2 * Slab allocator functions that are independent of the allocator strategy
4 * (C) 2012 Christoph Lameter <cl@linux.com>
6 #include <linux/slab.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
21 #include <linux/memcontrol.h>
25 enum slab_state slab_state
;
26 LIST_HEAD(slab_caches
);
27 DEFINE_MUTEX(slab_mutex
);
28 struct kmem_cache
*kmem_cache
;
30 #ifdef CONFIG_DEBUG_VM
31 static int kmem_cache_sanity_check(struct mem_cgroup
*memcg
, const char *name
,
34 struct kmem_cache
*s
= NULL
;
36 if (!name
|| in_interrupt() || size
< sizeof(void *) ||
37 size
> KMALLOC_MAX_SIZE
) {
38 pr_err("kmem_cache_create(%s) integrity check failed\n", name
);
42 list_for_each_entry(s
, &slab_caches
, list
) {
47 * This happens when the module gets unloaded and doesn't
48 * destroy its slab cache and no-one else reuses the vmalloc
49 * area of the module. Print a warning.
51 res
= probe_kernel_address(s
->name
, tmp
);
53 pr_err("Slab cache with size %d has lost its name\n",
59 * For simplicity, we won't check this in the list of memcg
60 * caches. We have control over memcg naming, and if there
61 * aren't duplicates in the global list, there won't be any
62 * duplicates in the memcg lists as well.
64 if (!memcg
&& !strcmp(s
->name
, name
)) {
65 pr_err("%s (%s): Cache name already exists.\n",
73 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
77 static inline int kmem_cache_sanity_check(struct mem_cgroup
*memcg
,
78 const char *name
, size_t size
)
84 #ifdef CONFIG_MEMCG_KMEM
85 int memcg_update_all_caches(int num_memcgs
)
89 mutex_lock(&slab_mutex
);
91 list_for_each_entry(s
, &slab_caches
, list
) {
92 if (!is_root_cache(s
))
95 ret
= memcg_update_cache_size(s
, num_memcgs
);
97 * See comment in memcontrol.c, memcg_update_cache_size:
98 * Instead of freeing the memory, we'll just leave the caches
99 * up to this point in an updated state.
105 memcg_update_array_size(num_memcgs
);
107 mutex_unlock(&slab_mutex
);
113 * Figure out what the alignment of the objects will be given a set of
114 * flags, a user specified alignment and the size of the objects.
116 unsigned long calculate_alignment(unsigned long flags
,
117 unsigned long align
, unsigned long size
)
120 * If the user wants hardware cache aligned objects then follow that
121 * suggestion if the object is sufficiently large.
123 * The hardware cache alignment cannot override the specified
124 * alignment though. If that is greater then use it.
126 if (flags
& SLAB_HWCACHE_ALIGN
) {
127 unsigned long ralign
= cache_line_size();
128 while (size
<= ralign
/ 2)
130 align
= max(align
, ralign
);
133 if (align
< ARCH_SLAB_MINALIGN
)
134 align
= ARCH_SLAB_MINALIGN
;
136 return ALIGN(align
, sizeof(void *));
141 * kmem_cache_create - Create a cache.
142 * @name: A string which is used in /proc/slabinfo to identify this cache.
143 * @size: The size of objects to be created in this cache.
144 * @align: The required alignment for the objects.
146 * @ctor: A constructor for the objects.
148 * Returns a ptr to the cache on success, NULL on failure.
149 * Cannot be called within a interrupt, but can be interrupted.
150 * The @ctor is run when new pages are allocated by the cache.
154 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
155 * to catch references to uninitialised memory.
157 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
158 * for buffer overruns.
