Merge tag 'remoteproc-3.11-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6.git] / net / mac80211 / rx.c
blob23dbcfc69b3b7f09ffc35c81d03dddc38d36da5a
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <net/ieee80211_radiotap.h>
22 #include <asm/unaligned.h>
24 #include "ieee80211_i.h"
25 #include "driver-ops.h"
26 #include "led.h"
27 #include "mesh.h"
28 #include "wep.h"
29 #include "wpa.h"
30 #include "tkip.h"
31 #include "wme.h"
32 #include "rate.h"
35 * monitor mode reception
37 * This function cleans up the SKB, i.e. it removes all the stuff
38 * only useful for monitoring.
40 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
41 struct sk_buff *skb)
43 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
45 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
46 if (likely(skb->len > FCS_LEN))
47 __pskb_trim(skb, skb->len - FCS_LEN);
48 else {
49 /* driver bug */
50 WARN_ON(1);
51 dev_kfree_skb(skb);
52 return NULL;
56 if (status->vendor_radiotap_len)
57 __pskb_pull(skb, status->vendor_radiotap_len);
59 return skb;
62 static inline int should_drop_frame(struct sk_buff *skb, int present_fcs_len)
64 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
65 struct ieee80211_hdr *hdr;
67 hdr = (void *)(skb->data + status->vendor_radiotap_len);
69 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
70 RX_FLAG_FAILED_PLCP_CRC |
71 RX_FLAG_AMPDU_IS_ZEROLEN))
72 return 1;
73 if (unlikely(skb->len < 16 + present_fcs_len +
74 status->vendor_radiotap_len))
75 return 1;
76 if (ieee80211_is_ctl(hdr->frame_control) &&
77 !ieee80211_is_pspoll(hdr->frame_control) &&
78 !ieee80211_is_back_req(hdr->frame_control))
79 return 1;
80 return 0;
83 static int
84 ieee80211_rx_radiotap_space(struct ieee80211_local *local,
85 struct ieee80211_rx_status *status)
87 int len;
89 /* always present fields */
90 len = sizeof(struct ieee80211_radiotap_header) + 9;
92 /* allocate extra bitmap */
93 if (status->vendor_radiotap_len)
94 len += 4;
96 if (ieee80211_have_rx_timestamp(status)) {
97 len = ALIGN(len, 8);
98 len += 8;
100 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
101 len += 1;
103 /* padding for RX_FLAGS if necessary */
104 len = ALIGN(len, 2);
106 if (status->flag & RX_FLAG_HT) /* HT info */
107 len += 3;
109 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
110 len = ALIGN(len, 4);
111 len += 8;
114 if (status->flag & RX_FLAG_VHT) {
115 len = ALIGN(len, 2);
116 len += 12;
119 if (status->vendor_radiotap_len) {
120 if (WARN_ON_ONCE(status->vendor_radiotap_align == 0))
121 status->vendor_radiotap_align = 1;
122 /* align standard part of vendor namespace */
123 len = ALIGN(len, 2);
124 /* allocate standard part of vendor namespace */
125 len += 6;
126 /* align vendor-defined part */
127 len = ALIGN(len, status->vendor_radiotap_align);
128 /* vendor-defined part is already in skb */
131 return len;
135 * ieee80211_add_rx_radiotap_header - add radiotap header
137 * add a radiotap header containing all the fields which the hardware provided.
139 static void
140 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
141 struct sk_buff *skb,
142 struct ieee80211_rate *rate,
143 int rtap_len, bool has_fcs)
145 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
146 struct ieee80211_radiotap_header *rthdr;
147 unsigned char *pos;
148 u16 rx_flags = 0;
149 int mpdulen;
151 mpdulen = skb->len;
152 if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)))
153 mpdulen += FCS_LEN;
155 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
156 memset(rthdr, 0, rtap_len);
158 /* radiotap header, set always present flags */
159 rthdr->it_present =
160 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
161 (1 << IEEE80211_RADIOTAP_CHANNEL) |
162 (1 << IEEE80211_RADIOTAP_ANTENNA) |
163 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
164 rthdr->it_len = cpu_to_le16(rtap_len + status->vendor_radiotap_len);
166 pos = (unsigned char *)(rthdr + 1);
168 if (status->vendor_radiotap_len) {
169 rthdr->it_present |=
170 cpu_to_le32(BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE)) |
171 cpu_to_le32(BIT(IEEE80211_RADIOTAP_EXT));
172 put_unaligned_le32(status->vendor_radiotap_bitmap, pos);
173 pos += 4;
176 /* the order of the following fields is important */
178 /* IEEE80211_RADIOTAP_TSFT */
179 if (ieee80211_have_rx_timestamp(status)) {
180 /* padding */
181 while ((pos - (u8 *)rthdr) & 7)
182 *pos++ = 0;
183 put_unaligned_le64(
184 ieee80211_calculate_rx_timestamp(local, status,
185 mpdulen, 0),
186 pos);
187 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
188 pos += 8;
191 /* IEEE80211_RADIOTAP_FLAGS */
192 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))
193 *pos |= IEEE80211_RADIOTAP_F_FCS;
194 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
195 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
196 if (status->flag & RX_FLAG_SHORTPRE)
197 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
198 pos++;
200 /* IEEE80211_RADIOTAP_RATE */
201 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
203 * Without rate information don't add it. If we have,
204 * MCS information is a separate field in radiotap,
205 * added below. The byte here is needed as padding
206 * for the channel though, so initialise it to 0.
208 *pos = 0;
209 } else {
210 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
211 *pos = rate->bitrate / 5;
213 pos++;
215 /* IEEE80211_RADIOTAP_CHANNEL */
216 put_unaligned_le16(status->freq, pos);
217 pos += 2;
218 if (status->band == IEEE80211_BAND_5GHZ)
219 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
220 pos);
221 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
222 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
223 pos);
224 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
225 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
226 pos);
227 else if (rate)
228 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
229 pos);
230 else
231 put_unaligned_le16(IEEE80211_CHAN_2GHZ, pos);
232 pos += 2;
234 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
235 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM &&
236 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
237 *pos = status->signal;
238 rthdr->it_present |=
239 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
240 pos++;
243 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
245 /* IEEE80211_RADIOTAP_ANTENNA */
246 *pos = status->antenna;
247 pos++;
249 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
251 /* IEEE80211_RADIOTAP_RX_FLAGS */
252 /* ensure 2 byte alignment for the 2 byte field as required */
253 if ((pos - (u8 *)rthdr) & 1)
254 *pos++ = 0;
255 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
256 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
257 put_unaligned_le16(rx_flags, pos);
258 pos += 2;
260 if (status->flag & RX_FLAG_HT) {
261 unsigned int stbc;
263 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
264 *pos++ = local->hw.radiotap_mcs_details;
265 *pos = 0;
266 if (status->flag & RX_FLAG_SHORT_GI)
267 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
268 if (status->flag & RX_FLAG_40MHZ)
269 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
270 if (status->flag & RX_FLAG_HT_GF)
271 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
272 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
273 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
274 pos++;
275 *pos++ = status->rate_idx;
278 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
279 u16 flags = 0;
281 /* ensure 4 byte alignment */
282 while ((pos - (u8 *)rthdr) & 3)
283 pos++;
284 rthdr->it_present |=
285 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
286 put_unaligned_le32(status->ampdu_reference, pos);
287 pos += 4;
288 if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN)
289 flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN;
290 if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN)
291 flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN;
292 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
293 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
294 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
295 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
296 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
297 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
298 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
299 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
300 put_unaligned_le16(flags, pos);
301 pos += 2;
302 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
303 *pos++ = status->ampdu_delimiter_crc;
304 else
305 *pos++ = 0;
306 *pos++ = 0;
309 if (status->flag & RX_FLAG_VHT) {
310 u16 known = local->hw.radiotap_vht_details;
312 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
313 /* known field - how to handle 80+80? */
314 if (status->flag & RX_FLAG_80P80MHZ)
315 known &= ~IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH;
316 put_unaligned_le16(known, pos);
317 pos += 2;
318 /* flags */
319 if (status->flag & RX_FLAG_SHORT_GI)
320 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
321 pos++;
322 /* bandwidth */
323 if (status->flag & RX_FLAG_80MHZ)
324 *pos++ = 4;
325 else if (status->flag & RX_FLAG_80P80MHZ)
326 *pos++ = 0; /* marked not known above */
327 else if (status->flag & RX_FLAG_160MHZ)
328 *pos++ = 11;
329 else if (status->flag & RX_FLAG_40MHZ)
330 *pos++ = 1;
331 else /* 20 MHz */
332 *pos++ = 0;
333 /* MCS/NSS */
334 *pos = (status->rate_idx << 4) | status->vht_nss;
335 pos += 4;
336 /* coding field */
337 pos++;
338 /* group ID */
339 pos++;
340 /* partial_aid */
341 pos += 2;
344 if (status->vendor_radiotap_len) {
345 /* ensure 2 byte alignment for the vendor field as required */
346 if ((pos - (u8 *)rthdr) & 1)
347 *pos++ = 0;
348 *pos++ = status->vendor_radiotap_oui[0];
349 *pos++ = status->vendor_radiotap_oui[1];
350 *pos++ = status->vendor_radiotap_oui[2];
351 *pos++ = status->vendor_radiotap_subns;
352 put_unaligned_le16(status->vendor_radiotap_len, pos);
353 pos += 2;
354 /* align the actual payload as requested */
355 while ((pos - (u8 *)rthdr) & (status->vendor_radiotap_align - 1))
356 *pos++ = 0;
361 * This function copies a received frame to all monitor interfaces and
362 * returns a cleaned-up SKB that no longer includes the FCS nor the
363 * radiotap header the driver might have added.
365 static struct sk_buff *
366 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
367 struct ieee80211_rate *rate)
369 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
370 struct ieee80211_sub_if_data *sdata;
371 int needed_headroom;
372 struct sk_buff *skb, *skb2;
373 struct net_device *prev_dev = NULL;
374 int present_fcs_len = 0;
377 * First, we may need to make a copy of the skb because
378 * (1) we need to modify it for radiotap (if not present), and
379 * (2) the other RX handlers will modify the skb we got.
381 * We don't need to, of course, if we aren't going to return
382 * the SKB because it has a bad FCS/PLCP checksum.
385 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
386 present_fcs_len = FCS_LEN;
388 /* ensure hdr->frame_control and vendor radiotap data are in skb head */
389 if (!pskb_may_pull(origskb, 2 + status->vendor_radiotap_len)) {
390 dev_kfree_skb(origskb);
391 return NULL;
394 if (!local->monitors) {
395 if (should_drop_frame(origskb, present_fcs_len)) {
396 dev_kfree_skb(origskb);
397 return NULL;
400 return remove_monitor_info(local, origskb);
403 /* room for the radiotap header based on driver features */
404 needed_headroom = ieee80211_rx_radiotap_space(local, status);
406 if (should_drop_frame(origskb, present_fcs_len)) {
407 /* only need to expand headroom if necessary */
408 skb = origskb;
409 origskb = NULL;
412 * This shouldn't trigger often because most devices have an
413 * RX header they pull before we get here, and that should
414 * be big enough for our radiotap information. We should
415 * probably export the length to drivers so that we can have
416 * them allocate enough headroom to start with.
418 if (skb_headroom(skb) < needed_headroom &&
419 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
420 dev_kfree_skb(skb);
421 return NULL;
423 } else {
425 * Need to make a copy and possibly remove radiotap header
426 * and FCS from the original.
