2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
35 #include "transaction.h"
36 #include "btrfs_inode.h"
38 #include "print-tree.h"
44 * when auto defrag is enabled we
45 * queue up these defrag structs to remember which
46 * inodes need defragging passes
49 struct rb_node rb_node
;
53 * transid where the defrag was added, we search for
54 * extents newer than this
61 /* last offset we were able to defrag */
64 /* if we've wrapped around back to zero once already */
68 /* pop a record for an inode into the defrag tree. The lock
69 * must be held already
71 * If you're inserting a record for an older transid than an
72 * existing record, the transid already in the tree is lowered
74 * If an existing record is found the defrag item you
77 static void __btrfs_add_inode_defrag(struct inode
*inode
,
78 struct inode_defrag
*defrag
)
80 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
81 struct inode_defrag
*entry
;
83 struct rb_node
*parent
= NULL
;
85 p
= &root
->fs_info
->defrag_inodes
.rb_node
;
88 entry
= rb_entry(parent
, struct inode_defrag
, rb_node
);
90 if (defrag
->ino
< entry
->ino
)
92 else if (defrag
->ino
> entry
->ino
)
93 p
= &parent
->rb_right
;
95 /* if we're reinserting an entry for
96 * an old defrag run, make sure to
97 * lower the transid of our existing record
99 if (defrag
->transid
< entry
->transid
)
100 entry
->transid
= defrag
->transid
;
101 if (defrag
->last_offset
> entry
->last_offset
)
102 entry
->last_offset
= defrag
->last_offset
;
106 BTRFS_I(inode
)->in_defrag
= 1;
107 rb_link_node(&defrag
->rb_node
, parent
, p
);
108 rb_insert_color(&defrag
->rb_node
, &root
->fs_info
->defrag_inodes
);
118 * insert a defrag record for this inode if auto defrag is
121 int btrfs_add_inode_defrag(struct btrfs_trans_handle
*trans
,
124 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
125 struct inode_defrag
*defrag
;
128 if (!btrfs_test_opt(root
, AUTO_DEFRAG
))
131 if (btrfs_fs_closing(root
->fs_info
))
134 if (BTRFS_I(inode
)->in_defrag
)
138 transid
= trans
->transid
;
140 transid
= BTRFS_I(inode
)->root
->last_trans
;
142 defrag
= kzalloc(sizeof(*defrag
), GFP_NOFS
);
146 defrag
->ino
= btrfs_ino(inode
);
147 defrag
->transid
= transid
;
148 defrag
->root
= root
->root_key
.objectid
;
150 spin_lock(&root
->fs_info
->defrag_inodes_lock
);
151 if (!BTRFS_I(inode
)->in_defrag
)
152 __btrfs_add_inode_defrag(inode
, defrag
);
155 spin_unlock(&root
->fs_info
->defrag_inodes_lock
);
160 * must be called with the defrag_inodes lock held
162 struct inode_defrag
*btrfs_find_defrag_inode(struct btrfs_fs_info
*info
, u64 ino
,
163 struct rb_node
**next
)
165 struct inode_defrag
*entry
= NULL
;
167 struct rb_node
*parent
= NULL
;
169 p
= info
->defrag_inodes
.rb_node
;
172 entry
= rb_entry(parent
, struct inode_defrag
, rb_node
);
174 if (ino
< entry
->ino
)
176 else if (ino
> entry
->ino
)
177 p
= parent
->rb_right
;
183 while (parent
&& ino
> entry
->ino
) {
184 parent
= rb_next(parent
);
185 entry
= rb_entry(parent
, struct inode_defrag
, rb_node
);
193 * run through the list of inodes in the FS that need
196 int btrfs_run_defrag_inodes(struct btrfs_fs_info
*fs_info
)
198 struct inode_defrag
*defrag
;
199 struct btrfs_root
*inode_root
;
202 struct btrfs_key key
;
203 struct btrfs_ioctl_defrag_range_args range
;
206 int defrag_batch
= 1024;
208 memset(&range
, 0, sizeof(range
));
211 atomic_inc(&fs_info
->defrag_running
);
212 spin_lock(&fs_info
->defrag_inodes_lock
);
216 /* find an inode to defrag */
217 defrag
= btrfs_find_defrag_inode(fs_info
, first_ino
, &n
);
220 defrag
= rb_entry(n
, struct inode_defrag
, rb_node
);
221 else if (first_ino
) {
229 /* remove it from the rbtree */
230 first_ino
= defrag
->ino
+ 1;
231 rb_erase(&defrag
->rb_node
, &fs_info
->defrag_inodes
);
233 if (btrfs_fs_closing(fs_info
))
236 spin_unlock(&fs_info
->defrag_inodes_lock
);
239 key
.objectid
= defrag
->root
;
240 btrfs_set_key_type(&key
, BTRFS_ROOT_ITEM_KEY
);
241 key
.offset
= (u64
)-1;
242 inode_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
243 if (IS_ERR(inode_root
))
246 key
.objectid
= defrag
->ino
;
247 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
250 inode
= btrfs_iget(fs_info
->sb
, &key
, inode_root
, NULL
);
254 /* do a chunk of defrag */
255 BTRFS_I(inode
)->in_defrag
= 0;
256 range
.start
= defrag
->last_offset
;
257 num_defrag
= btrfs_defrag_file(inode
, NULL
, &range
, defrag
->transid
,
260 * if we filled the whole defrag batch, there
261 * must be more work to do. Queue this defrag
264 if (num_defrag
== defrag_batch
) {
265 defrag
->last_offset
= range
.start
;
266 __btrfs_add_inode_defrag(inode
, defrag
);
268 * we don't want to kfree defrag, we added it back to
272 } else if (defrag
->last_offset
&& !defrag
->cycled
) {
274 * we didn't fill our defrag batch, but
275 * we didn't start at zero. Make sure we loop
276 * around to the start of the file.
278 defrag
->last_offset
= 0;
280 __btrfs_add_inode_defrag(inode
, defrag
);
286 spin_lock(&fs_info
->defrag_inodes_lock
);
290 spin_unlock(&fs_info
->defrag_inodes_lock
);
292 atomic_dec(&fs_info
->defrag_running
);
295 * during unmount, we use the transaction_wait queue to
296 * wait for the defragger to stop
298 wake_up(&fs_info
->transaction_wait
);
302 /* simple helper to fault in pages and copy. This should go away
303 * and be replaced with calls into generic code.
