Merge tag 'remoteproc-3.11-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6.git] / net / openvswitch / flow.c
blob5c519b121e1be0ba26c40e136ace7b8eba42f62e
1 /*
2 * Copyright (c) 2007-2011 Nicira, Inc.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
19 #include "flow.h"
20 #include "datapath.h"
21 #include <linux/uaccess.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_vlan.h>
26 #include <net/llc_pdu.h>
27 #include <linux/kernel.h>
28 #include <linux/jhash.h>
29 #include <linux/jiffies.h>
30 #include <linux/llc.h>
31 #include <linux/module.h>
32 #include <linux/in.h>
33 #include <linux/rcupdate.h>
34 #include <linux/if_arp.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/tcp.h>
38 #include <linux/udp.h>
39 #include <linux/icmp.h>
40 #include <linux/icmpv6.h>
41 #include <linux/rculist.h>
42 #include <net/ip.h>
43 #include <net/ip_tunnels.h>
44 #include <net/ipv6.h>
45 #include <net/ndisc.h>
47 static struct kmem_cache *flow_cache;
49 static int check_header(struct sk_buff *skb, int len)
51 if (unlikely(skb->len < len))
52 return -EINVAL;
53 if (unlikely(!pskb_may_pull(skb, len)))
54 return -ENOMEM;
55 return 0;
58 static bool arphdr_ok(struct sk_buff *skb)
60 return pskb_may_pull(skb, skb_network_offset(skb) +
61 sizeof(struct arp_eth_header));
64 static int check_iphdr(struct sk_buff *skb)
66 unsigned int nh_ofs = skb_network_offset(skb);
67 unsigned int ip_len;
68 int err;
70 err = check_header(skb, nh_ofs + sizeof(struct iphdr));
71 if (unlikely(err))
72 return err;
74 ip_len = ip_hdrlen(skb);
75 if (unlikely(ip_len < sizeof(struct iphdr) ||
76 skb->len < nh_ofs + ip_len))
77 return -EINVAL;
79 skb_set_transport_header(skb, nh_ofs + ip_len);
80 return 0;
83 static bool tcphdr_ok(struct sk_buff *skb)
85 int th_ofs = skb_transport_offset(skb);
86 int tcp_len;
88 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
89 return false;
91 tcp_len = tcp_hdrlen(skb);
92 if (unlikely(tcp_len < sizeof(struct tcphdr) ||
93 skb->len < th_ofs + tcp_len))
94 return false;
96 return true;
99 static bool udphdr_ok(struct sk_buff *skb)
101 return pskb_may_pull(skb, skb_transport_offset(skb) +
102 sizeof(struct udphdr));
105 static bool icmphdr_ok(struct sk_buff *skb)
107 return pskb_may_pull(skb, skb_transport_offset(skb) +
108 sizeof(struct icmphdr));
111 u64 ovs_flow_used_time(unsigned long flow_jiffies)
113 struct timespec cur_ts;
114 u64 cur_ms, idle_ms;
116 ktime_get_ts(&cur_ts);
117 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
118 cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
119 cur_ts.tv_nsec / NSEC_PER_MSEC;
121 return cur_ms - idle_ms;
124 #define SW_FLOW_KEY_OFFSET(field) \
125 (offsetof(struct sw_flow_key, field) + \
126 FIELD_SIZEOF(struct sw_flow_key, field))
128 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key,
129 int *key_lenp)
131 unsigned int nh_ofs = skb_network_offset(skb);
132 unsigned int nh_len;
133 int payload_ofs;
134 struct ipv6hdr *nh;
135 uint8_t nexthdr;
136 __be16 frag_off;
137 int err;
139 *key_lenp = SW_FLOW_KEY_OFFSET(ipv6.label);
141 err = check_header(skb, nh_ofs + sizeof(*nh));
142 if (unlikely(err))
143 return err;
145 nh = ipv6_hdr(skb);
146 nexthdr = nh->nexthdr;
147 payload_ofs = (u8 *)(nh + 1) - skb->data;
149 key->ip.proto = NEXTHDR_NONE;
150 key->ip.tos = ipv6_get_dsfield(nh);
151 key->ip.ttl = nh->hop_limit;
152 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
153 key->ipv6.addr.src = nh->saddr;
154 key->ipv6.addr.dst = nh->daddr;
156 payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
157 if (unlikely(payload_ofs < 0))
158 return -EINVAL;
160 if (frag_off) {
161 if (frag_off & htons(~0x7))
162 key->ip.frag = OVS_FRAG_TYPE_LATER;
163 else
164 key->ip.frag = OVS_FRAG_TYPE_FIRST;
167 nh_len = payload_ofs - nh_ofs;
168 skb_set_transport_header(skb, nh_ofs + nh_len);
169 key->ip.proto = nexthdr;
170 return nh_len;
173 static bool icmp6hdr_ok(struct sk_buff *skb)
175 return pskb_may_pull(skb, skb_transport_offset(skb) +
176 sizeof(struct icmp6hdr));
179 #define TCP_FLAGS_OFFSET 13
180 #define TCP_FLAG_MASK 0x3f
182 void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb)
184 u8 tcp_flags = 0;
186 if ((flow->key.eth.type == htons(ETH_P_IP) ||
187 flow->key.eth.type == htons(ETH_P_IPV6)) &&
188 flow->key.ip.proto == IPPROTO_TCP &&
189 likely(skb->len >= skb_transport_offset(skb) + sizeof(struct tcphdr))) {
190 u8 *tcp = (u8 *)tcp_hdr(skb);
191 tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK;
194 spin_lock(&flow->lock);
195 flow->used = jiffies;
196 flow->packet_count++;
197 flow->byte_count += skb->len;
198 flow->tcp_flags |= tcp_flags;
199 spin_unlock(&flow->lock);
202 struct sw_flow_actions *ovs_flow_actions_alloc(int size)
204 struct sw_flow_actions *sfa;