428 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
430 origskb = remove_monitor_info(local, origskb);
432 if (!skb)
433 return origskb;
436 /* prepend radiotap information */
437 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
438 true);
440 skb_reset_mac_header(skb);
441 skb->ip_summed = CHECKSUM_UNNECESSARY;
442 skb->pkt_type = PACKET_OTHERHOST;
443 skb->protocol = htons(ETH_P_802_2);
445 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
446 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
447 continue;
449 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
450 continue;
452 if (!ieee80211_sdata_running(sdata))
453 continue;
455 if (prev_dev) {
456 skb2 = skb_clone(skb, GFP_ATOMIC);
457 if (skb2) {
458 skb2->dev = prev_dev;
459 netif_receive_skb(skb2);
463 prev_dev = sdata->dev;
464 sdata->dev->stats.rx_packets++;
465 sdata->dev->stats.rx_bytes += skb->len;
468 if (prev_dev) {
469 skb->dev = prev_dev;
470 netif_receive_skb(skb);
471 } else
472 dev_kfree_skb(skb);
474 return origskb;
477 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
479 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
480 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
481 int tid, seqno_idx, security_idx;
483 /* does the frame have a qos control field? */
484 if (ieee80211_is_data_qos(hdr->frame_control)) {
485 u8 *qc = ieee80211_get_qos_ctl(hdr);
486 /* frame has qos control */
487 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
488 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
489 status->rx_flags |= IEEE80211_RX_AMSDU;
491 seqno_idx = tid;
492 security_idx = tid;
493 } else {
495 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
497 * Sequence numbers for management frames, QoS data
498 * frames with a broadcast/multicast address in the
499 * Address 1 field, and all non-QoS data frames sent
500 * by QoS STAs are assigned using an additional single
501 * modulo-4096 counter, [...]
503 * We also use that counter for non-QoS STAs.
505 seqno_idx = IEEE80211_NUM_TIDS;
506 security_idx = 0;
507 if (ieee80211_is_mgmt(hdr->frame_control))
508 security_idx = IEEE80211_NUM_TIDS;
509 tid = 0;
512 rx->seqno_idx = seqno_idx;
513 rx->security_idx = security_idx;
514 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
515 * For now, set skb->priority to 0 for other cases. */
516 rx->skb->priority = (tid > 7) ? 0 : tid;
520 * DOC: Packet alignment
522 * Drivers always need to pass packets that are aligned to two-byte boundaries
523 * to the stack.
525 * Additionally, should, if possible, align the payload data in a way that
526 * guarantees that the contained IP header is aligned to a four-byte
527 * boundary. In the case of regular frames, this simply means aligning the
528 * payload to a four-byte boundary (because either the IP header is directly
529 * contained, or IV/RFC1042 headers that have a length divisible by four are
530 * in front of it). If the payload data is not properly aligned and the
531 * architecture doesn't support efficient unaligned operations, mac80211
532 * will align the data.
534 * With A-MSDU frames, however, the payload data address must yield two modulo
535 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
536 * push the IP header further back to a multiple of four again. Thankfully, the
537 * specs were sane enough this time around to require padding each A-MSDU
538 * subframe to a length that is a multiple of four.
540 * Padding like Atheros hardware adds which is between the 802.11 header and
541 * the payload is not supported, the driver is required to move the 802.11
542 * header to be directly in front of the payload in that case.
544 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
546 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
547 WARN_ONCE((unsigned long)rx->skb->data & 1,
548 "unaligned packet at 0x%p\n", rx->skb->data);
549 #endif
553 /* rx handlers */
555 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
557 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
559 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
560 return 0;
562 return ieee80211_is_robust_mgmt_frame(hdr);
566 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
568 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
570 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
571 return 0;
573 return ieee80211_is_robust_mgmt_frame(hdr);
577 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
578 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
580 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
581 struct ieee80211_mmie *mmie;
583 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
584 return -1;
586 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
587 return -1; /* not a robust management frame */
589 mmie = (struct ieee80211_mmie *)
590 (skb->data + skb->len - sizeof(*mmie));
591 if (mmie->element_id != WLAN_EID_MMIE ||
592 mmie->length != sizeof(*mmie) - 2)
593 return -1;
595 return le16_to_cpu(mmie->key_id);
598 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
600 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
601 char *dev_addr = rx->sdata->vif.addr;
603 if (ieee80211_is_data(hdr->frame_control)) {
604 if (is_multicast_ether_addr(hdr->addr1)) {
605 if (ieee80211_has_tods(hdr->frame_control) ||
606 !ieee80211_has_fromds(hdr->frame_control))
607 return RX_DROP_MONITOR;
608 if (ether_addr_equal(hdr->addr3, dev_addr))
609 return RX_DROP_MONITOR;
610 } else {
611 if (!ieee80211_has_a4(hdr->frame_control))
612 return RX_DROP_MONITOR;
613 if (ether_addr_equal(hdr->addr4, dev_addr))
614 return RX_DROP_MONITOR;
618 /* If there is not an established peer link and this is not a peer link
619 * establisment frame, beacon or probe, drop the frame.
622 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
623 struct ieee80211_mgmt *mgmt;
625 if (!ieee80211_is_mgmt(hdr->frame_control))
626 return RX_DROP_MONITOR;
628 if (ieee80211_is_action(hdr->frame_control)) {
629 u8 category;
631 /* make sure category field is present */
632 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
633 return RX_DROP_MONITOR;
635 mgmt = (struct ieee80211_mgmt *)hdr;
636 category = mgmt->u.action.category;
637 if (category != WLAN_CATEGORY_MESH_ACTION &&
638 category != WLAN_CATEGORY_SELF_PROTECTED)
639 return RX_DROP_MONITOR;
640 return RX_CONTINUE;
643 if (ieee80211_is_probe_req(hdr->frame_control) ||
644 ieee80211_is_probe_resp(hdr->frame_control) ||
645 ieee80211_is_beacon(hdr->frame_control) ||
646 ieee80211_is_auth(hdr->frame_control))
647 return RX_CONTINUE;
649 return RX_DROP_MONITOR;
652 return RX_CONTINUE;
655 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
656 struct tid_ampdu_rx *tid_agg_rx,
657 int index,
658 struct sk_buff_head *frames)
660 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
661 struct ieee80211_rx_status *status;
663 lockdep_assert_held(&tid_agg_rx->reorder_lock);
665 if (!skb)
666 goto no_frame;
668 /* release the frame from the reorder ring buffer */
669 tid_agg_rx->stored_mpdu_num--;
670 tid_agg_rx->reorder_buf[index] = NULL;
671 status = IEEE80211_SKB_RXCB(skb);
672 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
673 __skb_queue_tail(frames, skb);
675 no_frame:
676 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
679 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
680 struct tid_ampdu_rx *tid_agg_rx,
681 u16 head_seq_num,
682 struct sk_buff_head *frames)
684 int index;
686 lockdep_assert_held(&tid_agg_rx->reorder_lock);
688 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
689 index = ieee80211_sn_sub(tid_agg_rx->head_seq_num,
690 tid_agg_rx->ssn) %
691 tid_agg_rx->buf_size;
692 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
693 frames);
698 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
699 * the skb was added to the buffer longer than this time ago, the earlier
700 * frames that have not yet been received are assumed to be lost and the skb
701 * can be released for processing. This may also release other skb's from the
702 * reorder buffer if there are no additional gaps between the frames.
704 * Callers must hold tid_agg_rx->reorder_lock.
706 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
708 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
709 struct tid_ampdu_rx *tid_agg_rx,
710 struct sk_buff_head *frames)
712 int index, j;
714 lockdep_assert_held(&tid_agg_rx->reorder_lock);
716 /* release the buffer until next missing frame */
717 index = ieee80211_sn_sub(tid_agg_rx->head_seq_num,
718 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
719 if (!tid_agg_rx->reorder_buf[index] &&
720 tid_agg_rx->stored_mpdu_num) {
722 * No buffers ready to be released, but check whether any
723 * frames in the reorder buffer have timed out.
725 int skipped = 1;
726 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
727 j = (j + 1) % tid_agg_rx->buf_size) {
728 if (!tid_agg_rx->reorder_buf[j]) {
729 skipped++;
730 continue;
732 if (skipped &&
733 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
734 HT_RX_REORDER_BUF_TIMEOUT))
735 goto set_release_timer;
737 ht_dbg_ratelimited(sdata,
738 "release an RX reorder frame due to timeout on earlier frames\n");
739 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
740 frames);
743 * Increment the head seq# also for the skipped slots.
745 tid_agg_rx->head_seq_num =
746 (tid_agg_rx->head_seq_num +
747 skipped) & IEEE80211_SN_MASK;
748 skipped = 0;
750 } else while (tid_agg_rx->reorder_buf[index]) {
751 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
752 frames);
753 index = ieee80211_sn_sub(tid_agg_rx->head_seq_num,
754 tid_agg_rx->ssn) %
755 tid_agg_rx->buf_size;
758 if (tid_agg_rx->stored_mpdu_num) {
759 j = index = ieee80211_sn_sub(tid_agg_rx->head_seq_num,
760 tid_agg_rx->ssn) %
761 tid_agg_rx->buf_size;
763 for (; j != (index - 1) % tid_agg_rx->buf_size;
764 j = (j + 1) % tid_agg_rx->buf_size) {
765 if (tid_agg_rx->reorder_buf[j])
766 break;
769 set_release_timer:
771 mod_timer(&tid_agg_rx->reorder_timer,
772 tid_agg_rx->reorder_time[j] + 1 +
773 HT_RX_REORDER_BUF_TIMEOUT);
774 } else {
775 del_timer(&tid_agg_rx->reorder_timer);
780 * As this function belongs to the RX path it must be under
781 * rcu_read_lock protection. It returns false if the frame
782 * can be processed immediately, true if it was consumed.
784 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
785 struct tid_ampdu_rx *tid_agg_rx,
786 struct sk_buff *skb,
787 struct sk_buff_head *frames)
789 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
790 u16 sc = le16_to_cpu(hdr->seq_ctrl);
791 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
792 u16 head_seq_num, buf_size;
793 int index;
794 bool ret = true;
796 spin_lock(&tid_agg_rx->reorder_lock);
798 buf_size = tid_agg_rx->buf_size;
799 head_seq_num = tid_agg_rx->head_seq_num;
801 /* frame with out of date sequence number */
802 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
803 dev_kfree_skb(skb);
804 goto out;
808 * If frame the sequence number exceeds our buffering window
809 * size release some previous frames to make room for this one.
811 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
812 head_seq_num = ieee80211_sn_inc(
813 ieee80211_sn_sub(mpdu_seq_num, buf_size));
814 /* release stored frames up to new head to stack */
815 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
816 head_seq_num, frames);
819 /* Now the new frame is always in the range of the reordering buffer */
821 index = ieee80211_sn_sub(mpdu_seq_num,
822 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
824 /* check if we already stored this frame */
825 if (tid_agg_rx->reorder_buf[index]) {
826 dev_kfree_skb(skb);
827 goto out;
831 * If the current MPDU is in the right order and nothing else
832 * is stored we can process it directly, no need to buffer it.
833 * If it is first but there's something stored, we may be able
834 * to release frames after this one.
