smctr: use request_firmware()
[linux-2.6.git] / drivers / char / epca.c
blob60a4df7dac12ed9e073c29c991e97178d42c7e1b
1 /*
2 Copyright (C) 1996 Digi International.
4 For technical support please email digiLinux@dgii.com or
5 call Digi tech support at (612) 912-3456
7 ** This driver is no longer supported by Digi **
9 Much of this design and code came from epca.c which was
10 copyright (C) 1994, 1995 Troy De Jongh, and subsquently
11 modified by David Nugent, Christoph Lameter, Mike McLagan.
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2 of the License, or
16 (at your option) any later version.
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 /* See README.epca for change history --DAT*/
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/serial.h>
34 #include <linux/delay.h>
35 #include <linux/ctype.h>
36 #include <linux/tty.h>
37 #include <linux/tty_flip.h>
38 #include <linux/slab.h>
39 #include <linux/ioport.h>
40 #include <linux/interrupt.h>
41 #include <linux/uaccess.h>
42 #include <linux/io.h>
43 #include <linux/spinlock.h>
44 #include <linux/pci.h>
45 #include "digiPCI.h"
48 #include "digi1.h"
49 #include "digiFep1.h"
50 #include "epca.h"
51 #include "epcaconfig.h"
53 #define VERSION "1.3.0.1-LK2.6"
55 /* This major needs to be submitted to Linux to join the majors list */
56 #define DIGIINFOMAJOR 35 /* For Digi specific ioctl */
59 #define MAXCARDS 7
60 #define epcaassert(x, msg) if (!(x)) epca_error(__LINE__, msg)
62 #define PFX "epca: "
64 static int nbdevs, num_cards, liloconfig;
65 static int digi_poller_inhibited = 1 ;
67 static int setup_error_code;
68 static int invalid_lilo_config;
71 * The ISA boards do window flipping into the same spaces so its only sane with
72 * a single lock. It's still pretty efficient.
74 static DEFINE_SPINLOCK(epca_lock);
76 /* MAXBOARDS is typically 12, but ISA and EISA cards are restricted
77 to 7 below. */
78 static struct board_info boards[MAXBOARDS];
80 static struct tty_driver *pc_driver;
81 static struct tty_driver *pc_info;
83 /* ------------------ Begin Digi specific structures -------------------- */
86 * digi_channels represents an array of structures that keep track of each
87 * channel of the Digi product. Information such as transmit and receive
88 * pointers, termio data, and signal definitions (DTR, CTS, etc ...) are stored
89 * here. This structure is NOT used to overlay the cards physical channel
90 * structure.
92 static struct channel digi_channels[MAX_ALLOC];
95 * card_ptr is an array used to hold the address of the first channel structure
96 * of each card. This array will hold the addresses of various channels located
97 * in digi_channels.
99 static struct channel *card_ptr[MAXCARDS];
101 static struct timer_list epca_timer;
104 * Begin generic memory functions. These functions will be alias (point at)
105 * more specific functions dependent on the board being configured.
107 static void memwinon(struct board_info *b, unsigned int win);
108 static void memwinoff(struct board_info *b, unsigned int win);
109 static void globalwinon(struct channel *ch);
110 static void rxwinon(struct channel *ch);
111 static void txwinon(struct channel *ch);
112 static void memoff(struct channel *ch);
113 static void assertgwinon(struct channel *ch);
114 static void assertmemoff(struct channel *ch);
116 /* ---- Begin more 'specific' memory functions for cx_like products --- */
118 static void pcxem_memwinon(struct board_info *b, unsigned int win);
119 static void pcxem_memwinoff(struct board_info *b, unsigned int win);
120 static void pcxem_globalwinon(struct channel *ch);
121 static void pcxem_rxwinon(struct channel *ch);
122 static void pcxem_txwinon(struct channel *ch);
123 static void pcxem_memoff(struct channel *ch);
125 /* ------ Begin more 'specific' memory functions for the pcxe ------- */
127 static void pcxe_memwinon(struct board_info *b, unsigned int win);
128 static void pcxe_memwinoff(struct board_info *b, unsigned int win);
129 static void pcxe_globalwinon(struct channel *ch);
130 static void pcxe_rxwinon(struct channel *ch);
131 static void pcxe_txwinon(struct channel *ch);
132 static void pcxe_memoff(struct channel *ch);
134 /* ---- Begin more 'specific' memory functions for the pc64xe and pcxi ---- */
135 /* Note : pc64xe and pcxi share the same windowing routines */
137 static void pcxi_memwinon(struct board_info *b, unsigned int win);
138 static void pcxi_memwinoff(struct board_info *b, unsigned int win);
139 static void pcxi_globalwinon(struct channel *ch);
140 static void pcxi_rxwinon(struct channel *ch);
141 static void pcxi_txwinon(struct channel *ch);
142 static void pcxi_memoff(struct channel *ch);
144 /* - Begin 'specific' do nothing memory functions needed for some cards - */
146 static void dummy_memwinon(struct board_info *b, unsigned int win);
147 static void dummy_memwinoff(struct board_info *b, unsigned int win);
148 static void dummy_globalwinon(struct channel *ch);
149 static void dummy_rxwinon(struct channel *ch);
150 static void dummy_txwinon(struct channel *ch);
151 static void dummy_memoff(struct channel *ch);
152 static void dummy_assertgwinon(struct channel *ch);
153 static void dummy_assertmemoff(struct channel *ch);
155 static struct channel *verifyChannel(struct tty_struct *);
156 static void pc_sched_event(struct channel *, int);
157 static void epca_error(int, char *);
158 static void pc_close(struct tty_struct *, struct file *);
159 static void shutdown(struct channel *);
160 static void pc_hangup(struct tty_struct *);
161 static int pc_write_room(struct tty_struct *);
162 static int pc_chars_in_buffer(struct tty_struct *);
163 static void pc_flush_buffer(struct tty_struct *);
164 static void pc_flush_chars(struct tty_struct *);
165 static int block_til_ready(struct tty_struct *, struct file *,
166 struct channel *);
167 static int pc_open(struct tty_struct *, struct file *);
168 static void post_fep_init(unsigned int crd);
169 static void epcapoll(unsigned long);
170 static void doevent(int);
171 static void fepcmd(struct channel *, int, int, int, int, int);
172 static unsigned termios2digi_h(struct channel *ch, unsigned);
173 static unsigned termios2digi_i(struct channel *ch, unsigned);
174 static unsigned termios2digi_c(struct channel *ch, unsigned);
175 static void epcaparam(struct tty_struct *, struct channel *);
176 static void receive_data(struct channel *);
177 static int pc_ioctl(struct tty_struct *, struct file *,
178 unsigned int, unsigned long);
179 static int info_ioctl(struct tty_struct *, struct file *,
180 unsigned int, unsigned long);
181 static void pc_set_termios(struct tty_struct *, struct ktermios *);
182 static void do_softint(struct work_struct *work);
183 static void pc_stop(struct tty_struct *);
184 static void pc_start(struct tty_struct *);
185 static void pc_throttle(struct tty_struct *tty);
186 static void pc_unthrottle(struct tty_struct *tty);
187 static void digi_send_break(struct channel *ch, int msec);
188 static void setup_empty_event(struct tty_struct *tty, struct channel *ch);
189 static void epca_setup(char *, int *);
191 static int pc_write(struct tty_struct *, const unsigned char *, int);
192 static int pc_init(void);
193 static int init_PCI(void);
196 * Table of functions for each board to handle memory. Mantaining parallelism
197 * is a *very* good idea here. The idea is for the runtime code to blindly call
198 * these functions, not knowing/caring about the underlying hardware. This
199 * stuff should contain no conditionals; if more functionality is needed a
200 * different entry should be established. These calls are the interface calls
201 * and are the only functions that should be accessed. Anyone caught making
202 * direct calls deserves what they get.
204 static void memwinon(struct board_info *b, unsigned int win)
206 b->memwinon(b, win);
209 static void memwinoff(struct board_info *b, unsigned int win)
211 b->memwinoff(b, win);
214 static void globalwinon(struct channel *ch)
216 ch->board->globalwinon(ch);
219 static void rxwinon(struct channel *ch)
221 ch->board->rxwinon(ch);
224 static void txwinon(struct channel *ch)
226 ch->board->txwinon(ch);
229 static void memoff(struct channel *ch)
231 ch->board->memoff(ch);
233 static void assertgwinon(struct channel *ch)
235 ch->board->assertgwinon(ch);
238 static void assertmemoff(struct channel *ch)
240 ch->board->assertmemoff(ch);
243 /* PCXEM windowing is the same as that used in the PCXR and CX series cards. */
244 static void pcxem_memwinon(struct board_info *b, unsigned int win)
246 outb_p(FEPWIN | win, b->port + 1);
249 static void pcxem_memwinoff(struct board_info *b, unsigned int win)
251 outb_p(0, b->port + 1);
254 static void pcxem_globalwinon(struct channel *ch)
256 outb_p(FEPWIN, (int)ch->board->port + 1);
259 static void pcxem_rxwinon(struct channel *ch)
261 outb_p(ch->rxwin, (int)ch->board->port + 1);
264 static void pcxem_txwinon(struct channel *ch)
266 outb_p(ch->txwin, (int)ch->board->port + 1);
269 static void pcxem_memoff(struct channel *ch)
271 outb_p(0, (int)ch->board->port + 1);
274 /* ----------------- Begin pcxe memory window stuff ------------------ */
275 static void pcxe_memwinon(struct board_info *b, unsigned int win)
277 outb_p(FEPWIN | win, b->port + 1);
280 static void pcxe_memwinoff(struct board_info *b, unsigned int win)
282 outb_p(inb(b->port) & ~FEPMEM, b->port + 1);
283 outb_p(0, b->port + 1);
286 static void pcxe_globalwinon(struct channel *ch)
288 outb_p(FEPWIN, (int)ch->board->port + 1);
291 static void pcxe_rxwinon(struct channel *ch)
293 outb_p(ch->rxwin, (int)ch->board->port + 1);
296 static void pcxe_txwinon(struct channel *ch)
298 outb_p(ch->txwin, (int)ch->board->port + 1);
301 static void pcxe_memoff(struct channel *ch)
303 outb_p(0, (int)ch->board->port);
304 outb_p(0, (int)ch->board->port + 1);
307 /* ------------- Begin pc64xe and pcxi memory window stuff -------------- */
308 static void pcxi_memwinon(struct board_info *b, unsigned int win)
310 outb_p(inb(b->port) | FEPMEM, b->port);
313 static void pcxi_memwinoff(struct board_info *b, unsigned int win)
315 outb_p(inb(b->port) & ~FEPMEM, b->port);
318 static void pcxi_globalwinon(struct channel *ch)
320 outb_p(FEPMEM, ch->board->port);
323 static void pcxi_rxwinon(struct channel *ch)
325 outb_p(FEPMEM, ch->board->port);
328 static void pcxi_txwinon(struct channel *ch)
330 outb_p(FEPMEM, ch->board->port);
333 static void pcxi_memoff(struct channel *ch)
335 outb_p(0, ch->board->port);
338 static void pcxi_assertgwinon(struct channel *ch)
340 epcaassert(inb(ch->board->port) & FEPMEM, "Global memory off");
343 static void pcxi_assertmemoff(struct channel *ch)
345 epcaassert(!(inb(ch->board->port) & FEPMEM), "Memory on");
349 * Not all of the cards need specific memory windowing routines. Some cards
350 * (Such as PCI) needs no windowing routines at all. We provide these do
351 * nothing routines so that the same code base can be used. The driver will
352 * ALWAYS call a windowing routine if it thinks it needs to; regardless of the
353 * card. However, dependent on the card the routine may or may not do anything.
355 static void dummy_memwinon(struct board_info *b, unsigned int win)
359 static void dummy_memwinoff(struct board_info *b, unsigned int win)
363 static void dummy_globalwinon(struct channel *ch)
367 static void dummy_rxwinon(struct channel *ch)
371 static void dummy_txwinon(struct channel *ch)
375 static void dummy_memoff(struct channel *ch)
379 static void dummy_assertgwinon(struct channel *ch)
383 static void dummy_assertmemoff(struct channel *ch)
387 static struct channel *verifyChannel(struct tty_struct *tty)
390 * This routine basically provides a sanity check. It insures that the
391 * channel returned is within the proper range of addresses as well as
392 * properly initialized. If some bogus info gets passed in
393 * through tty->driver_data this should catch it.
