[PATCH] Defer tulip_select_media() to process context
[linux-2.6.git] / drivers / net / tulip / tulip_core.c
blob7e1ca3cae1ee3c23c5ac043f2572bce52537cfbb
1 /* tulip_core.c: A DEC 21x4x-family ethernet driver for Linux. */
3 /*
4 Maintained by Valerie Henson <val_henson@linux.intel.com>
5 Copyright 2000,2001 The Linux Kernel Team
6 Written/copyright 1994-2001 by Donald Becker.
8 This software may be used and distributed according to the terms
9 of the GNU General Public License, incorporated herein by reference.
11 Please refer to Documentation/DocBook/tulip-user.{pdf,ps,html}
12 for more information on this driver, or visit the project
13 Web page at http://sourceforge.net/projects/tulip/
18 #define DRV_NAME "tulip"
19 #ifdef CONFIG_TULIP_NAPI
20 #define DRV_VERSION "1.1.13-NAPI" /* Keep at least for test */
21 #else
22 #define DRV_VERSION "1.1.13"
23 #endif
24 #define DRV_RELDATE "May 11, 2002"
27 #include <linux/module.h>
28 #include <linux/pci.h>
29 #include "tulip.h"
30 #include <linux/init.h>
31 #include <linux/etherdevice.h>
32 #include <linux/delay.h>
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/crc32.h>
36 #include <asm/unaligned.h>
37 #include <asm/uaccess.h>
39 #ifdef __sparc__
40 #include <asm/pbm.h>
41 #endif
43 static char version[] __devinitdata =
44 "Linux Tulip driver version " DRV_VERSION " (" DRV_RELDATE ")\n";
47 /* A few user-configurable values. */
49 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
50 static unsigned int max_interrupt_work = 25;
52 #define MAX_UNITS 8
53 /* Used to pass the full-duplex flag, etc. */
54 static int full_duplex[MAX_UNITS];
55 static int options[MAX_UNITS];
56 static int mtu[MAX_UNITS]; /* Jumbo MTU for interfaces. */
58 /* The possible media types that can be set in options[] are: */
59 const char * const medianame[32] = {
60 "10baseT", "10base2", "AUI", "100baseTx",
61 "10baseT-FDX", "100baseTx-FDX", "100baseT4", "100baseFx",
62 "100baseFx-FDX", "MII 10baseT", "MII 10baseT-FDX", "MII",
63 "10baseT(forced)", "MII 100baseTx", "MII 100baseTx-FDX", "MII 100baseT4",
64 "MII 100baseFx-HDX", "MII 100baseFx-FDX", "Home-PNA 1Mbps", "Invalid-19",
65 "","","","", "","","","", "","","","Transceiver reset",
68 /* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
69 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) \
70 || defined(__sparc_) || defined(__ia64__) \
71 || defined(__sh__) || defined(__mips__)
72 static int rx_copybreak = 1518;
73 #else
74 static int rx_copybreak = 100;
75 #endif
78 Set the bus performance register.
79 Typical: Set 16 longword cache alignment, no burst limit.
80 Cache alignment bits 15:14 Burst length 13:8
81 0000 No alignment 0x00000000 unlimited 0800 8 longwords
82 4000 8 longwords 0100 1 longword 1000 16 longwords
83 8000 16 longwords 0200 2 longwords 2000 32 longwords
84 C000 32 longwords 0400 4 longwords
85 Warning: many older 486 systems are broken and require setting 0x00A04800
86 8 longword cache alignment, 8 longword burst.
87 ToDo: Non-Intel setting could be better.
90 #if defined(__alpha__) || defined(__ia64__)
91 static int csr0 = 0x01A00000 | 0xE000;
92 #elif defined(__i386__) || defined(__powerpc__) || defined(__x86_64__)
93 static int csr0 = 0x01A00000 | 0x8000;
94 #elif defined(__sparc__) || defined(__hppa__)
95 /* The UltraSparc PCI controllers will disconnect at every 64-byte
96 * crossing anyways so it makes no sense to tell Tulip to burst
97 * any more than that.
99 static int csr0 = 0x01A00000 | 0x9000;
100 #elif defined(__arm__) || defined(__sh__)
101 static int csr0 = 0x01A00000 | 0x4800;
102 #elif defined(__mips__)
103 static int csr0 = 0x00200000 | 0x4000;
104 #else
105 #warning Processor architecture undefined!
106 static int csr0 = 0x00A00000 | 0x4800;
107 #endif
109 /* Operational parameters that usually are not changed. */
110 /* Time in jiffies before concluding the transmitter is hung. */
111 #define TX_TIMEOUT (4*HZ)
114 MODULE_AUTHOR("The Linux Kernel Team");
115 MODULE_DESCRIPTION("Digital 21*4* Tulip ethernet driver");
116 MODULE_LICENSE("GPL");
117 MODULE_VERSION(DRV_VERSION);
118 module_param(tulip_debug, int, 0);
119 module_param(max_interrupt_work, int, 0);
120 module_param(rx_copybreak, int, 0);
121 module_param(csr0, int, 0);
122 module_param_array(options, int, NULL, 0);
123 module_param_array(full_duplex, int, NULL, 0);
125 #define PFX DRV_NAME ": "
127 #ifdef TULIP_DEBUG
128 int tulip_debug = TULIP_DEBUG;
129 #else
130 int tulip_debug = 1;
131 #endif
133 static void tulip_timer(unsigned long data)
135 struct net_device *dev = (struct net_device *)data;
136 struct tulip_private *tp = netdev_priv(dev);
138 if (netif_running(dev))
139 schedule_work(&tp->media_work);
143 * This table use during operation for capabilities and media timer.