836 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
837 tid_agg_rx->stored_mpdu_num == 0) {
838 tid_agg_rx->head_seq_num =
839 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
840 ret = false;
841 goto out;
844 /* put the frame in the reordering buffer */
845 tid_agg_rx->reorder_buf[index] = skb;
846 tid_agg_rx->reorder_time[index] = jiffies;
847 tid_agg_rx->stored_mpdu_num++;
848 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
850 out:
851 spin_unlock(&tid_agg_rx->reorder_lock);
852 return ret;
856 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
857 * true if the MPDU was buffered, false if it should be processed.
859 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
860 struct sk_buff_head *frames)
862 struct sk_buff *skb = rx->skb;
863 struct ieee80211_local *local = rx->local;
864 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
865 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
866 struct sta_info *sta = rx->sta;
867 struct tid_ampdu_rx *tid_agg_rx;
868 u16 sc;
869 u8 tid, ack_policy;
871 if (!ieee80211_is_data_qos(hdr->frame_control))
872 goto dont_reorder;
875 * filter the QoS data rx stream according to
876 * STA/TID and check if this STA/TID is on aggregation
879 if (!sta)
880 goto dont_reorder;
882 ack_policy = *ieee80211_get_qos_ctl(hdr) &
883 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
884 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
886 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
887 if (!tid_agg_rx)
888 goto dont_reorder;
890 /* qos null data frames are excluded */
891 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
892 goto dont_reorder;
894 /* not part of a BA session */
895 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
896 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
897 goto dont_reorder;
899 /* not actually part of this BA session */
900 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
901 goto dont_reorder;
903 /* new, potentially un-ordered, ampdu frame - process it */
905 /* reset session timer */
906 if (tid_agg_rx->timeout)
907 tid_agg_rx->last_rx = jiffies;
909 /* if this mpdu is fragmented - terminate rx aggregation session */
910 sc = le16_to_cpu(hdr->seq_ctrl);
911 if (sc & IEEE80211_SCTL_FRAG) {
912 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
913 skb_queue_tail(&rx->sdata->skb_queue, skb);
914 ieee80211_queue_work(&local->hw, &rx->sdata->work);
915 return;
919 * No locking needed -- we will only ever process one
920 * RX packet at a time, and thus own tid_agg_rx. All
921 * other code manipulating it needs to (and does) make
922 * sure that we cannot get to it any more before doing
923 * anything with it.
925 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
926 frames))
927 return;
929 dont_reorder:
930 __skb_queue_tail(frames, skb);
933 static ieee80211_rx_result debug_noinline
934 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
936 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
937 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
939 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
940 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
941 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
942 rx->sta->last_seq_ctrl[rx->seqno_idx] ==
943 hdr->seq_ctrl)) {
944 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
945 rx->local->dot11FrameDuplicateCount++;
946 rx->sta->num_duplicates++;
948 return RX_DROP_UNUSABLE;
949 } else
950 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
953 if (unlikely(rx->skb->len < 16)) {
954 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
955 return RX_DROP_MONITOR;
958 /* Drop disallowed frame classes based on STA auth/assoc state;
959 * IEEE 802.11, Chap 5.5.
961 * mac80211 filters only based on association state, i.e. it drops
962 * Class 3 frames from not associated stations. hostapd sends
963 * deauth/disassoc frames when needed. In addition, hostapd is
964 * responsible for filtering on both auth and assoc states.
967 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
968 return ieee80211_rx_mesh_check(rx);
970 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
971 ieee80211_is_pspoll(hdr->frame_control)) &&
972 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
973 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
974 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
976 * accept port control frames from the AP even when it's not
977 * yet marked ASSOC to prevent a race where we don't set the
978 * assoc bit quickly enough before it sends the first frame
980 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
981 ieee80211_is_data_present(hdr->frame_control)) {
982 unsigned int hdrlen;
983 __be16 ethertype;
985 hdrlen = ieee80211_hdrlen(hdr->frame_control);
987 if (rx->skb->len < hdrlen + 8)
988 return RX_DROP_MONITOR;
990 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
991 if (ethertype == rx->sdata->control_port_protocol)
992 return RX_CONTINUE;
995 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
996 cfg80211_rx_spurious_frame(rx->sdata->dev,
997 hdr->addr2,
998 GFP_ATOMIC))
999 return RX_DROP_UNUSABLE;
1001 return RX_DROP_MONITOR;
1004 return RX_CONTINUE;
1008 static ieee80211_rx_result debug_noinline
1009 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1011 struct sk_buff *skb = rx->skb;
1012 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1013 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1014 int keyidx;
1015 int hdrlen;
1016 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1017 struct ieee80211_key *sta_ptk = NULL;
1018 int mmie_keyidx = -1;
1019 __le16 fc;
1022 * Key selection 101
1024 * There are four types of keys:
1025 * - GTK (group keys)
1026 * - IGTK (group keys for management frames)
1027 * - PTK (pairwise keys)
1028 * - STK (station-to-station pairwise keys)
1030 * When selecting a key, we have to distinguish between multicast
1031 * (including broadcast) and unicast frames, the latter can only
1032 * use PTKs and STKs while the former always use GTKs and IGTKs.
1033 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1034 * unicast frames can also use key indices like GTKs. Hence, if we
1035 * don't have a PTK/STK we check the key index for a WEP key.
1037 * Note that in a regular BSS, multicast frames are sent by the
1038 * AP only, associated stations unicast the frame to the AP first
1039 * which then multicasts it on their behalf.
1041 * There is also a slight problem in IBSS mode: GTKs are negotiated
1042 * with each station, that is something we don't currently handle.
1043 * The spec seems to expect that one negotiates the same key with
1044 * every station but there's no such requirement; VLANs could be
1045 * possible.
1049 * No point in finding a key and decrypting if the frame is neither
1050 * addressed to us nor a multicast frame.
1052 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1053 return RX_CONTINUE;
1055 /* start without a key */
1056 rx->key = NULL;
1058 if (rx->sta)
1059 sta_ptk = rcu_dereference(rx->sta->ptk);
1061 fc = hdr->frame_control;
1063 if (!ieee80211_has_protected(fc))
1064 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1066 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1067 rx->key = sta_ptk;
1068 if ((status->flag & RX_FLAG_DECRYPTED) &&
1069 (status->flag & RX_FLAG_IV_STRIPPED))
1070 return RX_CONTINUE;
1071 /* Skip decryption if the frame is not protected. */
1072 if (!ieee80211_has_protected(fc))
1073 return RX_CONTINUE;
1074 } else if (mmie_keyidx >= 0) {
1075 /* Broadcast/multicast robust management frame / BIP */
1076 if ((status->flag & RX_FLAG_DECRYPTED) &&
1077 (status->flag & RX_FLAG_IV_STRIPPED))
1078 return RX_CONTINUE;
1080 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1081 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1082 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1083 if (rx->sta)
1084 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1085 if (!rx->key)
1086 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1087 } else if (!ieee80211_has_protected(fc)) {
1089 * The frame was not protected, so skip decryption. However, we
1090 * need to set rx->key if there is a key that could have been
1091 * used so that the frame may be dropped if encryption would
1092 * have been expected.
1094 struct ieee80211_key *key = NULL;
1095 struct ieee80211_sub_if_data *sdata = rx->sdata;
1096 int i;
1098 if (ieee80211_is_mgmt(fc) &&
1099 is_multicast_ether_addr(hdr->addr1) &&
1100 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1101 rx->key = key;
1102 else {
1103 if (rx->sta) {
1104 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1105 key = rcu_dereference(rx->sta->gtk[i]);
1106 if (key)
1107 break;
1110 if (!key) {
1111 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1112 key = rcu_dereference(sdata->keys[i]);
1113 if (key)
1114 break;
1117 if (key)
1118 rx->key = key;
1120 return RX_CONTINUE;
1121 } else {
1122 u8 keyid;
1124 * The device doesn't give us the IV so we won't be
1125 * able to look up the key. That's ok though, we
1126 * don't need to decrypt the frame, we just won't
1127 * be able to keep statistics accurate.
1128 * Except for key threshold notifications, should
1129 * we somehow allow the driver to tell us which key
1130 * the hardware used if this flag is set?
1132 if ((status->flag & RX_FLAG_DECRYPTED) &&
1133 (status->flag & RX_FLAG_IV_STRIPPED))
1134 return RX_CONTINUE;
1136 hdrlen = ieee80211_hdrlen(fc);
1138 if (rx->skb->len < 8 + hdrlen)
1139 return RX_DROP_UNUSABLE; /* TODO: count this? */
1142 * no need to call ieee80211_wep_get_keyidx,
1143 * it verifies a bunch of things we've done already
1145 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1146 keyidx = keyid >> 6;
1148 /* check per-station GTK first, if multicast packet */
1149 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1150 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1152 /* if not found, try default key */
1153 if (!rx->key) {
1154 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1157 * RSNA-protected unicast frames should always be
1158 * sent with pairwise or station-to-station keys,
1159 * but for WEP we allow using a key index as well.
1161 if (rx->key &&
1162 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1163 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1164 !is_multicast_ether_addr(hdr->addr1))
1165 rx->key = NULL;
1169 if (rx->key) {
1170 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1171 return RX_DROP_MONITOR;
1173 rx->key->tx_rx_count++;
1174 /* TODO: add threshold stuff again */
1175 } else {
1176 return RX_DROP_MONITOR;
1179 switch (rx->key->conf.cipher) {
1180 case WLAN_CIPHER_SUITE_WEP40:
1181 case WLAN_CIPHER_SUITE_WEP104:
1182 result = ieee80211_crypto_wep_decrypt(rx);
1183 break;
1184 case WLAN_CIPHER_SUITE_TKIP:
1185 result = ieee80211_crypto_tkip_decrypt(rx);
1186 break;
1187 case WLAN_CIPHER_SUITE_CCMP:
1188 result = ieee80211_crypto_ccmp_decrypt(rx);
1189 break;
1190 case WLAN_CIPHER_SUITE_AES_CMAC:
1191 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1192 break;
1193 default:
1195 * We can reach here only with HW-only algorithms
1196 * but why didn't it decrypt the frame?!
1198 return RX_DROP_UNUSABLE;
1201 /* the hdr variable is invalid after the decrypt handlers */
1203 /* either the frame has been decrypted or will be dropped */
1204 status->flag |= RX_FLAG_DECRYPTED;
1206 return result;
1209 static ieee80211_rx_result debug_noinline
1210 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1212 struct ieee80211_local *local;
1213 struct ieee80211_hdr *hdr;
1214 struct sk_buff *skb;
1216 local = rx->local;
1217 skb = rx->skb;
1218 hdr = (struct ieee80211_hdr *) skb->data;
1220 if (!local->pspolling)
1221 return RX_CONTINUE;
1223 if (!ieee80211_has_fromds(hdr->frame_control))
1224 /* this is not from AP */
1225 return RX_CONTINUE;
1227 if (!ieee80211_is_data(hdr->frame_control))
1228 return RX_CONTINUE;
1230 if (!ieee80211_has_moredata(hdr->frame_control)) {
1231 /* AP has no more frames buffered for us */
1232 local->pspolling = false;
1233 return RX_CONTINUE;
1236 /* more data bit is set, let's request a new frame from the AP */
1237 ieee80211_send_pspoll(local, rx->sdata);
1239 return RX_CONTINUE;
1242 static void sta_ps_start(struct sta_info *sta)
1244 struct ieee80211_sub_if_data *sdata = sta->sdata;
1245 struct ieee80211_local *local = sdata->local;
1246 struct ps_data *ps;
1248 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1249 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1250 ps = &sdata->bss->ps;
1251 else
1252 return;
1254 atomic_inc(&ps->num_sta_ps);
1255 set_sta_flag(sta, WLAN_STA_PS_STA);
1256 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1257 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1258 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1259 sta->sta.addr, sta->sta.aid);
1262 static void sta_ps_end(struct sta_info *sta)
1264 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1265 sta->sta.addr, sta->sta.aid);
1267 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1268 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1269 sta->sta.addr, sta->sta.aid);
1270 return;
1273 ieee80211_sta_ps_deliver_wakeup(sta);
1276 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1278 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1279 bool in_ps;
1281 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1283 /* Don't let the same PS state be set twice */
1284 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1285 if ((start && in_ps) || (!start && !in_ps))
1286 return -EINVAL;
1288 if (start)
1289 sta_ps_start(sta_inf);
1290 else
1291 sta_ps_end(sta_inf);
1293 return 0;
1295 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1297 static ieee80211_rx_result debug_noinline
1298 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1300 struct ieee80211_sub_if_data *sdata = rx->sdata;
1301 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1302 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1303 int tid, ac;
1305 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1306 return RX_CONTINUE;
1308 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1309 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1310 return RX_CONTINUE;
1313 * The device handles station powersave, so don't do anything about
1314 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1315 * it to mac80211 since they're handled.)