206 if (size > MAX_ACTIONS_BUFSIZE)
207 return ERR_PTR(-EINVAL);
209 sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
210 if (!sfa)
211 return ERR_PTR(-ENOMEM);
213 sfa->actions_len = 0;
214 return sfa;
217 struct sw_flow *ovs_flow_alloc(void)
219 struct sw_flow *flow;
221 flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
222 if (!flow)
223 return ERR_PTR(-ENOMEM);
225 spin_lock_init(&flow->lock);
226 flow->sf_acts = NULL;
228 return flow;
231 static struct hlist_head *find_bucket(struct flow_table *table, u32 hash)
233 hash = jhash_1word(hash, table->hash_seed);
234 return flex_array_get(table->buckets,
235 (hash & (table->n_buckets - 1)));
238 static struct flex_array *alloc_buckets(unsigned int n_buckets)
240 struct flex_array *buckets;
241 int i, err;
243 buckets = flex_array_alloc(sizeof(struct hlist_head *),
244 n_buckets, GFP_KERNEL);
245 if (!buckets)
246 return NULL;
248 err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL);
249 if (err) {
250 flex_array_free(buckets);
251 return NULL;
254 for (i = 0; i < n_buckets; i++)
255 INIT_HLIST_HEAD((struct hlist_head *)
256 flex_array_get(buckets, i));
258 return buckets;
261 static void free_buckets(struct flex_array *buckets)
263 flex_array_free(buckets);
266 struct flow_table *ovs_flow_tbl_alloc(int new_size)
268 struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL);
270 if (!table)
271 return NULL;
273 table->buckets = alloc_buckets(new_size);
275 if (!table->buckets) {
276 kfree(table);
277 return NULL;
279 table->n_buckets = new_size;
280 table->count = 0;
281 table->node_ver = 0;
282 table->keep_flows = false;
283 get_random_bytes(&table->hash_seed, sizeof(u32));
285 return table;
288 void ovs_flow_tbl_destroy(struct flow_table *table)
290 int i;
292 if (!table)
293 return;
295 if (table->keep_flows)
296 goto skip_flows;
298 for (i = 0; i < table->n_buckets; i++) {
299 struct sw_flow *flow;
300 struct hlist_head *head = flex_array_get(table->buckets, i);
301 struct hlist_node *n;
302 int ver = table->node_ver;
304 hlist_for_each_entry_safe(flow, n, head, hash_node[ver]) {
305 hlist_del_rcu(&flow->hash_node[ver]);
306 ovs_flow_free(flow);
310 skip_flows:
311 free_buckets(table->buckets);
312 kfree(table);
315 static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu)
317 struct flow_table *table = container_of(rcu, struct flow_table, rcu);
319 ovs_flow_tbl_destroy(table);
322 void ovs_flow_tbl_deferred_destroy(struct flow_table *table)
324 if (!table)
325 return;
327 call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb);
330 struct sw_flow *ovs_flow_tbl_next(struct flow_table *table, u32 *bucket, u32 *last)
332 struct sw_flow *flow;
333 struct hlist_head *head;
334 int ver;
335 int i;
337 ver = table->node_ver;
338 while (*bucket < table->n_buckets) {
339 i = 0;
340 head = flex_array_get(table->buckets, *bucket);
341 hlist_for_each_entry_rcu(flow, head, hash_node[ver]) {
342 if (i < *last) {
343 i++;
344 continue;
346 *last = i + 1;
347 return flow;
349 (*bucket)++;
350 *last = 0;
353 return NULL;
356 static void __flow_tbl_insert(struct flow_table *table, struct sw_flow *flow)
358 struct hlist_head *head;
359 head = find_bucket(table, flow->hash);
360 hlist_add_head_rcu(&flow->hash_node[table->node_ver], head);
361 table->count++;
364 static void flow_table_copy_flows(struct flow_table *old, struct flow_table *new)
366 int old_ver;
367 int i;
369 old_ver = old->node_ver;
370 new->node_ver = !old_ver;
372 /* Insert in new table. */
373 for (i = 0; i < old->n_buckets; i++) {
374 struct sw_flow *flow;
375 struct hlist_head *head;
377 head = flex_array_get(old->buckets, i);
379 hlist_for_each_entry(flow, head, hash_node[old_ver])
380 __flow_tbl_insert(new, flow);
382 old->keep_flows = true;
385 static struct flow_table *__flow_tbl_rehash(struct flow_table *table, int n_buckets)
387 struct flow_table *new_table;
389 new_table = ovs_flow_tbl_alloc(n_buckets);
390 if (!new_table)
391 return ERR_PTR(-ENOMEM);
393 flow_table_copy_flows(table, new_table);
395 return new_table;
398 struct flow_table *ovs_flow_tbl_rehash(struct flow_table *table)
400 return __flow_tbl_rehash(table, table->n_buckets);
403 struct flow_table *ovs_flow_tbl_expand(struct flow_table *table)
405 return __flow_tbl_rehash(table, table->n_buckets * 2);
408 void ovs_flow_free(struct sw_flow *flow)
410 if (unlikely(!flow))
411 return;
413 kfree((struct sf_flow_acts __force *)flow->sf_acts);
414 kmem_cache_free(flow_cache, flow);
417 /* RCU callback used by ovs_flow_deferred_free. */
418 static void rcu_free_flow_callback(struct rcu_head *rcu)
420 struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
422 ovs_flow_free(flow);
425 /* Schedules 'flow' to be freed after the next RCU grace period.