145 * It is indexed via the values in 'enum chips'
148 struct tulip_chip_table tulip_tbl[] = {
149 { }, /* placeholder for array, slot unused currently */
150 { }, /* placeholder for array, slot unused currently */
152 /* DC21140 */
153 { "Digital DS21140 Tulip", 128, 0x0001ebef,
154 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_PCI_MWI, tulip_timer,
155 tulip_media_task },
157 /* DC21142, DC21143 */
158 { "Digital DS21142/43 Tulip", 128, 0x0801fbff,
159 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI | HAS_NWAY
160 | HAS_INTR_MITIGATION | HAS_PCI_MWI, tulip_timer, t21142_media_task },
162 /* LC82C168 */
163 { "Lite-On 82c168 PNIC", 256, 0x0001fbef,
164 HAS_MII | HAS_PNICNWAY, pnic_timer, },
166 /* MX98713 */
167 { "Macronix 98713 PMAC", 128, 0x0001ebef,
168 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, },
170 /* MX98715 */
171 { "Macronix 98715 PMAC", 256, 0x0001ebef,
172 HAS_MEDIA_TABLE, mxic_timer, },
174 /* MX98725 */
175 { "Macronix 98725 PMAC", 256, 0x0001ebef,
176 HAS_MEDIA_TABLE, mxic_timer, },
178 /* AX88140 */
179 { "ASIX AX88140", 128, 0x0001fbff,
180 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | MC_HASH_ONLY
181 | IS_ASIX, tulip_timer, tulip_media_task },
183 /* PNIC2 */
184 { "Lite-On PNIC-II", 256, 0x0801fbff,
185 HAS_MII | HAS_NWAY | HAS_8023X | HAS_PCI_MWI, pnic2_timer, },
187 /* COMET */
188 { "ADMtek Comet", 256, 0x0001abef,
189 HAS_MII | MC_HASH_ONLY | COMET_MAC_ADDR, comet_timer, },
191 /* COMPEX9881 */
192 { "Compex 9881 PMAC", 128, 0x0001ebef,
193 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, },
195 /* I21145 */
196 { "Intel DS21145 Tulip", 128, 0x0801fbff,
197 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI
198 | HAS_NWAY | HAS_PCI_MWI, tulip_timer, tulip_media_task },
200 /* DM910X */
201 { "Davicom DM9102/DM9102A", 128, 0x0001ebef,
202 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_ACPI,
203 tulip_timer, tulip_media_task },
205 /* RS7112 */
206 { "Conexant LANfinity", 256, 0x0001ebef,
207 HAS_MII | HAS_ACPI, tulip_timer, tulip_media_task },
212 static struct pci_device_id tulip_pci_tbl[] = {
213 { 0x1011, 0x0009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21140 },
214 { 0x1011, 0x0019, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21143 },
215 { 0x11AD, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, LC82C168 },
216 { 0x10d9, 0x0512, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98713 },
217 { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
218 /* { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98725 },*/
219 { 0x125B, 0x1400, PCI_ANY_ID, PCI_ANY_ID, 0, 0, AX88140 },
220 { 0x11AD, 0xc115, PCI_ANY_ID, PCI_ANY_ID, 0, 0, PNIC2 },
221 { 0x1317, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
222 { 0x1317, 0x0985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
223 { 0x1317, 0x1985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
224 { 0x1317, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
225 { 0x13D1, 0xAB02, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
226 { 0x13D1, 0xAB03, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
227 { 0x13D1, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
228 { 0x104A, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
229 { 0x104A, 0x2774, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
230 { 0x1259, 0xa120, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
231 { 0x11F6, 0x9881, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMPEX9881 },
232 { 0x8086, 0x0039, PCI_ANY_ID, PCI_ANY_ID, 0, 0, I21145 },
233 { 0x1282, 0x9100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
234 { 0x1282, 0x9102, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
235 { 0x1113, 0x1216, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
236 { 0x1113, 0x1217, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
237 { 0x1113, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
238 { 0x1186, 0x1541, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
239 { 0x1186, 0x1561, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
240 { 0x1186, 0x1591, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
241 { 0x14f1, 0x1803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CONEXANT },
242 { 0x1626, 0x8410, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
243 { 0x1737, 0xAB09, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
244 { 0x1737, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
245 { 0x17B3, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
246 { 0x10b7, 0x9300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* 3Com 3CSOHO100B-TX */
247 { 0x14ea, 0xab08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* Planex FNW-3602-TX */
248 { 0x1414, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
249 { } /* terminate list */
251 MODULE_DEVICE_TABLE(pci, tulip_pci_tbl);
254 /* A full-duplex map for media types. */
255 const char tulip_media_cap[32] =
256 {0,0,0,16, 3,19,16,24, 27,4,7,5, 0,20,23,20, 28,31,0,0, };
258 static void tulip_tx_timeout(struct net_device *dev);
259 static void tulip_init_ring(struct net_device *dev);
260 static int tulip_start_xmit(struct sk_buff *skb, struct net_device *dev);
261 static int tulip_open(struct net_device *dev);
262 static int tulip_close(struct net_device *dev);
263 static void tulip_up(struct net_device *dev);
264 static void tulip_down(struct net_device *dev);
265 static struct net_device_stats *tulip_get_stats(struct net_device *dev);
266 static int private_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
267 static void set_rx_mode(struct net_device *dev);
268 #ifdef CONFIG_NET_POLL_CONTROLLER
269 static void poll_tulip(struct net_device *dev);
270 #endif
272 static void tulip_set_power_state (struct tulip_private *tp,
273 int sleep, int snooze)
275 if (tp->flags & HAS_ACPI) {
276 u32 tmp, newtmp;
277 pci_read_config_dword (tp->pdev, CFDD, &tmp);
278 newtmp = tmp & ~(CFDD_Sleep | CFDD_Snooze);
279 if (sleep)
280 newtmp |= CFDD_Sleep;
281 else if (snooze)
282 newtmp |= CFDD_Snooze;
283 if (tmp != newtmp)
284 pci_write_config_dword (tp->pdev, CFDD, newtmp);
290 static void tulip_up(struct net_device *dev)
292 struct tulip_private *tp = netdev_priv(dev);
293 void __iomem *ioaddr = tp->base_addr;
294 int next_tick = 3*HZ;
295 int i;
297 /* Wake the chip from sleep/snooze mode. */
298 tulip_set_power_state (tp, 0, 0);
300 /* On some chip revs we must set the MII/SYM port before the reset!? */
301 if (tp->mii_cnt || (tp->mtable && tp->mtable->has_mii))
302 iowrite32(0x00040000, ioaddr + CSR6);
304 /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