1317 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1318 return RX_CONTINUE;
1321 * Don't do anything if the station isn't already asleep. In
1322 * the uAPSD case, the station will probably be marked asleep,
1323 * in the PS-Poll case the station must be confused ...
1325 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1326 return RX_CONTINUE;
1328 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1329 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1330 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1331 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1332 else
1333 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1336 /* Free PS Poll skb here instead of returning RX_DROP that would
1337 * count as an dropped frame. */
1338 dev_kfree_skb(rx->skb);
1340 return RX_QUEUED;
1341 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1342 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1343 ieee80211_has_pm(hdr->frame_control) &&
1344 (ieee80211_is_data_qos(hdr->frame_control) ||
1345 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1346 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1347 ac = ieee802_1d_to_ac[tid & 7];
1350 * If this AC is not trigger-enabled do nothing.
1352 * NB: This could/should check a separate bitmap of trigger-
1353 * enabled queues, but for now we only implement uAPSD w/o
1354 * TSPEC changes to the ACs, so they're always the same.
1356 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1357 return RX_CONTINUE;
1359 /* if we are in a service period, do nothing */
1360 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1361 return RX_CONTINUE;
1363 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1364 ieee80211_sta_ps_deliver_uapsd(rx->sta);
1365 else
1366 set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1369 return RX_CONTINUE;
1372 static ieee80211_rx_result debug_noinline
1373 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1375 struct sta_info *sta = rx->sta;
1376 struct sk_buff *skb = rx->skb;
1377 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1378 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1379 int i;
1381 if (!sta)
1382 return RX_CONTINUE;
1385 * Update last_rx only for IBSS packets which are for the current
1386 * BSSID and for station already AUTHORIZED to avoid keeping the
1387 * current IBSS network alive in cases where other STAs start
1388 * using different BSSID. This will also give the station another
1389 * chance to restart the authentication/authorization in case
1390 * something went wrong the first time.
1392 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1393 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1394 NL80211_IFTYPE_ADHOC);
1395 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1396 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1397 sta->last_rx = jiffies;
1398 if (ieee80211_is_data(hdr->frame_control)) {
1399 sta->last_rx_rate_idx = status->rate_idx;
1400 sta->last_rx_rate_flag = status->flag;
1401 sta->last_rx_rate_vht_nss = status->vht_nss;
1404 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1406 * Mesh beacons will update last_rx when if they are found to
1407 * match the current local configuration when processed.
1409 sta->last_rx = jiffies;
1410 if (ieee80211_is_data(hdr->frame_control)) {
1411 sta->last_rx_rate_idx = status->rate_idx;
1412 sta->last_rx_rate_flag = status->flag;
1413 sta->last_rx_rate_vht_nss = status->vht_nss;
1417 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1418 return RX_CONTINUE;
1420 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1421 ieee80211_sta_rx_notify(rx->sdata, hdr);
1423 sta->rx_fragments++;
1424 sta->rx_bytes += rx->skb->len;
1425 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1426 sta->last_signal = status->signal;
1427 ewma_add(&sta->avg_signal, -status->signal);
1430 if (status->chains) {
1431 sta->chains = status->chains;
1432 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1433 int signal = status->chain_signal[i];
1435 if (!(status->chains & BIT(i)))
1436 continue;
1438 sta->chain_signal_last[i] = signal;
1439 ewma_add(&sta->chain_signal_avg[i], -signal);
1444 * Change STA power saving mode only at the end of a frame
1445 * exchange sequence.
1447 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1448 !ieee80211_has_morefrags(hdr->frame_control) &&
1449 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1450 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1451 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1452 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1454 * Ignore doze->wake transitions that are
1455 * indicated by non-data frames, the standard
1456 * is unclear here, but for example going to
1457 * PS mode and then scanning would cause a
1458 * doze->wake transition for the probe request,
1459 * and that is clearly undesirable.
1461 if (ieee80211_is_data(hdr->frame_control) &&
1462 !ieee80211_has_pm(hdr->frame_control))
1463 sta_ps_end(sta);
1464 } else {
1465 if (ieee80211_has_pm(hdr->frame_control))
1466 sta_ps_start(sta);
1470 /* mesh power save support */
1471 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1472 ieee80211_mps_rx_h_sta_process(sta, hdr);
1475 * Drop (qos-)data::nullfunc frames silently, since they
1476 * are used only to control station power saving mode.
1478 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1479 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1480 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1483 * If we receive a 4-addr nullfunc frame from a STA
1484 * that was not moved to a 4-addr STA vlan yet send
1485 * the event to userspace and for older hostapd drop
1486 * the frame to the monitor interface.
1488 if (ieee80211_has_a4(hdr->frame_control) &&
1489 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1490 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1491 !rx->sdata->u.vlan.sta))) {
1492 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1493 cfg80211_rx_unexpected_4addr_frame(
1494 rx->sdata->dev, sta->sta.addr,
1495 GFP_ATOMIC);
1496 return RX_DROP_MONITOR;
1499 * Update counter and free packet here to avoid
1500 * counting this as a dropped packed.
1502 sta->rx_packets++;
1503 dev_kfree_skb(rx->skb);
1504 return RX_QUEUED;
1507 return RX_CONTINUE;
1508 } /* ieee80211_rx_h_sta_process */
1510 static inline struct ieee80211_fragment_entry *
1511 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1512 unsigned int frag, unsigned int seq, int rx_queue,
1513 struct sk_buff **skb)
1515 struct ieee80211_fragment_entry *entry;
1517 entry = &sdata->fragments[sdata->fragment_next++];
1518 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1519 sdata->fragment_next = 0;
1521 if (!skb_queue_empty(&entry->skb_list))
1522 __skb_queue_purge(&entry->skb_list);
1524 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1525 *skb = NULL;
1526 entry->first_frag_time = jiffies;
1527 entry->seq = seq;
1528 entry->rx_queue = rx_queue;
1529 entry->last_frag = frag;
1530 entry->ccmp = 0;
1531 entry->extra_len = 0;
1533 return entry;
1536 static inline struct ieee80211_fragment_entry *
1537 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1538 unsigned int frag, unsigned int seq,
1539 int rx_queue, struct ieee80211_hdr *hdr)
1541 struct ieee80211_fragment_entry *entry;
1542 int i, idx;
1544 idx = sdata->fragment_next;
1545 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1546 struct ieee80211_hdr *f_hdr;
1548 idx--;
1549 if (idx < 0)
1550 idx = IEEE80211_FRAGMENT_MAX - 1;
1552 entry = &sdata->fragments[idx];
1553 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1554 entry->rx_queue != rx_queue ||
1555 entry->last_frag + 1 != frag)
1556 continue;
1558 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1561 * Check ftype and addresses are equal, else check next fragment
1563 if (((hdr->frame_control ^ f_hdr->frame_control) &
1564 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1565 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1566 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1567 continue;
1569 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1570 __skb_queue_purge(&entry->skb_list);
1571 continue;
1573 return entry;
1576 return NULL;
1579 static ieee80211_rx_result debug_noinline
1580 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1582 struct ieee80211_hdr *hdr;
1583 u16 sc;
1584 __le16 fc;
1585 unsigned int frag, seq;
1586 struct ieee80211_fragment_entry *entry;
1587 struct sk_buff *skb;
1588 struct ieee80211_rx_status *status;
1590 hdr = (struct ieee80211_hdr *)rx->skb->data;
1591 fc = hdr->frame_control;
1593 if (ieee80211_is_ctl(fc))
1594 return RX_CONTINUE;
1596 sc = le16_to_cpu(hdr->seq_ctrl);
1597 frag = sc & IEEE80211_SCTL_FRAG;
1599 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1600 is_multicast_ether_addr(hdr->addr1))) {
1601 /* not fragmented */
1602 goto out;
1604 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1606 if (skb_linearize(rx->skb))
1607 return RX_DROP_UNUSABLE;
1610 * skb_linearize() might change the skb->data and
1611 * previously cached variables (in this case, hdr) need to
1612 * be refreshed with the new data.
1614 hdr = (struct ieee80211_hdr *)rx->skb->data;
1615 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1617 if (frag == 0) {
1618 /* This is the first fragment of a new frame. */
1619 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1620 rx->seqno_idx, &(rx->skb));
1621 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1622 ieee80211_has_protected(fc)) {
1623 int queue = rx->security_idx;
1624 /* Store CCMP PN so that we can verify that the next
1625 * fragment has a sequential PN value. */
1626 entry->ccmp = 1;
1627 memcpy(entry->last_pn,
1628 rx->key->u.ccmp.rx_pn[queue],
1629 IEEE80211_CCMP_PN_LEN);
1631 return RX_QUEUED;
1634 /* This is a fragment for a frame that should already be pending in
1635 * fragment cache. Add this fragment to the end of the pending entry.
1637 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1638 rx->seqno_idx, hdr);
1639 if (!entry) {
1640 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1641 return RX_DROP_MONITOR;
1644 /* Verify that MPDUs within one MSDU have sequential PN values.
1645 * (IEEE 802.11i, 8.3.3.4.5) */
1646 if (entry->ccmp) {
1647 int i;
1648 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1649 int queue;
1650 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1651 return RX_DROP_UNUSABLE;
1652 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1653 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1654 pn[i]++;
1655 if (pn[i])
1656 break;
1658 queue = rx->security_idx;
1659 rpn = rx->key->u.ccmp.rx_pn[queue];
1660 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1661 return RX_DROP_UNUSABLE;
1662 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1665 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1666 __skb_queue_tail(&entry->skb_list, rx->skb);
1667 entry->last_frag = frag;
1668 entry->extra_len += rx->skb->len;
1669 if (ieee80211_has_morefrags(fc)) {
1670 rx->skb = NULL;
1671 return RX_QUEUED;
1674 rx->skb = __skb_dequeue(&entry->skb_list);
1675 if (skb_tailroom(rx->skb) < entry->extra_len) {
1676 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1677 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1678 GFP_ATOMIC))) {
1679 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1680 __skb_queue_purge(&entry->skb_list);
1681 return RX_DROP_UNUSABLE;
1684 while ((skb = __skb_dequeue(&entry->skb_list))) {
1685 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1686 dev_kfree_skb(skb);
1689 /* Complete frame has been reassembled - process it now */
1690 status = IEEE80211_SKB_RXCB(rx->skb);
1691 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1693 out:
1694 if (rx->sta)
1695 rx->sta->rx_packets++;
1696 if (is_multicast_ether_addr(hdr->addr1))
1697 rx->local->dot11MulticastReceivedFrameCount++;
1698 else
1699 ieee80211_led_rx(rx->local);
1700 return RX_CONTINUE;
1703 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1705 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1706 return -EACCES;
1708 return 0;
1711 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1713 struct sk_buff *skb = rx->skb;
1714 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1717 * Pass through unencrypted frames if the hardware has
1718 * decrypted them already.
