstate(default_hstate_size)) {
1755 default_hstate_size = HPAGE_SIZE;
1756 if (!size_to_hstate(default_hstate_size))
1757 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1759 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1760 if (default_hstate_max_huge_pages)
1761 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1763 hugetlb_init_hstates();
1765 gather_bootmem_prealloc();
1767 report_hugepages();
1769 hugetlb_sysfs_init();
1771 hugetlb_register_all_nodes();
1773 return 0;
1775 module_init(hugetlb_init);
1777 /* Should be called on processing a hugepagesz=... option */
1778 void __init hugetlb_add_hstate(unsigned order)
1780 struct hstate *h;
1781 unsigned long i;
1783 if (size_to_hstate(PAGE_SIZE << order)) {
1784 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1785 return;
1787 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1788 BUG_ON(order == 0);
1789 h = &hstates[max_hstate++];
1790 h->order = order;
1791 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1792 h->nr_huge_pages = 0;
1793 h->free_huge_pages = 0;
1794 for (i = 0; i < MAX_NUMNODES; ++i)
1795 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1796 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1797 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1798 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1799 huge_page_size(h)/1024);
1801 parsed_hstate = h;
1804 static int __init hugetlb_nrpages_setup(char *s)
1806 unsigned long *mhp;
1807 static unsigned long *last_mhp;
1810 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1811 * so this hugepages= parameter goes to the "default hstate".
1813 if (!max_hstate)
1814 mhp = &default_hstate_max_huge_pages;
1815 else
1816 mhp = &parsed_hstate->max_huge_pages;
1818 if (mhp == last_mhp) {
1819 printk(KERN_WARNING "hugepages= specified twice without "
1820 "interleaving hugepagesz=, ignoring\n");
1821 return 1;
1824 if (sscanf(s, "%lu", mhp) <= 0)
1825 *mhp = 0;
1828 * Global state is always initialized later in hugetlb_init.
1829 * But we need to allocate >= MAX_ORDER hstates here early to still
1830 * use the bootmem allocator.
1832 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1833 hugetlb_hstate_alloc_pages(parsed_hstate);
1835 last_mhp = mhp;
1837 return 1;
1839 __setup("hugepages=", hugetlb_nrpages_setup);
1841 static int __init hugetlb_default_setup(char *s)
1843 default_hstate_size = memparse(s, &s);
1844 return 1;
1846 __setup("default_hugepagesz=", hugetlb_default_setup);
1848 static unsigned int cpuset_mems_nr(unsigned int *array)
1850 int node;
1851 unsigned int nr = 0;
1853 for_each_node_mask(node, cpuset_current_mems_allowed)
1854 nr += array[node];
1856 return nr;
1859 #ifdef CONFIG_SYSCTL
1860 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1861 struct ctl_table *table, int write,
1862 void __user *buffer, size_t *length, loff_t *ppos)
1864 struct hstate *h = &default_hstate;
1865 unsigned long tmp;
1867 if (!write)
1868 tmp = h->max_huge_pages;
1870 table->data = &tmp;
1871 table->maxlen = sizeof(unsigned long);
1872 proc_doulongvec_minmax(table, write, buffer, length, ppos);
1874 if (write) {
1875 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1876 GFP_KERNEL | __GFP_NORETRY);
1877 if (!(obey_mempolicy &&
1878 init_nodemask_of_mempolicy(nodes_allowed))) {
1879 NODEMASK_FREE(nodes_allowed);
1880 nodes_allowed = &node_states[N_HIGH_MEMORY];
1882 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1884 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1885 NODEMASK_FREE(nodes_allowed);
1888 return 0;
1891 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1892 void __user *buffer, size_t *length, loff_t *ppos)
1895 return hugetlb_sysctl_handler_common(false, table, write,