395 if (tty) {
396 struct channel *ch = (struct channel *)tty->driver_data;
397 if (ch >= &digi_channels[0] && ch < &digi_channels[nbdevs]) {
398 if (ch->magic == EPCA_MAGIC)
399 return ch;
402 return NULL;
405 static void pc_sched_event(struct channel *ch, int event)
408 * We call this to schedule interrupt processing on some event. The
409 * kernel sees our request and calls the related routine in OUR driver.
411 ch->event |= 1 << event;
412 schedule_work(&ch->tqueue);
415 static void epca_error(int line, char *msg)
417 printk(KERN_ERR "epca_error (Digi): line = %d %s\n", line, msg);
420 static void pc_close(struct tty_struct *tty, struct file *filp)
422 struct channel *ch;
423 unsigned long flags;
425 * verifyChannel returns the channel from the tty struct if it is
426 * valid. This serves as a sanity check.
428 ch = verifyChannel(tty);
429 if (ch != NULL) {
430 spin_lock_irqsave(&epca_lock, flags);
431 if (tty_hung_up_p(filp)) {
432 spin_unlock_irqrestore(&epca_lock, flags);
433 return;
435 if (ch->count-- > 1) {
436 /* Begin channel is open more than once */
438 * Return without doing anything. Someone might still
439 * be using the channel.
441 spin_unlock_irqrestore(&epca_lock, flags);
442 return;
444 /* Port open only once go ahead with shutdown & reset */
445 BUG_ON(ch->count < 0);
448 * Let the rest of the driver know the channel is being closed.
449 * This becomes important if an open is attempted before close
450 * is finished.
452 ch->asyncflags |= ASYNC_CLOSING;
453 tty->closing = 1;
455 spin_unlock_irqrestore(&epca_lock, flags);
457 if (ch->asyncflags & ASYNC_INITIALIZED) {
458 /* Setup an event to indicate when the
459 transmit buffer empties */
460 setup_empty_event(tty, ch);
461 /* 30 seconds timeout */
462 tty_wait_until_sent(tty, 3000);
464 pc_flush_buffer(tty);
466 tty_ldisc_flush(tty);
467 shutdown(ch);
469 spin_lock_irqsave(&epca_lock, flags);
470 tty->closing = 0;
471 ch->event = 0;
472 ch->tty = NULL;
473 spin_unlock_irqrestore(&epca_lock, flags);
475 if (ch->blocked_open) {
476 if (ch->close_delay)
477 msleep_interruptible(jiffies_to_msecs(ch->close_delay));
478 wake_up_interruptible(&ch->open_wait);
480 ch->asyncflags &= ~(ASYNC_NORMAL_ACTIVE | ASYNC_INITIALIZED |
481 ASYNC_CLOSING);
482 wake_up_interruptible(&ch->close_wait);
486 static void shutdown(struct channel *ch)
488 unsigned long flags;
489 struct tty_struct *tty;
490 struct board_chan __iomem *bc;
492 if (!(ch->asyncflags & ASYNC_INITIALIZED))
493 return;
495 spin_lock_irqsave(&epca_lock, flags);
497 globalwinon(ch);
498 bc = ch->brdchan;
501 * In order for an event to be generated on the receipt of data the
502 * idata flag must be set. Since we are shutting down, this is not
503 * necessary clear this flag.
505 if (bc)
506 writeb(0, &bc->idata);
507 tty = ch->tty;
509 /* If we're a modem control device and HUPCL is on, drop RTS & DTR. */
510 if (tty->termios->c_cflag & HUPCL) {
511 ch->omodem &= ~(ch->m_rts | ch->m_dtr);
512 fepcmd(ch, SETMODEM, 0, ch->m_dtr | ch->m_rts, 10, 1);
514 memoff(ch);
517 * The channel has officialy been closed. The next time it is opened it
518 * will have to reinitialized. Set a flag to indicate this.
520 /* Prevent future Digi programmed interrupts from coming active */
521 ch->asyncflags &= ~ASYNC_INITIALIZED;
522 spin_unlock_irqrestore(&epca_lock, flags);
525 static void pc_hangup(struct tty_struct *tty)
527 struct channel *ch;
529 * verifyChannel returns the channel from the tty struct if it is
530 * valid. This serves as a sanity check.
532 ch = verifyChannel(tty);
533 if (ch != NULL) {
534 unsigned long flags;
536 pc_flush_buffer(tty);
537 tty_ldisc_flush(tty);
538 shutdown(ch);
540 spin_lock_irqsave(&epca_lock, flags);
541 ch->tty = NULL;
542 ch->event = 0;
543 ch->count = 0;
544 ch->asyncflags &= ~(ASYNC_NORMAL_ACTIVE | ASYNC_INITIALIZED);
545 spin_unlock_irqrestore(&epca_lock, flags);
546 wake_up_interruptible(&ch->open_wait);
550 static int pc_write(struct tty_struct *tty,
551 const unsigned char *buf, int bytesAvailable)
553 unsigned int head, tail;
554 int dataLen;
555 int size;
556 int amountCopied;
557 struct channel *ch;
558 unsigned long flags;
559 int remain;
560 struct board_chan __iomem *bc;
563 * pc_write is primarily called directly by the kernel routine
564 * tty_write (Though it can also be called by put_char) found in
565 * tty_io.c. pc_write is passed a line discipline buffer where the data
566 * to be written out is stored. The line discipline implementation
567 * itself is done at the kernel level and is not brought into the
568 * driver.
572 * verifyChannel returns the channel from the tty struct if it is
573 * valid. This serves as a sanity check.
575 ch = verifyChannel(tty);
576 if (ch == NULL)
577 return 0;
579 /* Make a pointer to the channel data structure found on the board. */
580 bc = ch->brdchan;
581 size = ch->txbufsize;
582 amountCopied = 0;
584 spin_lock_irqsave(&epca_lock, flags);
585 globalwinon(ch);
587 head = readw(&bc->tin) & (size - 1);
588 tail = readw(&bc->tout);
590 if (tail != readw(&bc->tout))
591 tail = readw(&bc->tout);
592 tail &= (size - 1);
594 if (head >= tail) {
595 /* head has not wrapped */
597 * remain (much like dataLen above) represents the total amount
598 * of space available on the card for data. Here dataLen
599 * represents the space existing between the head pointer and
600 * the end of buffer. This is important because a memcpy cannot
601 * be told to automatically wrap around when it hits the buffer
602 * end.
604 dataLen = size - head;
605 remain = size - (head - tail) - 1;
606 } else {
607 /* head has wrapped around */
608 remain = tail - head - 1;
609 dataLen = remain;
612 * Check the space on the card. If we have more data than space; reduce
613 * the amount of data to fit the space.
615 bytesAvailable = min(remain, bytesAvailable);
616 txwinon(ch);
617 while (bytesAvailable > 0) {
618 /* there is data to copy onto card */
621 * If head is not wrapped, the below will make sure the first
622 * data copy fills to the end of card buffer.
624 dataLen = min(bytesAvailable, dataLen);
625 memcpy_toio(ch->txptr + head, buf, dataLen);
626 buf += dataLen;
627 head += dataLen;
628 amountCopied += dataLen;
629 bytesAvailable -= dataLen;
631 if (head >= size) {
632 head = 0;
633 dataLen = tail;
636 ch->statusflags |= TXBUSY;
637 globalwinon(ch);
638 writew(head, &bc->tin);
640 if ((ch->statusflags & LOWWAIT) == 0) {
641 ch->statusflags |= LOWWAIT;
642 writeb(1, &bc->ilow);
644 memoff(ch);
645 spin_unlock_irqrestore(&epca_lock, flags);
646 return amountCopied;
649 static int pc_write_room(struct tty_struct *tty)
651 int remain = 0;
652 struct channel *ch;
653 unsigned long flags;
654 unsigned int head, tail;
655 struct board_chan __iomem *bc;
657 * verifyChannel returns the channel from the tty struct if it is
658 * valid. This serves as a sanity check.
660 ch = verifyChannel(tty);
661 if (ch != NULL) {
662 spin_lock_irqsave(&epca_lock, flags);
663 globalwinon(ch);
665 bc = ch->brdchan;
666 head = readw(&bc->tin) & (ch->txbufsize - 1);
667 tail = readw(&bc->tout);
669 if (tail != readw(&bc->tout))
670 tail = readw(&bc->tout);
671 /* Wrap tail if necessary */
672 tail &= (ch->txbufsize - 1);
673 remain = tail - head - 1;
674 if (remain < 0)
675 remain += ch->txbufsize;
677 if (remain && (ch->statusflags & LOWWAIT) == 0) {
678 ch->statusflags |= LOWWAIT;
679 writeb(1, &bc->ilow);
681 memoff(ch);
682 spin_unlock_irqrestore(&epca_lock, flags);
684 /* Return how much room is left on card */
685 return remain;
688 static int pc_chars_in_buffer(struct tty_struct *tty)
690 int chars;
691 unsigned int ctail, head, tail;
692 int remain;
693 unsigned long flags;
694 struct channel *ch;
695 struct board_chan __iomem *bc;
697 * verifyChannel returns the channel from the tty struct if it is
698 * valid. This serves as a sanity check.
700 ch = verifyChannel(tty);
701 if (ch == NULL)
702 return 0;
704 spin_lock_irqsave(&epca_lock, flags);
705 globalwinon(ch);
707 bc = ch->brdchan;
708 tail = readw(&bc->tout);
709 head = readw(&bc->tin);
710 ctail = readw(&ch->mailbox->cout);
712 if (tail == head && readw(&ch->mailbox->cin) == ctail &&
713 readb(&bc->tbusy) == 0)
714 chars = 0;
715 else { /* Begin if some space on the card has been used */
716 head = readw(&bc->tin) & (ch->txbufsize - 1);
717 tail &= (ch->txbufsize - 1);
719 * The logic here is basically opposite of the above
720 * pc_write_room here we are finding the amount of bytes in the
721 * buffer filled. Not the amount of bytes empty.
723 remain = tail - head - 1;
724 if (remain < 0)
725 remain += ch->txbufsize;
726 chars = (int)(ch->txbufsize - remain);
728 * Make it possible to wakeup anything waiting for output in
729 * tty_ioctl.c, etc.
731 * If not already set. Setup an event to indicate when the
732 * transmit buffer empties.
734 if (!(ch->statusflags & EMPTYWAIT))
735 setup_empty_event(tty, ch);
736 } /* End if some space on the card has been used */
737 memoff(ch);
738 spin_unlock_irqrestore(&epca_lock, flags);
739 /* Return number of characters residing on card. */
740 return chars;
743 static void pc_flush_buffer(struct tty_struct *tty)
745 unsigned int tail;
746 unsigned long flags;
747 struct channel *ch;
748 struct board_chan __iomem *bc;
750 * verifyChannel returns the channel from the tty struct if it is
751 * valid. This serves as a sanity check.
753 ch = verifyChannel(tty);
754 if (ch == NULL)
755 return;
757 spin_lock_irqsave(&epca_lock, flags);
758 globalwinon(ch);
759 bc = ch->brdchan;
760 tail = readw(&bc->tout);
761 /* Have FEP move tout pointer; effectively flushing transmit buffer */
762 fepcmd(ch, STOUT, (unsigned) tail, 0, 0, 0);
763 memoff(ch);
764 spin_unlock_irqrestore(&epca_lock, flags);
765 tty_wakeup(tty);
768 static void pc_flush_chars(struct tty_struct *tty)
770 struct channel *ch;
772 * verifyChannel returns the channel from the tty struct if it is
773 * valid. This serves as a sanity check.
775 ch = verifyChannel(tty);
776 if (ch != NULL) {
777 unsigned long flags;
778 spin_lock_irqsave(&epca_lock, flags);
780 * If not already set and the transmitter is busy setup an
781 * event to indicate when the transmit empties.
783 if ((ch->statusflags & TXBUSY) &&
784 !(ch->statusflags & EMPTYWAIT))
785 setup_empty_event(tty, ch);
786 spin_unlock_irqrestore(&epca_lock, flags);
790 static int block_til_ready(struct tty_struct *tty,
791 struct file *filp, struct channel *ch)
793 DECLARE_WAITQUEUE(wait, current);
794 int retval, do_clocal = 0;
795 unsigned long flags;
797 if (tty_hung_up_p(filp)) {
798 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
799 retval = -EAGAIN;
800 else
801 retval = -ERESTARTSYS;
802 return retval;
806 * If the device is in the middle of being closed, then block until
807 * it's done, and then try again.