1720 if (status->flag & RX_FLAG_DECRYPTED)
1721 return 0;
1723 /* Drop unencrypted frames if key is set. */
1724 if (unlikely(!ieee80211_has_protected(fc) &&
1725 !ieee80211_is_nullfunc(fc) &&
1726 ieee80211_is_data(fc) &&
1727 (rx->key || rx->sdata->drop_unencrypted)))
1728 return -EACCES;
1730 return 0;
1733 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1735 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1736 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1737 __le16 fc = hdr->frame_control;
1740 * Pass through unencrypted frames if the hardware has
1741 * decrypted them already.
1743 if (status->flag & RX_FLAG_DECRYPTED)
1744 return 0;
1746 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1747 if (unlikely(!ieee80211_has_protected(fc) &&
1748 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1749 rx->key)) {
1750 if (ieee80211_is_deauth(fc) ||
1751 ieee80211_is_disassoc(fc))
1752 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1753 rx->skb->data,
1754 rx->skb->len);
1755 return -EACCES;
1757 /* BIP does not use Protected field, so need to check MMIE */
1758 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1759 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1760 if (ieee80211_is_deauth(fc) ||
1761 ieee80211_is_disassoc(fc))
1762 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1763 rx->skb->data,
1764 rx->skb->len);
1765 return -EACCES;
1768 * When using MFP, Action frames are not allowed prior to
1769 * having configured keys.
1771 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1772 ieee80211_is_robust_mgmt_frame(
1773 (struct ieee80211_hdr *) rx->skb->data)))
1774 return -EACCES;
1777 return 0;
1780 static int
1781 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1783 struct ieee80211_sub_if_data *sdata = rx->sdata;
1784 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1785 bool check_port_control = false;
1786 struct ethhdr *ehdr;
1787 int ret;
1789 *port_control = false;
1790 if (ieee80211_has_a4(hdr->frame_control) &&
1791 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1792 return -1;
1794 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1795 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1797 if (!sdata->u.mgd.use_4addr)
1798 return -1;
1799 else
1800 check_port_control = true;
1803 if (is_multicast_ether_addr(hdr->addr1) &&
1804 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1805 return -1;
1807 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1808 if (ret < 0)
1809 return ret;
1811 ehdr = (struct ethhdr *) rx->skb->data;
1812 if (ehdr->h_proto == rx->sdata->control_port_protocol)
1813 *port_control = true;
1814 else if (check_port_control)
1815 return -1;
1817 return 0;
1821 * requires that rx->skb is a frame with ethernet header
1823 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1825 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1826 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1827 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1830 * Allow EAPOL frames to us/the PAE group address regardless
1831 * of whether the frame was encrypted or not.
1833 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1834 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
1835 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
1836 return true;
1838 if (ieee80211_802_1x_port_control(rx) ||
1839 ieee80211_drop_unencrypted(rx, fc))
1840 return false;
1842 return true;
1846 * requires that rx->skb is a frame with ethernet header
1848 static void
1849 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1851 struct ieee80211_sub_if_data *sdata = rx->sdata;
1852 struct net_device *dev = sdata->dev;
1853 struct sk_buff *skb, *xmit_skb;
1854 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1855 struct sta_info *dsta;
1856 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1858 skb = rx->skb;
1859 xmit_skb = NULL;
1861 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1862 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1863 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1864 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1865 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1866 if (is_multicast_ether_addr(ehdr->h_dest)) {
1868 * send multicast frames both to higher layers in
1869 * local net stack and back to the wireless medium
1871 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1872 if (!xmit_skb)
1873 net_info_ratelimited("%s: failed to clone multicast frame\n",
1874 dev->name);
1875 } else {
1876 dsta = sta_info_get(sdata, skb->data);
1877 if (dsta) {
1879 * The destination station is associated to
1880 * this AP (in this VLAN), so send the frame
1881 * directly to it and do not pass it to local
1882 * net stack.
1884 xmit_skb = skb;
1885 skb = NULL;
1890 if (skb) {
1891 int align __maybe_unused;
1893 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1895 * 'align' will only take the values 0 or 2 here
1896 * since all frames are required to be aligned
1897 * to 2-byte boundaries when being passed to
1898 * mac80211; the code here works just as well if
1899 * that isn't true, but mac80211 assumes it can
1900 * access fields as 2-byte aligned (e.g. for
1901 * compare_ether_addr)
1903 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1904 if (align) {
1905 if (WARN_ON(skb_headroom(skb) < 3)) {
1906 dev_kfree_skb(skb);
1907 skb = NULL;
1908 } else {
1909 u8 *data = skb->data;
1910 size_t len = skb_headlen(skb);
1911 skb->data -= align;
1912 memmove(skb->data, data, len);
1913 skb_set_tail_pointer(skb, len);
1916 #endif
1918 if (skb) {
1919 /* deliver to local stack */
1920 skb->protocol = eth_type_trans(skb, dev);
1921 memset(skb->cb, 0, sizeof(skb->cb));
1922 netif_receive_skb(skb);
1926 if (xmit_skb) {
1928 * Send to wireless media and increase priority by 256 to
1929 * keep the received priority instead of reclassifying
1930 * the frame (see cfg80211_classify8021d).
1932 xmit_skb->priority += 256;
1933 xmit_skb->protocol = htons(ETH_P_802_3);
1934 skb_reset_network_header(xmit_skb);
1935 skb_reset_mac_header(xmit_skb);
1936 dev_queue_xmit(xmit_skb);
1940 static ieee80211_rx_result debug_noinline
1941 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1943 struct net_device *dev = rx->sdata->dev;
1944 struct sk_buff *skb = rx->skb;
1945 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1946 __le16 fc = hdr->frame_control;
1947 struct sk_buff_head frame_list;
1948 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1950 if (unlikely(!ieee80211_is_data(fc)))
1951 return RX_CONTINUE;
1953 if (unlikely(!ieee80211_is_data_present(fc)))
1954 return RX_DROP_MONITOR;
1956 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
1957 return RX_CONTINUE;
1959 if (ieee80211_has_a4(hdr->frame_control) &&
1960 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1961 !rx->sdata->u.vlan.sta)
1962 return RX_DROP_UNUSABLE;
1964 if (is_multicast_ether_addr(hdr->addr1) &&
1965 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1966 rx->sdata->u.vlan.sta) ||
1967 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1968 rx->sdata->u.mgd.use_4addr)))
1969 return RX_DROP_UNUSABLE;
1971 skb->dev = dev;
1972 __skb_queue_head_init(&frame_list);
1974 if (skb_linearize(skb))
1975 return RX_DROP_UNUSABLE;
1977 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1978 rx->sdata->vif.type,
1979 rx->local->hw.extra_tx_headroom, true);
1981 while (!skb_queue_empty(&frame_list)) {
1982 rx->skb = __skb_dequeue(&frame_list);
1984 if (!ieee80211_frame_allowed(rx, fc)) {
1985 dev_kfree_skb(rx->skb);
1986 continue;
1988 dev->stats.rx_packets++;
1989 dev->stats.rx_bytes += rx->skb->len;
1991 ieee80211_deliver_skb(rx);
1994 return RX_QUEUED;
1997 #ifdef CONFIG_MAC80211_MESH
1998 static ieee80211_rx_result
1999 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2001 struct ieee80211_hdr *fwd_hdr, *hdr;
2002 struct ieee80211_tx_info *info;
2003 struct ieee80211s_hdr *mesh_hdr;
2004 struct sk_buff *skb = rx->skb, *fwd_skb;
2005 struct ieee80211_local *local = rx->local;
2006 struct ieee80211_sub_if_data *sdata = rx->sdata;
2007 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2008 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2009 __le16 reason = cpu_to_le16(WLAN_REASON_MESH_PATH_NOFORWARD);
2010 u16 q, hdrlen;
2012 hdr = (struct ieee80211_hdr *) skb->data;
2013 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2015 /* make sure fixed part of mesh header is there, also checks skb len */
2016 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2017 return RX_DROP_MONITOR;
2019 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2021 /* make sure full mesh header is there, also checks skb len */
2022 if (!pskb_may_pull(rx->skb,
2023 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2024 return RX_DROP_MONITOR;
2026 /* reload pointers */
2027 hdr = (struct ieee80211_hdr *) skb->data;
2028 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2030 /* frame is in RMC, don't forward */
2031 if (ieee80211_is_data(hdr->frame_control) &&
2032 is_multicast_ether_addr(hdr->addr1) &&
2033 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2034 return RX_DROP_MONITOR;
2036 if (!ieee80211_is_data(hdr->frame_control) ||
2037 !(status->rx_flags & IEEE80211_RX_RA_MATCH))
2038 return RX_CONTINUE;
2040 if (!mesh_hdr->ttl)
2041 return RX_DROP_MONITOR;
2043 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2044 struct mesh_path *mppath;
2045 char *proxied_addr;
2046 char *mpp_addr;
2048 if (is_multicast_ether_addr(hdr->addr1)) {
2049 mpp_addr = hdr->addr3;
2050 proxied_addr = mesh_hdr->eaddr1;
2051 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2052 /* has_a4 already checked in ieee80211_rx_mesh_check */
2053 mpp_addr = hdr->addr4;
2054 proxied_addr = mesh_hdr->eaddr2;
2055 } else {
2056 return RX_DROP_MONITOR;
2059 rcu_read_lock();
2060 mppath = mpp_path_lookup(sdata, proxied_addr);
2061 if (!mppath) {
2062 mpp_path_add(sdata, proxied_addr, mpp_addr);
2063 } else {
2064 spin_lock_bh(&mppath->state_lock);
2065 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2066 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2067 spin_unlock_bh(&mppath->state_lock);
2069 rcu_read_unlock();
2072 /* Frame has reached destination. Don't forward */
2073 if (!is_multicast_ether_addr(hdr->addr1) &&
2074 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2075 return RX_CONTINUE;
2077 q = ieee80211_select_queue_80211(sdata, skb, hdr);
2078 if (ieee80211_queue_stopped(&local->hw, q)) {
2079 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2080 return RX_DROP_MONITOR;
2082 skb_set_queue_mapping(skb, q);
2084 if (!--mesh_hdr->ttl) {
2085 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2086 goto out;
2089 if (!ifmsh->mshcfg.dot11MeshForwarding)
2090 goto out;
2092 fwd_skb = skb_copy(skb, GFP_ATOMIC);
2093 if (!fwd_skb) {
2094 net_info_ratelimited("%s: failed to clone mesh frame\n",
2095 sdata->name);
2096 goto out;
2099 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2100 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2101 info = IEEE80211_SKB_CB(fwd_skb);
2102 memset(info, 0, sizeof(*info));
2103 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2104 info->control.vif = &rx->sdata->vif;
2105 info->control.jiffies = jiffies;
2106 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2107 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2108 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2109 /* update power mode indication when forwarding */
2110 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2111 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2112 /* mesh power mode flags updated in mesh_nexthop_lookup */
2113 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2114 } else {
2115 /* unable to resolve next hop */
2116 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2117 fwd_hdr->addr3, 0, reason, fwd_hdr->addr2);
2118 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2119 kfree_skb(fwd_skb);
2120 return RX_DROP_MONITOR;
2123 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2124 ieee80211_add_pending_skb(local, fwd_skb);
2125 out:
2126 if (is_multicast_ether_addr(hdr->addr1) ||
2127 sdata->dev->flags & IFF_PROMISC)
2128 return RX_CONTINUE;
2129 else
2130 return RX_DROP_MONITOR;
2132 #endif
2134 static ieee80211_rx_result debug_noinline
2135 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2137 struct ieee80211_sub_if_data *sdata = rx->sdata;
2138 struct ieee80211_local *local = rx->local;
2139 struct net_device *dev = sdata->dev;
2140 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2141 __le16 fc = hdr->frame_control;
2142 bool port_control;
2143 int err;
2145 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2146 return RX_CONTINUE;
2148 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2149 return RX_DROP_MONITOR;
2152 * Send unexpected-4addr-frame event to hostapd. For older versions,
2153 * also drop the frame to cooked monitor interfaces.