426 * The caller must hold rcu_read_lock for this to be sensible. */
427 void ovs_flow_deferred_free(struct sw_flow *flow)
429 call_rcu(&flow->rcu, rcu_free_flow_callback);
432 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
433 * The caller must hold rcu_read_lock for this to be sensible. */
434 void ovs_flow_deferred_free_acts(struct sw_flow_actions *sf_acts)
436 kfree_rcu(sf_acts, rcu);
439 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
441 struct qtag_prefix {
442 __be16 eth_type; /* ETH_P_8021Q */
443 __be16 tci;
445 struct qtag_prefix *qp;
447 if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
448 return 0;
450 if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
451 sizeof(__be16))))
452 return -ENOMEM;
454 qp = (struct qtag_prefix *) skb->data;
455 key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
456 __skb_pull(skb, sizeof(struct qtag_prefix));
458 return 0;
461 static __be16 parse_ethertype(struct sk_buff *skb)
463 struct llc_snap_hdr {
464 u8 dsap; /* Always 0xAA */
465 u8 ssap; /* Always 0xAA */
466 u8 ctrl;
467 u8 oui[3];
468 __be16 ethertype;
470 struct llc_snap_hdr *llc;
471 __be16 proto;
473 proto = *(__be16 *) skb->data;
474 __skb_pull(skb, sizeof(__be16));
476 if (ntohs(proto) >= ETH_P_802_3_MIN)
477 return proto;
479 if (skb->len < sizeof(struct llc_snap_hdr))
480 return htons(ETH_P_802_2);
482 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
483 return htons(0);
485 llc = (struct llc_snap_hdr *) skb->data;
486 if (llc->dsap != LLC_SAP_SNAP ||
487 llc->ssap != LLC_SAP_SNAP ||
488 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
489 return htons(ETH_P_802_2);
491 __skb_pull(skb, sizeof(struct llc_snap_hdr));
493 if (ntohs(llc->ethertype) >= ETH_P_802_3_MIN)
494 return llc->ethertype;
496 return htons(ETH_P_802_2);
499 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
500 int *key_lenp, int nh_len)
502 struct icmp6hdr *icmp = icmp6_hdr(skb);
503 int error = 0;
504 int key_len;
506 /* The ICMPv6 type and code fields use the 16-bit transport port
507 * fields, so we need to store them in 16-bit network byte order.
509 key->ipv6.tp.src = htons(icmp->icmp6_type);
510 key->ipv6.tp.dst = htons(icmp->icmp6_code);
511 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
513 if (icmp->icmp6_code == 0 &&
514 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
515 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
516 int icmp_len = skb->len - skb_transport_offset(skb);
517 struct nd_msg *nd;
518 int offset;
520 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
522 /* In order to process neighbor discovery options, we need the
523 * entire packet.
525 if (unlikely(icmp_len < sizeof(*nd)))
526 goto out;
527 if (unlikely(skb_linearize(skb))) {
528 error = -ENOMEM;
529 goto out;
532 nd = (struct nd_msg *)skb_transport_header(skb);
533 key->ipv6.nd.target = nd->target;
534 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
536 icmp_len -= sizeof(*nd);
537 offset = 0;
538 while (icmp_len >= 8) {
539 struct nd_opt_hdr *nd_opt =
540 (struct nd_opt_hdr *)(nd->opt + offset);
541 int opt_len = nd_opt->nd_opt_len * 8;
543 if (unlikely(!opt_len || opt_len > icmp_len))
544 goto invalid;
546 /* Store the link layer address if the appropriate
547 * option is provided. It is considered an error if
548 * the same link layer option is specified twice.
550 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
551 && opt_len == 8) {
552 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
553 goto invalid;
554 memcpy(key->ipv6.nd.sll,
555 &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
556 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
557 && opt_len == 8) {
558 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
559 goto invalid;
560 memcpy(key->ipv6.nd.tll,
561 &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
564 icmp_len -= opt_len;
565 offset += opt_len;
569 goto out;
571 invalid:
572 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
573 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
574 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
576 out:
577 *key_lenp = key_len;
578 return error;
582 * ovs_flow_extract - extracts a flow key from an Ethernet frame.
583 * @skb: sk_buff that contains the frame, with skb->data pointing to the
584 * Ethernet header
585 * @in_port: port number on which @skb was received.
586 * @key: output flow key
587 * @key_lenp: length of output flow key
589 * The caller must ensure that skb->len >= ETH_HLEN.
591 * Returns 0 if successful, otherwise a negative errno value.
593 * Initializes @skb header pointers as follows:
595 * - skb->mac_header: the Ethernet header.
597 * - skb->network_header: just past the Ethernet header, or just past the
598 * VLAN header, to the first byte of the Ethernet payload.
600 * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
601 * on output, then just past the IP header, if one is present and
602 * of a correct length, otherwise the same as skb->network_header.
603 * For other key->eth.type values it is left untouched.
605 int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key,
606 int *key_lenp)
608 int error = 0;
609 int key_len = SW_FLOW_KEY_OFFSET(eth);
610 struct ethhdr *eth;
612 memset(key, 0, sizeof(*key));
614 key->phy.priority = skb->priority;
615 if (OVS_CB(skb)->tun_key)
616 memcpy(&key->tun_key, OVS_CB(skb)->tun_key, sizeof(key->tun_key));
617 key->phy.in_port = in_port;
618 key->phy.skb_mark = skb->mark;
620 skb_reset_mac_header(skb);
622 /* Link layer. We are guaranteed to have at least the 14 byte Ethernet
623 * header in the linear data area.
625 eth = eth_hdr(skb);
626 memcpy(key->eth.src, eth->h_source, ETH_ALEN);
627 memcpy(key->eth.dst, eth->h_dest, ETH_ALEN);
629 __skb_pull(skb, 2 * ETH_ALEN);
630 /* We are going to push all headers that we pull, so no need to
631 * update skb->csum here.