809 if (ch->asyncflags & ASYNC_CLOSING) {
810 interruptible_sleep_on(&ch->close_wait);
812 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
813 return -EAGAIN;
814 else
815 return -ERESTARTSYS;
818 if (filp->f_flags & O_NONBLOCK) {
820 * If non-blocking mode is set, then make the check up front
821 * and then exit.
823 ch->asyncflags |= ASYNC_NORMAL_ACTIVE;
824 return 0;
826 if (tty->termios->c_cflag & CLOCAL)
827 do_clocal = 1;
828 /* Block waiting for the carrier detect and the line to become free */
830 retval = 0;
831 add_wait_queue(&ch->open_wait, &wait);
833 spin_lock_irqsave(&epca_lock, flags);
834 /* We dec count so that pc_close will know when to free things */
835 if (!tty_hung_up_p(filp))
836 ch->count--;
837 ch->blocked_open++;
838 while (1) {
839 set_current_state(TASK_INTERRUPTIBLE);
840 if (tty_hung_up_p(filp) ||
841 !(ch->asyncflags & ASYNC_INITIALIZED)) {
842 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
843 retval = -EAGAIN;
844 else
845 retval = -ERESTARTSYS;
846 break;
848 if (!(ch->asyncflags & ASYNC_CLOSING) &&
849 (do_clocal || (ch->imodem & ch->dcd)))
850 break;
851 if (signal_pending(current)) {
852 retval = -ERESTARTSYS;
853 break;
855 spin_unlock_irqrestore(&epca_lock, flags);
857 * Allow someone else to be scheduled. We will occasionally go
858 * through this loop until one of the above conditions change.
859 * The below schedule call will allow other processes to enter
860 * and prevent this loop from hogging the cpu.
862 schedule();
863 spin_lock_irqsave(&epca_lock, flags);
866 __set_current_state(TASK_RUNNING);
867 remove_wait_queue(&ch->open_wait, &wait);
868 if (!tty_hung_up_p(filp))
869 ch->count++;
870 ch->blocked_open--;
872 spin_unlock_irqrestore(&epca_lock, flags);
874 if (retval)
875 return retval;
877 ch->asyncflags |= ASYNC_NORMAL_ACTIVE;
878 return 0;
881 static int pc_open(struct tty_struct *tty, struct file *filp)
883 struct channel *ch;
884 unsigned long flags;
885 int line, retval, boardnum;
886 struct board_chan __iomem *bc;
887 unsigned int head;
889 line = tty->index;
890 if (line < 0 || line >= nbdevs)
891 return -ENODEV;
893 ch = &digi_channels[line];
894 boardnum = ch->boardnum;
896 /* Check status of board configured in system. */
899 * I check to see if the epca_setup routine detected an user error. It
900 * might be better to put this in pc_init, but for the moment it goes
901 * here.
903 if (invalid_lilo_config) {
904 if (setup_error_code & INVALID_BOARD_TYPE)
905 printk(KERN_ERR "epca: pc_open: Invalid board type specified in kernel options.\n");
906 if (setup_error_code & INVALID_NUM_PORTS)
907 printk(KERN_ERR "epca: pc_open: Invalid number of ports specified in kernel options.\n");
908 if (setup_error_code & INVALID_MEM_BASE)
909 printk(KERN_ERR "epca: pc_open: Invalid board memory address specified in kernel options.\n");
910 if (setup_error_code & INVALID_PORT_BASE)
911 printk(KERN_ERR "epca; pc_open: Invalid board port address specified in kernel options.\n");
912 if (setup_error_code & INVALID_BOARD_STATUS)
913 printk(KERN_ERR "epca: pc_open: Invalid board status specified in kernel options.\n");
914 if (setup_error_code & INVALID_ALTPIN)
915 printk(KERN_ERR "epca: pc_open: Invalid board altpin specified in kernel options;\n");
916 tty->driver_data = NULL; /* Mark this device as 'down' */
917 return -ENODEV;
919 if (boardnum >= num_cards || boards[boardnum].status == DISABLED) {
920 tty->driver_data = NULL; /* Mark this device as 'down' */
921 return(-ENODEV);
924 bc = ch->brdchan;
925 if (bc == NULL) {
926 tty->driver_data = NULL;
927 return -ENODEV;
930 spin_lock_irqsave(&epca_lock, flags);
932 * Every time a channel is opened, increment a counter. This is
933 * necessary because we do not wish to flush and shutdown the channel
934 * until the last app holding the channel open, closes it.
936 ch->count++;
938 * Set a kernel structures pointer to our local channel structure. This
939 * way we can get to it when passed only a tty struct.
941 tty->driver_data = ch;
943 * If this is the first time the channel has been opened, initialize
944 * the tty->termios struct otherwise let pc_close handle it.
946 globalwinon(ch);
947 ch->statusflags = 0;
949 /* Save boards current modem status */
950 ch->imodem = readb(&bc->mstat);
953 * Set receive head and tail ptrs to each other. This indicates no data
954 * available to read.
956 head = readw(&bc->rin);
957 writew(head, &bc->rout);
959 /* Set the channels associated tty structure */
960 ch->tty = tty;
963 * The below routine generally sets up parity, baud, flow control
964 * issues, etc.... It effect both control flags and input flags.
966 epcaparam(tty, ch);
967 ch->asyncflags |= ASYNC_INITIALIZED;
968 memoff(ch);
969 spin_unlock_irqrestore(&epca_lock, flags);
971 retval = block_til_ready(tty, filp, ch);
972 if (retval)
973 return retval;
975 * Set this again in case a hangup set it to zero while this open() was
976 * waiting for the line...
978 spin_lock_irqsave(&epca_lock, flags);
979 ch->tty = tty;
980 globalwinon(ch);
981 /* Enable Digi Data events */
982 writeb(1, &bc->idata);
983 memoff(ch);
984 spin_unlock_irqrestore(&epca_lock, flags);
985 return 0;
988 static int __init epca_module_init(void)
990 return pc_init();
992 module_init(epca_module_init);
994 static struct pci_driver epca_driver;
996 static void __exit epca_module_exit(void)
998 int count, crd;
999 struct board_info *bd;
1000 struct channel *ch;
1002 del_timer_sync(&epca_timer);
1004 if (tty_unregister_driver(pc_driver) ||
1005 tty_unregister_driver(pc_info)) {
1006 printk(KERN_WARNING "epca: cleanup_module failed to un-register tty driver\n");
1007 return;
1009 put_tty_driver(pc_driver);
1010 put_tty_driver(pc_info);
1012 for (crd = 0; crd < num_cards; crd++) {
1013 bd = &boards[crd];
1014 if (!bd) { /* sanity check */
1015 printk(KERN_ERR "<Error> - Digi : cleanup_module failed\n");
1016 return;
1018 ch = card_ptr[crd];
1019 for (count = 0; count < bd->numports; count++, ch++) {
1020 if (ch && ch->tty)
1021 tty_hangup(ch->tty);
1024 pci_unregister_driver(&epca_driver);
1026 module_exit(epca_module_exit);
1028 static const struct tty_operations pc_ops = {
1029 .open = pc_open,
1030 .close = pc_close,
1031 .write = pc_write,
1032 .write_room = pc_write_room,
1033 .flush_buffer = pc_flush_buffer,
1034 .chars_in_buffer = pc_chars_in_buffer,
1035 .flush_chars = pc_flush_chars,
1036 .ioctl = pc_ioctl,
1037 .set_termios = pc_set_termios,
1038 .stop = pc_stop,
1039 .start = pc_start,
1040 .throttle = pc_throttle,
1041 .unthrottle = pc_unthrottle,
1042 .hangup = pc_hangup,
1045 static int info_open(struct tty_struct *tty, struct file *filp)
1047 return 0;
1050 static struct tty_operations info_ops = {
1051 .open = info_open,
1052 .ioctl = info_ioctl,
1055 static int __init pc_init(void)
1057 int crd;
1058 struct board_info *bd;
1059 unsigned char board_id = 0;
1060 int err = -ENOMEM;
1062 int pci_boards_found, pci_count;
1064 pci_count = 0;
1066 pc_driver = alloc_tty_driver(MAX_ALLOC);
1067 if (!pc_driver)
1068 goto out1;
1070 pc_info = alloc_tty_driver(MAX_ALLOC);
1071 if (!pc_info)
1072 goto out2;
1075 * If epca_setup has not been ran by LILO set num_cards to defaults;
1076 * copy board structure defined by digiConfig into drivers board
1077 * structure. Note : If LILO has ran epca_setup then epca_setup will
1078 * handle defining num_cards as well as copying the data into the board
1079 * structure.
1081 if (!liloconfig) {
1082 /* driver has been configured via. epcaconfig */
1083 nbdevs = NBDEVS;
1084 num_cards = NUMCARDS;
1085 memcpy(&boards, &static_boards,
1086 sizeof(struct board_info) * NUMCARDS);
1090 * Note : If lilo was used to configure the driver and the ignore
1091 * epcaconfig option was choosen (digiepca=2) then nbdevs and num_cards
1092 * will equal 0 at this point. This is okay; PCI cards will still be
1093 * picked up if detected.
1097 * Set up interrupt, we will worry about memory allocation in
1098 * post_fep_init.
1100 printk(KERN_INFO "DIGI epca driver version %s loaded.\n", VERSION);
1103 * NOTE : This code assumes that the number of ports found in the
1104 * boards array is correct. This could be wrong if the card in question
1105 * is PCI (And therefore has no ports entry in the boards structure.)
1106 * The rest of the information will be valid for PCI because the
1107 * beginning of pc_init scans for PCI and determines i/o and base
1108 * memory addresses. I am not sure if it is possible to read the number
1109 * of ports supported by the card prior to it being booted (Since that
1110 * is the state it is in when pc_init is run). Because it is not
1111 * possible to query the number of supported ports until after the card
1112 * has booted; we are required to calculate the card_ptrs as the card
1113 * is initialized (Inside post_fep_init). The negative thing about this
1114 * approach is that digiDload's call to GET_INFO will have a bad port
1115 * value. (Since this is called prior to post_fep_init.)
1117 pci_boards_found = 0;
1118 if (num_cards < MAXBOARDS)
1119 pci_boards_found += init_PCI();
1120 num_cards += pci_boards_found;
1122 pc_driver->owner = THIS_MODULE;
1123 pc_driver->name = "ttyD";
1124 pc_driver->major = DIGI_MAJOR;
1125 pc_driver->minor_start = 0;
1126 pc_driver->type = TTY_DRIVER_TYPE_SERIAL;
1127 pc_driver->subtype = SERIAL_TYPE_NORMAL;
1128 pc_driver->init_termios = tty_std_termios;
1129 pc_driver->init_termios.c_iflag = 0;
1130 pc_driver->init_termios.c_oflag = 0;
1131 pc_driver->init_termios.c_cflag = B9600 | CS8 | CREAD | CLOCAL | HUPCL;
1132 pc_driver->init_termios.c_lflag = 0;
1133 pc_driver->init_termios.c_ispeed = 9600;
1134 pc_driver->init_termios.c_ospeed = 9600;
1135 pc_driver->flags = TTY_DRIVER_REAL_RAW;
1136 tty_set_operations(pc_driver, &pc_ops);
1138 pc_info->owner = THIS_MODULE;
1139 pc_info->name = "digi_ctl";
1140 pc_info->major = DIGIINFOMAJOR;
1141 pc_info->minor_start = 0;
1142 pc_info->type = TTY_DRIVER_TYPE_SERIAL;
1143 pc_info->subtype = SERIAL_TYPE_INFO;
1144 pc_info->init_termios = tty_std_termios;
1145 pc_info->init_termios.c_iflag = 0;
1146 pc_info->init_termios.c_oflag = 0;
1147 pc_info->init_termios.c_lflag = 0;
1148 pc_info->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL;
1149 pc_info->init_termios.c_ispeed = 9600;
1150 pc_info->init_termios.c_ospeed = 9600;
1151 pc_info->flags = TTY_DRIVER_REAL_RAW;
1152 tty_set_operations(pc_info, &info_ops);
1155 for (crd = 0; crd < num_cards; crd++) {
1157 * This is where the appropriate memory handlers for the
1158 * hardware is set. Everything at runtime blindly jumps through
1159 * these vectors.