2155 if (ieee80211_has_a4(hdr->frame_control) &&
2156 sdata->vif.type == NL80211_IFTYPE_AP) {
2157 if (rx->sta &&
2158 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2159 cfg80211_rx_unexpected_4addr_frame(
2160 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2161 return RX_DROP_MONITOR;
2164 err = __ieee80211_data_to_8023(rx, &port_control);
2165 if (unlikely(err))
2166 return RX_DROP_UNUSABLE;
2168 if (!ieee80211_frame_allowed(rx, fc))
2169 return RX_DROP_MONITOR;
2171 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2172 unlikely(port_control) && sdata->bss) {
2173 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2174 u.ap);
2175 dev = sdata->dev;
2176 rx->sdata = sdata;
2179 rx->skb->dev = dev;
2181 dev->stats.rx_packets++;
2182 dev->stats.rx_bytes += rx->skb->len;
2184 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2185 !is_multicast_ether_addr(
2186 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2187 (!local->scanning &&
2188 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2189 mod_timer(&local->dynamic_ps_timer, jiffies +
2190 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2193 ieee80211_deliver_skb(rx);
2195 return RX_QUEUED;
2198 static ieee80211_rx_result debug_noinline
2199 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2201 struct sk_buff *skb = rx->skb;
2202 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2203 struct tid_ampdu_rx *tid_agg_rx;
2204 u16 start_seq_num;
2205 u16 tid;
2207 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2208 return RX_CONTINUE;
2210 if (ieee80211_is_back_req(bar->frame_control)) {
2211 struct {
2212 __le16 control, start_seq_num;
2213 } __packed bar_data;
2215 if (!rx->sta)
2216 return RX_DROP_MONITOR;
2218 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2219 &bar_data, sizeof(bar_data)))
2220 return RX_DROP_MONITOR;
2222 tid = le16_to_cpu(bar_data.control) >> 12;
2224 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2225 if (!tid_agg_rx)
2226 return RX_DROP_MONITOR;
2228 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2230 /* reset session timer */
2231 if (tid_agg_rx->timeout)
2232 mod_timer(&tid_agg_rx->session_timer,
2233 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2235 spin_lock(&tid_agg_rx->reorder_lock);
2236 /* release stored frames up to start of BAR */
2237 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2238 start_seq_num, frames);
2239 spin_unlock(&tid_agg_rx->reorder_lock);
2241 kfree_skb(skb);
2242 return RX_QUEUED;
2246 * After this point, we only want management frames,
2247 * so we can drop all remaining control frames to
2248 * cooked monitor interfaces.
2250 return RX_DROP_MONITOR;
2253 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2254 struct ieee80211_mgmt *mgmt,
2255 size_t len)
2257 struct ieee80211_local *local = sdata->local;
2258 struct sk_buff *skb;
2259 struct ieee80211_mgmt *resp;
2261 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2262 /* Not to own unicast address */
2263 return;
2266 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2267 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2268 /* Not from the current AP or not associated yet. */
2269 return;
2272 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2273 /* Too short SA Query request frame */
2274 return;
2277 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2278 if (skb == NULL)
2279 return;
2281 skb_reserve(skb, local->hw.extra_tx_headroom);
2282 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2283 memset(resp, 0, 24);
2284 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2285 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2286 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2287 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2288 IEEE80211_STYPE_ACTION);
2289 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2290 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2291 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2292 memcpy(resp->u.action.u.sa_query.trans_id,
2293 mgmt->u.action.u.sa_query.trans_id,
2294 WLAN_SA_QUERY_TR_ID_LEN);
2296 ieee80211_tx_skb(sdata, skb);
2299 static ieee80211_rx_result debug_noinline
2300 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2302 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2303 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2306 * From here on, look only at management frames.
2307 * Data and control frames are already handled,
2308 * and unknown (reserved) frames are useless.
2310 if (rx->skb->len < 24)
2311 return RX_DROP_MONITOR;
2313 if (!ieee80211_is_mgmt(mgmt->frame_control))
2314 return RX_DROP_MONITOR;
2316 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2317 ieee80211_is_beacon(mgmt->frame_control) &&
2318 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2319 int sig = 0;
2321 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2322 sig = status->signal;
2324 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2325 rx->skb->data, rx->skb->len,
2326 status->freq, sig);
2327 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2330 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2331 return RX_DROP_MONITOR;
2333 if (ieee80211_drop_unencrypted_mgmt(rx))
2334 return RX_DROP_UNUSABLE;
2336 return RX_CONTINUE;
2339 static ieee80211_rx_result debug_noinline
2340 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2342 struct ieee80211_local *local = rx->local;
2343 struct ieee80211_sub_if_data *sdata = rx->sdata;
2344 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2345 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2346 int len = rx->skb->len;
2348 if (!ieee80211_is_action(mgmt->frame_control))
2349 return RX_CONTINUE;
2351 /* drop too small frames */
2352 if (len < IEEE80211_MIN_ACTION_SIZE)
2353 return RX_DROP_UNUSABLE;
2355 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2356 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED)
2357 return RX_DROP_UNUSABLE;
2359 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2360 return RX_DROP_UNUSABLE;
2362 switch (mgmt->u.action.category) {
2363 case WLAN_CATEGORY_HT:
2364 /* reject HT action frames from stations not supporting HT */
2365 if (!rx->sta->sta.ht_cap.ht_supported)
2366 goto invalid;
2368 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2369 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2370 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2371 sdata->vif.type != NL80211_IFTYPE_AP &&
2372 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2373 break;
2375 /* verify action & smps_control/chanwidth are present */
2376 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2377 goto invalid;
2379 switch (mgmt->u.action.u.ht_smps.action) {
2380 case WLAN_HT_ACTION_SMPS: {
2381 struct ieee80211_supported_band *sband;
2382 enum ieee80211_smps_mode smps_mode;
2384 /* convert to HT capability */
2385 switch (mgmt->u.action.u.ht_smps.smps_control) {
2386 case WLAN_HT_SMPS_CONTROL_DISABLED:
2387 smps_mode = IEEE80211_SMPS_OFF;
2388 break;
2389 case WLAN_HT_SMPS_CONTROL_STATIC:
2390 smps_mode = IEEE80211_SMPS_STATIC;
2391 break;
2392 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2393 smps_mode = IEEE80211_SMPS_DYNAMIC;
2394 break;
2395 default:
2396 goto invalid;
2399 /* if no change do nothing */
2400 if (rx->sta->sta.smps_mode == smps_mode)
2401 goto handled;
2402 rx->sta->sta.smps_mode = smps_mode;
2404 sband = rx->local->hw.wiphy->bands[status->band];
2406 rate_control_rate_update(local, sband, rx->sta,
2407 IEEE80211_RC_SMPS_CHANGED);
2408 goto handled;
2410 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2411 struct ieee80211_supported_band *sband;
2412 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2413 enum ieee80211_sta_rx_bandwidth new_bw;
2415 /* If it doesn't support 40 MHz it can't change ... */
2416 if (!(rx->sta->sta.ht_cap.cap &
2417 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2418 goto handled;
2420 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2421 new_bw = IEEE80211_STA_RX_BW_20;
2422 else
2423 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2425 if (rx->sta->sta.bandwidth == new_bw)
2426 goto handled;
2428 sband = rx->local->hw.wiphy->bands[status->band];
2430 rate_control_rate_update(local, sband, rx->sta,
2431 IEEE80211_RC_BW_CHANGED);
2432 goto handled;
2434 default:
2435 goto invalid;
2438 break;
2439 case WLAN_CATEGORY_PUBLIC:
2440 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2441 goto invalid;
2442 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2443 break;
2444 if (!rx->sta)
2445 break;
2446 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2447 break;
2448 if (mgmt->u.action.u.ext_chan_switch.action_code !=
2449 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2450 break;
2451 if (len < offsetof(struct ieee80211_mgmt,
2452 u.action.u.ext_chan_switch.variable))
2453 goto invalid;
2454 goto queue;
2455 case WLAN_CATEGORY_VHT:
2456 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2457 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2458 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2459 sdata->vif.type != NL80211_IFTYPE_AP &&
2460 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2461 break;
2463 /* verify action code is present */
2464 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2465 goto invalid;
2467 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2468 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2469 u8 opmode;
2471 /* verify opmode is present */
2472 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2473 goto invalid;
2475 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2477 ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2478 opmode, status->band,
2479 false);
2480 goto handled;
2482 default:
2483 break;
2485 break;
2486 case WLAN_CATEGORY_BACK:
2487 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2488 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2489 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2490 sdata->vif.type != NL80211_IFTYPE_AP &&
2491 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2492 break;
2494 /* verify action_code is present */
2495 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2496 break;
2498 switch (mgmt->u.action.u.addba_req.action_code) {
2499 case WLAN_ACTION_ADDBA_REQ:
2500 if (len < (IEEE80211_MIN_ACTION_SIZE +
2501 sizeof(mgmt->u.action.u.addba_req)))
2502 goto invalid;
2503 break;
2504 case WLAN_ACTION_ADDBA_RESP:
2505 if (len < (IEEE80211_MIN_ACTION_SIZE +
2506 sizeof(mgmt->u.action.u.addba_resp)))
2507 goto invalid;
2508 break;
2509 case WLAN_ACTION_DELBA:
2510 if (len < (IEEE80211_MIN_ACTION_SIZE +
2511 sizeof(mgmt->u.action.u.delba)))
2512 goto invalid;
2513 break;
2514 default:
2515 goto invalid;
2518 goto queue;
2519 case WLAN_CATEGORY_SPECTRUM_MGMT:
2520 if (status->band != IEEE80211_BAND_5GHZ)
2521 break;
2523 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2524 break;
2526 /* verify action_code is present */
2527 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2528 break;
2530 switch (mgmt->u.action.u.measurement.action_code) {
2531 case WLAN_ACTION_SPCT_MSR_REQ:
2532 if (len < (IEEE80211_MIN_ACTION_SIZE +
2533 sizeof(mgmt->u.action.u.measurement)))
2534 break;
2535 ieee80211_process_measurement_req(sdata, mgmt, len);
2536 goto handled;
2537 case WLAN_ACTION_SPCT_CHL_SWITCH:
2538 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2539 break;
2541 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2542 break;
2544 goto queue;
2546 break;
2547 case WLAN_CATEGORY_SA_QUERY:
2548 if (len < (IEEE80211_MIN_ACTION_SIZE +
2549 sizeof(mgmt->u.action.u.sa_query)))
2550 break;
2552 switch (mgmt->u.action.u.sa_query.action) {
2553 case WLAN_ACTION_SA_QUERY_REQUEST:
2554 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2555 break;
2556 ieee80211_process_sa_query_req(sdata, mgmt, len);
2557 goto handled;
2559 break;
2560 case WLAN_CATEGORY_SELF_PROTECTED:
2561 if (len < (IEEE80211_MIN_ACTION_SIZE +
2562 sizeof(mgmt->u.action.u.self_prot.action_code)))
2563 break;
2565 switch (mgmt->u.action.u.self_prot.action_code) {
2566 case WLAN_SP_MESH_PEERING_OPEN:
2567 case WLAN_SP_MESH_PEERING_CLOSE:
2568 case WLAN_SP_MESH_PEERING_CONFIRM:
2569 if (!ieee80211_vif_is_mesh(&sdata->vif))
2570 goto invalid;
2571 if (sdata->u.mesh.user_mpm)
2572 /* userspace handles this frame */
2573 break;
2574 goto queue;
2575 case WLAN_SP_MGK_INFORM:
2576 case WLAN_SP_MGK_ACK:
2577 if (!ieee80211_vif_is_mesh(&sdata->vif))
2578 goto invalid;
2579 break;
2581 break;
2582 case WLAN_CATEGORY_MESH_ACTION:
2583 if (len < (IEEE80211_MIN_ACTION_SIZE +
2584 sizeof(mgmt->u.action.u.mesh_action.action_code)))
2585 break;
2587 if (!ieee80211_vif_is_mesh(&sdata->vif))
2588 break;
2589 if (mesh_action_is_path_sel(mgmt) &&
2590 !mesh_path_sel_is_hwmp(sdata))
2591 break;
2592 goto queue;
2595 return RX_CONTINUE;
2597 invalid:
2598 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2599 /* will return in the next handlers */
2600 return RX_CONTINUE;
2602 handled:
2603 if (rx->sta)
2604 rx->sta->rx_packets++;
2605 dev_kfree_skb(rx->skb);
2606 return RX_QUEUED;
2608 queue:
2609 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2610 skb_queue_tail(&sdata->skb_queue, rx->skb);
2611 ieee80211_queue_work(&local->hw, &sdata->work);
2612 if (rx->sta)
2613 rx->sta->rx_packets++;
2614 return RX_QUEUED;
2617 static ieee80211_rx_result debug_noinline
2618 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2620 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2621 int sig = 0;
2623 /* skip known-bad action frames and return them in the next handler */
2624 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2625 return RX_CONTINUE;
2628 * Getting here means the kernel doesn't know how to handle
2629 * it, but maybe userspace does ... include returned frames
2630 * so userspace can register for those to know whether ones
2631 * it transmitted were processed or returned.