305 static noinline
int btrfs_copy_from_user(loff_t pos
, int num_pages
,
307 struct page
**prepared_pages
,
311 size_t total_copied
= 0;
313 int offset
= pos
& (PAGE_CACHE_SIZE
- 1);
315 while (write_bytes
> 0) {
316 size_t count
= min_t(size_t,
317 PAGE_CACHE_SIZE
- offset
, write_bytes
);
318 struct page
*page
= prepared_pages
[pg
];
320 * Copy data from userspace to the current page
322 * Disable pagefault to avoid recursive lock since
323 * the pages are already locked
326 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, count
);
329 /* Flush processor's dcache for this page */
330 flush_dcache_page(page
);
333 * if we get a partial write, we can end up with
334 * partially up to date pages. These add
335 * a lot of complexity, so make sure they don't
336 * happen by forcing this copy to be retried.
338 * The rest of the btrfs_file_write code will fall
339 * back to page at a time copies after we return 0.
341 if (!PageUptodate(page
) && copied
< count
)
344 iov_iter_advance(i
, copied
);
345 write_bytes
-= copied
;
346 total_copied
+= copied
;
348 /* Return to btrfs_file_aio_write to fault page */
349 if (unlikely(copied
== 0))
352 if (unlikely(copied
< PAGE_CACHE_SIZE
- offset
)) {
363 * unlocks pages after btrfs_file_write is done with them
365 void btrfs_drop_pages(struct page
**pages
, size_t num_pages
)
368 for (i
= 0; i
< num_pages
; i
++) {
369 /* page checked is some magic around finding pages that
370 * have been modified without going through btrfs_set_page_dirty
373 ClearPageChecked(pages
[i
]);
374 unlock_page(pages
[i
]);
375 mark_page_accessed(pages
[i
]);
376 page_cache_release(pages
[i
]);
381 * after copy_from_user, pages need to be dirtied and we need to make
382 * sure holes are created between the current EOF and the start of
383 * any next extents (if required).
385 * this also makes the decision about creating an inline extent vs
386 * doing real data extents, marking pages dirty and delalloc as required.
388 int btrfs_dirty_pages(struct btrfs_root
*root
, struct inode
*inode
,
389 struct page
**pages
, size_t num_pages
,
390 loff_t pos
, size_t write_bytes
,
391 struct extent_state
**cached
)
397 u64 end_of_last_block
;
398 u64 end_pos
= pos
+ write_bytes
;
399 loff_t isize
= i_size_read(inode
);
401 start_pos
= pos
& ~((u64
)root
->sectorsize
- 1);
402 num_bytes
= (write_bytes
+ pos
- start_pos
+
403 root
->sectorsize
- 1) & ~((u64
)root
->sectorsize
- 1);
405 end_of_last_block
= start_pos
+ num_bytes
- 1;
406 err
= btrfs_set_extent_delalloc(inode
, start_pos
, end_of_last_block
,
411 for (i
= 0; i
< num_pages
; i
++) {
412 struct page
*p
= pages
[i
];
419 * we've only changed i_size in ram, and we haven't updated
420 * the disk i_size. There is no need to log the inode
424 i_size_write(inode
, end_pos
);
429 * this drops all the extents in the cache that intersect the range
430 * [start, end]. Existing extents are split as required.
432 int btrfs_drop_extent_cache(struct inode
*inode
, u64 start
, u64 end
,
435 struct extent_map
*em
;
436 struct extent_map
*split
= NULL
;
437 struct extent_map
*split2
= NULL
;
438 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
439 u64 len
= end
- start
+ 1;
445 WARN_ON(end
< start
);
446 if (end
== (u64
)-1) {
452 split
= alloc_extent_map();
454 split2
= alloc_extent_map();
455 BUG_ON(!split
|| !split2
);
457 write_lock(&em_tree
->lock
);
458 em
= lookup_extent_mapping(em_tree
, start
, len
);
460 write_unlock(&em_tree
->lock
);
464 if (skip_pinned
&& test_bit(EXTENT_FLAG_PINNED
, &em
->flags
)) {
465 if (testend
&& em
->start
+ em
->len
>= start
+ len
) {
467 write_unlock(&em_tree
->lock
);
470 start
= em
->start
+ em
->len
;
472 len
= start
+ len
- (em
->start
+ em
->len
);
474 write_unlock(&em_tree
->lock
);
477 compressed
= test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
478 clear_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
479 remove_extent_mapping(em_tree
, em
);
481 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
483 split
->start
= em
->start
;
484 split
->len
= start
- em
->start
;
485 split
->orig_start
= em
->orig_start
;
486 split
->block_start
= em
->block_start
;
489 split
->block_len
= em
->block_len
;
491 split
->block_len
= split
->len
;
493 split
->bdev
= em
->bdev
;
494 split
->flags
= flags
;
495 split
->compress_type
= em
->compress_type
;
496 ret
= add_extent_mapping(em_tree
, split
);
498 free_extent_map(split
);
502 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
503 testend
&& em
->start
+ em
->len
> start
+ len
) {
504 u64 diff
= start
+ len
- em
->start
;
506 split
->start
= start
+ len
;
507 split
->len
= em
->start
+ em
->len
- (start
+ len
);
508 split
->bdev
= em
->bdev
;
509 split
->flags
= flags
;
510 split
->compress_type
= em
->compress_type
;
513 split
->block_len
= em
->block_len
;
514 split
->block_start
= em
->block_start
;
515 split
->orig_start
= em
->orig_start
;
517 split
->block_len
= split
->len
;
518 split
->block_start
= em
->block_start
+ diff
;
519 split
->orig_start
= split
->start
;
522 ret
= add_extent_mapping(em_tree
, split
);
524 free_extent_map(split
);
527 write_unlock(&em_tree
->lock
);
531 /* once for the tree*/
535 free_extent_map(split
);
537 free_extent_map(split2
);
542 * this is very complex, but the basic idea is to drop all extents
543 * in the range start - end. hint_block is filled in with a block number
544 * that would be a good hint to the block allocator for this file.
546 * If an extent intersects the range but is not entirely inside the range
547 * it is either truncated or split. Anything entirely inside the range
548 * is deleted from the tree.