305 iowrite32(0x00000001, ioaddr + CSR0);
306 pci_read_config_dword(tp->pdev, PCI_COMMAND, &i); /* flush write */
307 udelay(100);
309 /* Deassert reset.
310 Wait the specified 50 PCI cycles after a reset by initializing
311 Tx and Rx queues and the address filter list. */
312 iowrite32(tp->csr0, ioaddr + CSR0);
313 pci_read_config_dword(tp->pdev, PCI_COMMAND, &i); /* flush write */
314 udelay(100);
316 if (tulip_debug > 1)
317 printk(KERN_DEBUG "%s: tulip_up(), irq==%d.\n", dev->name, dev->irq);
319 iowrite32(tp->rx_ring_dma, ioaddr + CSR3);
320 iowrite32(tp->tx_ring_dma, ioaddr + CSR4);
321 tp->cur_rx = tp->cur_tx = 0;
322 tp->dirty_rx = tp->dirty_tx = 0;
324 if (tp->flags & MC_HASH_ONLY) {
325 u32 addr_low = le32_to_cpu(get_unaligned((u32 *)dev->dev_addr));
326 u32 addr_high = le16_to_cpu(get_unaligned((u16 *)(dev->dev_addr+4)));
327 if (tp->chip_id == AX88140) {
328 iowrite32(0, ioaddr + CSR13);
329 iowrite32(addr_low, ioaddr + CSR14);
330 iowrite32(1, ioaddr + CSR13);
331 iowrite32(addr_high, ioaddr + CSR14);
332 } else if (tp->flags & COMET_MAC_ADDR) {
333 iowrite32(addr_low, ioaddr + 0xA4);
334 iowrite32(addr_high, ioaddr + 0xA8);
335 iowrite32(0, ioaddr + 0xAC);
336 iowrite32(0, ioaddr + 0xB0);
338 } else {
339 /* This is set_rx_mode(), but without starting the transmitter. */
340 u16 *eaddrs = (u16 *)dev->dev_addr;
341 u16 *setup_frm = &tp->setup_frame[15*6];
342 dma_addr_t mapping;
344 /* 21140 bug: you must add the broadcast address. */
345 memset(tp->setup_frame, 0xff, sizeof(tp->setup_frame));
346 /* Fill the final entry of the table with our physical address. */
347 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
348 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
349 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
351 mapping = pci_map_single(tp->pdev, tp->setup_frame,
352 sizeof(tp->setup_frame),
353 PCI_DMA_TODEVICE);
354 tp->tx_buffers[tp->cur_tx].skb = NULL;
355 tp->tx_buffers[tp->cur_tx].mapping = mapping;
357 /* Put the setup frame on the Tx list. */
358 tp->tx_ring[tp->cur_tx].length = cpu_to_le32(0x08000000 | 192);
359 tp->tx_ring[tp->cur_tx].buffer1 = cpu_to_le32(mapping);
360 tp->tx_ring[tp->cur_tx].status = cpu_to_le32(DescOwned);
362 tp->cur_tx++;
365 tp->saved_if_port = dev->if_port;
366 if (dev->if_port == 0)
367 dev->if_port = tp->default_port;
369 /* Allow selecting a default media. */
370 i = 0;
371 if (tp->mtable == NULL)
372 goto media_picked;
373 if (dev->if_port) {
374 int looking_for = tulip_media_cap[dev->if_port] & MediaIsMII ? 11 :
375 (dev->if_port == 12 ? 0 : dev->if_port);
376 for (i = 0; i < tp->mtable->leafcount; i++)
377 if (tp->mtable->mleaf[i].media == looking_for) {
378 printk(KERN_INFO "%s: Using user-specified media %s.\n",
379 dev->name, medianame[dev->if_port]);
380 goto media_picked;
383 if ((tp->mtable->defaultmedia & 0x0800) == 0) {
384 int looking_for = tp->mtable->defaultmedia & MEDIA_MASK;
385 for (i = 0; i < tp->mtable->leafcount; i++)
386 if (tp->mtable->mleaf[i].media == looking_for) {
387 printk(KERN_INFO "%s: Using EEPROM-set media %s.\n",
388 dev->name, medianame[looking_for]);
389 goto media_picked;
392 /* Start sensing first non-full-duplex media. */
393 for (i = tp->mtable->leafcount - 1;
394 (tulip_media_cap[tp->mtable->mleaf[i].media] & MediaAlwaysFD) && i > 0; i--)
396 media_picked:
398 tp->csr6 = 0;
399 tp->cur_index = i;
400 tp->nwayset = 0;
402 if (dev->if_port) {
403 if (tp->chip_id == DC21143 &&
404 (tulip_media_cap[dev->if_port] & MediaIsMII)) {
405 /* We must reset the media CSRs when we force-select MII mode. */
406 iowrite32(0x0000, ioaddr + CSR13);
407 iowrite32(0x0000, ioaddr + CSR14);
408 iowrite32(0x0008, ioaddr + CSR15);
410 tulip_select_media(dev, 1);
411 } else if (tp->chip_id == DC21142) {
412 if (tp->mii_cnt) {
413 tulip_select_media(dev, 1);
414 if (tulip_debug > 1)
415 printk(KERN_INFO "%s: Using MII transceiver %d, status "
416 "%4.4x.\n",
417 dev->name, tp->phys[0], tulip_mdio_read(dev, tp->phys[0], 1));
418 iowrite32(csr6_mask_defstate, ioaddr + CSR6);
419 tp->csr6 = csr6_mask_hdcap;
420 dev->if_port = 11;
421 iowrite32(0x0000, ioaddr + CSR13);
422 iowrite32(0x0000, ioaddr + CSR14);
423 } else
424 t21142_start_nway(dev);
425 } else if (tp->chip_id == PNIC2) {
426 /* for initial startup advertise 10/100 Full and Half */
427 tp->sym_advertise = 0x01E0;
428 /* enable autonegotiate end interrupt */
429 iowrite32(ioread32(ioaddr+CSR5)| 0x00008010, ioaddr + CSR5);
430 iowrite32(ioread32(ioaddr+CSR7)| 0x00008010, ioaddr + CSR7);
431 pnic2_start_nway(dev);
432 } else if (tp->chip_id == LC82C168 && ! tp->medialock) {
433 if (tp->mii_cnt) {
434 dev->if_port = 11;
435 tp->csr6 = 0x814C0000 | (tp->full_duplex ? 0x0200 : 0);
436 iowrite32(0x0001, ioaddr + CSR15);
437 } else if (ioread32(ioaddr + CSR5) & TPLnkPass)
438 pnic_do_nway(dev);
439 else {
440 /* Start with 10mbps to do autonegotiation. */
441 iowrite32(0x32, ioaddr + CSR12);
442 tp->csr6 = 0x00420000;
443 iowrite32(0x0001B078, ioaddr + 0xB8);
444 iowrite32(0x0201B078, ioaddr + 0xB8);
445 next_tick = 1*HZ;
447 } else if ((tp->chip_id == MX98713 || tp->chip_id == COMPEX9881)
448 && ! tp->medialock) {
449 dev->if_port = 0;
450 tp->csr6 = 0x01880000 | (tp->full_duplex ? 0x0200 : 0);
451 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
452 } else if (tp->chip_id == MX98715 || tp->chip_id == MX98725) {
453 /* Provided by BOLO, Macronix - 12/10/1998. */
454 dev->if_port = 0;
455 tp->csr6 = 0x01a80200;
456 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
457 iowrite32(0x11000 | ioread16(ioaddr + 0xa0), ioaddr + 0xa0);
458 } else if (tp->chip_id == COMET || tp->chip_id == CONEXANT) {
459 /* Enable automatic Tx underrun recovery. */
460 iowrite32(ioread32(ioaddr + 0x88) | 1, ioaddr + 0x88);
461 dev->if_port = tp->mii_cnt ? 11 : 0;
462 tp->csr6 = 0x00040000;
463 } else if (tp->chip_id == AX88140) {
464 tp->csr6 = tp->mii_cnt ? 0x00040100 : 0x00000100;
465 } else
466 tulip_select_media(dev, 1);
468 /* Start the chip's Tx to process setup frame. */
469 tulip_stop_rxtx(tp);
470 barrier();
471 udelay(5);
472 iowrite32(tp->csr6 | TxOn, ioaddr + CSR6);
474 /* Enable interrupts by setting the interrupt mask. */
475 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR5);
476 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR7);
477 tulip_start_rxtx(tp);
478 iowrite32(0, ioaddr + CSR2); /* Rx poll demand */
480 if (tulip_debug > 2) {
481 printk(KERN_DEBUG "%s: Done tulip_up(), CSR0 %8.8x, CSR5 %8.8x CSR6 %8.8x.\n",
482 dev->name, ioread32(ioaddr + CSR0), ioread32(ioaddr + CSR5),
483 ioread32(ioaddr + CSR6));
486 /* Set the timer to switch to check for link beat and perhaps switch