1896 buffer, length, ppos);
1899 #ifdef CONFIG_NUMA
1900 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1901 void __user *buffer, size_t *length, loff_t *ppos)
1903 return hugetlb_sysctl_handler_common(true, table, write,
1904 buffer, length, ppos);
1906 #endif /* CONFIG_NUMA */
1908 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1909 void __user *buffer,
1910 size_t *length, loff_t *ppos)
1912 proc_dointvec(table, write, buffer, length, ppos);
1913 if (hugepages_treat_as_movable)
1914 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1915 else
1916 htlb_alloc_mask = GFP_HIGHUSER;
1917 return 0;
1920 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1921 void __user *buffer,
1922 size_t *length, loff_t *ppos)
1924 struct hstate *h = &default_hstate;
1925 unsigned long tmp;
1927 if (!write)
1928 tmp = h->nr_overcommit_huge_pages;
1930 table->data = &tmp;
1931 table->maxlen = sizeof(unsigned long);
1932 proc_doulongvec_minmax(table, write, buffer, length, ppos);
1934 if (write) {
1935 spin_lock(&hugetlb_lock);
1936 h->nr_overcommit_huge_pages = tmp;
1937 spin_unlock(&hugetlb_lock);
1940 return 0;
1943 #endif /* CONFIG_SYSCTL */
1945 void hugetlb_report_meminfo(struct seq_file *m)
1947 struct hstate *h = &default_hstate;
1948 seq_printf(m,
1949 "HugePages_Total: %5lu\n"
1950 "HugePages_Free: %5lu\n"
1951 "HugePages_Rsvd: %5lu\n"
1952 "HugePages_Surp: %5lu\n"
1953 "Hugepagesize: %8lu kB\n",
1954 h->nr_huge_pages,
1955 h->free_huge_pages,
1956 h->resv_huge_pages,
1957 h->surplus_huge_pages,
1958 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1961 int hugetlb_report_node_meminfo(int nid, char *buf)
1963 struct hstate *h = &default_hstate;
1964 return sprintf(buf,
1965 "Node %d HugePages_Total: %5u\n"
1966 "Node %d HugePages_Free: %5u\n"
1967 "Node %d HugePages_Surp: %5u\n",
1968 nid, h->nr_huge_pages_node[nid],
1969 nid, h->free_huge_pages_node[nid],
1970 nid, h->surplus_huge_pages_node[nid]);
1973 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1974 unsigned long hugetlb_total_pages(void)
1976 struct hstate *h = &default_hstate;
1977 return h->nr_huge_pages * pages_per_huge_page(h);
1980 static int hugetlb_acct_memory(struct hstate *h, long delta)
1982 int ret = -ENOMEM;
1984 spin_lock(&hugetlb_lock);
1986 * When cpuset is configured, it breaks the strict hugetlb page
1987 * reservation as the accounting is done on a global variable. Such
1988 * reservation is completely rubbish in the presence of cpuset because
1989 * the reservation is not checked against page availability for the
1990 * current cpuset. Application can still potentially OOM'ed by kernel
1991 * with lack of free htlb page in cpuset that the task is in.
1992 * Attempt to enforce strict accounting with cpuset is almost
1993 * impossible (or too ugly) because cpuset is too fluid that
1994 * task or memory node can be dynamically moved between cpusets.
1996 * The change of semantics for shared hugetlb mapping with cpuset is
1997 * undesirable. However, in order to preserve some of the semantics,
1998 * we fall back to check against current free page availability as
1999 * a best attempt and hopefully to minimize the impact of changing
2000 * semantics that cpuset has.
2002 if (delta > 0) {
2003 if (gather_surplus_pages(h, delta) < 0)
2004 goto out;
2006 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2007 return_unused_surplus_pages(h, delta);
2008 goto out;
2012 ret = 0;
2013 if (delta < 0)
2014 return_unused_surplus_pages(h, (unsigned long) -delta);
2016 out:
2017 spin_unlock(&hugetlb_lock);
2018 return ret;
2021 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2023 struct resv_map *reservations = vma_resv_map(vma);
2026 * This new VMA should share its siblings reservation map if present.