634 if (vlan_tx_tag_present(skb))
635 key->eth.tci = htons(skb->vlan_tci);
636 else if (eth->h_proto == htons(ETH_P_8021Q))
637 if (unlikely(parse_vlan(skb, key)))
638 return -ENOMEM;
640 key->eth.type = parse_ethertype(skb);
641 if (unlikely(key->eth.type == htons(0)))
642 return -ENOMEM;
644 skb_reset_network_header(skb);
645 __skb_push(skb, skb->data - skb_mac_header(skb));
647 /* Network layer. */
648 if (key->eth.type == htons(ETH_P_IP)) {
649 struct iphdr *nh;
650 __be16 offset;
652 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
654 error = check_iphdr(skb);
655 if (unlikely(error)) {
656 if (error == -EINVAL) {
657 skb->transport_header = skb->network_header;
658 error = 0;
660 goto out;
663 nh = ip_hdr(skb);
664 key->ipv4.addr.src = nh->saddr;
665 key->ipv4.addr.dst = nh->daddr;
667 key->ip.proto = nh->protocol;
668 key->ip.tos = nh->tos;
669 key->ip.ttl = nh->ttl;
671 offset = nh->frag_off & htons(IP_OFFSET);
672 if (offset) {
673 key->ip.frag = OVS_FRAG_TYPE_LATER;
674 goto out;
676 if (nh->frag_off & htons(IP_MF) ||
677 skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
678 key->ip.frag = OVS_FRAG_TYPE_FIRST;
680 /* Transport layer. */
681 if (key->ip.proto == IPPROTO_TCP) {
682 key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
683 if (tcphdr_ok(skb)) {
684 struct tcphdr *tcp = tcp_hdr(skb);
685 key->ipv4.tp.src = tcp->source;
686 key->ipv4.tp.dst = tcp->dest;
688 } else if (key->ip.proto == IPPROTO_UDP) {
689 key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
690 if (udphdr_ok(skb)) {
691 struct udphdr *udp = udp_hdr(skb);
692 key->ipv4.tp.src = udp->source;
693 key->ipv4.tp.dst = udp->dest;
695 } else if (key->ip.proto == IPPROTO_ICMP) {
696 key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
697 if (icmphdr_ok(skb)) {
698 struct icmphdr *icmp = icmp_hdr(skb);
699 /* The ICMP type and code fields use the 16-bit
700 * transport port fields, so we need to store
701 * them in 16-bit network byte order. */
702 key->ipv4.tp.src = htons(icmp->type);
703 key->ipv4.tp.dst = htons(icmp->code);
707 } else if ((key->eth.type == htons(ETH_P_ARP) ||
708 key->eth.type == htons(ETH_P_RARP)) && arphdr_ok(skb)) {
709 struct arp_eth_header *arp;
711 arp = (struct arp_eth_header *)skb_network_header(skb);
713 if (arp->ar_hrd == htons(ARPHRD_ETHER)
714 && arp->ar_pro == htons(ETH_P_IP)
715 && arp->ar_hln == ETH_ALEN
716 && arp->ar_pln == 4) {
718 /* We only match on the lower 8 bits of the opcode. */
719 if (ntohs(arp->ar_op) <= 0xff)
720 key->ip.proto = ntohs(arp->ar_op);
721 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
722 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
723 memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN);
724 memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN);
725 key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
727 } else if (key->eth.type == htons(ETH_P_IPV6)) {
728 int nh_len; /* IPv6 Header + Extensions */
730 nh_len = parse_ipv6hdr(skb, key, &key_len);
731 if (unlikely(nh_len < 0)) {
732 if (nh_len == -EINVAL)
733 skb->transport_header = skb->network_header;
734 else
735 error = nh_len;
736 goto out;
739 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
740 goto out;
741 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
742 key->ip.frag = OVS_FRAG_TYPE_FIRST;
744 /* Transport layer. */
745 if (key->ip.proto == NEXTHDR_TCP) {
746 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
747 if (tcphdr_ok(skb)) {
748 struct tcphdr *tcp = tcp_hdr(skb);
749 key->ipv6.tp.src = tcp->source;
750 key->ipv6.tp.dst = tcp->dest;
752 } else if (key->ip.proto == NEXTHDR_UDP) {
753 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
754 if (udphdr_ok(skb)) {
755 struct udphdr *udp = udp_hdr(skb);
756 key->ipv6.tp.src = udp->source;
757 key->ipv6.tp.dst = udp->dest;
759 } else if (key->ip.proto == NEXTHDR_ICMP) {
760 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
761 if (icmp6hdr_ok(skb)) {
762 error = parse_icmpv6(skb, key, &key_len, nh_len);
763 if (error < 0)
764 goto out;
769 out:
770 *key_lenp = key_len;
771 return error;
774 static u32 ovs_flow_hash(const struct sw_flow_key *key, int key_start, int key_len)
776 return jhash2((u32 *)((u8 *)key + key_start),
777 DIV_ROUND_UP(key_len - key_start, sizeof(u32)), 0);
780 static int flow_key_start(struct sw_flow_key *key)
782 if (key->tun_key.ipv4_dst)
783 return 0;
784 else
785 return offsetof(struct sw_flow_key, phy);
788 struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *table,
789 struct sw_flow_key *key, int key_len)
791 struct sw_flow *flow;
792 struct hlist_head *head;
793 u8 *_key;
794 int key_start;
795 u32 hash;
797 key_start = flow_key_start(key);
798 hash = ovs_flow_hash(key, key_start, key_len);
800 _key = (u8 *) key + key_start;
801 head = find_bucket(table, hash);
802 hlist_for_each_entry_rcu(flow, head, hash_node[table->node_ver]) {
804 if (flow->hash == hash &&
805 !memcmp((u8 *)&flow->key + key_start, _key, key_len - key_start)) {
806 return flow;
809 return NULL;
812 void ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow,
813 struct sw_flow_key *key, int key_len)
815 flow->hash = ovs_flow_hash(key, flow_key_start(key), key_len);
816 memcpy(&flow->key, key, sizeof(flow->key));
817 __flow_tbl_insert(table, flow);
820 void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow)
822 BUG_ON(table->count == 0);