2634 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2635 sig = status->signal;
2637 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2638 rx->skb->data, rx->skb->len,
2639 GFP_ATOMIC)) {
2640 if (rx->sta)
2641 rx->sta->rx_packets++;
2642 dev_kfree_skb(rx->skb);
2643 return RX_QUEUED;
2646 return RX_CONTINUE;
2649 static ieee80211_rx_result debug_noinline
2650 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2652 struct ieee80211_local *local = rx->local;
2653 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2654 struct sk_buff *nskb;
2655 struct ieee80211_sub_if_data *sdata = rx->sdata;
2656 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2658 if (!ieee80211_is_action(mgmt->frame_control))
2659 return RX_CONTINUE;
2662 * For AP mode, hostapd is responsible for handling any action
2663 * frames that we didn't handle, including returning unknown
2664 * ones. For all other modes we will return them to the sender,
2665 * setting the 0x80 bit in the action category, as required by
2666 * 802.11-2012 9.24.4.
2667 * Newer versions of hostapd shall also use the management frame
2668 * registration mechanisms, but older ones still use cooked
2669 * monitor interfaces so push all frames there.
2671 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2672 (sdata->vif.type == NL80211_IFTYPE_AP ||
2673 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2674 return RX_DROP_MONITOR;
2676 if (is_multicast_ether_addr(mgmt->da))
2677 return RX_DROP_MONITOR;
2679 /* do not return rejected action frames */
2680 if (mgmt->u.action.category & 0x80)
2681 return RX_DROP_UNUSABLE;
2683 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2684 GFP_ATOMIC);
2685 if (nskb) {
2686 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2688 nmgmt->u.action.category |= 0x80;
2689 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2690 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2692 memset(nskb->cb, 0, sizeof(nskb->cb));
2694 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
2695 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
2697 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
2698 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
2699 IEEE80211_TX_CTL_NO_CCK_RATE;
2700 if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL)
2701 info->hw_queue =
2702 local->hw.offchannel_tx_hw_queue;
2705 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
2706 status->band);
2708 dev_kfree_skb(rx->skb);
2709 return RX_QUEUED;
2712 static ieee80211_rx_result debug_noinline
2713 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2715 struct ieee80211_sub_if_data *sdata = rx->sdata;
2716 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2717 __le16 stype;
2719 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2721 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2722 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2723 sdata->vif.type != NL80211_IFTYPE_STATION)
2724 return RX_DROP_MONITOR;
2726 switch (stype) {
2727 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2728 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2729 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2730 /* process for all: mesh, mlme, ibss */
2731 break;
2732 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
2733 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
2734 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2735 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2736 if (is_multicast_ether_addr(mgmt->da) &&
2737 !is_broadcast_ether_addr(mgmt->da))
2738 return RX_DROP_MONITOR;
2740 /* process only for station */
2741 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2742 return RX_DROP_MONITOR;
2743 break;
2744 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2745 /* process only for ibss and mesh */
2746 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2747 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2748 return RX_DROP_MONITOR;
2749 break;
2750 default:
2751 return RX_DROP_MONITOR;
2754 /* queue up frame and kick off work to process it */
2755 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2756 skb_queue_tail(&sdata->skb_queue, rx->skb);
2757 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2758 if (rx->sta)
2759 rx->sta->rx_packets++;
2761 return RX_QUEUED;
2764 /* TODO: use IEEE80211_RX_FRAGMENTED */
2765 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2766 struct ieee80211_rate *rate)
2768 struct ieee80211_sub_if_data *sdata;
2769 struct ieee80211_local *local = rx->local;
2770 struct sk_buff *skb = rx->skb, *skb2;
2771 struct net_device *prev_dev = NULL;
2772 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2773 int needed_headroom;
2776 * If cooked monitor has been processed already, then
2777 * don't do it again. If not, set the flag.
2779 if (rx->flags & IEEE80211_RX_CMNTR)
2780 goto out_free_skb;
2781 rx->flags |= IEEE80211_RX_CMNTR;
2783 /* If there are no cooked monitor interfaces, just free the SKB */
2784 if (!local->cooked_mntrs)
2785 goto out_free_skb;
2787 /* room for the radiotap header based on driver features */
2788 needed_headroom = ieee80211_rx_radiotap_space(local, status);
2790 if (skb_headroom(skb) < needed_headroom &&
2791 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
2792 goto out_free_skb;
2794 /* prepend radiotap information */
2795 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
2796 false);
2798 skb_set_mac_header(skb, 0);
2799 skb->ip_summed = CHECKSUM_UNNECESSARY;
2800 skb->pkt_type = PACKET_OTHERHOST;
2801 skb->protocol = htons(ETH_P_802_2);
2803 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2804 if (!ieee80211_sdata_running(sdata))
2805 continue;
2807 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2808 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2809 continue;
2811 if (prev_dev) {
2812 skb2 = skb_clone(skb, GFP_ATOMIC);
2813 if (skb2) {
2814 skb2->dev = prev_dev;
2815 netif_receive_skb(skb2);
2819 prev_dev = sdata->dev;
2820 sdata->dev->stats.rx_packets++;
2821 sdata->dev->stats.rx_bytes += skb->len;
2824 if (prev_dev) {
2825 skb->dev = prev_dev;
2826 netif_receive_skb(skb);
2827 return;
2830 out_free_skb:
2831 dev_kfree_skb(skb);
2834 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2835 ieee80211_rx_result res)
2837 switch (res) {
2838 case RX_DROP_MONITOR:
2839 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2840 if (rx->sta)
2841 rx->sta->rx_dropped++;
2842 /* fall through */
2843 case RX_CONTINUE: {
2844 struct ieee80211_rate *rate = NULL;
2845 struct ieee80211_supported_band *sband;
2846 struct ieee80211_rx_status *status;
2848 status = IEEE80211_SKB_RXCB((rx->skb));
2850 sband = rx->local->hw.wiphy->bands[status->band];
2851 if (!(status->flag & RX_FLAG_HT) &&
2852 !(status->flag & RX_FLAG_VHT))
2853 rate = &sband->bitrates[status->rate_idx];
2855 ieee80211_rx_cooked_monitor(rx, rate);
2856 break;
2858 case RX_DROP_UNUSABLE:
2859 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2860 if (rx->sta)
2861 rx->sta->rx_dropped++;
2862 dev_kfree_skb(rx->skb);
2863 break;
2864 case RX_QUEUED:
2865 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2866 break;
2870 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
2871 struct sk_buff_head *frames)
2873 ieee80211_rx_result res = RX_DROP_MONITOR;
2874 struct sk_buff *skb;
2876 #define CALL_RXH(rxh) \
2877 do { \
2878 res = rxh(rx); \
2879 if (res != RX_CONTINUE) \
2880 goto rxh_next; \
2881 } while (0);
2883 spin_lock_bh(&rx->local->rx_path_lock);
2885 while ((skb = __skb_dequeue(frames))) {
2887 * all the other fields are valid across frames
2888 * that belong to an aMPDU since they are on the
2889 * same TID from the same station
2891 rx->skb = skb;
2893 CALL_RXH(ieee80211_rx_h_decrypt)
2894 CALL_RXH(ieee80211_rx_h_check_more_data)
2895 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
2896 CALL_RXH(ieee80211_rx_h_sta_process)
2897 CALL_RXH(ieee80211_rx_h_defragment)
2898 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2899 /* must be after MMIC verify so header is counted in MPDU mic */
2900 #ifdef CONFIG_MAC80211_MESH
2901 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2902 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2903 #endif
2904 CALL_RXH(ieee80211_rx_h_amsdu)
2905 CALL_RXH(ieee80211_rx_h_data)
2907 /* special treatment -- needs the queue */
2908 res = ieee80211_rx_h_ctrl(rx, frames);
2909 if (res != RX_CONTINUE)
2910 goto rxh_next;
2912 CALL_RXH(ieee80211_rx_h_mgmt_check)
2913 CALL_RXH(ieee80211_rx_h_action)
2914 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2915 CALL_RXH(ieee80211_rx_h_action_return)
2916 CALL_RXH(ieee80211_rx_h_mgmt)
2918 rxh_next:
2919 ieee80211_rx_handlers_result(rx, res);
2921 #undef CALL_RXH
2924 spin_unlock_bh(&rx->local->rx_path_lock);
2927 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2929 struct sk_buff_head reorder_release;
2930 ieee80211_rx_result res = RX_DROP_MONITOR;
2932 __skb_queue_head_init(&reorder_release);
2934 #define CALL_RXH(rxh) \
2935 do { \
2936 res = rxh(rx); \
2937 if (res != RX_CONTINUE) \
2938 goto rxh_next; \
2939 } while (0);
2941 CALL_RXH(ieee80211_rx_h_check)
2943 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
2945 ieee80211_rx_handlers(rx, &reorder_release);
2946 return;
2948 rxh_next:
2949 ieee80211_rx_handlers_result(rx, res);
2951 #undef CALL_RXH
2955 * This function makes calls into the RX path, therefore
2956 * it has to be invoked under RCU read lock.