550 int btrfs_drop_extents(struct btrfs_trans_handle
*trans
, struct inode
*inode
,
551 u64 start
, u64 end
, u64
*hint_byte
, int drop_cache
)
553 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
554 struct extent_buffer
*leaf
;
555 struct btrfs_file_extent_item
*fi
;
556 struct btrfs_path
*path
;
557 struct btrfs_key key
;
558 struct btrfs_key new_key
;
559 u64 ino
= btrfs_ino(inode
);
560 u64 search_start
= start
;
563 u64 extent_offset
= 0;
572 btrfs_drop_extent_cache(inode
, start
, end
- 1, 0);
574 path
= btrfs_alloc_path();
580 ret
= btrfs_lookup_file_extent(trans
, root
, path
, ino
,
584 if (ret
> 0 && path
->slots
[0] > 0 && search_start
== start
) {
585 leaf
= path
->nodes
[0];
586 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0] - 1);
587 if (key
.objectid
== ino
&&
588 key
.type
== BTRFS_EXTENT_DATA_KEY
)
593 leaf
= path
->nodes
[0];
594 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
596 ret
= btrfs_next_leaf(root
, path
);
603 leaf
= path
->nodes
[0];
607 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
608 if (key
.objectid
> ino
||
609 key
.type
> BTRFS_EXTENT_DATA_KEY
|| key
.offset
>= end
)
612 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
613 struct btrfs_file_extent_item
);
614 extent_type
= btrfs_file_extent_type(leaf
, fi
);
616 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
617 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
618 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
619 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
620 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
621 extent_end
= key
.offset
+
622 btrfs_file_extent_num_bytes(leaf
, fi
);
623 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
624 extent_end
= key
.offset
+
625 btrfs_file_extent_inline_len(leaf
, fi
);
628 extent_end
= search_start
;
631 if (extent_end
<= search_start
) {
636 search_start
= max(key
.offset
, start
);
638 btrfs_release_path(path
);
643 * | - range to drop - |
644 * | -------- extent -------- |
646 if (start
> key
.offset
&& end
< extent_end
) {
648 BUG_ON(extent_type
== BTRFS_FILE_EXTENT_INLINE
);
650 memcpy(&new_key
, &key
, sizeof(new_key
));
651 new_key
.offset
= start
;
652 ret
= btrfs_duplicate_item(trans
, root
, path
,
654 if (ret
== -EAGAIN
) {
655 btrfs_release_path(path
);
661 leaf
= path
->nodes
[0];
662 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
663 struct btrfs_file_extent_item
);
664 btrfs_set_file_extent_num_bytes(leaf
, fi
,
667 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
668 struct btrfs_file_extent_item
);
670 extent_offset
+= start
- key
.offset
;
671 btrfs_set_file_extent_offset(leaf
, fi
, extent_offset
);
672 btrfs_set_file_extent_num_bytes(leaf
, fi
,
674 btrfs_mark_buffer_dirty(leaf
);
676 if (disk_bytenr
> 0) {
677 ret
= btrfs_inc_extent_ref(trans
, root
,
678 disk_bytenr
, num_bytes
, 0,
679 root
->root_key
.objectid
,
681 start
- extent_offset
);
683 *hint_byte
= disk_bytenr
;
688 * | ---- range to drop ----- |
689 * | -------- extent -------- |
691 if (start
<= key
.offset
&& end
< extent_end
) {
692 BUG_ON(extent_type
== BTRFS_FILE_EXTENT_INLINE
);
694 memcpy(&new_key
, &key
, sizeof(new_key
));
695 new_key
.offset
= end
;
696 btrfs_set_item_key_safe(trans
, root
, path
, &new_key
);
698 extent_offset
+= end
- key
.offset
;
699 btrfs_set_file_extent_offset(leaf
, fi
, extent_offset
);
700 btrfs_set_file_extent_num_bytes(leaf
, fi
,
702 btrfs_mark_buffer_dirty(leaf
);
703 if (disk_bytenr
> 0) {
704 inode_sub_bytes(inode
, end
- key
.offset
);
705 *hint_byte
= disk_bytenr
;
710 search_start
= extent_end
;
712 * | ---- range to drop ----- |
713 * | -------- extent -------- |
715 if (start
> key
.offset
&& end
>= extent_end
) {
717 BUG_ON(extent_type
== BTRFS_FILE_EXTENT_INLINE
);
719 btrfs_set_file_extent_num_bytes(leaf
, fi
,
721 btrfs_mark_buffer_dirty(leaf
);
722 if (disk_bytenr
> 0) {
723 inode_sub_bytes(inode
, extent_end
- start
);
724 *hint_byte
= disk_bytenr
;
726 if (end
== extent_end
)
734 * | ---- range to drop ----- |
735 * | ------ extent ------ |
737 if (start
<= key
.offset
&& end
>= extent_end
) {
739 del_slot
= path
->slots
[0];
742 BUG_ON(del_slot
+ del_nr
!= path
->slots
[0]);
746 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
747 inode_sub_bytes(inode
,
748 extent_end
- key
.offset
);
749 extent_end
= ALIGN(extent_end
,
751 } else if (disk_bytenr
> 0) {
752 ret
= btrfs_free_extent(trans
, root
,
753 disk_bytenr
, num_bytes
, 0,
754 root
->root_key
.objectid
,
755 key
.objectid
, key
.offset
-
758 inode_sub_bytes(inode
,
759 extent_end
- key
.offset
);
760 *hint_byte
= disk_bytenr
;
763 if (end
== extent_end
)
766 if (path
->slots
[0] + 1 < btrfs_header_nritems(leaf
)) {
771 ret
= btrfs_del_items(trans
, root
, path
, del_slot
,
778 btrfs_release_path(path
);
786 ret
= btrfs_del_items(trans
, root
, path
, del_slot
, del_nr
);
790 btrfs_free_path(path
);
794 static int extent_mergeable(struct extent_buffer
*leaf
, int slot
,
795 u64 objectid
, u64 bytenr
, u64 orig_offset
,
796 u64
*start
, u64
*end
)
798 struct btrfs_file_extent_item
*fi
;
799 struct btrfs_key key
;
802 if (slot
< 0 || slot
>= btrfs_header_nritems(leaf
))
805 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
806 if (key
.objectid
!= objectid
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
809 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
810 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
||
811 btrfs_file_extent_disk_bytenr(leaf
, fi
) != bytenr
||
812 btrfs_file_extent_offset(leaf
, fi
) != key
.offset
- orig_offset
||
813 btrfs_file_extent_compression(leaf
, fi
) ||
814 btrfs_file_extent_encryption(leaf
, fi
) ||
815 btrfs_file_extent_other_encoding(leaf
, fi
))
818 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
819 if ((*start
&& *start
!= key
.offset
) || (*end
&& *end
!= extent_end
))
828 * Mark extent in the range start - end as written.