1162 /* defined in epcaconfig.h */
1163 bd = &boards[crd];
1165 switch (bd->type) {
1166 case PCXEM:
1167 case EISAXEM:
1168 bd->memwinon = pcxem_memwinon;
1169 bd->memwinoff = pcxem_memwinoff;
1170 bd->globalwinon = pcxem_globalwinon;
1171 bd->txwinon = pcxem_txwinon;
1172 bd->rxwinon = pcxem_rxwinon;
1173 bd->memoff = pcxem_memoff;
1174 bd->assertgwinon = dummy_assertgwinon;
1175 bd->assertmemoff = dummy_assertmemoff;
1176 break;
1178 case PCIXEM:
1179 case PCIXRJ:
1180 case PCIXR:
1181 bd->memwinon = dummy_memwinon;
1182 bd->memwinoff = dummy_memwinoff;
1183 bd->globalwinon = dummy_globalwinon;
1184 bd->txwinon = dummy_txwinon;
1185 bd->rxwinon = dummy_rxwinon;
1186 bd->memoff = dummy_memoff;
1187 bd->assertgwinon = dummy_assertgwinon;
1188 bd->assertmemoff = dummy_assertmemoff;
1189 break;
1191 case PCXE:
1192 case PCXEVE:
1193 bd->memwinon = pcxe_memwinon;
1194 bd->memwinoff = pcxe_memwinoff;
1195 bd->globalwinon = pcxe_globalwinon;
1196 bd->txwinon = pcxe_txwinon;
1197 bd->rxwinon = pcxe_rxwinon;
1198 bd->memoff = pcxe_memoff;
1199 bd->assertgwinon = dummy_assertgwinon;
1200 bd->assertmemoff = dummy_assertmemoff;
1201 break;
1203 case PCXI:
1204 case PC64XE:
1205 bd->memwinon = pcxi_memwinon;
1206 bd->memwinoff = pcxi_memwinoff;
1207 bd->globalwinon = pcxi_globalwinon;
1208 bd->txwinon = pcxi_txwinon;
1209 bd->rxwinon = pcxi_rxwinon;
1210 bd->memoff = pcxi_memoff;
1211 bd->assertgwinon = pcxi_assertgwinon;
1212 bd->assertmemoff = pcxi_assertmemoff;
1213 break;
1215 default:
1216 break;
1220 * Some cards need a memory segment to be defined for use in
1221 * transmit and receive windowing operations. These boards are
1222 * listed in the below switch. In the case of the XI the amount
1223 * of memory on the board is variable so the memory_seg is also
1224 * variable. This code determines what they segment should be.
1226 switch (bd->type) {
1227 case PCXE:
1228 case PCXEVE:
1229 case PC64XE:
1230 bd->memory_seg = 0xf000;
1231 break;
1233 case PCXI:
1234 board_id = inb((int)bd->port);
1235 if ((board_id & 0x1) == 0x1) {
1236 /* it's an XI card */
1237 /* Is it a 64K board */
1238 if ((board_id & 0x30) == 0)
1239 bd->memory_seg = 0xf000;
1241 /* Is it a 128K board */
1242 if ((board_id & 0x30) == 0x10)
1243 bd->memory_seg = 0xe000;
1245 /* Is is a 256K board */
1246 if ((board_id & 0x30) == 0x20)
1247 bd->memory_seg = 0xc000;
1249 /* Is it a 512K board */
1250 if ((board_id & 0x30) == 0x30)
1251 bd->memory_seg = 0x8000;
1252 } else
1253 printk(KERN_ERR "epca: Board at 0x%x doesn't appear to be an XI\n", (int)bd->port);
1254 break;
1258 err = tty_register_driver(pc_driver);
1259 if (err) {
1260 printk(KERN_ERR "Couldn't register Digi PC/ driver");
1261 goto out3;
1264 err = tty_register_driver(pc_info);
1265 if (err) {
1266 printk(KERN_ERR "Couldn't register Digi PC/ info ");
1267 goto out4;
1270 /* Start up the poller to check for events on all enabled boards */
1271 init_timer(&epca_timer);
1272 epca_timer.function = epcapoll;
1273 mod_timer(&epca_timer, jiffies + HZ/25);
1274 return 0;
1276 out4:
1277 tty_unregister_driver(pc_driver);
1278 out3:
1279 put_tty_driver(pc_info);
1280 out2:
1281 put_tty_driver(pc_driver);
1282 out1:
1283 return err;
1286 static void post_fep_init(unsigned int crd)
1288 int i;
1289 void __iomem *memaddr;
1290 struct global_data __iomem *gd;
1291 struct board_info *bd;
1292 struct board_chan __iomem *bc;
1293 struct channel *ch;
1294 int shrinkmem = 0, lowwater;
1297 * This call is made by the user via. the ioctl call DIGI_INIT. It is
1298 * responsible for setting up all the card specific stuff.
1300 bd = &boards[crd];
1303 * If this is a PCI board, get the port info. Remember PCI cards do not
1304 * have entries into the epcaconfig.h file, so we can't get the number
1305 * of ports from it. Unfortunetly, this means that anyone doing a
1306 * DIGI_GETINFO before the board has booted will get an invalid number
1307 * of ports returned (It should return 0). Calls to DIGI_GETINFO after
1308 * DIGI_INIT has been called will return the proper values.
1310 if (bd->type >= PCIXEM) { /* Begin get PCI number of ports */
1312 * Below we use XEMPORTS as a memory offset regardless of which
1313 * PCI card it is. This is because all of the supported PCI
1314 * cards have the same memory offset for the channel data. This
1315 * will have to be changed if we ever develop a PCI/XE card.
1316 * NOTE : The FEP manual states that the port offset is 0xC22
1317 * as opposed to 0xC02. This is only true for PC/XE, and PC/XI
1318 * cards; not for the XEM, or CX series. On the PCI cards the
1319 * number of ports is determined by reading a ID PROM located
1320 * in the box attached to the card. The card can then determine
1321 * the index the id to determine the number of ports available.
1322 * (FYI - The id should be located at 0x1ac (And may use up to
1323 * 4 bytes if the box in question is a XEM or CX)).
1325 /* PCI cards are already remapped at this point ISA are not */
1326 bd->numports = readw(bd->re_map_membase + XEMPORTS);
1327 epcaassert(bd->numports <= 64, "PCI returned a invalid number of ports");
1328 nbdevs += (bd->numports);
1329 } else {
1330 /* Fix up the mappings for ISA/EISA etc */
1331 /* FIXME: 64K - can we be smarter ? */
1332 bd->re_map_membase = ioremap_nocache(bd->membase, 0x10000);
1335 if (crd != 0)
1336 card_ptr[crd] = card_ptr[crd-1] + boards[crd-1].numports;
1337 else
1338 card_ptr[crd] = &digi_channels[crd]; /* <- For card 0 only */
1340 ch = card_ptr[crd];
1341 epcaassert(ch <= &digi_channels[nbdevs - 1], "ch out of range");
1343 memaddr = bd->re_map_membase;
1346 * The below assignment will set bc to point at the BEGINING of the
1347 * cards channel structures. For 1 card there will be between 8 and 64
1348 * of these structures.
1350 bc = memaddr + CHANSTRUCT;
1353 * The below assignment will set gd to point at the BEGINING of global
1354 * memory address 0xc00. The first data in that global memory actually
1355 * starts at address 0xc1a. The command in pointer begins at 0xd10.
1357 gd = memaddr + GLOBAL;
1360 * XEPORTS (address 0xc22) points at the number of channels the card
1361 * supports. (For 64XE, XI, XEM, and XR use 0xc02)
1363 if ((bd->type == PCXEVE || bd->type == PCXE) &&
1364 (readw(memaddr + XEPORTS) < 3))
1365 shrinkmem = 1;
1366 if (bd->type < PCIXEM)
1367 if (!request_region((int)bd->port, 4, board_desc[bd->type]))
1368 return;
1369 memwinon(bd, 0);
1372 * Remember ch is the main drivers channels structure, while bc is the
1373 * cards channel structure.
1375 for (i = 0; i < bd->numports; i++, ch++, bc++) {
1376 unsigned long flags;
1377 u16 tseg, rseg;
1379 ch->brdchan = bc;
1380 ch->mailbox = gd;
1381 INIT_WORK(&ch->tqueue, do_softint);
1382 ch->board = &boards[crd];
1384 spin_lock_irqsave(&epca_lock, flags);
1385 switch (bd->type) {
1387 * Since some of the boards use different bitmaps for
1388 * their control signals we cannot hard code these
1389 * values and retain portability. We virtualize this
1390 * data here.
1392 case EISAXEM:
1393 case PCXEM:
1394 case PCIXEM:
1395 case PCIXRJ:
1396 case PCIXR:
1397 ch->m_rts = 0x02;
1398 ch->m_dcd = 0x80;
1399 ch->m_dsr = 0x20;
1400 ch->m_cts = 0x10;
1401 ch->m_ri = 0x40;
1402 ch->m_dtr = 0x01;
1403 break;
1405 case PCXE:
1406 case PCXEVE:
1407 case PCXI:
1408 case PC64XE:
1409 ch->m_rts = 0x02;
1410 ch->m_dcd = 0x08;
1411 ch->m_dsr = 0x10;
1412 ch->m_cts = 0x20;
1413 ch->m_ri = 0x40;
1414 ch->m_dtr = 0x80;
1415 break;
1418 if (boards[crd].altpin) {
1419 ch->dsr = ch->m_dcd;
1420 ch->dcd = ch->m_dsr;
1421 ch->digiext.digi_flags |= DIGI_ALTPIN;
1422 } else {
1423 ch->dcd = ch->m_dcd;
1424 ch->dsr = ch->m_dsr;
1427 ch->boardnum = crd;
1428 ch->channelnum = i;
1429 ch->magic = EPCA_MAGIC;
1430 ch->tty = NULL;
1432 if (shrinkmem) {
1433 fepcmd(ch, SETBUFFER, 32, 0, 0, 0);
1434 shrinkmem = 0;
1437 tseg = readw(&bc->tseg);
1438 rseg = readw(&bc->rseg);
1440 switch (bd->type) {
1441 case PCIXEM:
1442 case PCIXRJ:
1443 case PCIXR:
1444 /* Cover all the 2MEG cards */
1445 ch->txptr = memaddr + ((tseg << 4) & 0x1fffff);
1446 ch->rxptr = memaddr + ((rseg << 4) & 0x1fffff);
1447 ch->txwin = FEPWIN | (tseg >> 11);
1448 ch->rxwin = FEPWIN | (rseg >> 11);
1449 break;
1451 case PCXEM:
1452 case EISAXEM:
1453 /* Cover all the 32K windowed cards */
1454 /* Mask equal to window size - 1 */
1455 ch->txptr = memaddr + ((tseg << 4) & 0x7fff);
1456 ch->rxptr = memaddr + ((rseg << 4) & 0x7fff);
1457 ch->txwin = FEPWIN | (tseg >> 11);
1458 ch->rxwin = FEPWIN | (rseg >> 11);
1459 break;
1461 case PCXEVE:
1462 case PCXE:
1463 ch->txptr = memaddr + (((tseg - bd->memory_seg) << 4)
1464 & 0x1fff);
1465 ch->txwin = FEPWIN | ((tseg - bd->memory_seg) >> 9);
1466 ch->rxptr = memaddr + (((rseg - bd->memory_seg) << 4)
1467 & 0x1fff);
1468 ch->rxwin = FEPWIN | ((rseg - bd->memory_seg) >> 9);
1469 break;
1471 case PCXI:
1472 case PC64XE:
1473 ch->txptr = memaddr + ((tseg - bd->memory_seg) << 4);
1474 ch->rxptr = memaddr + ((rseg - bd->memory_seg) << 4);
1475 ch->txwin = ch->rxwin = 0;
1476 break;
1479 ch->txbufhead = 0;
1480 ch->txbufsize = readw(&bc->tmax) + 1;
1482 ch->rxbufhead = 0;
1483 ch->rxbufsize = readw(&bc->rmax) + 1;
1485 lowwater = ch->txbufsize >= 2000 ? 1024 : (ch->txbufsize / 2);
1487 /* Set transmitter low water mark */
1488 fepcmd(ch, STXLWATER, lowwater, 0, 10, 0);
1490 /* Set receiver low water mark */
1491 fepcmd(ch, SRXLWATER, (ch->rxbufsize / 4), 0, 10, 0);
1493 /* Set receiver high water mark */
1494 fepcmd(ch, SRXHWATER, (3 * ch->rxbufsize / 4), 0, 10, 0);
1496 writew(100, &bc->edelay);
1497 writeb(1, &bc->idata);
1499 ch->startc = readb(&bc->startc);
1500 ch->stopc = readb(&bc->stopc);
1501 ch->startca = readb(&bc->startca);
1502 ch->stopca = readb(&bc->stopca);
1504 ch->fepcflag = 0;
1505 ch->fepiflag = 0;
1506 ch->fepoflag = 0;
1507 ch->fepstartc = 0;
1508 ch->fepstopc = 0;
1509 ch->fepstartca = 0;
1510 ch->fepstopca = 0;
1512 ch->close_delay = 50;
1513 ch->count = 0;
1514 ch->blocked_open = 0;
1515 init_waitqueue_head(&ch->open_wait);
1516 init_waitqueue_head(&ch->close_wait);
1518 spin_unlock_irqrestore(&epca_lock, flags);
1521 printk(KERN_INFO
1522 "Digi PC/Xx Driver V%s: %s I/O = 0x%lx Mem = 0x%lx Ports = %d\n",
1523 VERSION, board_desc[bd->type], (long)bd->port,
1524 (long)bd->membase, bd->numports);
1525 memwinoff(bd, 0);
1528 static void epcapoll(unsigned long ignored)
1530 unsigned long flags;
1531 int crd;
1532 unsigned int head, tail;
1533 struct channel *ch;
1534 struct board_info *bd;
1537 * This routine is called upon every timer interrupt. Even though the
1538 * Digi series cards are capable of generating interrupts this method
1539 * of non-looping polling is more efficient. This routine checks for
1540 * card generated events (Such as receive data, are transmit buffer
1541 * empty) and acts on those events.