2958 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
2960 struct sk_buff_head frames;
2961 struct ieee80211_rx_data rx = {
2962 .sta = sta,
2963 .sdata = sta->sdata,
2964 .local = sta->local,
2965 /* This is OK -- must be QoS data frame */
2966 .security_idx = tid,
2967 .seqno_idx = tid,
2968 .flags = 0,
2970 struct tid_ampdu_rx *tid_agg_rx;
2972 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
2973 if (!tid_agg_rx)
2974 return;
2976 __skb_queue_head_init(&frames);
2978 spin_lock(&tid_agg_rx->reorder_lock);
2979 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
2980 spin_unlock(&tid_agg_rx->reorder_lock);
2982 ieee80211_rx_handlers(&rx, &frames);
2985 /* main receive path */
2987 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
2988 struct ieee80211_hdr *hdr)
2990 struct ieee80211_sub_if_data *sdata = rx->sdata;
2991 struct sk_buff *skb = rx->skb;
2992 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2993 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2994 int multicast = is_multicast_ether_addr(hdr->addr1);
2996 switch (sdata->vif.type) {
2997 case NL80211_IFTYPE_STATION:
2998 if (!bssid && !sdata->u.mgd.use_4addr)
2999 return 0;
3000 if (!multicast &&
3001 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3002 if (!(sdata->dev->flags & IFF_PROMISC) ||
3003 sdata->u.mgd.use_4addr)
3004 return 0;
3005 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3007 break;
3008 case NL80211_IFTYPE_ADHOC:
3009 if (!bssid)
3010 return 0;
3011 if (ieee80211_is_beacon(hdr->frame_control)) {
3012 return 1;
3013 } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
3014 return 0;
3015 } else if (!multicast &&
3016 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3017 if (!(sdata->dev->flags & IFF_PROMISC))
3018 return 0;
3019 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3020 } else if (!rx->sta) {
3021 int rate_idx;
3022 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3023 rate_idx = 0; /* TODO: HT/VHT rates */
3024 else
3025 rate_idx = status->rate_idx;
3026 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3027 BIT(rate_idx));
3029 break;
3030 case NL80211_IFTYPE_MESH_POINT:
3031 if (!multicast &&
3032 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3033 if (!(sdata->dev->flags & IFF_PROMISC))
3034 return 0;
3036 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3038 break;
3039 case NL80211_IFTYPE_AP_VLAN:
3040 case NL80211_IFTYPE_AP:
3041 if (!bssid) {
3042 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1))
3043 return 0;
3044 } else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3046 * Accept public action frames even when the
3047 * BSSID doesn't match, this is used for P2P
3048 * and location updates. Note that mac80211
3049 * itself never looks at these frames.
3051 if (!multicast &&
3052 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3053 return 0;
3054 if (ieee80211_is_public_action(hdr, skb->len))
3055 return 1;
3056 if (!ieee80211_is_beacon(hdr->frame_control))
3057 return 0;
3058 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3060 break;
3061 case NL80211_IFTYPE_WDS:
3062 if (bssid || !ieee80211_is_data(hdr->frame_control))
3063 return 0;
3064 if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2))
3065 return 0;
3066 break;
3067 case NL80211_IFTYPE_P2P_DEVICE:
3068 if (!ieee80211_is_public_action(hdr, skb->len) &&
3069 !ieee80211_is_probe_req(hdr->frame_control) &&
3070 !ieee80211_is_probe_resp(hdr->frame_control) &&
3071 !ieee80211_is_beacon(hdr->frame_control))
3072 return 0;
3073 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) &&
3074 !multicast)
3075 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3076 break;
3077 default:
3078 /* should never get here */
3079 WARN_ON_ONCE(1);
3080 break;
3083 return 1;
3087 * This function returns whether or not the SKB
3088 * was destined for RX processing or not, which,
3089 * if consume is true, is equivalent to whether
3090 * or not the skb was consumed.
3092 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3093 struct sk_buff *skb, bool consume)
3095 struct ieee80211_local *local = rx->local;
3096 struct ieee80211_sub_if_data *sdata = rx->sdata;
3097 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3098 struct ieee80211_hdr *hdr = (void *)skb->data;
3099 int prepares;
3101 rx->skb = skb;
3102 status->rx_flags |= IEEE80211_RX_RA_MATCH;
3103 prepares = prepare_for_handlers(rx, hdr);
3105 if (!prepares)
3106 return false;
3108 if (!consume) {
3109 skb = skb_copy(skb, GFP_ATOMIC);
3110 if (!skb) {
3111 if (net_ratelimit())
3112 wiphy_debug(local->hw.wiphy,
3113 "failed to copy skb for %s\n",
3114 sdata->name);
3115 return true;
3118 rx->skb = skb;
3121 ieee80211_invoke_rx_handlers(rx);
3122 return true;
3126 * This is the actual Rx frames handler. as it blongs to Rx path it must
3127 * be called with rcu_read_lock protection.
3129 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3130 struct sk_buff *skb)
3132 struct ieee80211_local *local = hw_to_local(hw);
3133 struct ieee80211_sub_if_data *sdata;
3134 struct ieee80211_hdr *hdr;
3135 __le16 fc;
3136 struct ieee80211_rx_data rx;
3137 struct ieee80211_sub_if_data *prev;
3138 struct sta_info *sta, *tmp, *prev_sta;
3139 int err = 0;
3141 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3142 memset(&rx, 0, sizeof(rx));
3143 rx.skb = skb;
3144 rx.local = local;
3146 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3147 local->dot11ReceivedFragmentCount++;
3149 if (ieee80211_is_mgmt(fc)) {
3150 /* drop frame if too short for header */
3151 if (skb->len < ieee80211_hdrlen(fc))
3152 err = -ENOBUFS;
3153 else
3154 err = skb_linearize(skb);
3155 } else {
3156 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3159 if (err) {
3160 dev_kfree_skb(skb);
3161 return;
3164 hdr = (struct ieee80211_hdr *)skb->data;
3165 ieee80211_parse_qos(&rx);
3166 ieee80211_verify_alignment(&rx);
3168 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3169 ieee80211_is_beacon(hdr->frame_control)))
3170 ieee80211_scan_rx(local, skb);
3172 if (ieee80211_is_data(fc)) {
3173 prev_sta = NULL;
3175 for_each_sta_info(local, hdr->addr2, sta, tmp) {
3176 if (!prev_sta) {
3177 prev_sta = sta;
3178 continue;
3181 rx.sta = prev_sta;
3182 rx.sdata = prev_sta->sdata;
3183 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3185 prev_sta = sta;
3188 if (prev_sta) {
3189 rx.sta = prev_sta;
3190 rx.sdata = prev_sta->sdata;
3192 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3193 return;
3194 goto out;
3198 prev = NULL;
3200 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3201 if (!ieee80211_sdata_running(sdata))
3202 continue;
3204 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3205 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3206 continue;
3209 * frame is destined for this interface, but if it's
3210 * not also for the previous one we handle that after
3211 * the loop to avoid copying the SKB once too much
3214 if (!prev) {
3215 prev = sdata;
3216 continue;
3219 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3220 rx.sdata = prev;
3221 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3223 prev = sdata;
3226 if (prev) {
3227 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3228 rx.sdata = prev;
3230 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3231 return;
3234 out:
3235 dev_kfree_skb(skb);
3239 * This is the receive path handler. It is called by a low level driver when an
3240 * 802.11 MPDU is received from the hardware.
3242 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3244 struct ieee80211_local *local = hw_to_local(hw);
3245 struct ieee80211_rate *rate = NULL;
3246 struct ieee80211_supported_band *sband;
3247 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3249 WARN_ON_ONCE(softirq_count() == 0);
3251 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3252 goto drop;
3254 sband = local->hw.wiphy->bands[status->band];
3255 if (WARN_ON(!sband))
3256 goto drop;
3259 * If we're suspending, it is possible although not too likely
3260 * that we'd be receiving frames after having already partially
3261 * quiesced the stack. We can't process such frames then since
3262 * that might, for example, cause stations to be added or other
3263 * driver callbacks be invoked.
3265 if (unlikely(local->quiescing || local->suspended))
3266 goto drop;
3268 /* We might be during a HW reconfig, prevent Rx for the same reason */
3269 if (unlikely(local->in_reconfig))
3270 goto drop;
3273 * The same happens when we're not even started,
3274 * but that's worth a warning.
3276 if (WARN_ON(!local->started))
3277 goto drop;
3279 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3281 * Validate the rate, unless a PLCP error means that
3282 * we probably can't have a valid rate here anyway.
3285 if (status->flag & RX_FLAG_HT) {
3287 * rate_idx is MCS index, which can be [0-76]
3288 * as documented on:
3290 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3292 * Anything else would be some sort of driver or
3293 * hardware error. The driver should catch hardware
3294 * errors.
3296 if (WARN(status->rate_idx > 76,
3297 "Rate marked as an HT rate but passed "
3298 "status->rate_idx is not "
3299 "an MCS index [0-76]: %d (0x%02x)\n",
3300 status->rate_idx,
3301 status->rate_idx))
3302 goto drop;
3303 } else if (status->flag & RX_FLAG_VHT) {
3304 if (WARN_ONCE(status->rate_idx > 9 ||
3305 !status->vht_nss ||
3306 status->vht_nss > 8,
3307 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3308 status->rate_idx, status->vht_nss))
3309 goto drop;
3310 } else {
3311 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3312 goto drop;
3313 rate = &sband->bitrates[status->rate_idx];
3317 status->rx_flags = 0;
3320 * key references and virtual interfaces are protected using RCU
3321 * and this requires that we are in a read-side RCU section during
3322 * receive processing
3324 rcu_read_lock();
3327 * Frames with failed FCS/PLCP checksum are not returned,
3328 * all other frames are returned without radiotap header
3329 * if it was previously present.
3330 * Also, frames with less than 16 bytes are dropped.
3332 skb = ieee80211_rx_monitor(local, skb, rate);
3333 if (!skb) {
3334 rcu_read_unlock();
3335 return;
3338 ieee80211_tpt_led_trig_rx(local,
3339 ((struct ieee80211_hdr *)skb->data)->frame_control,
3340 skb->len);
3341 __ieee80211_rx_handle_packet(hw, skb);
3343 rcu_read_unlock();
3345 return;
3346 drop:
3347 kfree_skb(skb);
3349 EXPORT_SYMBOL(ieee80211_rx);
3351 /* This is a version of the rx handler that can be called from hard irq
3352 * context. Post the skb on the queue and schedule the tasklet */
3353 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3355 struct ieee80211_local *local = hw_to_local(hw);
3357 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3359 skb->pkt_type = IEEE80211_RX_MSG;
3360 skb_queue_tail(&local->skb_queue, skb);
3361 tasklet_schedule(&local->tasklet);
3363 EXPORT_SYMBOL(ieee80211_rx_irqsafe);