830 * This changes extent type from 'pre-allocated' to 'regular'. If only
831 * part of extent is marked as written, the extent will be split into
834 int btrfs_mark_extent_written(struct btrfs_trans_handle
*trans
,
835 struct inode
*inode
, u64 start
, u64 end
)
837 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
838 struct extent_buffer
*leaf
;
839 struct btrfs_path
*path
;
840 struct btrfs_file_extent_item
*fi
;
841 struct btrfs_key key
;
842 struct btrfs_key new_key
;
854 u64 ino
= btrfs_ino(inode
);
856 btrfs_drop_extent_cache(inode
, start
, end
- 1, 0);
858 path
= btrfs_alloc_path();
865 key
.type
= BTRFS_EXTENT_DATA_KEY
;
868 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
871 if (ret
> 0 && path
->slots
[0] > 0)
874 leaf
= path
->nodes
[0];
875 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
876 BUG_ON(key
.objectid
!= ino
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
);
877 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
878 struct btrfs_file_extent_item
);
879 BUG_ON(btrfs_file_extent_type(leaf
, fi
) !=
880 BTRFS_FILE_EXTENT_PREALLOC
);
881 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
882 BUG_ON(key
.offset
> start
|| extent_end
< end
);
884 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
885 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
886 orig_offset
= key
.offset
- btrfs_file_extent_offset(leaf
, fi
);
887 memcpy(&new_key
, &key
, sizeof(new_key
));
889 if (start
== key
.offset
&& end
< extent_end
) {
892 if (extent_mergeable(leaf
, path
->slots
[0] - 1,
893 ino
, bytenr
, orig_offset
,
894 &other_start
, &other_end
)) {
895 new_key
.offset
= end
;
896 btrfs_set_item_key_safe(trans
, root
, path
, &new_key
);
897 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
898 struct btrfs_file_extent_item
);
899 btrfs_set_file_extent_num_bytes(leaf
, fi
,
901 btrfs_set_file_extent_offset(leaf
, fi
,
903 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
904 struct btrfs_file_extent_item
);
905 btrfs_set_file_extent_num_bytes(leaf
, fi
,
907 btrfs_mark_buffer_dirty(leaf
);
912 if (start
> key
.offset
&& end
== extent_end
) {
915 if (extent_mergeable(leaf
, path
->slots
[0] + 1,
916 ino
, bytenr
, orig_offset
,
917 &other_start
, &other_end
)) {
918 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
919 struct btrfs_file_extent_item
);
920 btrfs_set_file_extent_num_bytes(leaf
, fi
,
923 new_key
.offset
= start
;
924 btrfs_set_item_key_safe(trans
, root
, path
, &new_key
);
926 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
927 struct btrfs_file_extent_item
);
928 btrfs_set_file_extent_num_bytes(leaf
, fi
,
930 btrfs_set_file_extent_offset(leaf
, fi
,
931 start
- orig_offset
);
932 btrfs_mark_buffer_dirty(leaf
);
937 while (start
> key
.offset
|| end
< extent_end
) {
938 if (key
.offset
== start
)
941 new_key
.offset
= split
;
942 ret
= btrfs_duplicate_item(trans
, root
, path
, &new_key
);
943 if (ret
== -EAGAIN
) {
944 btrfs_release_path(path
);
949 leaf
= path
->nodes
[0];
950 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
951 struct btrfs_file_extent_item
);
952 btrfs_set_file_extent_num_bytes(leaf
, fi
,
955 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
956 struct btrfs_file_extent_item
);
958 btrfs_set_file_extent_offset(leaf
, fi
, split
- orig_offset
);
959 btrfs_set_file_extent_num_bytes(leaf
, fi
,
961 btrfs_mark_buffer_dirty(leaf
);
963 ret
= btrfs_inc_extent_ref(trans
, root
, bytenr
, num_bytes
, 0,
964 root
->root_key
.objectid
,
968 if (split
== start
) {
971 BUG_ON(start
!= key
.offset
);
980 if (extent_mergeable(leaf
, path
->slots
[0] + 1,
981 ino
, bytenr
, orig_offset
,
982 &other_start
, &other_end
)) {
984 btrfs_release_path(path
);
987 extent_end
= other_end
;
988 del_slot
= path
->slots
[0] + 1;
990 ret
= btrfs_free_extent(trans
, root
, bytenr
, num_bytes
,
991 0, root
->root_key
.objectid
,
997 if (extent_mergeable(leaf
, path
->slots
[0] - 1,
998 ino
, bytenr
, orig_offset
,
999 &other_start
, &other_end
)) {
1001 btrfs_release_path(path
);
1004 key
.offset
= other_start
;
1005 del_slot
= path
->slots
[0];
1007 ret
= btrfs_free_extent(trans
, root
, bytenr
, num_bytes
,
1008 0, root
->root_key
.objectid
,
1013 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1014 struct btrfs_file_extent_item
);
1015 btrfs_set_file_extent_type(leaf
, fi
,
1016 BTRFS_FILE_EXTENT_REG
);
1017 btrfs_mark_buffer_dirty(leaf
);
1019 fi
= btrfs_item_ptr(leaf
, del_slot
- 1,
1020 struct btrfs_file_extent_item
);
1021 btrfs_set_file_extent_type(leaf
, fi
,
1022 BTRFS_FILE_EXTENT_REG
);
1023 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1024 extent_end
- key
.offset
);
1025 btrfs_mark_buffer_dirty(leaf
);
1027 ret
= btrfs_del_items(trans
, root
, path
, del_slot
, del_nr
);
1031 btrfs_free_path(path
);
1036 * on error we return an unlocked page and the error value
1037 * on success we return a locked page and 0
1039 static int prepare_uptodate_page(struct page
*page