487 to an alternate media type. */
488 tp->timer.expires = RUN_AT(next_tick);
489 add_timer(&tp->timer);
490 #ifdef CONFIG_TULIP_NAPI
491 init_timer(&tp->oom_timer);
492 tp->oom_timer.data = (unsigned long)dev;
493 tp->oom_timer.function = oom_timer;
494 #endif
497 static int
498 tulip_open(struct net_device *dev)
500 int retval;
502 if ((retval = request_irq(dev->irq, &tulip_interrupt, IRQF_SHARED, dev->name, dev)))
503 return retval;
505 tulip_init_ring (dev);
507 tulip_up (dev);
509 netif_start_queue (dev);
511 return 0;
515 static void tulip_tx_timeout(struct net_device *dev)
517 struct tulip_private *tp = netdev_priv(dev);
518 void __iomem *ioaddr = tp->base_addr;
519 unsigned long flags;
521 spin_lock_irqsave (&tp->lock, flags);
523 if (tulip_media_cap[dev->if_port] & MediaIsMII) {
524 /* Do nothing -- the media monitor should handle this. */
525 if (tulip_debug > 1)
526 printk(KERN_WARNING "%s: Transmit timeout using MII device.\n",
527 dev->name);
528 } else if (tp->chip_id == DC21140 || tp->chip_id == DC21142
529 || tp->chip_id == MX98713 || tp->chip_id == COMPEX9881
530 || tp->chip_id == DM910X) {
531 printk(KERN_WARNING "%s: 21140 transmit timed out, status %8.8x, "
532 "SIA %8.8x %8.8x %8.8x %8.8x, resetting...\n",
533 dev->name, ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12),
534 ioread32(ioaddr + CSR13), ioread32(ioaddr + CSR14), ioread32(ioaddr + CSR15));
535 tp->timeout_recovery = 1;
536 schedule_work(&tp->media_work);
537 goto out_unlock;
538 } else if (tp->chip_id == PNIC2) {
539 printk(KERN_WARNING "%s: PNIC2 transmit timed out, status %8.8x, "
540 "CSR6/7 %8.8x / %8.8x CSR12 %8.8x, resetting...\n",
541 dev->name, (int)ioread32(ioaddr + CSR5), (int)ioread32(ioaddr + CSR6),
542 (int)ioread32(ioaddr + CSR7), (int)ioread32(ioaddr + CSR12));
543 } else {
544 printk(KERN_WARNING "%s: Transmit timed out, status %8.8x, CSR12 "
545 "%8.8x, resetting...\n",
546 dev->name, ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12));
547 dev->if_port = 0;
550 #if defined(way_too_many_messages)
551 if (tulip_debug > 3) {
552 int i;
553 for (i = 0; i < RX_RING_SIZE; i++) {
554 u8 *buf = (u8 *)(tp->rx_ring[i].buffer1);
555 int j;
556 printk(KERN_DEBUG "%2d: %8.8x %8.8x %8.8x %8.8x "
557 "%2.2x %2.2x %2.2x.\n",
558 i, (unsigned int)tp->rx_ring[i].status,
559 (unsigned int)tp->rx_ring[i].length,
560 (unsigned int)tp->rx_ring[i].buffer1,
561 (unsigned int)tp->rx_ring[i].buffer2,
562 buf[0], buf[1], buf[2]);
563 for (j = 0; buf[j] != 0xee && j < 1600; j++)
564 if (j < 100) printk(" %2.2x", buf[j]);
565 printk(" j=%d.\n", j);
567 printk(KERN_DEBUG " Rx ring %8.8x: ", (int)tp->rx_ring);
568 for (i = 0; i < RX_RING_SIZE; i++)
569 printk(" %8.8x", (unsigned int)tp->rx_ring[i].status);
570 printk("\n" KERN_DEBUG " Tx ring %8.8x: ", (int)tp->tx_ring);
571 for (i = 0; i < TX_RING_SIZE; i++)
572 printk(" %8.8x", (unsigned int)tp->tx_ring[i].status);
573 printk("\n");
575 #endif
577 tulip_tx_timeout_complete(tp, ioaddr);
579 out_unlock:
580 spin_unlock_irqrestore (&tp->lock, flags);
581 dev->trans_start = jiffies;
582 netif_wake_queue (dev);
586 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
587 static void tulip_init_ring(struct net_device *dev)
589 struct tulip_private *tp = netdev_priv(dev);
590 int i;
592 tp->susp_rx = 0;
593 tp->ttimer = 0;
594 tp->nir = 0;
596 for (i = 0; i < RX_RING_SIZE; i++) {
597 tp->rx_ring[i].status = 0x00000000;
598 tp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ);
599 tp->rx_ring[i].buffer2 = cpu_to_le32(tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * (i + 1));
600 tp->rx_buffers[i].skb = NULL;
601 tp->rx_buffers[i].mapping = 0;
603 /* Mark the last entry as wrapping the ring. */
604 tp->rx_ring[i-1].length = cpu_to_le32(PKT_BUF_SZ | DESC_RING_WRAP);
605 tp->rx_ring[i-1].buffer2 = cpu_to_le32(tp->rx_ring_dma);
607 for (i = 0; i < RX_RING_SIZE; i++) {
608 dma_addr_t mapping;
610 /* Note the receive buffer must be longword aligned.
611 dev_alloc_skb() provides 16 byte alignment. But do *not*
612 use skb_reserve() to align the IP header! */
613 struct sk_buff *skb = dev_alloc_skb(PKT_BUF_SZ);
614 tp->rx_buffers[i].skb = skb;
615 if (skb == NULL)
616 break;
617 mapping = pci_map_single(tp->pdev, skb->data,
618 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
619 tp->rx_buffers[i].mapping = mapping;
620 skb->dev = dev; /* Mark as being used by this device. */
621 tp->rx_ring[i].status = cpu_to_le32(DescOwned); /* Owned by Tulip chip */
622 tp->rx_ring[i].buffer1 = cpu_to_le32(mapping);
624 tp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
626 /* The Tx buffer descriptor is filled in as needed, but we
627 do need to clear the ownership bit. */
628 for (i = 0; i < TX_RING_SIZE; i++) {
629 tp->tx_buffers[i].skb = NULL;
630 tp->tx_buffers[i].mapping = 0;
631 tp->tx_ring[i].status = 0x00000000;
632 tp->tx_ring[i].buffer2 = cpu_to_le32(tp->tx_ring_dma + sizeof(struct tulip_tx_desc) * (i + 1));
634 tp->tx_ring[i-1].buffer2 = cpu_to_le32(tp->tx_ring_dma);
637 static int
638 tulip_start_xmit(struct sk_buff *skb, struct net_device *dev)
640 struct tulip_private *tp = netdev_priv(dev);
641 int entry;
642 u32 flag;
643 dma_addr_t mapping;
645 spin_lock_irq(&tp->lock);
647 /* Calculate the next Tx descriptor entry. */
648 entry = tp->cur_tx % TX_RING_SIZE;
650 tp->tx_buffers[entry].skb = skb;
651 mapping = pci_map_single(tp->pdev, skb->data,
652 skb->len, PCI_DMA_TODEVICE);
653 tp->tx_buffers[entry].mapping = mapping;
654 tp->tx_ring[entry].buffer1 = cpu_to_le32(mapping);
656 if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE/2) {/* Typical path */
657 flag = 0x60000000; /* No interrupt */
658 } else if (tp->cur_tx - tp->dirty_tx == TX_RING_SIZE/2) {
659 flag = 0xe0000000; /* Tx-done intr. */
660 } else if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE - 2) {
661 flag = 0x60000000; /* No Tx-done intr. */
662 } else { /* Leave room for set_rx_mode() to fill entries. */
663 flag = 0xe0000000; /* Tx-done intr. */
664 netif_stop_queue(dev);
666 if (entry == TX_RING_SIZE-1)
667 flag = 0xe0000000 | DESC_RING_WRAP;
669 tp->tx_ring[entry].length = cpu_to_le32(skb->len | flag);
670 /* if we were using Transmit Automatic Polling, we would need a
671 * wmb() here. */
672 tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
673 wmb();
675 tp->cur_tx++;
677 /* Trigger an immediate transmit demand. */
678 iowrite32(0, tp->base_addr + CSR1);
680 spin_unlock_irq(&tp->lock);
682 dev->trans_start = jiffies;
684 return 0;
687 static void tulip_clean_tx_ring(struct tulip_private *tp)
689 unsigned int dirty_tx;
691 for (dirty_tx = tp->dirty_tx ; tp->cur_tx - dirty_tx > 0;