2027 * The VMA will only ever have a valid reservation map pointer where
2028 * it is being copied for another still existing VMA. As that VMA
2029 * has a reference to the reservation map it cannot dissappear until
2030 * after this open call completes. It is therefore safe to take a
2031 * new reference here without additional locking.
2033 if (reservations)
2034 kref_get(&reservations->refs);
2037 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2039 struct hstate *h = hstate_vma(vma);
2040 struct resv_map *reservations = vma_resv_map(vma);
2041 unsigned long reserve;
2042 unsigned long start;
2043 unsigned long end;
2045 if (reservations) {
2046 start = vma_hugecache_offset(h, vma, vma->vm_start);
2047 end = vma_hugecache_offset(h, vma, vma->vm_end);
2049 reserve = (end - start) -
2050 region_count(&reservations->regions, start, end);
2052 kref_put(&reservations->refs, resv_map_release);
2054 if (reserve) {
2055 hugetlb_acct_memory(h, -reserve);
2056 hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2062 * We cannot handle pagefaults against hugetlb pages at all. They cause
2063 * handle_mm_fault() to try to instantiate regular-sized pages in the
2064 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2065 * this far.
2067 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2069 BUG();
2070 return 0;
2073 const struct vm_operations_struct hugetlb_vm_ops = {
2074 .fault = hugetlb_vm_op_fault,
2075 .open = hugetlb_vm_op_open,
2076 .close = hugetlb_vm_op_close,
2079 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2080 int writable)
2082 pte_t entry;
2084 if (writable) {
2085 entry =
2086 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2087 } else {
2088 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2090 entry = pte_mkyoung(entry);
2091 entry = pte_mkhuge(entry);
2093 return entry;
2096 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2097 unsigned long address, pte_t *ptep)
2099 pte_t entry;
2101 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2102 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
2103 update_mmu_cache(vma, address, ptep);
2108 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2109 struct vm_area_struct *vma)
2111 pte_t *src_pte, *dst_pte, entry;
2112 struct page *ptepage;
2113 unsigned long addr;
2114 int cow;
2115 struct hstate *h = hstate_vma(vma);
2116 unsigned long sz = huge_page_size(h);
2118 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2120 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2121 src_pte = huge_pte_offset(src, addr);
2122 if (!src_pte)
2123 continue;
2124 dst_pte = huge_pte_alloc(dst, addr, sz);
2125 if (!dst_pte)
2126 goto nomem;
2128 /* If the pagetables are shared don't copy or take references */
2129 if (dst_pte == src_pte)
2130 continue;
2132 spin_lock(&dst->page_table_lock);
2133 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2134 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2135 if (cow)
2136 huge_ptep_set_wrprotect(src, addr, src_pte);
2137 entry = huge_ptep_get(src_pte);
2138 ptepage = pte_page(entry);
2139 get_page(ptepage);
2140 page_dup_rmap(ptepage);
2141 set_huge_pte_at(dst, addr, dst_pte, entry);
2143 spin_unlock(&src->page_table_lock);
2144 spin_unlock(&dst->page_table_lock);
2146 return 0;
2148 nomem:
2149 return -ENOMEM;
2152 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2153 unsigned long end, struct page *ref_page)
2155 struct mm_struct *mm = vma->vm_mm;
2156 unsigned long address;
2157 pte_t *ptep;
2158 pte_t pte;
2159 struct page *page;
2160 struct page *tmp;
2161 struct hstate *h = hstate_vma(vma);
2162 unsigned long sz = huge_page_size(h);
2165 * A page gathering list, protected by per file i_mmap_lock. The
2166 * lock is used to avoid list corruption from multiple unmapping
2167 * of the same page since we are using page->lru.