, u64 pos
,
1040 bool force_uptodate
)
1044 if (((pos
& (PAGE_CACHE_SIZE
- 1)) || force_uptodate
) &&
1045 !PageUptodate(page
)) {
1046 ret
= btrfs_readpage(NULL
, page
);
1050 if (!PageUptodate(page
)) {
1059 * this gets pages into the page cache and locks them down, it also properly
1060 * waits for data=ordered extents to finish before allowing the pages to be
1063 static noinline
int prepare_pages(struct btrfs_root
*root
, struct file
*file
,
1064 struct page
**pages
, size_t num_pages
,
1065 loff_t pos
, unsigned long first_index
,
1066 size_t write_bytes
, bool force_uptodate
)
1068 struct extent_state
*cached_state
= NULL
;
1070 unsigned long index
= pos
>> PAGE_CACHE_SHIFT
;
1071 struct inode
*inode
= fdentry(file
)->d_inode
;
1072 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
1078 start_pos
= pos
& ~((u64
)root
->sectorsize
- 1);
1079 last_pos
= ((u64
)index
+ num_pages
) << PAGE_CACHE_SHIFT
;
1082 for (i
= 0; i
< num_pages
; i
++) {
1083 pages
[i
] = find_or_create_page(inode
->i_mapping
, index
+ i
,
1084 mask
| __GFP_WRITE
);
1092 err
= prepare_uptodate_page(pages
[i
], pos
,
1094 if (i
== num_pages
- 1)
1095 err
= prepare_uptodate_page(pages
[i
],
1096 pos
+ write_bytes
, false);
1098 page_cache_release(pages
[i
]);
1102 wait_on_page_writeback(pages
[i
]);
1105 if (start_pos
< inode
->i_size
) {
1106 struct btrfs_ordered_extent
*ordered
;
1107 lock_extent_bits(&BTRFS_I(inode
)->io_tree
,
1108 start_pos
, last_pos
- 1, 0, &cached_state
,
1110 ordered
= btrfs_lookup_first_ordered_extent(inode
,
1113 ordered
->file_offset
+ ordered
->len
> start_pos
&&
1114 ordered
->file_offset
< last_pos
) {
1115 btrfs_put_ordered_extent(ordered
);
1116 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1117 start_pos
, last_pos
- 1,
1118 &cached_state
, GFP_NOFS
);
1119 for (i
= 0; i
< num_pages
; i
++) {
1120 unlock_page(pages
[i
]);
1121 page_cache_release(pages
[i
]);
1123 btrfs_wait_ordered_range(inode
, start_pos
,
1124 last_pos
- start_pos
);
1128 btrfs_put_ordered_extent(ordered
);
1130 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start_pos
,
1131 last_pos
- 1, EXTENT_DIRTY
| EXTENT_DELALLOC
|
1132 EXTENT_DO_ACCOUNTING
, 0, 0, &cached_state
,
1134 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1135 start_pos
, last_pos
- 1, &cached_state
,
1138 for (i
= 0; i
< num_pages
; i
++) {
1139 clear_page_dirty_for_io(pages
[i
]);
1140 set_page_extent_mapped(pages
[i
]);
1141 WARN_ON(!PageLocked(pages
[i
]));
1145 while (faili
>= 0) {
1146 unlock_page(pages
[faili
]);
1147 page_cache_release(pages
[faili
]);
1154 static noinline ssize_t
__btrfs_buffered_write(struct file
*file
,
1158 struct inode
*inode
= fdentry(file
)->d_inode
;
1159 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1160 struct page
**pages
= NULL
;
1161 unsigned long first_index
;
1162 size_t num_written
= 0;
1165 bool force_page_uptodate
= false;
1167 nrptrs
= min((iov_iter_count(i
) + PAGE_CACHE_SIZE
- 1) /
1168 PAGE_CACHE_SIZE
, PAGE_CACHE_SIZE
/
1169 (sizeof(struct page
*)));
1170 nrptrs
= min(nrptrs
, current
->nr_dirtied_pause
- current
->nr_dirtied
);
1171 nrptrs
= max(nrptrs
, 8);
1172 pages
= kmalloc(nrptrs
* sizeof(struct page
*), GFP_KERNEL
);
1176 first_index
= pos
>> PAGE_CACHE_SHIFT
;
1178 while (iov_iter_count(i
) > 0) {
1179 size_t offset
= pos
& (PAGE_CACHE_SIZE
- 1);
1180 size_t write_bytes
= min(iov_iter_count(i
),
1181 nrptrs
* (size_t)PAGE_CACHE_SIZE
-
1183 size_t num_pages
= (write_bytes
+ offset
+
1184 PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1188 WARN_ON(num_pages
> nrptrs
);
1191 * Fault pages before locking them in prepare_pages
1192 * to avoid recursive lock
1194 if (unlikely(iov_iter_fault_in_readable(i
, write_bytes
))) {
1199 ret
= btrfs_delalloc_reserve_space(inode
,
1200 num_pages
<< PAGE_CACHE_SHIFT
);
1205 * This is going to setup the pages array with the number of
1206 * pages we want, so we don't really need to worry about the
1207 * contents of pages from loop to loop
1209 ret
= prepare_pages(root
, file
, pages
, num_pages
,
1210 pos
, first_index
, write_bytes
,
1211 force_page_uptodate
);
1213 btrfs_delalloc_release_space(inode
,
1214 num_pages
<< PAGE_CACHE_SHIFT
);
1218 copied
= btrfs_copy_from_user(pos
, num_pages
,
1219 write_bytes
, pages
, i
);
1222 * if we have trouble faulting in the pages, fall
1223 * back to one page at a time
1225 if (copied
< write_bytes
)
1229 force_page_uptodate
= true;
1232 force_page_uptodate
= false;
1233 dirty_pages
= (copied
+ offset
+
1234 PAGE_CACHE_SIZE
- 1) >>
1239 * If we had a short copy we need to release the excess delaloc
1240 * bytes we reserved. We need to increment outstanding_extents
1241 * because btrfs_delalloc_release_space will decrement it, but
1242 * we still have an outstanding extent for the chunk we actually
1245 if (num_pages
> dirty_pages
) {
1247 spin_lock(&BTRFS_I(inode
)->lock
);
1248 BTRFS_I(inode
)->outstanding_extents
++;
1249 spin_unlock(&BTRFS_I(inode
)->lock
);