823 hlist_del_rcu(&flow->hash_node[table->node_ver]);
824 table->count--;
827 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
828 const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
829 [OVS_KEY_ATTR_ENCAP] = -1,
830 [OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
831 [OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
832 [OVS_KEY_ATTR_SKB_MARK] = sizeof(u32),
833 [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
834 [OVS_KEY_ATTR_VLAN] = sizeof(__be16),
835 [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
836 [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
837 [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
838 [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
839 [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
840 [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
841 [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
842 [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
843 [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
844 [OVS_KEY_ATTR_TUNNEL] = -1,
847 static int ipv4_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
848 const struct nlattr *a[], u32 *attrs)
850 const struct ovs_key_icmp *icmp_key;
851 const struct ovs_key_tcp *tcp_key;
852 const struct ovs_key_udp *udp_key;
854 switch (swkey->ip.proto) {
855 case IPPROTO_TCP:
856 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
857 return -EINVAL;
858 *attrs &= ~(1 << OVS_KEY_ATTR_TCP);
860 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
861 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
862 swkey->ipv4.tp.src = tcp_key->tcp_src;
863 swkey->ipv4.tp.dst = tcp_key->tcp_dst;
864 break;
866 case IPPROTO_UDP:
867 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
868 return -EINVAL;
869 *attrs &= ~(1 << OVS_KEY_ATTR_UDP);
871 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
872 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
873 swkey->ipv4.tp.src = udp_key->udp_src;
874 swkey->ipv4.tp.dst = udp_key->udp_dst;
875 break;
877 case IPPROTO_ICMP:
878 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMP)))
879 return -EINVAL;
880 *attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
882 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
883 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
884 swkey->ipv4.tp.src = htons(icmp_key->icmp_type);
885 swkey->ipv4.tp.dst = htons(icmp_key->icmp_code);
886 break;
889 return 0;
892 static int ipv6_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
893 const struct nlattr *a[], u32 *attrs)
895 const struct ovs_key_icmpv6 *icmpv6_key;
896 const struct ovs_key_tcp *tcp_key;
897 const struct ovs_key_udp *udp_key;
899 switch (swkey->ip.proto) {
900 case IPPROTO_TCP:
901 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
902 return -EINVAL;
903 *attrs &= ~(1 << OVS_KEY_ATTR_TCP);
905 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
906 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
907 swkey->ipv6.tp.src = tcp_key->tcp_src;
908 swkey->ipv6.tp.dst = tcp_key->tcp_dst;
909 break;
911 case IPPROTO_UDP:
912 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
913 return -EINVAL;
914 *attrs &= ~(1 << OVS_KEY_ATTR_UDP);
916 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
917 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
918 swkey->ipv6.tp.src = udp_key->udp_src;
919 swkey->ipv6.tp.dst = udp_key->udp_dst;
920 break;
922 case IPPROTO_ICMPV6:
923 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMPV6)))
924 return -EINVAL;
925 *attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
927 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
928 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
929 swkey->ipv6.tp.src = htons(icmpv6_key->icmpv6_type);
930 swkey->ipv6.tp.dst = htons(icmpv6_key->icmpv6_code);
932 if (swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
933 swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
934 const struct ovs_key_nd *nd_key;
936 if (!(*attrs & (1 << OVS_KEY_ATTR_ND)))
937 return -EINVAL;
938 *attrs &= ~(1 << OVS_KEY_ATTR_ND);
940 *key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
941 nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
942 memcpy(&swkey->ipv6.nd.target, nd_key->nd_target,
943 sizeof(swkey->ipv6.nd.target));
944 memcpy(swkey->ipv6.nd.sll, nd_key->nd_sll, ETH_ALEN);
945 memcpy(swkey->ipv6.nd.tll, nd_key->nd_tll, ETH_ALEN);
947 break;
950 return 0;
953 static int parse_flow_nlattrs(const struct nlattr *attr,
954 const struct nlattr *a[], u32 *attrsp)
956 const struct nlattr *nla;
957 u32 attrs;
958 int rem;
960 attrs = 0;
961 nla_for_each_nested(nla, attr, rem) {
962 u16 type = nla_type(nla);
963 int expected_len;
965 if (type > OVS_KEY_ATTR_MAX || attrs & (1 << type))
966 return -EINVAL;
968 expected_len = ovs_key_lens[type];
969 if (nla_len(nla) != expected_len && expected_len != -1)
970 return -EINVAL;
972 attrs |= 1 << type;
973 a[type] = nla;
975 if (rem)
976 return -EINVAL;
978 *attrsp = attrs;
979 return 0;
982 int ovs_ipv4_tun_from_nlattr(const struct nlattr *attr,
983 struct ovs_key_ipv4_tunnel *tun_key)
985 struct nlattr *a;
986 int rem;
987 bool ttl = false;
989 memset(tun_key, 0, sizeof(*tun_key));
991 nla_for_each_nested(a, attr, rem) {
992 int type = nla_type(a);
993 static const u32 ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
994 [OVS_TUNNEL_KEY_ATTR_ID] = sizeof(u64),