1543 for (crd = 0; crd < num_cards; crd++) {
1544 bd = &boards[crd];
1545 ch = card_ptr[crd];
1547 if ((bd->status == DISABLED) || digi_poller_inhibited)
1548 continue;
1551 * assertmemoff is not needed here; indeed it is an empty
1552 * subroutine. It is being kept because future boards may need
1553 * this as well as some legacy boards.
1555 spin_lock_irqsave(&epca_lock, flags);
1557 assertmemoff(ch);
1559 globalwinon(ch);
1562 * In this case head and tail actually refer to the event queue
1563 * not the transmit or receive queue.
1565 head = readw(&ch->mailbox->ein);
1566 tail = readw(&ch->mailbox->eout);
1568 /* If head isn't equal to tail we have an event */
1569 if (head != tail)
1570 doevent(crd);
1571 memoff(ch);
1573 spin_unlock_irqrestore(&epca_lock, flags);
1574 } /* End for each card */
1575 mod_timer(&epca_timer, jiffies + (HZ / 25));
1578 static void doevent(int crd)
1580 void __iomem *eventbuf;
1581 struct channel *ch, *chan0;
1582 static struct tty_struct *tty;
1583 struct board_info *bd;
1584 struct board_chan __iomem *bc;
1585 unsigned int tail, head;
1586 int event, channel;
1587 int mstat, lstat;
1590 * This subroutine is called by epcapoll when an event is detected
1591 * in the event queue. This routine responds to those events.
1593 bd = &boards[crd];
1595 chan0 = card_ptr[crd];
1596 epcaassert(chan0 <= &digi_channels[nbdevs - 1], "ch out of range");
1597 assertgwinon(chan0);
1598 while ((tail = readw(&chan0->mailbox->eout)) !=
1599 (head = readw(&chan0->mailbox->ein))) {
1600 /* Begin while something in event queue */
1601 assertgwinon(chan0);
1602 eventbuf = bd->re_map_membase + tail + ISTART;
1603 /* Get the channel the event occurred on */
1604 channel = readb(eventbuf);
1605 /* Get the actual event code that occurred */
1606 event = readb(eventbuf + 1);
1608 * The two assignments below get the current modem status
1609 * (mstat) and the previous modem status (lstat). These are
1610 * useful becuase an event could signal a change in modem
1611 * signals itself.
1613 mstat = readb(eventbuf + 2);
1614 lstat = readb(eventbuf + 3);
1616 ch = chan0 + channel;
1617 if ((unsigned)channel >= bd->numports || !ch) {
1618 if (channel >= bd->numports)
1619 ch = chan0;
1620 bc = ch->brdchan;
1621 goto next;
1624 bc = ch->brdchan;
1625 if (bc == NULL)
1626 goto next;
1628 if (event & DATA_IND) { /* Begin DATA_IND */
1629 receive_data(ch);
1630 assertgwinon(ch);
1631 } /* End DATA_IND */
1632 /* else *//* Fix for DCD transition missed bug */
1633 if (event & MODEMCHG_IND) {
1634 /* A modem signal change has been indicated */
1635 ch->imodem = mstat;
1636 if (ch->asyncflags & ASYNC_CHECK_CD) {
1637 /* We are now receiving dcd */
1638 if (mstat & ch->dcd)
1639 wake_up_interruptible(&ch->open_wait);
1640 else /* No dcd; hangup */
1641 pc_sched_event(ch, EPCA_EVENT_HANGUP);
1644 tty = ch->tty;
1645 if (tty) {
1646 if (event & BREAK_IND) {
1647 /* A break has been indicated */
1648 tty_insert_flip_char(tty, 0, TTY_BREAK);
1649 tty_schedule_flip(tty);
1650 } else if (event & LOWTX_IND) {
1651 if (ch->statusflags & LOWWAIT) {
1652 ch->statusflags &= ~LOWWAIT;
1653 tty_wakeup(tty);
1655 } else if (event & EMPTYTX_IND) {
1656 /* This event is generated by
1657 setup_empty_event */
1658 ch->statusflags &= ~TXBUSY;
1659 if (ch->statusflags & EMPTYWAIT) {
1660 ch->statusflags &= ~EMPTYWAIT;
1661 tty_wakeup(tty);
1665 next:
1666 globalwinon(ch);
1667 BUG_ON(!bc);
1668 writew(1, &bc->idata);
1669 writew((tail + 4) & (IMAX - ISTART - 4), &chan0->mailbox->eout);
1670 globalwinon(chan0);
1671 } /* End while something in event queue */
1674 static void fepcmd(struct channel *ch, int cmd, int word_or_byte,
1675 int byte2, int ncmds, int bytecmd)
1677 unchar __iomem *memaddr;
1678 unsigned int head, cmdTail, cmdStart, cmdMax;
1679 long count;
1680 int n;
1682 /* This is the routine in which commands may be passed to the card. */
1684 if (ch->board->status == DISABLED)
1685 return;
1686 assertgwinon(ch);
1687 /* Remember head (As well as max) is just an offset not a base addr */
1688 head = readw(&ch->mailbox->cin);
1689 /* cmdStart is a base address */
1690 cmdStart = readw(&ch->mailbox->cstart);
1692 * We do the addition below because we do not want a max pointer
1693 * relative to cmdStart. We want a max pointer that points at the
1694 * physical end of the command queue.
1696 cmdMax = (cmdStart + 4 + readw(&ch->mailbox->cmax));
1697 memaddr = ch->board->re_map_membase;
1699 if (head >= (cmdMax - cmdStart) || (head & 03)) {
1700 printk(KERN_ERR "line %d: Out of range, cmd = %x, head = %x\n",
1701 __LINE__, cmd, head);
1702 printk(KERN_ERR "line %d: Out of range, cmdMax = %x, cmdStart = %x\n",
1703 __LINE__, cmdMax, cmdStart);
1704 return;
1706 if (bytecmd) {
1707 writeb(cmd, memaddr + head + cmdStart + 0);
1708 writeb(ch->channelnum, memaddr + head + cmdStart + 1);
1709 /* Below word_or_byte is bits to set */
1710 writeb(word_or_byte, memaddr + head + cmdStart + 2);
1711 /* Below byte2 is bits to reset */
1712 writeb(byte2, memaddr + head + cmdStart + 3);
1713 } else {
1714 writeb(cmd, memaddr + head + cmdStart + 0);
1715 writeb(ch->channelnum, memaddr + head + cmdStart + 1);
1716 writeb(word_or_byte, memaddr + head + cmdStart + 2);
1718 head = (head + 4) & (cmdMax - cmdStart - 4);
1719 writew(head, &ch->mailbox->cin);
1720 count = FEPTIMEOUT;
1722 for (;;) {
1723 count--;
1724 if (count == 0) {
1725 printk(KERN_ERR "<Error> - Fep not responding in fepcmd()\n");
1726 return;
1728 head = readw(&ch->mailbox->cin);
1729 cmdTail = readw(&ch->mailbox->cout);
1730 n = (head - cmdTail) & (cmdMax - cmdStart - 4);
1732 * Basically this will break when the FEP acknowledges the
1733 * command by incrementing cmdTail (Making it equal to head).
1735 if (n <= ncmds * (sizeof(short) * 4))
1736 break;
1741 * Digi products use fields in their channels structures that are very similar
1742 * to the c_cflag and c_iflag fields typically found in UNIX termios
1743 * structures. The below three routines allow mappings between these hardware
1744 * "flags" and their respective Linux flags.
1746 static unsigned termios2digi_h(struct channel *ch, unsigned cflag)
1748 unsigned res = 0;
1750 if (cflag & CRTSCTS) {
1751 ch->digiext.digi_flags |= (RTSPACE | CTSPACE);
1752 res |= ((ch->m_cts) | (ch->m_rts));
1755 if (ch->digiext.digi_flags & RTSPACE)
1756 res |= ch->m_rts;
1758 if (ch->digiext.digi_flags & DTRPACE)
1759 res |= ch->m_dtr;
1761 if (ch->digiext.digi_flags & CTSPACE)
1762 res |= ch->m_cts;
1764 if (ch->digiext.digi_flags & DSRPACE)
1765 res |= ch->dsr;
1767 if (ch->digiext.digi_flags & DCDPACE)
1768 res |= ch->dcd;
1770 if (res & (ch->m_rts))
1771 ch->digiext.digi_flags |= RTSPACE;
1773 if (res & (ch->m_cts))
1774 ch->digiext.digi_flags |= CTSPACE;
1776 return res;
1779 static unsigned termios2digi_i(struct channel *ch, unsigned iflag)
1781 unsigned res = iflag & (IGNBRK | BRKINT | IGNPAR | PARMRK |
1782 INPCK | ISTRIP | IXON | IXANY | IXOFF);
1783 if (ch->digiext.digi_flags & DIGI_AIXON)
1784 res |= IAIXON;
1785 return res;
1788 static unsigned termios2digi_c(struct channel *ch, unsigned cflag)
1790 unsigned res = 0;
1791 if (cflag & CBAUDEX) {
1792 ch->digiext.digi_flags |= DIGI_FAST;
1794 * HUPCL bit is used by FEP to indicate fast baud table is to
1795 * be used.
1797 res |= FEP_HUPCL;
1798 } else
1799 ch->digiext.digi_flags &= ~DIGI_FAST;
1801 * CBAUD has bit position 0x1000 set these days to indicate Linux
1802 * baud rate remap. Digi hardware can't handle the bit assignment.
1803 * (We use a different bit assignment for high speed.). Clear this
1804 * bit out.
1806 res |= cflag & ((CBAUD ^ CBAUDEX) | PARODD | PARENB | CSTOPB | CSIZE);
1808 * This gets a little confusing. The Digi cards have their own
1809 * representation of c_cflags controlling baud rate. For the most part
1810 * this is identical to the Linux implementation. However; Digi
1811 * supports one rate (76800) that Linux doesn't. This means that the
1812 * c_cflag entry that would normally mean 76800 for Digi actually means
1813 * 115200 under Linux. Without the below mapping, a stty 115200 would
1814 * only drive the board at 76800. Since the rate 230400 is also found
1815 * after 76800, the same problem afflicts us when we choose a rate of
1816 * 230400. Without the below modificiation stty 230400 would actually
1817 * give us 115200.
1819 * There are two additional differences. The Linux value for CLOCAL
1820 * (0x800; 0004000) has no meaning to the Digi hardware. Also in later
1821 * releases of Linux; the CBAUD define has CBAUDEX (0x1000; 0010000)
1822 * ored into it (CBAUD = 0x100f as opposed to 0xf). CBAUDEX should be
1823 * checked for a screened out prior to termios2digi_c returning. Since
1824 * CLOCAL isn't used by the board this can be ignored as long as the
1825 * returned value is used only by Digi hardware.
1827 if (cflag & CBAUDEX) {
1829 * The below code is trying to guarantee that only baud rates
1830 * 115200 and 230400 are remapped. We use exclusive or because
1831 * the various baud rates share common bit positions and
1832 * therefore can't be tested for easily.