1251 btrfs_delalloc_release_space(inode
,
1252 (num_pages
- dirty_pages
) <<
1257 ret
= btrfs_dirty_pages(root
, inode
, pages
,
1258 dirty_pages
, pos
, copied
,
1261 btrfs_delalloc_release_space(inode
,
1262 dirty_pages
<< PAGE_CACHE_SHIFT
);
1263 btrfs_drop_pages(pages
, num_pages
);
1268 btrfs_drop_pages(pages
, num_pages
);
1272 balance_dirty_pages_ratelimited_nr(inode
->i_mapping
,
1274 if (dirty_pages
< (root
->leafsize
>> PAGE_CACHE_SHIFT
) + 1)
1275 btrfs_btree_balance_dirty(root
, 1);
1276 btrfs_throttle(root
);
1279 num_written
+= copied
;
1284 return num_written
? num_written
: ret
;
1287 static ssize_t
__btrfs_direct_write(struct kiocb
*iocb
,
1288 const struct iovec
*iov
,
1289 unsigned long nr_segs
, loff_t pos
,
1290 loff_t
*ppos
, size_t count
, size_t ocount
)
1292 struct file
*file
= iocb
->ki_filp
;
1293 struct inode
*inode
= fdentry(file
)->d_inode
;
1296 ssize_t written_buffered
;
1300 written
= generic_file_direct_write(iocb
, iov
, &nr_segs
, pos
, ppos
,
1304 * the generic O_DIRECT will update in-memory i_size after the
1305 * DIOs are done. But our endio handlers that update the on
1306 * disk i_size never update past the in memory i_size. So we
1307 * need one more update here to catch any additions to the
1310 if (inode
->i_size
!= BTRFS_I(inode
)->disk_i_size
) {
1311 btrfs_ordered_update_i_size(inode
, inode
->i_size
, NULL
);
1312 mark_inode_dirty(inode
);
1315 if (written
< 0 || written
== count
)
1320 iov_iter_init(&i
, iov
, nr_segs
, count
, written
);
1321 written_buffered
= __btrfs_buffered_write(file
, &i
, pos
);
1322 if (written_buffered
< 0) {
1323 err
= written_buffered
;
1326 endbyte
= pos
+ written_buffered
- 1;
1327 err
= filemap_write_and_wait_range(file
->f_mapping
, pos
, endbyte
);
1330 written
+= written_buffered
;
1331 *ppos
= pos
+ written_buffered
;
1332 invalidate_mapping_pages(file
->f_mapping
, pos
>> PAGE_CACHE_SHIFT
,
1333 endbyte
>> PAGE_CACHE_SHIFT
);
1335 return written
? written
: err
;
1338 static ssize_t
btrfs_file_aio_write(struct kiocb
*iocb
,
1339 const struct iovec
*iov
,
1340 unsigned long nr_segs
, loff_t pos
)
1342 struct file
*file
= iocb
->ki_filp
;
1343 struct inode
*inode
= fdentry(file
)->d_inode
;
1344 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1345 loff_t
*ppos
= &iocb
->ki_pos
;
1347 ssize_t num_written
= 0;
1349 size_t count
, ocount
;
1351 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
1353 mutex_lock(&inode
->i_mutex
);
1355 err
= generic_segment_checks(iov
, &nr_segs
, &ocount
, VERIFY_READ
);
1357 mutex_unlock(&inode
->i_mutex
);
1362 current
->backing_dev_info
= inode
->i_mapping
->backing_dev_info
;
1363 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
1365 mutex_unlock(&inode
->i_mutex
);
1370 mutex_unlock(&inode
->i_mutex
);
1374 err
= file_remove_suid(file
);
1376 mutex_unlock(&inode
->i_mutex
);
1381 * If BTRFS flips readonly due to some impossible error
1382 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1383 * although we have opened a file as writable, we have
1384 * to stop this write operation to ensure FS consistency.
1386 if (root
->fs_info
->fs_state
& BTRFS_SUPER_FLAG_ERROR
) {
1387 mutex_unlock(&inode
->i_mutex
);
1392 err
= btrfs_update_time(file
);
1394 mutex_unlock(&inode
->i_mutex
);
1397 BTRFS_I(inode
)->sequence
++;
1399 start_pos
= round_down(pos
, root
->sectorsize
);
1400 if (start_pos
> i_size_read(inode
)) {
1401 err
= btrfs_cont_expand(inode
, i_size_read(inode
), start_pos
);
1403 mutex_unlock(&inode
->i_mutex
);
1408 if (unlikely(file
->f_flags
& O_DIRECT
)) {
1409 num_written
= __btrfs_direct_write(iocb
, iov
, nr_segs
,
1410 pos
, ppos
, count
, ocount
);
1414 iov_iter_init(&i
, iov
, nr_segs
, count
, num_written
);
1416 num_written
= __btrfs_buffered_write(file
, &i
, pos
);
1417 if (num_written
> 0)
1418 *ppos
= pos
+ num_written
;
1421 mutex_unlock(&inode
->i_mutex
);
1424 * we want to make sure fsync finds this change
1425 * but we haven't joined a transaction running right now.
1427 * Later on, someone is sure to update the inode and get the
1428 * real transid recorded.
1430 * We set last_trans now to the fs_info generation + 1,
1431 * this will either be one more than the running transaction
1432 * or the generation used for the next transaction if there isn't
1433 * one running right now.
1435 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
+ 1;
1436 if (num_written
> 0 || num_written
== -EIOCBQUEUED
) {
1437 err
= generic_write_sync(file
, pos
, num_written
);
1438 if (err
< 0 && num_written
> 0)
1442 current
->backing_dev_info
= NULL
;
1443 return num_written
? num_written
: err
;
1446 int btrfs_release_file(struct inode
*inode
, struct file
*filp
)
1449 * ordered_data_close is set by settattr when we are about to truncate
1450 * a file from a non-zero size to a zero size. This tries to
1451 * flush down new bytes that may have been written if the
1452 * application were using truncate to replace a file in place.