692 dirty_tx++) {
693 int entry = dirty_tx % TX_RING_SIZE;
694 int status = le32_to_cpu(tp->tx_ring[entry].status);
696 if (status < 0) {
697 tp->stats.tx_errors++; /* It wasn't Txed */
698 tp->tx_ring[entry].status = 0;
701 /* Check for Tx filter setup frames. */
702 if (tp->tx_buffers[entry].skb == NULL) {
703 /* test because dummy frames not mapped */
704 if (tp->tx_buffers[entry].mapping)
705 pci_unmap_single(tp->pdev,
706 tp->tx_buffers[entry].mapping,
707 sizeof(tp->setup_frame),
708 PCI_DMA_TODEVICE);
709 continue;
712 pci_unmap_single(tp->pdev, tp->tx_buffers[entry].mapping,
713 tp->tx_buffers[entry].skb->len,
714 PCI_DMA_TODEVICE);
716 /* Free the original skb. */
717 dev_kfree_skb_irq(tp->tx_buffers[entry].skb);
718 tp->tx_buffers[entry].skb = NULL;
719 tp->tx_buffers[entry].mapping = 0;
723 static void tulip_down (struct net_device *dev)
725 struct tulip_private *tp = netdev_priv(dev);
726 void __iomem *ioaddr = tp->base_addr;
727 unsigned long flags;
729 flush_scheduled_work();
731 del_timer_sync (&tp->timer);
732 #ifdef CONFIG_TULIP_NAPI
733 del_timer_sync (&tp->oom_timer);
734 #endif
735 spin_lock_irqsave (&tp->lock, flags);
737 /* Disable interrupts by clearing the interrupt mask. */
738 iowrite32 (0x00000000, ioaddr + CSR7);
740 /* Stop the Tx and Rx processes. */
741 tulip_stop_rxtx(tp);
743 /* prepare receive buffers */
744 tulip_refill_rx(dev);
746 /* release any unconsumed transmit buffers */
747 tulip_clean_tx_ring(tp);
749 if (ioread32 (ioaddr + CSR6) != 0xffffffff)
750 tp->stats.rx_missed_errors += ioread32 (ioaddr + CSR8) & 0xffff;
752 spin_unlock_irqrestore (&tp->lock, flags);
754 init_timer(&tp->timer);
755 tp->timer.data = (unsigned long)dev;
756 tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
758 dev->if_port = tp->saved_if_port;
760 /* Leave the driver in snooze, not sleep, mode. */
761 tulip_set_power_state (tp, 0, 1);
765 static int tulip_close (struct net_device *dev)
767 struct tulip_private *tp = netdev_priv(dev);
768 void __iomem *ioaddr = tp->base_addr;
769 int i;
771 netif_stop_queue (dev);
773 tulip_down (dev);
775 if (tulip_debug > 1)
776 printk (KERN_DEBUG "%s: Shutting down ethercard, status was %2.2x.\n",
777 dev->name, ioread32 (ioaddr + CSR5));
779 free_irq (dev->irq, dev);
781 /* Free all the skbuffs in the Rx queue. */
782 for (i = 0; i < RX_RING_SIZE; i++) {
783 struct sk_buff *skb = tp->rx_buffers[i].skb;
784 dma_addr_t mapping = tp->rx_buffers[i].mapping;
786 tp->rx_buffers[i].skb = NULL;
787 tp->rx_buffers[i].mapping = 0;
789 tp->rx_ring[i].status = 0; /* Not owned by Tulip chip. */
790 tp->rx_ring[i].length = 0;
791 tp->rx_ring[i].buffer1 = 0xBADF00D0; /* An invalid address. */
792 if (skb) {
793 pci_unmap_single(tp->pdev, mapping, PKT_BUF_SZ,
794 PCI_DMA_FROMDEVICE);
795 dev_kfree_skb (skb);
798 for (i = 0; i < TX_RING_SIZE; i++) {
799 struct sk_buff *skb = tp->tx_buffers[i].skb;
801 if (skb != NULL) {
802 pci_unmap_single(tp->pdev, tp->tx_buffers[i].mapping,
803 skb->len, PCI_DMA_TODEVICE);
804 dev_kfree_skb (skb);
806 tp->tx_buffers[i].skb = NULL;
807 tp->tx_buffers[i].mapping = 0;
810 return 0;
813 static struct net_device_stats *tulip_get_stats(struct net_device *dev)
815 struct tulip_private *tp = netdev_priv(dev);
816 void __iomem *ioaddr = tp->base_addr;
818 if (netif_running(dev)) {
819 unsigned long flags;
821 spin_lock_irqsave (&tp->lock, flags);
823 tp->stats.rx_missed_errors += ioread32(ioaddr + CSR8) & 0xffff;
825 spin_unlock_irqrestore(&tp->lock, flags);
828 return &tp->stats;
832 static void tulip_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
834 struct tulip_private *np = netdev_priv(dev);
835 strcpy(info->driver, DRV_NAME);
836 strcpy(info->version, DRV_VERSION);
837 strcpy(info->bus_info, pci_name(np->pdev));
840 static struct ethtool_ops ops = {
841 .get_drvinfo = tulip_get_drvinfo
844 /* Provide ioctl() calls to examine the MII xcvr state. */
845 static int private_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
847 struct tulip_private *tp = netdev_priv(dev);
848 void __iomem *ioaddr = tp->base_addr;
849 struct mii_ioctl_data *data = if_mii(rq);
850 const unsigned int phy_idx = 0;
851 int phy = tp->phys[phy_idx] & 0x1f;
852 unsigned int regnum = data->reg_num;
854 switch (cmd) {
855 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
856 if (tp->mii_cnt)
857 data->phy_id = phy;
858 else if (tp->flags & HAS_NWAY)
859 data->phy_id = 32;
860 else if (tp->chip_id == COMET)
861 data->phy_id = 1;
862 else
863 return -ENODEV;
865 case SIOCGMIIREG: /* Read MII PHY register. */
866 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
867 int csr12 = ioread32 (ioaddr + CSR12);
868 int csr14 = ioread32 (ioaddr + CSR14);
869 switch (regnum) {
870 case 0:
871 if (((csr14<<5) & 0x1000) ||
872 (dev->if_port == 5 && tp->nwayset))
873 data->val_out = 0x1000;
874 else
875 data->val_out = (tulip_media_cap[dev->if_port]&MediaIs100 ? 0x2000 : 0)
876 | (tulip_media_cap[dev->if_port]&MediaIsFD ? 0x0100 : 0);
877 break;
878 case 1:
879 data->val_out =
880 0x1848 +
881 ((csr12&0x7000) == 0x5000 ? 0x20 : 0) +
882 ((csr12&0x06) == 6 ? 0 : 4);
883 data->val_out |= 0x6048;
884 break;
885 case 4:
886 /* Advertised value, bogus 10baseTx-FD value from CSR6. */
887 data->val_out =
888 ((ioread32(ioaddr + CSR6) >> 3) & 0x0040) +
889 ((csr14 >> 1) & 0x20) + 1;
890 data->val_out |= ((csr14 >> 9) & 0x03C0);
891 break;
892 case 5: data->val_out = tp->lpar; break;
893 default: data->val_out = 0; break;
895 } else {
896 data->val_out = tulip_mdio_read (dev, data->phy_id & 0x1f, regnum);
898 return 0;
900 case SIOCSMIIREG: /* Write MII PHY register. */
901 if (!capable (CAP_NET_ADMIN))
902 return -EPERM;
903 if (regnum & ~0x1f)
904 return -EINVAL;
905 if (data->phy_id == phy) {
906 u16 value = data->val_in;
907 switch (regnum) {
908 case 0: /* Check for autonegotiation on or reset. */
909 tp->full_duplex_lock = (value & 0x9000) ? 0 : 1;
910 if (tp->full_duplex_lock)
911 tp->full_duplex = (value & 0x0100) ? 1 : 0;
912 break;
913 case 4:
914 tp->advertising[phy_idx] =
915 tp->mii_advertise = data->val_in;
916 break;
919 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
920 u16 value = data->val_in;
921 if (regnum == 0) {
922 if ((value & 0x1200) == 0x1200) {
923 if (tp->chip_id == PNIC2) {
924 pnic2_start_nway (dev);
925 } else {
926 t21142_start_nway (dev);
929 } else if (regnum == 4)
930 tp->sym_advertise = value;
931 } else {
932 tulip_mdio_write (dev, data->phy_id & 0x1f, regnum, data->val_in);
934 return 0;
935 default:
936 return -EOPNOTSUPP;
939 return -EOPNOTSUPP;
943 /* Set or clear the multicast filter for this adaptor.