160 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
161 * cacheline. This can be beneficial if you're counting cycles as closely
166 kmem_cache_create_memcg(struct mem_cgroup
*memcg
, const char *name
, size_t size
,
167 size_t align
, unsigned long flags
, void (*ctor
)(void *),
168 struct kmem_cache
*parent_cache
)
170 struct kmem_cache
*s
= NULL
;
174 mutex_lock(&slab_mutex
);
176 if (!kmem_cache_sanity_check(memcg
, name
, size
) == 0)
180 * Some allocators will constraint the set of valid flags to a subset
181 * of all flags. We expect them to define CACHE_CREATE_MASK in this
182 * case, and we'll just provide them with a sanitized version of the
185 flags
&= CACHE_CREATE_MASK
;
187 s
= __kmem_cache_alias(memcg
, name
, size
, align
, flags
, ctor
);
191 s
= kmem_cache_zalloc(kmem_cache
, GFP_KERNEL
);
193 s
->object_size
= s
->size
= size
;
194 s
->align
= calculate_alignment(flags
, align
, size
);
197 if (memcg_register_cache(memcg
, s
, parent_cache
)) {
198 kmem_cache_free(kmem_cache
, s
);
203 s
->name
= kstrdup(name
, GFP_KERNEL
);
205 kmem_cache_free(kmem_cache
, s
);
210 err
= __kmem_cache_create(s
, flags
);
213 list_add(&s
->list
, &slab_caches
);
214 memcg_cache_list_add(memcg
, s
);
217 kmem_cache_free(kmem_cache
, s
);
223 mutex_unlock(&slab_mutex
);
228 if (flags
& SLAB_PANIC
)
229 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
232 printk(KERN_WARNING
"kmem_cache_create(%s) failed with error %d",
244 kmem_cache_create(const char *name
, size_t size
, size_t align
,
245 unsigned long flags
, void (*ctor
)(void *))
247 return kmem_cache_create_memcg(NULL
, name
, size
, align
, flags
, ctor
, NULL
);
249 EXPORT_SYMBOL(kmem_cache_create
);
251 void kmem_cache_destroy(struct kmem_cache
*s
)
253 /* Destroy all the children caches if we aren't a memcg cache */
254 kmem_cache_destroy_memcg_children(s
);
257 mutex_lock(&slab_mutex
);
262 if (!__kmem_cache_shutdown(s
)) {
263 mutex_unlock(&slab_mutex
);
264 if (s
->flags
& SLAB_DESTROY_BY_RCU
)
267 memcg_release_cache(s
);
269 kmem_cache_free(kmem_cache
, s
);
271 list_add(&s
->list
, &slab_caches
);
272 mutex_unlock(&slab_mutex
);
273 printk(KERN_ERR
"kmem_cache_destroy %s: Slab cache still has objects\n",
278 mutex_unlock(&slab_mutex
);
282 EXPORT_SYMBOL(kmem_cache_destroy
);
284 int slab_is_available(void)
286 return slab_state
>= UP
;
290 /* Create a cache during boot when no slab services are available yet */
291 void __init
create_boot_cache(struct kmem_cache
*s
, const char *name
, size_t size
,
297 s
->size
= s
->object_size
= size
;
298 s
->align
= calculate_alignment(flags
, ARCH_KMALLOC_MINALIGN
, size
);
299 err
= __kmem_cache_create(s
, flags
);
302 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
305 s
->refcount
= -1; /* Exempt from merging for now */
308 struct kmem_cache
*__init
create_kmalloc_cache(const char *name
, size_t size
,
311 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
314 panic("Out of memory when creating slab %s\n", name
);
316 create_boot_cache(s
, name
, size
, flags
);
317 list_add(&s
->list
, &slab_caches
);
322 struct kmem_cache
*kmalloc_caches
[KMALLOC_SHIFT_HIGH
+ 1];
323 EXPORT_SYMBOL(kmalloc_caches
);
325 #ifdef CONFIG_ZONE_DMA
326 struct kmem_cache
*kmalloc_dma_caches
[KMALLOC_SHIFT_HIGH
+ 1];
327 EXPORT_SYMBOL(kmalloc_dma_caches
);
331 * Conversion table for small slabs sizes / 8 to the index in the
332 * kmalloc array. This is necessary for slabs < 192 since we have non power
333 * of two cache sizes there. The size of larger slabs can be determined using
336 static s8 size_index
[24] = {
363 static inline int size_index_elem(size_t bytes
)
365 return (bytes
- 1) / 8;
369 * Find the kmem_cache structure that serves a given size of
372 struct kmem_cache
*kmalloc_slab(size_t size
, gfp_t flags
)
376 if (size
> KMALLOC_MAX_SIZE
) {
377 WARN_ON_ONCE(!(flags
& __GFP_NOWARN
));
383 return ZERO_SIZE_PTR
;
385 index
= size_index
[size_index_elem(size
)];
387 index
= fls(size
- 1);
389 #ifdef CONFIG_ZONE_DMA
390 if (unlikely((flags
& GFP_DMA
)))
391 return kmalloc_dma_caches
[index
];
394 return kmalloc_caches
[index
];
398 * Create the kmalloc array. Some of the regular kmalloc arrays
399 * may already have been created because they were needed to
400 * enable allocations for slab creation.
402 void __init
create_kmalloc_caches(unsigned long flags
)
407 * Patch up the size_index table if we have strange large alignment
408 * requirements for the kmalloc array. This is only the case for
409 * MIPS it seems. The standard arches will not generate any code here.
411 * Largest permitted alignment is 256 bytes due to the way we
412 * handle the index determination for the smaller caches.
414 * Make sure that nothing crazy happens if someone starts tinkering
415 * around with ARCH_KMALLOC_MINALIGN
417 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
418 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
420 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8) {
421 int elem
= size_index_elem(i
);
423 if (elem
>= ARRAY_SIZE(size_index
))
425 size_index
[elem
] = KMALLOC_SHIFT_LOW
;
428 if (KMALLOC_MIN_SIZE
>= 64) {
430 * The 96 byte size cache is not used if the alignment
433 for (i
= 64 + 8; i
<= 96; i
+= 8)
434 size_index
[size_index_elem(i
)] = 7;
438 if (KMALLOC_MIN_SIZE
>= 128) {
440 * The 192 byte sized cache is not used if the alignment
441 * is 128 byte. Redirect kmalloc to use the 256 byte cache
444 for (i
= 128 + 8; i
<= 192; i
+= 8)
445 size_index
[size_index_elem(i
)] = 8;
447 for (i
= KMALLOC_SHIFT_LOW
; i
<= KMALLOC_SHIFT_HIGH
; i
++) {
448 if (!kmalloc_caches
[i
]) {
449 kmalloc_caches
[i
] = create_kmalloc_cache(NULL
,
454 * Caches that are not of the two-to-the-power-of size.