1454 if (BTRFS_I(inode
)->ordered_data_close
) {
1455 BTRFS_I(inode
)->ordered_data_close
= 0;
1456 btrfs_add_ordered_operation(NULL
, BTRFS_I(inode
)->root
, inode
);
1457 if (inode
->i_size
> BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT
)
1458 filemap_flush(inode
->i_mapping
);
1460 if (filp
->private_data
)
1461 btrfs_ioctl_trans_end(filp
);
1466 * fsync call for both files and directories. This logs the inode into
1467 * the tree log instead of forcing full commits whenever possible.
1469 * It needs to call filemap_fdatawait so that all ordered extent updates are
1470 * in the metadata btree are up to date for copying to the log.
1472 * It drops the inode mutex before doing the tree log commit. This is an
1473 * important optimization for directories because holding the mutex prevents
1474 * new operations on the dir while we write to disk.
1476 int btrfs_sync_file(struct file
*file
, loff_t start
, loff_t end
, int datasync
)
1478 struct dentry
*dentry
= file
->f_path
.dentry
;
1479 struct inode
*inode
= dentry
->d_inode
;
1480 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1482 struct btrfs_trans_handle
*trans
;
1484 trace_btrfs_sync_file(file
, datasync
);
1486 ret
= filemap_write_and_wait_range(inode
->i_mapping
, start
, end
);
1489 mutex_lock(&inode
->i_mutex
);
1491 /* we wait first, since the writeback may change the inode */
1493 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
1497 * check the transaction that last modified this inode
1498 * and see if its already been committed
1500 if (!BTRFS_I(inode
)->last_trans
) {
1501 mutex_unlock(&inode
->i_mutex
);
1506 * if the last transaction that changed this file was before
1507 * the current transaction, we can bail out now without any
1511 if (BTRFS_I(inode
)->last_trans
<=
1512 root
->fs_info
->last_trans_committed
) {
1513 BTRFS_I(inode
)->last_trans
= 0;
1514 mutex_unlock(&inode
->i_mutex
);
1519 * ok we haven't committed the transaction yet, lets do a commit
1521 if (file
->private_data
)
1522 btrfs_ioctl_trans_end(file
);
1524 trans
= btrfs_start_transaction(root
, 0);
1525 if (IS_ERR(trans
)) {
1526 ret
= PTR_ERR(trans
);
1527 mutex_unlock(&inode
->i_mutex
);
1531 ret
= btrfs_log_dentry_safe(trans
, root
, dentry
);
1533 mutex_unlock(&inode
->i_mutex
);
1537 /* we've logged all the items and now have a consistent
1538 * version of the file in the log. It is possible that
1539 * someone will come in and modify the file, but that's
1540 * fine because the log is consistent on disk, and we
1541 * have references to all of the file's extents
1543 * It is possible that someone will come in and log the
1544 * file again, but that will end up using the synchronization
1545 * inside btrfs_sync_log to keep things safe.
1547 mutex_unlock(&inode
->i_mutex
);
1549 if (ret
!= BTRFS_NO_LOG_SYNC
) {
1551 ret
= btrfs_commit_transaction(trans
, root
);
1553 ret
= btrfs_sync_log(trans
, root
);
1555 ret
= btrfs_end_transaction(trans
, root
);
1557 ret
= btrfs_commit_transaction(trans
, root
);
1560 ret
= btrfs_end_transaction(trans
, root
);
1563 return ret
> 0 ? -EIO
: ret
;
1566 static const struct vm_operations_struct btrfs_file_vm_ops
= {
1567 .fault
= filemap_fault
,
1568 .page_mkwrite
= btrfs_page_mkwrite
,
1571 static int btrfs_file_mmap(struct file
*filp
, struct vm_area_struct
*vma
)
1573 struct address_space
*mapping
= filp
->f_mapping
;
1575 if (!mapping
->a_ops
->readpage
)
1578 file_accessed(filp
);
1579 vma
->vm_ops
= &btrfs_file_vm_ops
;
1580 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1585 static long btrfs_fallocate(struct file
*file
, int mode
,
1586 loff_t offset
, loff_t len
)
1588 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1589 struct extent_state
*cached_state
= NULL
;
1596 u64 mask
= BTRFS_I(inode
)->root
->sectorsize
- 1;
1597 struct extent_map
*em
;
1600 alloc_start
= offset
& ~mask
;
1601 alloc_end
= (offset
+ len
+ mask
) & ~mask
;
1603 /* We only support the FALLOC_FL_KEEP_SIZE mode */
1604 if (mode
& ~FALLOC_FL_KEEP_SIZE
)
1608 * wait for ordered IO before we have any locks. We'll loop again
1609 * below with the locks held.