944 Note that we only use exclusion around actually queueing the
945 new frame, not around filling tp->setup_frame. This is non-deterministic
946 when re-entered but still correct. */
948 #undef set_bit_le
949 #define set_bit_le(i,p) do { ((char *)(p))[(i)/8] |= (1<<((i)%8)); } while(0)
951 static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev)
953 struct tulip_private *tp = netdev_priv(dev);
954 u16 hash_table[32];
955 struct dev_mc_list *mclist;
956 int i;
957 u16 *eaddrs;
959 memset(hash_table, 0, sizeof(hash_table));
960 set_bit_le(255, hash_table); /* Broadcast entry */
961 /* This should work on big-endian machines as well. */
962 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
963 i++, mclist = mclist->next) {
964 int index = ether_crc_le(ETH_ALEN, mclist->dmi_addr) & 0x1ff;
966 set_bit_le(index, hash_table);
969 for (i = 0; i < 32; i++) {
970 *setup_frm++ = hash_table[i];
971 *setup_frm++ = hash_table[i];
973 setup_frm = &tp->setup_frame[13*6];
975 /* Fill the final entry with our physical address. */
976 eaddrs = (u16 *)dev->dev_addr;
977 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
978 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
979 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
982 static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev)
984 struct tulip_private *tp = netdev_priv(dev);
985 struct dev_mc_list *mclist;
986 int i;
987 u16 *eaddrs;
989 /* We have <= 14 addresses so we can use the wonderful
990 16 address perfect filtering of the Tulip. */
991 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
992 i++, mclist = mclist->next) {
993 eaddrs = (u16 *)mclist->dmi_addr;
994 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
995 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
996 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
998 /* Fill the unused entries with the broadcast address. */
999 memset(setup_frm, 0xff, (15-i)*12);
1000 setup_frm = &tp->setup_frame[15*6];
1002 /* Fill the final entry with our physical address. */
1003 eaddrs = (u16 *)dev->dev_addr;
1004 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
1005 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
1006 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
1010 static void set_rx_mode(struct net_device *dev)
1012 struct tulip_private *tp = netdev_priv(dev);
1013 void __iomem *ioaddr = tp->base_addr;
1014 int csr6;
1016 csr6 = ioread32(ioaddr + CSR6) & ~0x00D5;
1018 tp->csr6 &= ~0x00D5;
1019 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1020 tp->csr6 |= AcceptAllMulticast | AcceptAllPhys;
1021 csr6 |= AcceptAllMulticast | AcceptAllPhys;
1022 /* Unconditionally log net taps. */
1023 printk(KERN_INFO "%s: Promiscuous mode enabled.\n", dev->name);
1024 } else if ((dev->mc_count > 1000) || (dev->flags & IFF_ALLMULTI)) {
1025 /* Too many to filter well -- accept all multicasts. */
1026 tp->csr6 |= AcceptAllMulticast;
1027 csr6 |= AcceptAllMulticast;
1028 } else if (tp->flags & MC_HASH_ONLY) {
1029 /* Some work-alikes have only a 64-entry hash filter table. */
1030 /* Should verify correctness on big-endian/__powerpc__ */
1031 struct dev_mc_list *mclist;
1032 int i;
1033 if (dev->mc_count > 64) { /* Arbitrary non-effective limit. */
1034 tp->csr6 |= AcceptAllMulticast;
1035 csr6 |= AcceptAllMulticast;
1036 } else {
1037 u32 mc_filter[2] = {0, 0}; /* Multicast hash filter */
1038 int filterbit;
1039 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1040 i++, mclist = mclist->next) {
1041 if (tp->flags & COMET_MAC_ADDR)
1042 filterbit = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
1043 else
1044 filterbit = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
1045 filterbit &= 0x3f;
1046 mc_filter[filterbit >> 5] |= 1 << (filterbit & 31);
1047 if (tulip_debug > 2) {
1048 printk(KERN_INFO "%s: Added filter for %2.2x:%2.2x:%2.2x:"
1049 "%2.2x:%2.2x:%2.2x %8.8x bit %d.\n", dev->name,
1050 mclist->dmi_addr[0], mclist->dmi_addr[1],
1051 mclist->dmi_addr[2], mclist->dmi_addr[3],
1052 mclist->dmi_addr[4], mclist->dmi_addr[5],
1053 ether_crc(ETH_ALEN, mclist->dmi_addr), filterbit);
1056 if (mc_filter[0] == tp->mc_filter[0] &&
1057 mc_filter[1] == tp->mc_filter[1])
1058 ; /* No change. */
1059 else if (tp->flags & IS_ASIX) {
1060 iowrite32(2, ioaddr + CSR13);
1061 iowrite32(mc_filter[0], ioaddr + CSR14);
1062 iowrite32(3, ioaddr + CSR13);
1063 iowrite32(mc_filter[1], ioaddr + CSR14);
1064 } else if (tp->flags & COMET_MAC_ADDR) {
1065 iowrite32(mc_filter[0], ioaddr + 0xAC);
1066 iowrite32(mc_filter[1], ioaddr + 0xB0);
1068 tp->mc_filter[0] = mc_filter[0];
1069 tp->mc_filter[1] = mc_filter[1];
1071 } else {
1072 unsigned long flags;
1073 u32 tx_flags = 0x08000000 | 192;
1075 /* Note that only the low-address shortword of setup_frame is valid!
1076 The values are doubled for big-endian architectures. */
1077 if (dev->mc_count > 14) { /* Must use a multicast hash table. */
1078 build_setup_frame_hash(tp->setup_frame, dev);
1079 tx_flags = 0x08400000 | 192;
1080 } else {
1081 build_setup_frame_perfect(tp->setup_frame, dev);
1084 spin_lock_irqsave(&tp->lock, flags);
1086 if (tp->cur_tx - tp->dirty_tx > TX_RING_SIZE - 2) {
1087 /* Same setup recently queued, we need not add it. */
1088 } else {
1089 unsigned int entry;
1090 int dummy = -1;
1092 /* Now add this frame to the Tx list. */
1094 entry = tp->cur_tx++ % TX_RING_SIZE;
1096 if (entry != 0) {
1097 /* Avoid a chip errata by prefixing a dummy entry. */
1098 tp->tx_buffers[entry].skb = NULL;
1099 tp->tx_buffers[entry].mapping = 0;
1100 tp->tx_ring[entry].length =
1101 (entry == TX_RING_SIZE-1) ? cpu_to_le32(DESC_RING_WRAP) : 0;
1102 tp->tx_ring[entry].buffer1 = 0;
1103 /* Must set DescOwned later to avoid race with chip */
1104 dummy = entry;
1105 entry = tp->cur_tx++ % TX_RING_SIZE;
1109 tp->tx_buffers[entry].skb = NULL;
1110 tp->tx_buffers[entry].mapping =
1111 pci_map_single(tp->pdev, tp->setup_frame,
1112 sizeof(tp->setup_frame),
1113 PCI_DMA_TODEVICE);
1114 /* Put the setup frame on the Tx list. */
1115 if (entry == TX_RING_SIZE-1)
1116 tx_flags |= DESC_RING_WRAP; /* Wrap ring. */
1117 tp->tx_ring[entry].length = cpu_to_le32(tx_flags);
1118 tp->tx_ring[entry].buffer1 =
1119 cpu_to_le32(tp->tx_buffers[entry].mapping);
1120 tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
1121 if (dummy >= 0)
1122 tp->tx_ring[dummy].status = cpu_to_le32(DescOwned);
1123 if (tp->cur_tx - tp->dirty_tx >= TX_RING_SIZE - 2)
1124 netif_stop_queue(dev);
1126 /* Trigger an immediate transmit demand. */
1127 iowrite32(0, ioaddr + CSR1);
1130 spin_unlock_irqrestore(&tp->lock, flags);
1133 iowrite32(csr6, ioaddr + CSR6);
1136 #ifdef CONFIG_TULIP_MWI
1137 static void __devinit tulip_mwi_config (struct pci_dev *pdev,
1138 struct net_device *dev)
1140 struct tulip_private *tp = netdev_priv(dev);
1141 u8 cache;
1142 u16 pci_command;
1143 u32 csr0;
1145 if (tulip_debug > 3)
1146 printk(KERN_DEBUG "%s: tulip_mwi_config()\n", pci_name(pdev));
1148 tp->csr0 = csr0 = 0;
1150 /* if we have any cache line size at all, we can do MRM */
1151 csr0 |= MRM;
1153 /* ...and barring hardware bugs, MWI */
1154 if (!(tp->chip_id == DC21143 && tp->revision == 65))
1155 csr0 |= MWI;
1157 /* set or disable MWI in the standard PCI command bit.