1834 if ((!((cflag & 0x7) ^ (B115200 & ~CBAUDEX))) ||
1835 (!((cflag & 0x7) ^ (B230400 & ~CBAUDEX))))
1836 res += 1;
1838 return res;
1841 /* Caller must hold the locks */
1842 static void epcaparam(struct tty_struct *tty, struct channel *ch)
1844 unsigned int cmdHead;
1845 struct ktermios *ts;
1846 struct board_chan __iomem *bc;
1847 unsigned mval, hflow, cflag, iflag;
1849 bc = ch->brdchan;
1850 epcaassert(bc != NULL, "bc out of range");
1852 assertgwinon(ch);
1853 ts = tty->termios;
1854 if ((ts->c_cflag & CBAUD) == 0) { /* Begin CBAUD detected */
1855 cmdHead = readw(&bc->rin);
1856 writew(cmdHead, &bc->rout);
1857 cmdHead = readw(&bc->tin);
1858 /* Changing baud in mid-stream transmission can be wonderful */
1860 * Flush current transmit buffer by setting cmdTail pointer
1861 * (tout) to cmdHead pointer (tin). Hopefully the transmit
1862 * buffer is empty.
1864 fepcmd(ch, STOUT, (unsigned) cmdHead, 0, 0, 0);
1865 mval = 0;
1866 } else { /* Begin CBAUD not detected */
1868 * c_cflags have changed but that change had nothing to do with
1869 * BAUD. Propagate the change to the card.
1871 cflag = termios2digi_c(ch, ts->c_cflag);
1872 if (cflag != ch->fepcflag) {
1873 ch->fepcflag = cflag;
1874 /* Set baud rate, char size, stop bits, parity */
1875 fepcmd(ch, SETCTRLFLAGS, (unsigned) cflag, 0, 0, 0);
1878 * If the user has not forced CLOCAL and if the device is not a
1879 * CALLOUT device (Which is always CLOCAL) we set flags such
1880 * that the driver will wait on carrier detect.
1882 if (ts->c_cflag & CLOCAL)
1883 ch->asyncflags &= ~ASYNC_CHECK_CD;
1884 else
1885 ch->asyncflags |= ASYNC_CHECK_CD;
1886 mval = ch->m_dtr | ch->m_rts;
1887 } /* End CBAUD not detected */
1888 iflag = termios2digi_i(ch, ts->c_iflag);
1889 /* Check input mode flags */
1890 if (iflag != ch->fepiflag) {
1891 ch->fepiflag = iflag;
1893 * Command sets channels iflag structure on the board. Such
1894 * things as input soft flow control, handling of parity
1895 * errors, and break handling are all set here.
1897 * break handling, parity handling, input stripping,
1898 * flow control chars
1900 fepcmd(ch, SETIFLAGS, (unsigned int) ch->fepiflag, 0, 0, 0);
1903 * Set the board mint value for this channel. This will cause hardware
1904 * events to be generated each time the DCD signal (Described in mint)
1905 * changes.
1907 writeb(ch->dcd, &bc->mint);
1908 if ((ts->c_cflag & CLOCAL) || (ch->digiext.digi_flags & DIGI_FORCEDCD))
1909 if (ch->digiext.digi_flags & DIGI_FORCEDCD)
1910 writeb(0, &bc->mint);
1911 ch->imodem = readb(&bc->mstat);
1912 hflow = termios2digi_h(ch, ts->c_cflag);
1913 if (hflow != ch->hflow) {
1914 ch->hflow = hflow;
1916 * Hard flow control has been selected but the board is not
1917 * using it. Activate hard flow control now.
1919 fepcmd(ch, SETHFLOW, hflow, 0xff, 0, 1);
1921 mval ^= ch->modemfake & (mval ^ ch->modem);
1923 if (ch->omodem ^ mval) {
1924 ch->omodem = mval;
1926 * The below command sets the DTR and RTS mstat structure. If
1927 * hard flow control is NOT active these changes will drive the
1928 * output of the actual DTR and RTS lines. If hard flow control
1929 * is active, the changes will be saved in the mstat structure
1930 * and only asserted when hard flow control is turned off.
1933 /* First reset DTR & RTS; then set them */
1934 fepcmd(ch, SETMODEM, 0, ((ch->m_dtr)|(ch->m_rts)), 0, 1);
1935 fepcmd(ch, SETMODEM, mval, 0, 0, 1);
1937 if (ch->startc != ch->fepstartc || ch->stopc != ch->fepstopc) {
1938 ch->fepstartc = ch->startc;
1939 ch->fepstopc = ch->stopc;
1941 * The XON / XOFF characters have changed; propagate these
1942 * changes to the card.
1944 fepcmd(ch, SONOFFC, ch->fepstartc, ch->fepstopc, 0, 1);
1946 if (ch->startca != ch->fepstartca || ch->stopca != ch->fepstopca) {
1947 ch->fepstartca = ch->startca;
1948 ch->fepstopca = ch->stopca;
1950 * Similar to the above, this time the auxilarly XON / XOFF
1951 * characters have changed; propagate these changes to the card.
1953 fepcmd(ch, SAUXONOFFC, ch->fepstartca, ch->fepstopca, 0, 1);
1957 /* Caller holds lock */
1958 static void receive_data(struct channel *ch)
1960 unchar *rptr;
1961 struct ktermios *ts = NULL;
1962 struct tty_struct *tty;
1963 struct board_chan __iomem *bc;
1964 int dataToRead, wrapgap, bytesAvailable;
1965 unsigned int tail, head;
1966 unsigned int wrapmask;
1969 * This routine is called by doint when a receive data event has taken
1970 * place.
1972 globalwinon(ch);
1973 if (ch->statusflags & RXSTOPPED)
1974 return;
1975 tty = ch->tty;
1976 if (tty)
1977 ts = tty->termios;
1978 bc = ch->brdchan;
1979 BUG_ON(!bc);
1980 wrapmask = ch->rxbufsize - 1;
1983 * Get the head and tail pointers to the receiver queue. Wrap the head
1984 * pointer if it has reached the end of the buffer.
1986 head = readw(&bc->rin);
1987 head &= wrapmask;
1988 tail = readw(&bc->rout) & wrapmask;
1990 bytesAvailable = (head - tail) & wrapmask;
1991 if (bytesAvailable == 0)
1992 return;
1994 /* If CREAD bit is off or device not open, set TX tail to head */
1995 if (!tty || !ts || !(ts->c_cflag & CREAD)) {
1996 writew(head, &bc->rout);
1997 return;
2000 if (tty_buffer_request_room(tty, bytesAvailable + 1) == 0)
2001 return;
2003 if (readb(&bc->orun)) {
2004 writeb(0, &bc->orun);
2005 printk(KERN_WARNING "epca; overrun! DigiBoard device %s\n",
2006 tty->name);
2007 tty_insert_flip_char(tty, 0, TTY_OVERRUN);
2009 rxwinon(ch);
2010 while (bytesAvailable > 0) {
2011 /* Begin while there is data on the card */
2012 wrapgap = (head >= tail) ? head - tail : ch->rxbufsize - tail;
2014 * Even if head has wrapped around only report the amount of
2015 * data to be equal to the size - tail. Remember memcpy can't
2016 * automaticly wrap around the receive buffer.
2018 dataToRead = (wrapgap < bytesAvailable) ? wrapgap
2019 : bytesAvailable;
2020 /* Make sure we don't overflow the buffer */
2021 dataToRead = tty_prepare_flip_string(tty, &rptr, dataToRead);
2022 if (dataToRead == 0)
2023 break;
2025 * Move data read from our card into the line disciplines
2026 * buffer for translation if necessary.
2028 memcpy_fromio(rptr, ch->rxptr + tail, dataToRead);
2029 tail = (tail + dataToRead) & wrapmask;
2030 bytesAvailable -= dataToRead;
2031 } /* End while there is data on the card */
2032 globalwinon(ch);
2033 writew(tail, &bc->rout);
2034 /* Must be called with global data */
2035 tty_schedule_flip(ch->tty);
2038 static int info_ioctl(struct tty_struct *tty, struct file *file,
2039 unsigned int cmd, unsigned long arg)
2041 switch (cmd) {
2042 case DIGI_GETINFO:
2044 struct digi_info di;
2045 int brd;
2047 if (get_user(brd, (unsigned int __user *)arg))
2048 return -EFAULT;
2049 if (brd < 0 || brd >= num_cards || num_cards == 0)
2050 return -ENODEV;
2052 memset(&di, 0, sizeof(di));
2054 di.board = brd;
2055 di.status = boards[brd].status;
2056 di.type = boards[brd].type ;
2057 di.numports = boards[brd].numports ;
2058 /* Legacy fixups - just move along nothing to see */
2059 di.port = (unsigned char *)boards[brd].port ;
2060 di.membase = (unsigned char *)boards[brd].membase ;
2062 if (copy_to_user((void __user *)arg, &di, sizeof(di)))
2063 return -EFAULT;
2064 break;
2068 case DIGI_POLLER:
2070 int brd = arg & 0xff000000 >> 16;
2071 unsigned char state = arg & 0xff;
2073 if (brd < 0 || brd >= num_cards) {
2074 printk(KERN_ERR "epca: DIGI POLLER : brd not valid!\n");
2075 return -ENODEV;
2077 digi_poller_inhibited = state;
2078 break;
2081 case DIGI_INIT:
2084 * This call is made by the apps to complete the
2085 * initialization of the board(s). This routine is
2086 * responsible for setting the card to its initial
2087 * state and setting the drivers control fields to the
2088 * sutianle settings for the card in question.
2090 int crd;
2091 for (crd = 0; crd < num_cards; crd++)
2092 post_fep_init(crd);
2093 break;
2095 default:
2096 return -ENOTTY;
2098 return 0;
2101 static int pc_tiocmget(struct tty_struct *tty, struct file *file)
2103 struct channel *ch = (struct channel *) tty->driver_data;
2104 struct board_chan __iomem *bc;
2105 unsigned int mstat, mflag = 0;
2106 unsigned long flags;
2108 if (ch)
2109 bc = ch->brdchan;
2110 else
2111 return -EINVAL;
2113 spin_lock_irqsave(&epca_lock, flags);
2114 globalwinon(ch);
2115 mstat = readb(&bc->mstat);
2116 memoff(ch);
2117 spin_unlock_irqrestore(&epca_lock, flags);
2119 if (mstat & ch->m_dtr)
2120 mflag |= TIOCM_DTR;
2121 if (mstat & ch->m_rts)
2122 mflag |= TIOCM_RTS;
2123 if (mstat & ch->m_cts)
2124 mflag |= TIOCM_CTS;
2125 if (mstat & ch->dsr)
2126 mflag |= TIOCM_DSR;
2127 if (mstat & ch->m_ri)
2128 mflag |= TIOCM_RI;
2129 if (mstat & ch->dcd)
2130 mflag |= TIOCM_CD;
2131 return mflag;
2134 static int pc_tiocmset(struct tty_struct *tty, struct file *file,
2135 unsigned int set, unsigned int clear)
2137 struct channel *ch = (struct channel *) tty->driver_data;
2138 unsigned long flags;
2140 if (!ch)
2141 return -EINVAL;
2143 spin_lock_irqsave(&epca_lock, flags);
2145 * I think this modemfake stuff is broken. It doesn't correctly reflect
2146 * the behaviour desired by the TIOCM* ioctls. Therefore this is
2147 * probably broken.
2149 if (set & TIOCM_RTS) {
2150 ch->modemfake |= ch->m_rts;
2151 ch->modem |= ch->m_rts;
2153 if (set & TIOCM_DTR) {
2154 ch->modemfake |= ch->m_dtr;
2155 ch->modem |= ch->m_dtr;
2157 if (clear & TIOCM_RTS) {
2158 ch->modemfake |= ch->m_rts;
2159 ch->modem &= ~ch->m_rts;
2161 if (clear & TIOCM_DTR) {
2162 ch->modemfake |= ch->m_dtr;
2163 ch->modem &= ~ch->m_dtr;
2165 globalwinon(ch);
2167 * The below routine generally sets up parity, baud, flow control
2168 * issues, etc.... It effect both control flags and input flags.
2170 epcaparam(tty, ch);
2171 memoff(ch);
2172 spin_unlock_irqrestore(&epca_lock, flags);
2173 return 0;
2176 static int pc_ioctl(struct tty_struct *tty, struct file *file,
2177 unsigned int cmd, unsigned long arg)
2179 digiflow_t dflow;
2180 int retval;
2181 unsigned long flags;
2182 unsigned int mflag, mstat;
2183 unsigned char startc, stopc;
2184 struct board_chan __iomem *bc;
2185 struct channel *ch = (struct channel *) tty->driver_data;
2186 void __user *argp = (void __user *)arg;
2188 if (ch)
2189 bc = ch->brdchan;
2190 else
2191 return -EINVAL;
2193 * For POSIX compliance we need to add more ioctls. See tty_ioctl.c in
2194 * /usr/src/linux/drivers/char for a good example. In particular think
2195 * about adding TCSETAF, TCSETAW, TCSETA, TCSETSF, TCSETSW, TCSETS.