2169 LIST_HEAD(page_list);
2171 WARN_ON(!is_vm_hugetlb_page(vma));
2172 BUG_ON(start & ~huge_page_mask(h));
2173 BUG_ON(end & ~huge_page_mask(h));
2175 mmu_notifier_invalidate_range_start(mm, start, end);
2176 spin_lock(&mm->page_table_lock);
2177 for (address = start; address < end; address += sz) {
2178 ptep = huge_pte_offset(mm, address);
2179 if (!ptep)
2180 continue;
2182 if (huge_pmd_unshare(mm, &address, ptep))
2183 continue;
2186 * If a reference page is supplied, it is because a specific
2187 * page is being unmapped, not a range. Ensure the page we
2188 * are about to unmap is the actual page of interest.
2190 if (ref_page) {
2191 pte = huge_ptep_get(ptep);
2192 if (huge_pte_none(pte))
2193 continue;
2194 page = pte_page(pte);
2195 if (page != ref_page)
2196 continue;
2199 * Mark the VMA as having unmapped its page so that
2200 * future faults in this VMA will fail rather than
2201 * looking like data was lost
2203 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2206 pte = huge_ptep_get_and_clear(mm, address, ptep);
2207 if (huge_pte_none(pte))
2208 continue;
2210 page = pte_page(pte);
2211 if (pte_dirty(pte))
2212 set_page_dirty(page);
2213 list_add(&page->lru, &page_list);
2215 spin_unlock(&mm->page_table_lock);
2216 flush_tlb_range(vma, start, end);
2217 mmu_notifier_invalidate_range_end(mm, start, end);
2218 list_for_each_entry_safe(page, tmp, &page_list, lru) {
2219 page_remove_rmap(page);
2220 list_del(&page->lru);
2221 put_page(page);
2225 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2226 unsigned long end, struct page *ref_page)
2228 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2229 __unmap_hugepage_range(vma, start, end, ref_page);
2230 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2234 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2235 * mappping it owns the reserve page for. The intention is to unmap the page
2236 * from other VMAs and let the children be SIGKILLed if they are faulting the
2237 * same region.
2239 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2240 struct page *page, unsigned long address)
2242 struct hstate *h = hstate_vma(vma);
2243 struct vm_area_struct *iter_vma;
2244 struct address_space *mapping;
2245 struct prio_tree_iter iter;
2246 pgoff_t pgoff;
2249 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2250 * from page cache lookup which is in HPAGE_SIZE units.
2252 address = address & huge_page_mask(h);
2253 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
2254 + (vma->vm_pgoff >> PAGE_SHIFT);
2255 mapping = (struct address_space *)page_private(page);
2258 * Take the mapping lock for the duration of the table walk. As
2259 * this mapping should be shared between all the VMAs,
2260 * __unmap_hugepage_range() is called as the lock is already held
2262 spin_lock(&mapping->i_mmap_lock);
2263 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2264 /* Do not unmap the current VMA */
2265 if (iter_vma == vma)
2266 continue;
2269 * Unmap the page from other VMAs without their own reserves.
2270 * They get marked to be SIGKILLed if they fault in these
2271 * areas. This is because a future no-page fault on this VMA
2272 * could insert a zeroed page instead of the data existing
2273 * from the time of fork. This would look like data corruption
2275 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2276 __unmap_hugepage_range(iter_vma,
2277 address, address + huge_page_size(h),
2278 page);
2280 spin_unlock(&mapping->i_mmap_lock);
2282 return 1;
2286 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2288 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2289 unsigned long address, pte_t *ptep, pte_t pte,
2290 struct page *pagecache_page)
2292 struct hstate *h = hstate_vma(vma);
2293 struct page *old_page, *new_page;
2294 int avoidcopy;
2295 int outside_reserve = 0;
2297 old_page = pte_page(pte);
2299 retry_avoidcopy:
2300 /* If no-one else is actually using this page, avoid the copy
2301 * and just make the page writable */
2302 avoidcopy = (page_mapcount(old_page) == 1);
2303 if (avoidcopy) {
2304 if (!trylock_page(old_page))
2305 if (PageAnon(old_page))
2306 page_move_anon_rmap(old_page, vma, address);
2307 set_huge_ptep_writable(vma, address, ptep);
2308 return 0;
2312 * If the process that created a MAP_PRIVATE mapping is about to
2313 * perform a COW due to a shared page count, attempt to satisfy
2314 * the allocation without using the existing reserves. The pagecache
2315 * page is used to determine if the reserve at this address was
2316 * consumed or not. If reserves were used, a partial faulted mapping
2317 * at the time of fork() could consume its reserves on COW instead
2318 * of the full address range.
