sl[au]b: Process slabinfo_show in common code
[linux-2.6.git] / mm / slab_common.c
blob5fb753da6cf003aac7caf992f6bacc25101c02bc
1 /*
2 * Slab allocator functions that are independent of the allocator strategy
4 * (C) 2012 Christoph Lameter <cl@linux.com>
5 */
6 #include <linux/slab.h>
8 #include <linux/mm.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
20 #include <asm/page.h>
22 #include "slab.h"
24 enum slab_state slab_state;
25 LIST_HEAD(slab_caches);
26 DEFINE_MUTEX(slab_mutex);
27 struct kmem_cache *kmem_cache;
29 #ifdef CONFIG_DEBUG_VM
30 static int kmem_cache_sanity_check(const char *name, size_t size)
32 struct kmem_cache *s = NULL;
34 if (!name || in_interrupt() || size < sizeof(void *) ||
35 size > KMALLOC_MAX_SIZE) {
36 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
37 return -EINVAL;
40 list_for_each_entry(s, &slab_caches, list) {
41 char tmp;
42 int res;
45 * This happens when the module gets unloaded and doesn't
46 * destroy its slab cache and no-one else reuses the vmalloc
47 * area of the module. Print a warning.
49 res = probe_kernel_address(s->name, tmp);
50 if (res) {
51 pr_err("Slab cache with size %d has lost its name\n",
52 s->object_size);
53 continue;
56 if (!strcmp(s->name, name)) {
57 pr_err("%s (%s): Cache name already exists.\n",
58 __func__, name);
59 dump_stack();
60 s = NULL;
61 return -EINVAL;
65 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
66 return 0;
68 #else
69 static inline int kmem_cache_sanity_check(const char *name, size_t size)
71 return 0;
73 #endif
76 * kmem_cache_create - Create a cache.
77 * @name: A string which is used in /proc/slabinfo to identify this cache.
78 * @size: The size of objects to be created in this cache.
79 * @align: The required alignment for the objects.
80 * @flags: SLAB flags
81 * @ctor: A constructor for the objects.
83 * Returns a ptr to the cache on success, NULL on failure.
84 * Cannot be called within a interrupt, but can be interrupted.
85 * The @ctor is run when new pages are allocated by the cache.
87 * The flags are
89 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
90 * to catch references to uninitialised memory.
92 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
93 * for buffer overruns.
95 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
96 * cacheline. This can be beneficial if you're counting cycles as closely
97 * as davem.
100 struct kmem_cache *kmem_cache_create(const char *name, size_t size, size_t align,
101 unsigned long flags, void (*ctor)(void *))
103 struct kmem_cache *s = NULL;
104 int err = 0;
106 get_online_cpus();
107 mutex_lock(&slab_mutex);
109 if (!kmem_cache_sanity_check(name, size) == 0)
110 goto out_locked;
113 s = __kmem_cache_alias(name, size, align, flags, ctor);
114 if (s)
115 goto out_locked;
117 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
118 if (s) {
119 s->object_size = s->size = size;
120 s->align = align;
121 s->ctor = ctor;
122 s->name = kstrdup(name, GFP_KERNEL);
123 if (!s->name) {
124 kmem_cache_free(kmem_cache, s);
125 err = -ENOMEM;
126 goto out_locked;
129 err = __kmem_cache_create(s, flags);
130 if (!err) {
132 s->refcount = 1;
133 list_add(&s->list, &slab_caches);
135 } else {
136 kfree(s->name);
137 kmem_cache_free(kmem_cache, s);
139 } else
140 err = -ENOMEM;
142 out_locked:
143 mutex_unlock(&slab_mutex);
144 put_online_cpus();
146 if (err) {
148 if (flags & SLAB_PANIC)
149 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
150 name, err);
151 else {
152 printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
153 name, err);
154 dump_stack();
157 return NULL;
160 return s;
162 EXPORT_SYMBOL(kmem_cache_create);
164 void kmem_cache_destroy(struct kmem_cache *s)
166 get_online_cpus();
167 mutex_lock(&slab_mutex);
168 s->refcount--;
169 if (!s->refcount) {
170 list_del(&s->list);
172 if (!__kmem_cache_shutdown(s)) {
173 mutex_unlock(&slab_mutex);
174 if (s->flags & SLAB_DESTROY_BY_RCU)
175 rcu_barrier();
177 kfree(s->name);
178 kmem_cache_free(kmem_cache, s);
179 } else {
180 list_add(&s->list, &slab_caches);
181 mutex_unlock(&slab_mutex);
182 printk(KERN_ERR "kmem_cache_destroy %s: Slab cache still has objects\n",
183 s->name);
184 dump_stack();
186 } else {
187 mutex_unlock(&slab_mutex);
189 put_online_cpus();
191 EXPORT_SYMBOL(kmem_cache_destroy);
193 int slab_is_available(void)
195 return slab_state >= UP;
198 #ifdef CONFIG_SLABINFO
199 static void print_slabinfo_header(struct seq_file *m)
202 * Output format version, so at least we can change it
203 * without _too_ many complaints.
205 #ifdef CONFIG_DEBUG_SLAB
206 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
207 #else
208 seq_puts(m, "slabinfo - version: 2.1\n");
209 #endif
210 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
211 "<objperslab> <pagesperslab>");
212 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
213 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
214 #ifdef CONFIG_DEBUG_SLAB
215 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
216 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
217 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
218 #endif
219 seq_putc(m, '\n');
222 static void *s_start(struct seq_file *m, loff_t *pos)
224 loff_t n = *pos;
226 mutex_lock(&slab_mutex);
227 if (!n)
228 print_slabinfo_header(m);
230 return seq_list_start(&slab_caches, *pos);
233 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
235 return seq_list_next(p, &slab_caches, pos);
238 static void s_stop(struct seq_file *m, void *p)
240 mutex_unlock(&slab_mutex);
243 static int s_show(struct seq_file *m, void *p)
245 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
246 struct slabinfo sinfo;
248 memset(&sinfo, 0, sizeof(sinfo));
249 get_slabinfo(s, &sinfo);
251 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
252 s->name, sinfo.active_objs, sinfo.num_objs, s->size,
253 sinfo.objects_per_slab, (1 << sinfo.cache_order));
255 seq_printf(m, " : tunables %4u %4u %4u",
256 sinfo.limit, sinfo.batchcount, sinfo.shared);
257 seq_printf(m, " : slabdata %6lu %6lu %6lu",
258 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
259 slabinfo_show_stats(m, s);
260 seq_putc(m, '\n');
261 return 0;
265 * slabinfo_op - iterator that generates /proc/slabinfo
267 * Output layout:
268 * cache-name
269 * num-active-objs
270 * total-objs
271 * object size
272 * num-active-slabs
273 * total-slabs
274 * num-pages-per-slab
275 * + further values on SMP and with statistics enabled
277 static const struct seq_operations slabinfo_op = {
278 .start = s_start,
279 .next = s_next,
280 .stop = s_stop,
281 .show = s_show,
284 static int slabinfo_open(struct inode *inode, struct file *file)
286 return seq_open(file, &slabinfo_op);
289 static const struct file_operations proc_slabinfo_operations = {
290 .open = slabinfo_open,
291 .read = seq_read,
292 .write = slabinfo_write,
293 .llseek = seq_lseek,
294 .release = seq_release,
297 static int __init slab_proc_init(void)
299 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
300 return 0;
302 module_init(slab_proc_init);
303 #endif /* CONFIG_SLABINFO */