2197 switch (cmd) {
2198 case TCSBRK: /* SVID version: non-zero arg --> no break */
2199 retval = tty_check_change(tty);
2200 if (retval)
2201 return retval;
2202 /* Setup an event to indicate when the transmit
2203 buffer empties */
2204 spin_lock_irqsave(&epca_lock, flags);
2205 setup_empty_event(tty, ch);
2206 spin_unlock_irqrestore(&epca_lock, flags);
2207 tty_wait_until_sent(tty, 0);
2208 if (!arg)
2209 digi_send_break(ch, HZ / 4); /* 1/4 second */
2210 return 0;
2211 case TCSBRKP: /* support for POSIX tcsendbreak() */
2212 retval = tty_check_change(tty);
2213 if (retval)
2214 return retval;
2215 /* Setup an event to indicate when the transmit buffer
2216 empties */
2217 spin_lock_irqsave(&epca_lock, flags);
2218 setup_empty_event(tty, ch);
2219 spin_unlock_irqrestore(&epca_lock, flags);
2220 tty_wait_until_sent(tty, 0);
2221 digi_send_break(ch, arg ? arg*(HZ/10) : HZ/4);
2222 return 0;
2223 case TIOCMODG:
2224 mflag = pc_tiocmget(tty, file);
2225 if (put_user(mflag, (unsigned long __user *)argp))
2226 return -EFAULT;
2227 break;
2228 case TIOCMODS:
2229 if (get_user(mstat, (unsigned __user *)argp))
2230 return -EFAULT;
2231 return pc_tiocmset(tty, file, mstat, ~mstat);
2232 case TIOCSDTR:
2233 spin_lock_irqsave(&epca_lock, flags);
2234 ch->omodem |= ch->m_dtr;
2235 globalwinon(ch);
2236 fepcmd(ch, SETMODEM, ch->m_dtr, 0, 10, 1);
2237 memoff(ch);
2238 spin_unlock_irqrestore(&epca_lock, flags);
2239 break;
2241 case TIOCCDTR:
2242 spin_lock_irqsave(&epca_lock, flags);
2243 ch->omodem &= ~ch->m_dtr;
2244 globalwinon(ch);
2245 fepcmd(ch, SETMODEM, 0, ch->m_dtr, 10, 1);
2246 memoff(ch);
2247 spin_unlock_irqrestore(&epca_lock, flags);
2248 break;
2249 case DIGI_GETA:
2250 if (copy_to_user(argp, &ch->digiext, sizeof(digi_t)))
2251 return -EFAULT;
2252 break;
2253 case DIGI_SETAW:
2254 case DIGI_SETAF:
2255 lock_kernel();
2256 if (cmd == DIGI_SETAW) {
2257 /* Setup an event to indicate when the transmit
2258 buffer empties */
2259 spin_lock_irqsave(&epca_lock, flags);
2260 setup_empty_event(tty, ch);
2261 spin_unlock_irqrestore(&epca_lock, flags);
2262 tty_wait_until_sent(tty, 0);
2263 } else {
2264 /* ldisc lock already held in ioctl */
2265 if (tty->ldisc.flush_buffer)
2266 tty->ldisc.flush_buffer(tty);
2268 unlock_kernel();
2269 /* Fall Thru */
2270 case DIGI_SETA:
2271 if (copy_from_user(&ch->digiext, argp, sizeof(digi_t)))
2272 return -EFAULT;
2274 if (ch->digiext.digi_flags & DIGI_ALTPIN) {
2275 ch->dcd = ch->m_dsr;
2276 ch->dsr = ch->m_dcd;
2277 } else {
2278 ch->dcd = ch->m_dcd;
2279 ch->dsr = ch->m_dsr;
2282 spin_lock_irqsave(&epca_lock, flags);
2283 globalwinon(ch);
2286 * The below routine generally sets up parity, baud, flow
2287 * control issues, etc.... It effect both control flags and
2288 * input flags.
2290 epcaparam(tty, ch);
2291 memoff(ch);
2292 spin_unlock_irqrestore(&epca_lock, flags);
2293 break;
2295 case DIGI_GETFLOW:
2296 case DIGI_GETAFLOW:
2297 spin_lock_irqsave(&epca_lock, flags);
2298 globalwinon(ch);
2299 if (cmd == DIGI_GETFLOW) {
2300 dflow.startc = readb(&bc->startc);
2301 dflow.stopc = readb(&bc->stopc);
2302 } else {
2303 dflow.startc = readb(&bc->startca);
2304 dflow.stopc = readb(&bc->stopca);
2306 memoff(ch);
2307 spin_unlock_irqrestore(&epca_lock, flags);
2309 if (copy_to_user(argp, &dflow, sizeof(dflow)))
2310 return -EFAULT;
2311 break;
2313 case DIGI_SETAFLOW:
2314 case DIGI_SETFLOW:
2315 if (cmd == DIGI_SETFLOW) {
2316 startc = ch->startc;
2317 stopc = ch->stopc;
2318 } else {
2319 startc = ch->startca;
2320 stopc = ch->stopca;
2323 if (copy_from_user(&dflow, argp, sizeof(dflow)))
2324 return -EFAULT;
2326 if (dflow.startc != startc || dflow.stopc != stopc) {
2327 /* Begin if setflow toggled */
2328 spin_lock_irqsave(&epca_lock, flags);
2329 globalwinon(ch);
2331 if (cmd == DIGI_SETFLOW) {
2332 ch->fepstartc = ch->startc = dflow.startc;
2333 ch->fepstopc = ch->stopc = dflow.stopc;
2334 fepcmd(ch, SONOFFC, ch->fepstartc,
2335 ch->fepstopc, 0, 1);
2336 } else {
2337 ch->fepstartca = ch->startca = dflow.startc;
2338 ch->fepstopca = ch->stopca = dflow.stopc;
2339 fepcmd(ch, SAUXONOFFC, ch->fepstartca,
2340 ch->fepstopca, 0, 1);
2343 if (ch->statusflags & TXSTOPPED)
2344 pc_start(tty);
2346 memoff(ch);
2347 spin_unlock_irqrestore(&epca_lock, flags);
2348 } /* End if setflow toggled */
2349 break;
2350 default:
2351 return -ENOIOCTLCMD;
2353 return 0;
2356 static void pc_set_termios(struct tty_struct *tty, struct ktermios *old_termios)
2358 struct channel *ch;
2359 unsigned long flags;
2361 * verifyChannel returns the channel from the tty struct if it is
2362 * valid. This serves as a sanity check.
2364 ch = verifyChannel(tty);
2366 if (ch != NULL) { /* Begin if channel valid */
2367 spin_lock_irqsave(&epca_lock, flags);
2368 globalwinon(ch);
2369 epcaparam(tty, ch);
2370 memoff(ch);
2371 spin_unlock_irqrestore(&epca_lock, flags);
2373 if ((old_termios->c_cflag & CRTSCTS) &&
2374 ((tty->termios->c_cflag & CRTSCTS) == 0))
2375 tty->hw_stopped = 0;
2377 if (!(old_termios->c_cflag & CLOCAL) &&
2378 (tty->termios->c_cflag & CLOCAL))
2379 wake_up_interruptible(&ch->open_wait);
2381 } /* End if channel valid */
2384 static void do_softint(struct work_struct *work)
2386 struct channel *ch = container_of(work, struct channel, tqueue);
2387 /* Called in response to a modem change event */
2388 if (ch && ch->magic == EPCA_MAGIC) {
2389 struct tty_struct *tty = ch->tty;
2391 if (tty && tty->driver_data) {
2392 if (test_and_clear_bit(EPCA_EVENT_HANGUP, &ch->event)) {
2393 tty_hangup(tty);
2394 wake_up_interruptible(&ch->open_wait);
2395 ch->asyncflags &= ~ASYNC_NORMAL_ACTIVE;
2402 * pc_stop and pc_start provide software flow control to the routine and the
2403 * pc_ioctl routine.
2405 static void pc_stop(struct tty_struct *tty)
2407 struct channel *ch;
2408 unsigned long flags;
2410 * verifyChannel returns the channel from the tty struct if it is
2411 * valid. This serves as a sanity check.
2413 ch = verifyChannel(tty);
2414 if (ch != NULL) {
2415 spin_lock_irqsave(&epca_lock, flags);
2416 if ((ch->statusflags & TXSTOPPED) == 0) {
2417 /* Begin if transmit stop requested */
2418 globalwinon(ch);
2419 /* STOP transmitting now !! */
2420 fepcmd(ch, PAUSETX, 0, 0, 0, 0);
2421 ch->statusflags |= TXSTOPPED;
2422 memoff(ch);
2423 } /* End if transmit stop requested */
2424 spin_unlock_irqrestore(&epca_lock, flags);
2428 static void pc_start(struct tty_struct *tty)
2430 struct channel *ch;
2432 * verifyChannel returns the channel from the tty struct if it is
2433 * valid. This serves as a sanity check.
2435 ch = verifyChannel(tty);
2436 if (ch != NULL) {
2437 unsigned long flags;
2438 spin_lock_irqsave(&epca_lock, flags);
2439 /* Just in case output was resumed because of a change
2440 in Digi-flow */
2441 if (ch->statusflags & TXSTOPPED) {
2442 /* Begin transmit resume requested */
2443 struct board_chan __iomem *bc;
2444 globalwinon(ch);
2445 bc = ch->brdchan;
2446 if (ch->statusflags & LOWWAIT)
2447 writeb(1, &bc->ilow);
2448 /* Okay, you can start transmitting again... */
2449 fepcmd(ch, RESUMETX, 0, 0, 0, 0);
2450 ch->statusflags &= ~TXSTOPPED;
2451 memoff(ch);
2452 } /* End transmit resume requested */
2453 spin_unlock_irqrestore(&epca_lock, flags);
2458 * The below routines pc_throttle and pc_unthrottle are used to slow (And
2459 * resume) the receipt of data into the kernels receive buffers. The exact
2460 * occurrence of this depends on the size of the kernels receive buffer and
2461 * what the 'watermarks' are set to for that buffer. See the n_ttys.c file for
2462 * more details.
2464 static void pc_throttle(struct tty_struct *tty)
2466 struct channel *ch;
2467 unsigned long flags;
2469 * verifyChannel returns the channel from the tty struct if it is
2470 * valid. This serves as a sanity check.
2472 ch = verifyChannel(tty);
2473 if (ch != NULL) {
2474 spin_lock_irqsave(&epca_lock, flags);
2475 if ((ch->statusflags & RXSTOPPED) == 0) {
2476 globalwinon(ch);
2477 fepcmd(ch, PAUSERX, 0, 0, 0, 0);
2478 ch->statusflags |= RXSTOPPED;
2479 memoff(ch);
2481 spin_unlock_irqrestore(&epca_lock, flags);
2485 static void pc_unthrottle(struct tty_struct *tty)
2487 struct channel *ch;
2488 unsigned long flags;
2490 * verifyChannel returns the channel from the tty struct if it is
2491 * valid. This serves as a sanity check.
2493 ch = verifyChannel(tty);
2494 if (ch != NULL) {
2495 /* Just in case output was resumed because of a change
2496 in Digi-flow */
2497 spin_lock_irqsave(&epca_lock, flags);
2498 if (ch->statusflags & RXSTOPPED) {
2499 globalwinon(ch);
2500 fepcmd(ch, RESUMERX, 0, 0, 0, 0);
2501 ch->statusflags &= ~RXSTOPPED;
2502 memoff(ch);
2504 spin_unlock_irqrestore(&epca_lock, flags);
2508 static void digi_send_break(struct channel *ch, int msec)
2510 unsigned long flags;
2512 spin_lock_irqsave(&epca_lock, flags);
2513 globalwinon(ch);
2515 * Maybe I should send an infinite break here, schedule() for msec
2516 * amount of time, and then stop the break. This way, the user can't
2517 * screw up the FEP by causing digi_send_break() to be called (i.e. via
2518 * an ioctl()) more than once in msec amount of time.
2519 * Try this for now...
2521 fepcmd(ch, SENDBREAK, msec, 0, 10, 0);
2522 memoff(ch);
2523 spin_unlock_irqrestore(&epca_lock, flags);
2526 /* Caller MUST hold the lock */
2527 static void setup_empty_event(struct tty_struct *tty, struct channel *ch)
2529 struct board_chan __iomem *bc = ch->brdchan;
2531 globalwinon(ch);
2532 ch->statusflags |= EMPTYWAIT;
2534 * When set the iempty flag request a event to be generated when the
2535 * transmit buffer is empty (If there is no BREAK in progress).