2320 if (!(vma->vm_flags & VM_MAYSHARE) &&
2321 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2322 old_page != pagecache_page)
2323 outside_reserve = 1;
2325 page_cache_get(old_page);
2327 /* Drop page_table_lock as buddy allocator may be called */
2328 spin_unlock(&mm->page_table_lock);
2329 new_page = alloc_huge_page(vma, address, outside_reserve);
2331 if (IS_ERR(new_page)) {
2332 page_cache_release(old_page);
2335 * If a process owning a MAP_PRIVATE mapping fails to COW,
2336 * it is due to references held by a child and an insufficient
2337 * huge page pool. To guarantee the original mappers
2338 * reliability, unmap the page from child processes. The child
2339 * may get SIGKILLed if it later faults.
2341 if (outside_reserve) {
2342 BUG_ON(huge_pte_none(pte));
2343 if (unmap_ref_private(mm, vma, old_page, address)) {
2344 BUG_ON(page_count(old_page) != 1);
2345 BUG_ON(huge_pte_none(pte));
2346 spin_lock(&mm->page_table_lock);
2347 goto retry_avoidcopy;
2349 WARN_ON_ONCE(1);
2352 /* Caller expects lock to be held */
2353 spin_lock(&mm->page_table_lock);
2354 return -PTR_ERR(new_page);
2358 * When the original hugepage is shared one, it does not have
2359 * anon_vma prepared.
2361 if (unlikely(anon_vma_prepare(vma)))
2362 return VM_FAULT_OOM;
2364 copy_huge_page(new_page, old_page, address, vma);
2365 __SetPageUptodate(new_page);
2368 * Retake the page_table_lock to check for racing updates
2369 * before the page tables are altered
2371 spin_lock(&mm->page_table_lock);
2372 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2373 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2374 /* Break COW */
2375 huge_ptep_clear_flush(vma, address, ptep);
2376 set_huge_pte_at(mm, address, ptep,
2377 make_huge_pte(vma, new_page, 1));
2378 page_remove_rmap(old_page);
2379 hugepage_add_anon_rmap(new_page, vma, address);
2380 /* Make the old page be freed below */
2381 new_page = old_page;
2383 page_cache_release(new_page);
2384 page_cache_release(old_page);
2385 return 0;
2388 /* Return the pagecache page at a given address within a VMA */
2389 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2390 struct vm_area_struct *vma, unsigned long address)
2392 struct address_space *mapping;
2393 pgoff_t idx;
2395 mapping = vma->vm_file->f_mapping;
2396 idx = vma_hugecache_offset(h, vma, address);
2398 return find_lock_page(mapping, idx);
2402 * Return whether there is a pagecache page to back given address within VMA.
2403 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2405 static bool hugetlbfs_pagecache_present(struct hstate *h,
2406 struct vm_area_struct *vma, unsigned long address)
2408 struct address_space *mapping;
2409 pgoff_t idx;
2410 struct page *page;
2412 mapping = vma->vm_file->f_mapping;
2413 idx = vma_hugecache_offset(h, vma, address);
2415 page = find_get_page(mapping, idx);
2416 if (page)
2417 put_page(page);
2418 return page != NULL;
2421 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2422 unsigned long address, pte_t *ptep, unsigned int flags)
2424 struct hstate *h = hstate_vma(vma);
2425 int ret = VM_FAULT_SIGBUS;
2426 pgoff_t idx;
2427 unsigned long size;
2428 struct page *page;
2429 struct address_space *mapping;
2430 pte_t new_pte;
2433 * Currently, we are forced to kill the process in the event the
2434 * original mapper has unmapped pages from the child due to a failed
2435 * COW. Warn that such a situation has occured as it may not be obvious
2437 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2438 printk(KERN_WARNING
2439 "PID %d killed due to inadequate hugepage pool\n",
2440 current->pid);
2441 return ret;
2444 mapping = vma->vm_file->f_mapping;
2445 idx = vma_hugecache_offset(h, vma, address);
2448 * Use page lock to guard against racing truncation
2449 * before we get page_table_lock.