995 [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = sizeof(u32),
996 [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = sizeof(u32),
997 [OVS_TUNNEL_KEY_ATTR_TOS] = 1,
998 [OVS_TUNNEL_KEY_ATTR_TTL] = 1,
999 [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = 0,
1000 [OVS_TUNNEL_KEY_ATTR_CSUM] = 0,
1003 if (type > OVS_TUNNEL_KEY_ATTR_MAX ||
1004 ovs_tunnel_key_lens[type] != nla_len(a))
1005 return -EINVAL;
1007 switch (type) {
1008 case OVS_TUNNEL_KEY_ATTR_ID:
1009 tun_key->tun_id = nla_get_be64(a);
1010 tun_key->tun_flags |= TUNNEL_KEY;
1011 break;
1012 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
1013 tun_key->ipv4_src = nla_get_be32(a);
1014 break;
1015 case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
1016 tun_key->ipv4_dst = nla_get_be32(a);
1017 break;
1018 case OVS_TUNNEL_KEY_ATTR_TOS:
1019 tun_key->ipv4_tos = nla_get_u8(a);
1020 break;
1021 case OVS_TUNNEL_KEY_ATTR_TTL:
1022 tun_key->ipv4_ttl = nla_get_u8(a);
1023 ttl = true;
1024 break;
1025 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
1026 tun_key->tun_flags |= TUNNEL_DONT_FRAGMENT;
1027 break;
1028 case OVS_TUNNEL_KEY_ATTR_CSUM:
1029 tun_key->tun_flags |= TUNNEL_CSUM;
1030 break;
1031 default:
1032 return -EINVAL;
1036 if (rem > 0)
1037 return -EINVAL;
1039 if (!tun_key->ipv4_dst)
1040 return -EINVAL;
1042 if (!ttl)
1043 return -EINVAL;
1045 return 0;
1048 int ovs_ipv4_tun_to_nlattr(struct sk_buff *skb,
1049 const struct ovs_key_ipv4_tunnel *tun_key)
1051 struct nlattr *nla;
1053 nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
1054 if (!nla)
1055 return -EMSGSIZE;
1057 if (tun_key->tun_flags & TUNNEL_KEY &&
1058 nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, tun_key->tun_id))
1059 return -EMSGSIZE;
1060 if (tun_key->ipv4_src &&
1061 nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, tun_key->ipv4_src))
1062 return -EMSGSIZE;
1063 if (nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, tun_key->ipv4_dst))
1064 return -EMSGSIZE;
1065 if (tun_key->ipv4_tos &&
1066 nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, tun_key->ipv4_tos))
1067 return -EMSGSIZE;
1068 if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, tun_key->ipv4_ttl))
1069 return -EMSGSIZE;
1070 if ((tun_key->tun_flags & TUNNEL_DONT_FRAGMENT) &&
1071 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
1072 return -EMSGSIZE;
1073 if ((tun_key->tun_flags & TUNNEL_CSUM) &&
1074 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
1075 return -EMSGSIZE;
1077 nla_nest_end(skb, nla);
1078 return 0;
1082 * ovs_flow_from_nlattrs - parses Netlink attributes into a flow key.
1083 * @swkey: receives the extracted flow key.
1084 * @key_lenp: number of bytes used in @swkey.
1085 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1086 * sequence.
1088 int ovs_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_lenp,
1089 const struct nlattr *attr)
1091 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1092 const struct ovs_key_ethernet *eth_key;
1093 int key_len;
1094 u32 attrs;
1095 int err;
1097 memset(swkey, 0, sizeof(struct sw_flow_key));
1098 key_len = SW_FLOW_KEY_OFFSET(eth);
1100 err = parse_flow_nlattrs(attr, a, &attrs);
1101 if (err)
1102 return err;
1104 /* Metadata attributes. */
1105 if (attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1106 swkey->phy.priority = nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]);
1107 attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1109 if (attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1110 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1111 if (in_port >= DP_MAX_PORTS)
1112 return -EINVAL;
1113 swkey->phy.in_port = in_port;
1114 attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1115 } else {
1116 swkey->phy.in_port = DP_MAX_PORTS;
1118 if (attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1119 swkey->phy.skb_mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1120 attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1123 if (attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1124 err = ovs_ipv4_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], &swkey->tun_key);
1125 if (err)
1126 return err;
1128 attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1131 /* Data attributes. */
1132 if (!(attrs & (1 << OVS_KEY_ATTR_ETHERNET)))
1133 return -EINVAL;
1134 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1136 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1137 memcpy(swkey->eth.src, eth_key->eth_src, ETH_ALEN);
1138 memcpy(swkey->eth.dst, eth_key->eth_dst, ETH_ALEN);
1140 if (attrs & (1u << OVS_KEY_ATTR_ETHERTYPE) &&
1141 nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q)) {
1142 const struct nlattr *encap;
1143 __be16 tci;
1145 if (attrs != ((1 << OVS_KEY_ATTR_VLAN) |
1146 (1 << OVS_KEY_ATTR_ETHERTYPE) |
1147 (1 << OVS_KEY_ATTR_ENCAP)))
1148 return -EINVAL;
1150 encap = a[OVS_KEY_ATTR_ENCAP];
1151 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1152 if (tci & htons(VLAN_TAG_PRESENT)) {
1153 swkey->eth.tci = tci;
1155 err = parse_flow_nlattrs(encap, a, &attrs);
1156 if (err)
1157 return err;
1158 } else if (!tci) {
1159 /* Corner case for truncated 802.1Q header. */
1160 if (nla_len(encap))
1161 return -EINVAL;
1163 swkey->eth.type = htons(ETH_P_8021Q);
1164 *key_lenp = key_len;
1165 return 0;
1166 } else {
1167 return -EINVAL;