1158 * Check for the case where mwi is desired but not available
1160 if (csr0 & MWI) pci_set_mwi(pdev);
1161 else pci_clear_mwi(pdev);
1163 /* read result from hardware (in case bit refused to enable) */
1164 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1165 if ((csr0 & MWI) && (!(pci_command & PCI_COMMAND_INVALIDATE)))
1166 csr0 &= ~MWI;
1168 /* if cache line size hardwired to zero, no MWI */
1169 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache);
1170 if ((csr0 & MWI) && (cache == 0)) {
1171 csr0 &= ~MWI;
1172 pci_clear_mwi(pdev);
1175 /* assign per-cacheline-size cache alignment and
1176 * burst length values
1178 switch (cache) {
1179 case 8:
1180 csr0 |= MRL | (1 << CALShift) | (16 << BurstLenShift);
1181 break;
1182 case 16:
1183 csr0 |= MRL | (2 << CALShift) | (16 << BurstLenShift);
1184 break;
1185 case 32:
1186 csr0 |= MRL | (3 << CALShift) | (32 << BurstLenShift);
1187 break;
1188 default:
1189 cache = 0;
1190 break;
1193 /* if we have a good cache line size, we by now have a good
1194 * csr0, so save it and exit
1196 if (cache)
1197 goto out;
1199 /* we don't have a good csr0 or cache line size, disable MWI */
1200 if (csr0 & MWI) {
1201 pci_clear_mwi(pdev);
1202 csr0 &= ~MWI;
1205 /* sane defaults for burst length and cache alignment
1206 * originally from de4x5 driver
1208 csr0 |= (8 << BurstLenShift) | (1 << CALShift);
1210 out:
1211 tp->csr0 = csr0;
1212 if (tulip_debug > 2)
1213 printk(KERN_DEBUG "%s: MWI config cacheline=%d, csr0=%08x\n",
1214 pci_name(pdev), cache, csr0);
1216 #endif
1219 * Chips that have the MRM/reserved bit quirk and the burst quirk. That
1220 * is the DM910X and the on chip ULi devices
1223 static int tulip_uli_dm_quirk(struct pci_dev *pdev)
1225 if (pdev->vendor == 0x1282 && pdev->device == 0x9102)
1226 return 1;
1227 return 0;
1230 static int __devinit tulip_init_one (struct pci_dev *pdev,
1231 const struct pci_device_id *ent)
1233 struct tulip_private *tp;
1234 /* See note below on the multiport cards. */
1235 static unsigned char last_phys_addr[6] = {0x00, 'L', 'i', 'n', 'u', 'x'};
1236 static struct pci_device_id early_486_chipsets[] = {
1237 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82424) },
1238 { PCI_DEVICE(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_496) },
1239 { },
1241 static int last_irq;
1242 static int multiport_cnt; /* For four-port boards w/one EEPROM */
1243 u8 chip_rev;
1244 int i, irq;
1245 unsigned short sum;
1246 unsigned char *ee_data;
1247 struct net_device *dev;
1248 void __iomem *ioaddr;
1249 static int board_idx = -1;
1250 int chip_idx = ent->driver_data;
1251 const char *chip_name = tulip_tbl[chip_idx].chip_name;
1252 unsigned int eeprom_missing = 0;
1253 unsigned int force_csr0 = 0;
1255 #ifndef MODULE
1256 static int did_version; /* Already printed version info. */
1257 if (tulip_debug > 0 && did_version++ == 0)
1258 printk (KERN_INFO "%s", version);
1259 #endif
1261 board_idx++;
1264 * Lan media wire a tulip chip to a wan interface. Needs a very
1265 * different driver (lmc driver)
1268 if (pdev->subsystem_vendor == PCI_VENDOR_ID_LMC) {
1269 printk (KERN_ERR PFX "skipping LMC card.\n");
1270 return -ENODEV;
1274 * Early DM9100's need software CRC and the DMFE driver
1277 if (pdev->vendor == 0x1282 && pdev->device == 0x9100)
1279 u32 dev_rev;
1280 /* Read Chip revision */
1281 pci_read_config_dword(pdev, PCI_REVISION_ID, &dev_rev);
1282 if(dev_rev < 0x02000030)
1284 printk(KERN_ERR PFX "skipping early DM9100 with Crc bug (use dmfe)\n");
1285 return -ENODEV;
1290 * Looks for early PCI chipsets where people report hangs
1291 * without the workarounds being on.
1294 /* 1. Intel Saturn. Switch to 8 long words burst, 8 long word cache
1295 aligned. Aries might need this too. The Saturn errata are not
1296 pretty reading but thankfully it's an old 486 chipset.
1298 2. The dreaded SiS496 486 chipset. Same workaround as Intel
1299 Saturn.
1302 if (pci_dev_present(early_486_chipsets)) {
1303 csr0 = MRL | MRM | (8 << BurstLenShift) | (1 << CALShift);
1304 force_csr0 = 1;
1307 /* bugfix: the ASIX must have a burst limit or horrible things happen. */
1308 if (chip_idx == AX88140) {
1309 if ((csr0 & 0x3f00) == 0)
1310 csr0 |= 0x2000;
1313 /* PNIC doesn't have MWI/MRL/MRM... */
1314 if (chip_idx == LC82C168)
1315 csr0 &= ~0xfff10000; /* zero reserved bits 31:20, 16 */
1317 /* DM9102A has troubles with MRM & clear reserved bits 24:22, 20, 16, 7:1 */
1318 if (tulip_uli_dm_quirk(pdev)) {
1319 csr0 &= ~0x01f100ff;
1320 #if defined(__sparc__)
1321 csr0 = (csr0 & ~0xff00) | 0xe000;
1322 #endif
1325 * And back to business
1328 i = pci_enable_device(pdev);
1329 if (i) {
1330 printk (KERN_ERR PFX
1331 "Cannot enable tulip board #%d, aborting\n",
1332 board_idx);
1333 return i;
1336 irq = pdev->irq;
1338 /* alloc_etherdev ensures aligned and zeroed private structures */
1339 dev = alloc_etherdev (sizeof (*tp));
1340 if (!dev) {
1341 printk (KERN_ERR PFX "ether device alloc failed, aborting\n");
1342 return -ENOMEM;
1345 SET_MODULE_OWNER(dev);
1346 SET_NETDEV_DEV(dev, &pdev->dev);
1347 if (pci_resource_len (pdev, 0) < tulip_tbl[chip_idx].io_size) {
1348 printk (KERN_ERR PFX "%s: I/O region (0x%llx@0x%llx) too small, "
1349 "aborting\n", pci_name(pdev),
1350 (unsigned long long)pci_resource_len (pdev, 0),
1351 (unsigned long long)pci_resource_start (pdev, 0));
1352 goto err_out_free_netdev;
1355 /* grab all resources from both PIO and MMIO regions, as we
1356 * don't want anyone else messing around with our hardware */
1357 if (pci_request_regions (pdev, "tulip"))
1358 goto err_out_free_netdev;
1360 #ifndef USE_IO_OPS
1361 ioaddr = pci_iomap(pdev, 1, tulip_tbl[chip_idx].io_size);
1362 #else
1363 ioaddr = pci_iomap(pdev, 0, tulip_tbl[chip_idx].io_size);
1364 #endif
1365 if (!ioaddr)
1366 goto err_out_free_res;
1368 pci_read_config_byte (pdev, PCI_REVISION_ID, &chip_rev);
1371 * initialize private data structure 'tp'
1372 * it is zeroed and aligned in alloc_etherdev
1374 tp = netdev_priv(dev);
1376 tp->rx_ring = pci_alloc_consistent(pdev,
1377 sizeof(struct tulip_rx_desc) * RX_RING_SIZE +
1378 sizeof(struct tulip_tx_desc) * TX_RING_SIZE,
1379 &tp->rx_ring_dma);
1380 if (!tp->rx_ring)
1381 goto err_out_mtable;
1382 tp->tx_ring = (struct tulip_tx_desc *)(tp->rx_ring + RX_RING_SIZE);
1383 tp->tx_ring_dma = tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * RX_RING_SIZE;
1385 tp->chip_id = chip_idx;
1386 tp->flags = tulip_tbl[chip_idx].flags;
1387 tp->pdev = pdev;
1388 tp->base_addr = ioaddr;
1389 tp->revision = chip_rev;
1390 tp->csr0 = csr0;
1391 spin_lock_init(&tp->lock);
1392 spin_lock_init(&tp->mii_lock);
1393 init_timer(&tp->timer);
1394 tp->timer.data = (unsigned long)dev;
1395 tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
1397 INIT_WORK(&tp->media_work, tulip_tbl[tp->chip_id].media_task, dev);
1399 dev->base_addr = (unsigned long)ioaddr;
1401 #ifdef CONFIG_TULIP_MWI
1402 if (!force_csr0 && (tp->flags & HAS_PCI_MWI))
1403 tulip_mwi_config (pdev, dev);
1404 #else
1405 /* MWI is broken for DC21143 rev 65... */
1406 if (chip_idx == DC21143 && chip_rev == 65)
1407 tp->csr0 &= ~MWI;
1408 #endif
1410 /* Stop the chip's Tx and Rx processes. */
1411 tulip_stop_rxtx(tp);
1413 pci_set_master(pdev);
1415 #ifdef CONFIG_GSC
1416 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP) {
1417 switch (pdev->subsystem_device) {
1418 default:
1419 break;
1420 case 0x1061:
1421 case 0x1062:
1422 case 0x1063:
1423 case 0x1098:
1424 case 0x1099:
1425 case 0x10EE:
1426 tp->flags |= HAS_SWAPPED_SEEPROM | NEEDS_FAKE_MEDIA_TABLE;
1427 chip_name = "GSC DS21140 Tulip";
1430 #endif
1432 /* Clear the missed-packet counter. */
1433 ioread32(ioaddr + CSR8);