2451 retry:
2452 page = find_lock_page(mapping, idx);
2453 if (!page) {
2454 size = i_size_read(mapping->host) >> huge_page_shift(h);
2455 if (idx >= size)
2456 goto out;
2457 page = alloc_huge_page(vma, address, 0);
2458 if (IS_ERR(page)) {
2459 ret = -PTR_ERR(page);
2460 goto out;
2462 clear_huge_page(page, address, huge_page_size(h));
2463 __SetPageUptodate(page);
2465 if (vma->vm_flags & VM_MAYSHARE) {
2466 int err;
2467 struct inode *inode = mapping->host;
2469 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2470 if (err) {
2471 put_page(page);
2472 if (err == -EEXIST)
2473 goto retry;
2474 goto out;
2477 spin_lock(&inode->i_lock);
2478 inode->i_blocks += blocks_per_huge_page(h);
2479 spin_unlock(&inode->i_lock);
2480 page_dup_rmap(page);
2481 } else {
2482 lock_page(page);
2483 if (unlikely(anon_vma_prepare(vma))) {
2484 ret = VM_FAULT_OOM;
2485 goto backout_unlocked;
2487 hugepage_add_new_anon_rmap(page, vma, address);
2489 } else {
2490 page_dup_rmap(page);
2494 * If we are going to COW a private mapping later, we examine the
2495 * pending reservations for this page now. This will ensure that
2496 * any allocations necessary to record that reservation occur outside
2497 * the spinlock.
2499 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2500 if (vma_needs_reservation(h, vma, address) < 0) {
2501 ret = VM_FAULT_OOM;
2502 goto backout_unlocked;
2505 spin_lock(&mm->page_table_lock);
2506 size = i_size_read(mapping->host) >> huge_page_shift(h);
2507 if (idx >= size)
2508 goto backout;
2510 ret = 0;
2511 if (!huge_pte_none(huge_ptep_get(ptep)))
2512 goto backout;
2514 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2515 && (vma->vm_flags & VM_SHARED)));
2516 set_huge_pte_at(mm, address, ptep, new_pte);
2518 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2519 /* Optimization, do the COW without a second fault */
2520 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2523 spin_unlock(&mm->page_table_lock);
2524 unlock_page(page);
2525 out:
2526 return ret;
2528 backout:
2529 spin_unlock(&mm->page_table_lock);
2530 backout_unlocked:
2531 unlock_page(page);
2532 put_page(page);
2533 goto out;
2536 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2537 unsigned long address, unsigned int flags)
2539 pte_t *ptep;
2540 pte_t entry;
2541 int ret;
2542 struct page *page = NULL;
2543 struct page *pagecache_page = NULL;
2544 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2545 struct hstate *h = hstate_vma(vma);
2547 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2548 if (!ptep)
2549 return VM_FAULT_OOM;
2552 * Serialize hugepage allocation and instantiation, so that we don't
2553 * get spurious allocation failures if two CPUs race to instantiate
2554 * the same page in the page cache.
2556 mutex_lock(&hugetlb_instantiation_mutex);
2557 entry = huge_ptep_get(ptep);
2558 if (huge_pte_none(entry)) {
2559 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2560 goto out_mutex;
2563 ret = 0;
2566 * If we are going to COW the mapping later, we examine the pending
2567 * reservations for this page now. This will ensure that any
2568 * allocations necessary to record that reservation occur outside the
2569 * spinlock. For private mappings, we also lookup the pagecache
2570 * page now as it is used to determine if a reservation has been
2571 * consumed.