1171 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1172 swkey->eth.type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1173 if (ntohs(swkey->eth.type) < ETH_P_802_3_MIN)
1174 return -EINVAL;
1175 attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1176 } else {
1177 swkey->eth.type = htons(ETH_P_802_2);
1180 if (swkey->eth.type == htons(ETH_P_IP)) {
1181 const struct ovs_key_ipv4 *ipv4_key;
1183 if (!(attrs & (1 << OVS_KEY_ATTR_IPV4)))
1184 return -EINVAL;
1185 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1187 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
1188 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1189 if (ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX)
1190 return -EINVAL;
1191 swkey->ip.proto = ipv4_key->ipv4_proto;
1192 swkey->ip.tos = ipv4_key->ipv4_tos;
1193 swkey->ip.ttl = ipv4_key->ipv4_ttl;
1194 swkey->ip.frag = ipv4_key->ipv4_frag;
1195 swkey->ipv4.addr.src = ipv4_key->ipv4_src;
1196 swkey->ipv4.addr.dst = ipv4_key->ipv4_dst;
1198 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1199 err = ipv4_flow_from_nlattrs(swkey, &key_len, a, &attrs);
1200 if (err)
1201 return err;
1203 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1204 const struct ovs_key_ipv6 *ipv6_key;
1206 if (!(attrs & (1 << OVS_KEY_ATTR_IPV6)))
1207 return -EINVAL;
1208 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1210 key_len = SW_FLOW_KEY_OFFSET(ipv6.label);
1211 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1212 if (ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX)
1213 return -EINVAL;
1214 swkey->ipv6.label = ipv6_key->ipv6_label;
1215 swkey->ip.proto = ipv6_key->ipv6_proto;
1216 swkey->ip.tos = ipv6_key->ipv6_tclass;
1217 swkey->ip.ttl = ipv6_key->ipv6_hlimit;
1218 swkey->ip.frag = ipv6_key->ipv6_frag;
1219 memcpy(&swkey->ipv6.addr.src, ipv6_key->ipv6_src,
1220 sizeof(swkey->ipv6.addr.src));
1221 memcpy(&swkey->ipv6.addr.dst, ipv6_key->ipv6_dst,
1222 sizeof(swkey->ipv6.addr.dst));
1224 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1225 err = ipv6_flow_from_nlattrs(swkey, &key_len, a, &attrs);
1226 if (err)
1227 return err;
1229 } else if (swkey->eth.type == htons(ETH_P_ARP) ||
1230 swkey->eth.type == htons(ETH_P_RARP)) {
1231 const struct ovs_key_arp *arp_key;
1233 if (!(attrs & (1 << OVS_KEY_ATTR_ARP)))
1234 return -EINVAL;
1235 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1237 key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
1238 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1239 swkey->ipv4.addr.src = arp_key->arp_sip;
1240 swkey->ipv4.addr.dst = arp_key->arp_tip;
1241 if (arp_key->arp_op & htons(0xff00))
1242 return -EINVAL;
1243 swkey->ip.proto = ntohs(arp_key->arp_op);
1244 memcpy(swkey->ipv4.arp.sha, arp_key->arp_sha, ETH_ALEN);
1245 memcpy(swkey->ipv4.arp.tha, arp_key->arp_tha, ETH_ALEN);
1248 if (attrs)
1249 return -EINVAL;
1250 *key_lenp = key_len;
1252 return 0;
1256 * ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key.
1257 * @flow: Receives extracted in_port, priority, tun_key and skb_mark.
1258 * @key_len: Length of key in @flow. Used for calculating flow hash.
1259 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1260 * sequence.
1262 * This parses a series of Netlink attributes that form a flow key, which must
1263 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1264 * get the metadata, that is, the parts of the flow key that cannot be
1265 * extracted from the packet itself.
1267 int ovs_flow_metadata_from_nlattrs(struct sw_flow *flow, int key_len,
1268 const struct nlattr *attr)
1270 struct ovs_key_ipv4_tunnel *tun_key = &flow->key.tun_key;
1271 const struct nlattr *nla;
1272 int rem;
1274 flow->key.phy.in_port = DP_MAX_PORTS;
1275 flow->key.phy.priority = 0;
1276 flow->key.phy.skb_mark = 0;
1277 memset(tun_key, 0, sizeof(flow->key.tun_key));
1279 nla_for_each_nested(nla, attr, rem) {
1280 int type = nla_type(nla);
1282 if (type <= OVS_KEY_ATTR_MAX && ovs_key_lens[type] > 0) {
1283 int err;
1285 if (nla_len(nla) != ovs_key_lens[type])
1286 return -EINVAL;
1288 switch (type) {
1289 case OVS_KEY_ATTR_PRIORITY:
1290 flow->key.phy.priority = nla_get_u32(nla);
1291 break;
1293 case OVS_KEY_ATTR_TUNNEL:
1294 err = ovs_ipv4_tun_from_nlattr(nla, tun_key);
1295 if (err)
1296 return err;
1297 break;
1299 case OVS_KEY_ATTR_IN_PORT:
1300 if (nla_get_u32(nla) >= DP_MAX_PORTS)
1301 return -EINVAL;
1302 flow->key.phy.in_port = nla_get_u32(nla);
1303 break;
1305 case OVS_KEY_ATTR_SKB_MARK:
1306 flow->key.phy.skb_mark = nla_get_u32(nla);
1307 break;
1311 if (rem)
1312 return -EINVAL;
1314 flow->hash = ovs_flow_hash(&flow->key,
1315 flow_key_start(&flow->key), key_len);
1317 return 0;
1320 int ovs_flow_to_nlattrs(const struct sw_flow_key *swkey, struct sk_buff *skb)
1322 struct ovs_key_ethernet *eth_key;
1323 struct nlattr *nla, *encap;
1325 if (swkey->phy.priority &&
1326 nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, swkey->phy.priority))
1327 goto nla_put_failure;
1329 if (swkey->tun_key.ipv4_dst &&
1330 ovs_ipv4_tun_to_nlattr(skb, &swkey->tun_key))
1331 goto nla_put_failure;
1333 if (swkey->phy.in_port != DP_MAX_PORTS &&
1334 nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, swkey->phy.in_port))
1335 goto nla_put_failure;
1337 if (swkey->phy.skb_mark &&
1338 nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, swkey->phy.skb_mark))
1339 goto nla_put_failure;