2537 writeb(1, &bc->iempty);
2538 memoff(ch);
2541 static void epca_setup(char *str, int *ints)
2543 struct board_info board;
2544 int index, loop, last;
2545 char *temp, *t2;
2546 unsigned len;
2549 * If this routine looks a little strange it is because it is only
2550 * called if a LILO append command is given to boot the kernel with
2551 * parameters. In this way, we can provide the user a method of
2552 * changing his board configuration without rebuilding the kernel.
2554 if (!liloconfig)
2555 liloconfig = 1;
2557 memset(&board, 0, sizeof(board));
2559 /* Assume the data is int first, later we can change it */
2560 /* I think that array position 0 of ints holds the number of args */
2561 for (last = 0, index = 1; index <= ints[0]; index++)
2562 switch (index) { /* Begin parse switch */
2563 case 1:
2564 board.status = ints[index];
2566 * We check for 2 (As opposed to 1; because 2 is a flag
2567 * instructing the driver to ignore epcaconfig.) For
2568 * this reason we check for 2.
2570 if (board.status == 2) {
2571 /* Begin ignore epcaconfig as well as lilo cmd line */
2572 nbdevs = 0;
2573 num_cards = 0;
2574 return;
2575 } /* End ignore epcaconfig as well as lilo cmd line */
2577 if (board.status > 2) {
2578 printk(KERN_ERR "epca_setup: Invalid board status 0x%x\n",
2579 board.status);
2580 invalid_lilo_config = 1;
2581 setup_error_code |= INVALID_BOARD_STATUS;
2582 return;
2584 last = index;
2585 break;
2586 case 2:
2587 board.type = ints[index];
2588 if (board.type >= PCIXEM) {
2589 printk(KERN_ERR "epca_setup: Invalid board type 0x%x\n", board.type);
2590 invalid_lilo_config = 1;
2591 setup_error_code |= INVALID_BOARD_TYPE;
2592 return;
2594 last = index;
2595 break;
2596 case 3:
2597 board.altpin = ints[index];
2598 if (board.altpin > 1) {
2599 printk(KERN_ERR "epca_setup: Invalid board altpin 0x%x\n", board.altpin);
2600 invalid_lilo_config = 1;
2601 setup_error_code |= INVALID_ALTPIN;
2602 return;
2604 last = index;
2605 break;
2607 case 4:
2608 board.numports = ints[index];
2609 if (board.numports < 2 || board.numports > 256) {
2610 printk(KERN_ERR "epca_setup: Invalid board numports 0x%x\n", board.numports);
2611 invalid_lilo_config = 1;
2612 setup_error_code |= INVALID_NUM_PORTS;
2613 return;
2615 nbdevs += board.numports;
2616 last = index;
2617 break;
2619 case 5:
2620 board.port = ints[index];
2621 if (ints[index] <= 0) {
2622 printk(KERN_ERR "epca_setup: Invalid io port 0x%x\n", (unsigned int)board.port);
2623 invalid_lilo_config = 1;
2624 setup_error_code |= INVALID_PORT_BASE;
2625 return;
2627 last = index;
2628 break;
2630 case 6:
2631 board.membase = ints[index];
2632 if (ints[index] <= 0) {
2633 printk(KERN_ERR "epca_setup: Invalid memory base 0x%x\n",
2634 (unsigned int)board.membase);
2635 invalid_lilo_config = 1;
2636 setup_error_code |= INVALID_MEM_BASE;
2637 return;
2639 last = index;
2640 break;
2642 default:
2643 printk(KERN_ERR "<Error> - epca_setup: Too many integer parms\n");
2644 return;
2646 } /* End parse switch */
2648 while (str && *str) { /* Begin while there is a string arg */
2649 /* find the next comma or terminator */
2650 temp = str;
2651 /* While string is not null, and a comma hasn't been found */
2652 while (*temp && (*temp != ','))
2653 temp++;
2654 if (!*temp)
2655 temp = NULL;
2656 else
2657 *temp++ = 0;
2658 /* Set index to the number of args + 1 */
2659 index = last + 1;
2661 switch (index) {
2662 case 1:
2663 len = strlen(str);
2664 if (strncmp("Disable", str, len) == 0)
2665 board.status = 0;
2666 else if (strncmp("Enable", str, len) == 0)
2667 board.status = 1;
2668 else {
2669 printk(KERN_ERR "epca_setup: Invalid status %s\n", str);
2670 invalid_lilo_config = 1;
2671 setup_error_code |= INVALID_BOARD_STATUS;
2672 return;
2674 last = index;
2675 break;
2677 case 2:
2678 for (loop = 0; loop < EPCA_NUM_TYPES; loop++)
2679 if (strcmp(board_desc[loop], str) == 0)
2680 break;
2682 * If the index incremented above refers to a
2683 * legitamate board type set it here.
2685 if (index < EPCA_NUM_TYPES)
2686 board.type = loop;
2687 else {
2688 printk(KERN_ERR "epca_setup: Invalid board type: %s\n", str);
2689 invalid_lilo_config = 1;
2690 setup_error_code |= INVALID_BOARD_TYPE;
2691 return;
2693 last = index;
2694 break;
2696 case 3:
2697 len = strlen(str);
2698 if (strncmp("Disable", str, len) == 0)
2699 board.altpin = 0;
2700 else if (strncmp("Enable", str, len) == 0)
2701 board.altpin = 1;
2702 else {
2703 printk(KERN_ERR "epca_setup: Invalid altpin %s\n", str);
2704 invalid_lilo_config = 1;
2705 setup_error_code |= INVALID_ALTPIN;
2706 return;
2708 last = index;
2709 break;
2711 case 4:
2712 t2 = str;
2713 while (isdigit(*t2))
2714 t2++;
2716 if (*t2) {
2717 printk(KERN_ERR "epca_setup: Invalid port count %s\n", str);
2718 invalid_lilo_config = 1;
2719 setup_error_code |= INVALID_NUM_PORTS;
2720 return;
2724 * There is not a man page for simple_strtoul but the
2725 * code can be found in vsprintf.c. The first argument
2726 * is the string to translate (To an unsigned long
2727 * obviously), the second argument can be the address
2728 * of any character variable or a NULL. If a variable
2729 * is given, the end pointer of the string will be
2730 * stored in that variable; if a NULL is given the end
2731 * pointer will not be returned. The last argument is
2732 * the base to use. If a 0 is indicated, the routine
2733 * will attempt to determine the proper base by looking
2734 * at the values prefix (A '0' for octal, a 'x' for
2735 * hex, etc ... If a value is given it will use that
2736 * value as the base.
2738 board.numports = simple_strtoul(str, NULL, 0);
2739 nbdevs += board.numports;
2740 last = index;
2741 break;
2743 case 5:
2744 t2 = str;
2745 while (isxdigit(*t2))
2746 t2++;
2748 if (*t2) {
2749 printk(KERN_ERR "epca_setup: Invalid i/o address %s\n", str);
2750 invalid_lilo_config = 1;
2751 setup_error_code |= INVALID_PORT_BASE;
2752 return;
2755 board.port = simple_strtoul(str, NULL, 16);
2756 last = index;
2757 break;
2759 case 6:
2760 t2 = str;
2761 while (isxdigit(*t2))
2762 t2++;
2764 if (*t2) {
2765 printk(KERN_ERR "epca_setup: Invalid memory base %s\n", str);
2766 invalid_lilo_config = 1;
2767 setup_error_code |= INVALID_MEM_BASE;
2768 return;
2770 board.membase = simple_strtoul(str, NULL, 16);
2771 last = index;
2772 break;
2773 default:
2774 printk(KERN_ERR "epca: Too many string parms\n");
2775 return;
2777 str = temp;
2778 } /* End while there is a string arg */
2780 if (last < 6) {
2781 printk(KERN_ERR "epca: Insufficient parms specified\n");
2782 return;
2785 /* I should REALLY validate the stuff here */
2786 /* Copies our local copy of board into boards */
2787 memcpy((void *)&boards[num_cards], (void *)&board, sizeof(board));
2788 /* Does this get called once per lilo arg are what ? */
2789 printk(KERN_INFO "PC/Xx: Added board %i, %s %i ports at 0x%4.4X base 0x%6.6X\n",
2790 num_cards, board_desc[board.type],
2791 board.numports, (int)board.port, (unsigned int) board.membase);
2792 num_cards++;
2795 enum epic_board_types {
2796 brd_xr = 0,
2797 brd_xem,
2798 brd_cx,
2799 brd_xrj,
2802 /* indexed directly by epic_board_types enum */
2803 static struct {
2804 unsigned char board_type;
2805 unsigned bar_idx; /* PCI base address region */
2806 } epca_info_tbl[] = {
2807 { PCIXR, 0, },
2808 { PCIXEM, 0, },
2809 { PCICX, 0, },
2810 { PCIXRJ, 2, },
2813 static int __devinit epca_init_one(struct pci_dev *pdev,
2814 const struct pci_device_id *ent)
2816 static int board_num = -1;
2817 int board_idx, info_idx = ent->driver_data;
2818 unsigned long addr;
2820 if (pci_enable_device(pdev))
2821 return -EIO;
2823 board_num++;
2824 board_idx = board_num + num_cards;
2825 if (board_idx >= MAXBOARDS)
2826 goto err_out;
2828 addr = pci_resource_start(pdev, epca_info_tbl[info_idx].bar_idx);
2829 if (!addr) {
2830 printk(KERN_ERR PFX "PCI region #%d not available (size 0)\n",
2831 epca_info_tbl[info_idx].bar_idx);
2832 goto err_out;
2835 boards[board_idx].status = ENABLED;
2836 boards[board_idx].type = epca_info_tbl[info_idx].board_type;
2837 boards[board_idx].numports = 0x0;
2838 boards[board_idx].port = addr + PCI_IO_OFFSET;
2839 boards[board_idx].membase = addr;
2841 if (!request_mem_region(addr + PCI_IO_OFFSET, 0x200000, "epca")) {
2842 printk(KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n",
2843 0x200000, addr + PCI_IO_OFFSET);
2844 goto err_out;
2847 boards[board_idx].re_map_port = ioremap_nocache(addr + PCI_IO_OFFSET,
2848 0x200000);
2849 if (!boards[board_idx].re_map_port) {
2850 printk(KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n",
2851 0x200000, addr + PCI_IO_OFFSET);
2852 goto err_out_free_pciio;
2855 if (!request_mem_region(addr, 0x200000, "epca")) {
2856 printk(KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n",
2857 0x200000, addr);
2858 goto err_out_free_iounmap;
2861 boards[board_idx].re_map_membase = ioremap_nocache(addr, 0x200000);
2862 if (!boards[board_idx].re_map_membase) {
2863 printk(KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n",
2864 0x200000, addr + PCI_IO_OFFSET);
2865 goto err_out_free_memregion;
2869 * I don't know what the below does, but the hardware guys say its
2870 * required on everything except PLX (In this case XRJ).
2872 if (info_idx != brd_xrj) {
2873 pci_write_config_byte(pdev, 0x40, 0);
2874 pci_write_config_byte(pdev, 0x46, 0);
2877 return 0;
2879 err_out_free_memregion:
2880 release_mem_region(addr, 0x200000);
2881 err_out_free_iounmap:
2882 iounmap(boards[board_idx].re_map_port);
2883 err_out_free_pciio:
2884 release_mem_region(addr + PCI_IO_OFFSET, 0x200000);
2885 err_out:
2886 return -ENODEV;
2890 static struct pci_device_id epca_pci_tbl[] = {
2891 { PCI_VENDOR_DIGI, PCI_DEVICE_XR, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xr },
2892 { PCI_VENDOR_DIGI, PCI_DEVICE_XEM, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xem },
2893 { PCI_VENDOR_DIGI, PCI_DEVICE_CX, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_cx },
2894 { PCI_VENDOR_DIGI, PCI_DEVICE_XRJ, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xrj },
2895 { 0, }
2898 MODULE_DEVICE_TABLE(pci, epca_pci_tbl);
2900 static int __init init_PCI(void)
2902 memset(&epca_driver, 0, sizeof(epca_driver));
2903 epca_driver.name = "epca";
2904 epca_driver.id_table = epca_pci_tbl;
2905 epca_driver.probe = epca_init_one;
2907 return pci_register_driver(&epca_driver);
2910 MODULE_LICENSE("GPL");