2573 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2574 if (vma_needs_reservation(h, vma, address) < 0) {
2575 ret = VM_FAULT_OOM;
2576 goto out_mutex;
2579 if (!(vma->vm_flags & VM_MAYSHARE))
2580 pagecache_page = hugetlbfs_pagecache_page(h,
2581 vma, address);
2584 if (!pagecache_page) {
2585 page = pte_page(entry);
2586 lock_page(page);
2589 spin_lock(&mm->page_table_lock);
2590 /* Check for a racing update before calling hugetlb_cow */
2591 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2592 goto out_page_table_lock;
2595 if (flags & FAULT_FLAG_WRITE) {
2596 if (!pte_write(entry)) {
2597 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2598 pagecache_page);
2599 goto out_page_table_lock;
2601 entry = pte_mkdirty(entry);
2603 entry = pte_mkyoung(entry);
2604 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2605 flags & FAULT_FLAG_WRITE))
2606 update_mmu_cache(vma, address, ptep);
2608 out_page_table_lock:
2609 spin_unlock(&mm->page_table_lock);
2611 if (pagecache_page) {
2612 unlock_page(pagecache_page);
2613 put_page(pagecache_page);
2614 } else {
2615 unlock_page(page);
2618 out_mutex:
2619 mutex_unlock(&hugetlb_instantiation_mutex);
2621 return ret;
2624 /* Can be overriden by architectures */
2625 __attribute__((weak)) struct page *
2626 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2627 pud_t *pud, int write)
2629 BUG();
2630 return NULL;
2633 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2634 struct page **pages, struct vm_area_struct **vmas,
2635 unsigned long *position, int *length, int i,
2636 unsigned int flags)
2638 unsigned long pfn_offset;
2639 unsigned long vaddr = *position;
2640 int remainder = *length;
2641 struct hstate *h = hstate_vma(vma);
2643 spin_lock(&mm->page_table_lock);
2644 while (vaddr < vma->vm_end && remainder) {
2645 pte_t *pte;
2646 int absent;
2647 struct page *page;
2650 * Some archs (sparc64, sh*) have multiple pte_ts to
2651 * each hugepage. We have to make sure we get the
2652 * first, for the page indexing below to work.
2654 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2655 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2658 * When coredumping, it suits get_dump_page if we just return
2659 * an error where there's an empty slot with no huge pagecache
2660 * to back it. This way, we avoid allocating a hugepage, and
2661 * the sparse dumpfile avoids allocating disk blocks, but its
2662 * huge holes still show up with zeroes where they need to be.
2664 if (absent && (flags & FOLL_DUMP) &&
2665 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2666 remainder = 0;
2667 break;
2670 if (absent ||
2671 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2672 int ret;
2674 spin_unlock(&mm->page_table_lock);
2675 ret = hugetlb_fault(mm, vma, vaddr,
2676 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2677 spin_lock(&mm->page_table_lock);
2678 if (!(ret & VM_FAULT_ERROR))
2679 continue;
2681 remainder = 0;
2682 break;
2685 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2686 page = pte_page(huge_ptep_get(pte));
2687 same_page:
2688 if (pages) {
2689 pages[i] = mem_map_offset(page, pfn_offset);
2690 get_page(pages[i]);
2693 if (vmas)
2694 vmas[i] = vma;
2696 vaddr += PAGE_SIZE;
2697 ++pfn_offset;
2698 --remainder;
2699 ++i;
2700 if (vaddr < vma->vm_end && remainder &&
2701 pfn_offset < pages_per_huge_page(h)) {
2703 * We use pfn_offset to avoid touching the pageframes
2704 * of this compound page.