1611 btrfs_wait_ordered_range(inode
, alloc_start
, alloc_end
- alloc_start
);
1613 mutex_lock(&inode
->i_mutex
);
1614 ret
= inode_newsize_ok(inode
, alloc_end
);
1618 if (alloc_start
> inode
->i_size
) {
1619 ret
= btrfs_cont_expand(inode
, i_size_read(inode
),
1625 locked_end
= alloc_end
- 1;
1627 struct btrfs_ordered_extent
*ordered
;
1629 /* the extent lock is ordered inside the running
1632 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, alloc_start
,
1633 locked_end
, 0, &cached_state
, GFP_NOFS
);
1634 ordered
= btrfs_lookup_first_ordered_extent(inode
,
1637 ordered
->file_offset
+ ordered
->len
> alloc_start
&&
1638 ordered
->file_offset
< alloc_end
) {
1639 btrfs_put_ordered_extent(ordered
);
1640 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1641 alloc_start
, locked_end
,
1642 &cached_state
, GFP_NOFS
);
1644 * we can't wait on the range with the transaction
1645 * running or with the extent lock held
1647 btrfs_wait_ordered_range(inode
, alloc_start
,
1648 alloc_end
- alloc_start
);
1651 btrfs_put_ordered_extent(ordered
);
1656 cur_offset
= alloc_start
;
1660 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
1661 alloc_end
- cur_offset
, 0);
1662 BUG_ON(IS_ERR_OR_NULL(em
));
1663 last_byte
= min(extent_map_end(em
), alloc_end
);
1664 actual_end
= min_t(u64
, extent_map_end(em
), offset
+ len
);
1665 last_byte
= (last_byte
+ mask
) & ~mask
;
1667 if (em
->block_start
== EXTENT_MAP_HOLE
||
1668 (cur_offset
>= inode
->i_size
&&
1669 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
1672 * Make sure we have enough space before we do the
1675 ret
= btrfs_check_data_free_space(inode
, last_byte
-
1678 free_extent_map(em
);
1682 ret
= btrfs_prealloc_file_range(inode
, mode
, cur_offset
,
1683 last_byte
- cur_offset
,
1684 1 << inode
->i_blkbits
,
1688 /* Let go of our reservation. */
1689 btrfs_free_reserved_data_space(inode
, last_byte
-
1692 free_extent_map(em
);
1695 } else if (actual_end
> inode
->i_size
&&
1696 !(mode
& FALLOC_FL_KEEP_SIZE
)) {
1698 * We didn't need to allocate any more space, but we
1699 * still extended the size of the file so we need to
1702 inode
->i_ctime
= CURRENT_TIME
;
1703 i_size_write(inode
, actual_end
);
1704 btrfs_ordered_update_i_size(inode
, actual_end
, NULL
);
1706 free_extent_map(em
);
1708 cur_offset
= last_byte
;
1709 if (cur_offset
>= alloc_end
) {
1714 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, alloc_start
, locked_end
,
1715 &cached_state
, GFP_NOFS
);
1717 mutex_unlock(&inode
->i_mutex
);
1721 static int find_desired_extent(struct inode
*inode
, loff_t
*offset
, int origin
)
1723 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1724 struct extent_map
*em
;
1725 struct extent_state
*cached_state
= NULL
;
1726 u64 lockstart
= *offset
;
1727 u64 lockend
= i_size_read(inode
);
1728 u64 start
= *offset
;
1729 u64 orig_start
= *offset
;
1730 u64 len
= i_size_read(inode
);
1734 lockend
= max_t(u64
, root
->sectorsize
, lockend
);
1735 if (lockend
<= lockstart
)
1736 lockend
= lockstart
+ root
->sectorsize
;
1738 len
= lockend
- lockstart
+ 1;
1740 len
= max_t(u64
, len
, root
->sectorsize
);
1741 if (inode
->i_size
== 0)
1744 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
, 0,
1745 &cached_state
, GFP_NOFS
);
1748 * Delalloc is such a pain. If we have a hole and we have pending
1749 * delalloc for a portion of the hole we will get back a hole that
1750 * exists for the entire range since it hasn't been actually written
1751 * yet. So to take care of this case we need to look for an extent just
1752 * before the position we want in case there is outstanding delalloc
1755 if (origin
== SEEK_HOLE
&& start
!= 0) {
1756 if (start
<= root
->sectorsize
)
1757 em
= btrfs_get_extent_fiemap(inode
, NULL
, 0, 0,
1758 root
->sectorsize
, 0);
1760 em
= btrfs_get_extent_fiemap(inode
, NULL
, 0,
1761 start
- root
->sectorsize
,
1762 root
->sectorsize
, 0);
1767 last_end
= em
->start
+ em
->len
;
1768 if (em
->block_start
== EXTENT_MAP_DELALLOC
)
1769 last_end
= min_t(u64
, last_end
, inode
->i_size
);
1770 free_extent_map(em
);
1774 em
= btrfs_get_extent_fiemap(inode
, NULL
, 0, start
, len
, 0);
1780 if (em
->block_start
== EXTENT_MAP_HOLE
) {
1781 if (test_bit(EXTENT_FLAG_VACANCY
, &em
->flags
)) {
1782 if (last_end
<= orig_start
) {
1783 free_extent_map(em
);
1789 if (origin
== SEEK_HOLE
) {
1791 free_extent_map(em
);
1795 if (origin
== SEEK_DATA
) {
1796 if (em
->block_start
== EXTENT_MAP_DELALLOC
) {
1797 if (start
>= inode
->i_size
) {
1798 free_extent_map(em
);
1805 free_extent_map(em
);
1810 start
= em
->start
+ em
->len
;
1811 last_end
= em
->start
+ em
->len
;
1813 if (em
->block_start
== EXTENT_MAP_DELALLOC
)
1814 last_end
= min_t(u64
, last_end
, inode
->i_size
);
1816 if (test_bit(EXTENT_FLAG_VACANCY
, &em
->flags
)) {
1817 free_extent_map(em
);
1821 free_extent_map(em
);
1825 *offset
= min(*offset
, inode
->i_size
);
1827 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
1828 &cached_state
, GFP_NOFS
);
1832 static loff_t
btrfs_file_llseek(struct file
*file
, loff_t offset
, int origin
)
1834 struct inode
*inode
= file
->f_mapping
->host
;
1837 mutex_lock(&inode
->i_mutex
);
1841 offset
= generic_file_llseek(file
, offset
, origin
);
1845 if (offset
>= i_size_read(inode
)) {
1846 mutex_unlock(&inode
->i_mutex
);
1850 ret
= find_desired_extent(inode
, &offset
, origin
);
1852 mutex_unlock(&inode
->i_mutex
);
1857 if (offset
< 0 && !(file
->f_mode
& FMODE_UNSIGNED_OFFSET
)) {
1861 if (offset
> inode
->i_sb
->s_maxbytes
) {
1866 /* Special lock needed here? */
1867 if (offset
!= file
->f_pos
) {
1868 file
->f_pos
= offset
;
1869 file
->f_version
= 0;
1872 mutex_unlock(&inode
->i_mutex
);
1876 const struct file_operations btrfs_file_operations
= {
1877 .llseek
= btrfs_file_llseek
,
1878 .read
= do_sync_read
,
1879 .write
= do_sync_write
,
1880 .aio_read
= generic_file_aio_read
,
1881 .splice_read
= generic_file_splice_read
,
1882 .aio_write
= btrfs_file_aio_write
,
1883 .mmap
= btrfs_file_mmap
,
1884 .open
= generic_file_open
,
1885 .release
= btrfs_release_file
,
1886 .fsync
= btrfs_sync_file
,
1887 .fallocate
= btrfs_fallocate
,
1888 .unlocked_ioctl
= btrfs_ioctl
,
1889 #ifdef CONFIG_COMPAT
1890 .compat_ioctl
= btrfs_ioctl
,