1341 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1342 if (!nla)
1343 goto nla_put_failure;
1344 eth_key = nla_data(nla);
1345 memcpy(eth_key->eth_src, swkey->eth.src, ETH_ALEN);
1346 memcpy(eth_key->eth_dst, swkey->eth.dst, ETH_ALEN);
1348 if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
1349 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, htons(ETH_P_8021Q)) ||
1350 nla_put_be16(skb, OVS_KEY_ATTR_VLAN, swkey->eth.tci))
1351 goto nla_put_failure;
1352 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1353 if (!swkey->eth.tci)
1354 goto unencap;
1355 } else {
1356 encap = NULL;
1359 if (swkey->eth.type == htons(ETH_P_802_2))
1360 goto unencap;
1362 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, swkey->eth.type))
1363 goto nla_put_failure;
1365 if (swkey->eth.type == htons(ETH_P_IP)) {
1366 struct ovs_key_ipv4 *ipv4_key;
1368 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1369 if (!nla)
1370 goto nla_put_failure;
1371 ipv4_key = nla_data(nla);
1372 ipv4_key->ipv4_src = swkey->ipv4.addr.src;
1373 ipv4_key->ipv4_dst = swkey->ipv4.addr.dst;
1374 ipv4_key->ipv4_proto = swkey->ip.proto;
1375 ipv4_key->ipv4_tos = swkey->ip.tos;
1376 ipv4_key->ipv4_ttl = swkey->ip.ttl;
1377 ipv4_key->ipv4_frag = swkey->ip.frag;
1378 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1379 struct ovs_key_ipv6 *ipv6_key;
1381 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1382 if (!nla)
1383 goto nla_put_failure;
1384 ipv6_key = nla_data(nla);
1385 memcpy(ipv6_key->ipv6_src, &swkey->ipv6.addr.src,
1386 sizeof(ipv6_key->ipv6_src));
1387 memcpy(ipv6_key->ipv6_dst, &swkey->ipv6.addr.dst,
1388 sizeof(ipv6_key->ipv6_dst));
1389 ipv6_key->ipv6_label = swkey->ipv6.label;
1390 ipv6_key->ipv6_proto = swkey->ip.proto;
1391 ipv6_key->ipv6_tclass = swkey->ip.tos;
1392 ipv6_key->ipv6_hlimit = swkey->ip.ttl;
1393 ipv6_key->ipv6_frag = swkey->ip.frag;
1394 } else if (swkey->eth.type == htons(ETH_P_ARP) ||
1395 swkey->eth.type == htons(ETH_P_RARP)) {
1396 struct ovs_key_arp *arp_key;
1398 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1399 if (!nla)
1400 goto nla_put_failure;
1401 arp_key = nla_data(nla);
1402 memset(arp_key, 0, sizeof(struct ovs_key_arp));
1403 arp_key->arp_sip = swkey->ipv4.addr.src;
1404 arp_key->arp_tip = swkey->ipv4.addr.dst;
1405 arp_key->arp_op = htons(swkey->ip.proto);
1406 memcpy(arp_key->arp_sha, swkey->ipv4.arp.sha, ETH_ALEN);
1407 memcpy(arp_key->arp_tha, swkey->ipv4.arp.tha, ETH_ALEN);
1410 if ((swkey->eth.type == htons(ETH_P_IP) ||
1411 swkey->eth.type == htons(ETH_P_IPV6)) &&
1412 swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1414 if (swkey->ip.proto == IPPROTO_TCP) {
1415 struct ovs_key_tcp *tcp_key;
1417 nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1418 if (!nla)
1419 goto nla_put_failure;
1420 tcp_key = nla_data(nla);
1421 if (swkey->eth.type == htons(ETH_P_IP)) {
1422 tcp_key->tcp_src = swkey->ipv4.tp.src;
1423 tcp_key->tcp_dst = swkey->ipv4.tp.dst;
1424 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1425 tcp_key->tcp_src = swkey->ipv6.tp.src;
1426 tcp_key->tcp_dst = swkey->ipv6.tp.dst;
1428 } else if (swkey->ip.proto == IPPROTO_UDP) {
1429 struct ovs_key_udp *udp_key;
1431 nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1432 if (!nla)
1433 goto nla_put_failure;
1434 udp_key = nla_data(nla);
1435 if (swkey->eth.type == htons(ETH_P_IP)) {
1436 udp_key->udp_src = swkey->ipv4.tp.src;
1437 udp_key->udp_dst = swkey->ipv4.tp.dst;
1438 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1439 udp_key->udp_src = swkey->ipv6.tp.src;
1440 udp_key->udp_dst = swkey->ipv6.tp.dst;
1442 } else if (swkey->eth.type == htons(ETH_P_IP) &&
1443 swkey->ip.proto == IPPROTO_ICMP) {
1444 struct ovs_key_icmp *icmp_key;
1446 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1447 if (!nla)
1448 goto nla_put_failure;
1449 icmp_key = nla_data(nla);
1450 icmp_key->icmp_type = ntohs(swkey->ipv4.tp.src);
1451 icmp_key->icmp_code = ntohs(swkey->ipv4.tp.dst);
1452 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1453 swkey->ip.proto == IPPROTO_ICMPV6) {
1454 struct ovs_key_icmpv6 *icmpv6_key;
1456 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1457 sizeof(*icmpv6_key));
1458 if (!nla)
1459 goto nla_put_failure;
1460 icmpv6_key = nla_data(nla);
1461 icmpv6_key->icmpv6_type = ntohs(swkey->ipv6.tp.src);
1462 icmpv6_key->icmpv6_code = ntohs(swkey->ipv6.tp.dst);
1464 if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1465 icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1466 struct ovs_key_nd *nd_key;
1468 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1469 if (!nla)
1470 goto nla_put_failure;
1471 nd_key = nla_data(nla);
1472 memcpy(nd_key->nd_target, &swkey->ipv6.nd.target,
1473 sizeof(nd_key->nd_target));
1474 memcpy(nd_key->nd_sll, swkey->ipv6.nd.sll, ETH_ALEN);
1475 memcpy(nd_key->nd_tll, swkey->ipv6.nd.tll, ETH_ALEN);
1480 unencap:
1481 if (encap)
1482 nla_nest_end(skb, encap);
1484 return 0;
1486 nla_put_failure:
1487 return -EMSGSIZE;
1490 /* Initializes the flow module.
1491 * Returns zero if successful or a negative error code. */
1492 int ovs_flow_init(void)
1494 flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0,
1495 0, NULL);
1496 if (flow_cache == NULL)
1497 return -ENOMEM;
1499 return 0;
1502 /* Uninitializes the flow module. */
1503 void ovs_flow_exit(void)
1505 kmem_cache_destroy(flow_cache);