455 * These have to be created immediately after the
456 * earlier power of two caches
458 if (KMALLOC_MIN_SIZE
<= 32 && !kmalloc_caches
[1] && i
== 6)
459 kmalloc_caches
[1] = create_kmalloc_cache(NULL
, 96, flags
);
461 if (KMALLOC_MIN_SIZE
<= 64 && !kmalloc_caches
[2] && i
== 7)
462 kmalloc_caches
[2] = create_kmalloc_cache(NULL
, 192, flags
);
465 /* Kmalloc array is now usable */
468 for (i
= 0; i
<= KMALLOC_SHIFT_HIGH
; i
++) {
469 struct kmem_cache
*s
= kmalloc_caches
[i
];
473 n
= kasprintf(GFP_NOWAIT
, "kmalloc-%d", kmalloc_size(i
));
480 #ifdef CONFIG_ZONE_DMA
481 for (i
= 0; i
<= KMALLOC_SHIFT_HIGH
; i
++) {
482 struct kmem_cache
*s
= kmalloc_caches
[i
];
485 int size
= kmalloc_size(i
);
486 char *n
= kasprintf(GFP_NOWAIT
,
487 "dma-kmalloc-%d", size
);
490 kmalloc_dma_caches
[i
] = create_kmalloc_cache(n
,
491 size
, SLAB_CACHE_DMA
| flags
);
496 #endif /* !CONFIG_SLOB */
499 #ifdef CONFIG_SLABINFO
502 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
504 #define SLABINFO_RIGHTS S_IRUSR
507 void print_slabinfo_header(struct seq_file
*m
)
510 * Output format version, so at least we can change it
511 * without _too_ many complaints.
513 #ifdef CONFIG_DEBUG_SLAB
514 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
516 seq_puts(m
, "slabinfo - version: 2.1\n");
518 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
519 "<objperslab> <pagesperslab>");
520 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
521 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
522 #ifdef CONFIG_DEBUG_SLAB
523 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
524 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
525 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
530 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
534 mutex_lock(&slab_mutex
);
536 print_slabinfo_header(m
);
538 return seq_list_start(&slab_caches
, *pos
);
541 void *slab_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
543 return seq_list_next(p
, &slab_caches
, pos
);
546 void slab_stop(struct seq_file
*m
, void *p
)
548 mutex_unlock(&slab_mutex
);
552 memcg_accumulate_slabinfo(struct kmem_cache
*s
, struct slabinfo
*info
)
554 struct kmem_cache
*c
;
555 struct slabinfo sinfo
;
558 if (!is_root_cache(s
))
561 for_each_memcg_cache_index(i
) {
562 c
= cache_from_memcg(s
, i
);
566 memset(&sinfo
, 0, sizeof(sinfo
));
567 get_slabinfo(c
, &sinfo
);
569 info
->active_slabs
+= sinfo
.active_slabs
;
570 info
->num_slabs
+= sinfo
.num_slabs
;
571 info
->shared_avail
+= sinfo
.shared_avail
;
572 info
->active_objs
+= sinfo
.active_objs
;
573 info
->num_objs
+= sinfo
.num_objs
;
577 int cache_show(struct kmem_cache
*s
, struct seq_file
*m
)
579 struct slabinfo sinfo
;
581 memset(&sinfo
, 0, sizeof(sinfo
));
582 get_slabinfo(s
, &sinfo
);
584 memcg_accumulate_slabinfo(s
, &sinfo
);
586 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
587 cache_name(s
), sinfo
.active_objs
, sinfo
.num_objs
, s
->size
,
588 sinfo
.objects_per_slab
, (1 << sinfo
.cache_order
));
590 seq_printf(m
, " : tunables %4u %4u %4u",
591 sinfo
.limit
, sinfo
.batchcount
, sinfo
.shared
);
592 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
593 sinfo
.active_slabs
, sinfo
.num_slabs
, sinfo
.shared_avail
);
594 slabinfo_show_stats(m
, s
);
599 static int s_show(struct seq_file
*m
, void *p
)
601 struct kmem_cache
*s
= list_entry(p
, struct kmem_cache
, list
);
603 if (!is_root_cache(s
))
605 return cache_show(s
, m
);
609 * slabinfo_op - iterator that generates /proc/slabinfo
619 * + further values on SMP and with statistics enabled
621 static const struct seq_operations slabinfo_op
= {
628 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
630 return seq_open(file
, &slabinfo_op
);
633 static const struct file_operations proc_slabinfo_operations
= {
634 .open
= slabinfo_open
,
636 .write
= slabinfo_write
,
638 .release
= seq_release
,
641 static int __init
slab_proc_init(void)
643 proc_create("slabinfo", SLABINFO_RIGHTS
, NULL
,
644 &proc_slabinfo_operations
);
647 module_init(slab_proc_init
);
648 #endif /* CONFIG_SLABINFO */