2706 goto same_page;
2709 spin_unlock(&mm->page_table_lock);
2710 *length = remainder;
2711 *position = vaddr;
2713 return i ? i : -EFAULT;
2716 void hugetlb_change_protection(struct vm_area_struct *vma,
2717 unsigned long address, unsigned long end, pgprot_t newprot)
2719 struct mm_struct *mm = vma->vm_mm;
2720 unsigned long start = address;
2721 pte_t *ptep;
2722 pte_t pte;
2723 struct hstate *h = hstate_vma(vma);
2725 BUG_ON(address >= end);
2726 flush_cache_range(vma, address, end);
2728 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2729 spin_lock(&mm->page_table_lock);
2730 for (; address < end; address += huge_page_size(h)) {
2731 ptep = huge_pte_offset(mm, address);
2732 if (!ptep)
2733 continue;
2734 if (huge_pmd_unshare(mm, &address, ptep))
2735 continue;
2736 if (!huge_pte_none(huge_ptep_get(ptep))) {
2737 pte = huge_ptep_get_and_clear(mm, address, ptep);
2738 pte = pte_mkhuge(pte_modify(pte, newprot));
2739 set_huge_pte_at(mm, address, ptep, pte);
2742 spin_unlock(&mm->page_table_lock);
2743 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2745 flush_tlb_range(vma, start, end);
2748 int hugetlb_reserve_pages(struct inode *inode,
2749 long from, long to,
2750 struct vm_area_struct *vma,
2751 int acctflag)
2753 long ret, chg;
2754 struct hstate *h = hstate_inode(inode);
2757 * Only apply hugepage reservation if asked. At fault time, an
2758 * attempt will be made for VM_NORESERVE to allocate a page
2759 * and filesystem quota without using reserves
2761 if (acctflag & VM_NORESERVE)
2762 return 0;
2765 * Shared mappings base their reservation on the number of pages that
2766 * are already allocated on behalf of the file. Private mappings need
2767 * to reserve the full area even if read-only as mprotect() may be
2768 * called to make the mapping read-write. Assume !vma is a shm mapping
2770 if (!vma || vma->vm_flags & VM_MAYSHARE)
2771 chg = region_chg(&inode->i_mapping->private_list, from, to);
2772 else {
2773 struct resv_map *resv_map = resv_map_alloc();
2774 if (!resv_map)
2775 return -ENOMEM;
2777 chg = to - from;
2779 set_vma_resv_map(vma, resv_map);
2780 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2783 if (chg < 0)
2784 return chg;
2786 /* There must be enough filesystem quota for the mapping */
2787 if (hugetlb_get_quota(inode->i_mapping, chg))
2788 return -ENOSPC;
2791 * Check enough hugepages are available for the reservation.
2792 * Hand back the quota if there are not
2794 ret = hugetlb_acct_memory(h, chg);
2795 if (ret < 0) {
2796 hugetlb_put_quota(inode->i_mapping, chg);
2797 return ret;
2801 * Account for the reservations made. Shared mappings record regions
2802 * that have reservations as they are shared by multiple VMAs.
2803 * When the last VMA disappears, the region map says how much
2804 * the reservation was and the page cache tells how much of
2805 * the reservation was consumed. Private mappings are per-VMA and
2806 * only the consumed reservations are tracked. When the VMA
2807 * disappears, the original reservation is the VMA size and the
2808 * consumed reservations are stored in the map. Hence, nothing
2809 * else has to be done for private mappings here
2811 if (!vma || vma->vm_flags & VM_MAYSHARE)
2812 region_add(&inode->i_mapping->private_list, from, to);
2813 return 0;
2816 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2818 struct hstate *h = hstate_inode(inode);
2819 long chg = region_truncate(&inode->i_mapping->private_list, offset);
2821 spin_lock(&inode->i_lock);
2822 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2823 spin_unlock(&inode->i_lock);
2825 hugetlb_put_quota(inode->i_mapping, (chg - freed));
2826 hugetlb_acct_memory(h, -(chg - freed));