1435 /* The station address ROM is read byte serially. The register must
1436 be polled, waiting for the value to be read bit serially from the
1437 EEPROM.
1439 ee_data = tp->eeprom;
1440 sum = 0;
1441 if (chip_idx == LC82C168) {
1442 for (i = 0; i < 3; i++) {
1443 int value, boguscnt = 100000;
1444 iowrite32(0x600 | i, ioaddr + 0x98);
1446 value = ioread32(ioaddr + CSR9);
1447 while (value < 0 && --boguscnt > 0);
1448 put_unaligned(le16_to_cpu(value), ((u16*)dev->dev_addr) + i);
1449 sum += value & 0xffff;
1451 } else if (chip_idx == COMET) {
1452 /* No need to read the EEPROM. */
1453 put_unaligned(cpu_to_le32(ioread32(ioaddr + 0xA4)), (u32 *)dev->dev_addr);
1454 put_unaligned(cpu_to_le16(ioread32(ioaddr + 0xA8)), (u16 *)(dev->dev_addr + 4));
1455 for (i = 0; i < 6; i ++)
1456 sum += dev->dev_addr[i];
1457 } else {
1458 /* A serial EEPROM interface, we read now and sort it out later. */
1459 int sa_offset = 0;
1460 int ee_addr_size = tulip_read_eeprom(dev, 0xff, 8) & 0x40000 ? 8 : 6;
1462 for (i = 0; i < sizeof(tp->eeprom); i+=2) {
1463 u16 data = tulip_read_eeprom(dev, i/2, ee_addr_size);
1464 ee_data[i] = data & 0xff;
1465 ee_data[i + 1] = data >> 8;
1468 /* DEC now has a specification (see Notes) but early board makers
1469 just put the address in the first EEPROM locations. */
1470 /* This does memcmp(ee_data, ee_data+16, 8) */
1471 for (i = 0; i < 8; i ++)
1472 if (ee_data[i] != ee_data[16+i])
1473 sa_offset = 20;
1474 if (chip_idx == CONEXANT) {
1475 /* Check that the tuple type and length is correct. */
1476 if (ee_data[0x198] == 0x04 && ee_data[0x199] == 6)
1477 sa_offset = 0x19A;
1478 } else if (ee_data[0] == 0xff && ee_data[1] == 0xff &&
1479 ee_data[2] == 0) {
1480 sa_offset = 2; /* Grrr, damn Matrox boards. */
1481 multiport_cnt = 4;
1483 #ifdef CONFIG_DDB5477
1484 if ((pdev->bus->number == 0) && (PCI_SLOT(pdev->devfn) == 4)) {
1485 /* DDB5477 MAC address in first EEPROM locations. */
1486 sa_offset = 0;
1487 /* No media table either */
1488 tp->flags &= ~HAS_MEDIA_TABLE;
1490 #endif
1491 #ifdef CONFIG_MIPS_COBALT
1492 if ((pdev->bus->number == 0) &&
1493 ((PCI_SLOT(pdev->devfn) == 7) ||
1494 (PCI_SLOT(pdev->devfn) == 12))) {
1495 /* Cobalt MAC address in first EEPROM locations. */
1496 sa_offset = 0;
1497 /* Ensure our media table fixup get's applied */
1498 memcpy(ee_data + 16, ee_data, 8);
1500 #endif
1501 #ifdef CONFIG_GSC
1502 /* Check to see if we have a broken srom */
1503 if (ee_data[0] == 0x61 && ee_data[1] == 0x10) {
1504 /* pci_vendor_id and subsystem_id are swapped */
1505 ee_data[0] = ee_data[2];
1506 ee_data[1] = ee_data[3];
1507 ee_data[2] = 0x61;
1508 ee_data[3] = 0x10;
1510 /* HSC-PCI boards need to be byte-swaped and shifted
1511 * up 1 word. This shift needs to happen at the end
1512 * of the MAC first because of the 2 byte overlap.
1514 for (i = 4; i >= 0; i -= 2) {
1515 ee_data[17 + i + 3] = ee_data[17 + i];
1516 ee_data[16 + i + 5] = ee_data[16 + i];
1519 #endif
1521 for (i = 0; i < 6; i ++) {
1522 dev->dev_addr[i] = ee_data[i + sa_offset];
1523 sum += ee_data[i + sa_offset];
1526 /* Lite-On boards have the address byte-swapped. */
1527 if ((dev->dev_addr[0] == 0xA0 || dev->dev_addr[0] == 0xC0 || dev->dev_addr[0] == 0x02)
1528 && dev->dev_addr[1] == 0x00)
1529 for (i = 0; i < 6; i+=2) {
1530 char tmp = dev->dev_addr[i];
1531 dev->dev_addr[i] = dev->dev_addr[i+1];
1532 dev->dev_addr[i+1] = tmp;
1534 /* On the Zynx 315 Etherarray and other multiport boards only the
1535 first Tulip has an EEPROM.
1536 On Sparc systems the mac address is held in the OBP property
1537 "local-mac-address".
1538 The addresses of the subsequent ports are derived from the first.
1539 Many PCI BIOSes also incorrectly report the IRQ line, so we correct
1540 that here as well. */
1541 if (sum == 0 || sum == 6*0xff) {
1542 #if defined(__sparc__)
1543 struct pcidev_cookie *pcp = pdev->sysdata;
1544 #endif
1545 eeprom_missing = 1;
1546 for (i = 0; i < 5; i++)
1547 dev->dev_addr[i] = last_phys_addr[i];
1548 dev->dev_addr[i] = last_phys_addr[i] + 1;
1549 #if defined(__sparc__)
1550 if (pcp) {
1551 unsigned char *addr;
1552 int len;
1554 addr = of_get_property(pcp->prom_node,
1555 "local-mac-address", &len);
1556 if (addr && len == 6)
1557 memcpy(dev->dev_addr, addr, 6);
1559 #endif
1560 #if defined(__i386__) || defined(__x86_64__) /* Patch up x86 BIOS bug. */
1561 if (last_irq)
1562 irq = last_irq;
1563 #endif
1566 for (i = 0; i < 6; i++)
1567 last_phys_addr[i] = dev->dev_addr[i];
1568 last_irq = irq;
1569 dev->irq = irq;
1571 /* The lower four bits are the media type. */
1572 if (board_idx >= 0 && board_idx < MAX_UNITS) {
1573 if (options[board_idx] & MEDIA_MASK)
1574 tp->default_port = options[board_idx] & MEDIA_MASK;
1575 if ((options[board_idx] & FullDuplex) || full_duplex[board_idx] > 0)
1576 tp->full_duplex = 1;
1577 if (mtu[board_idx] > 0)
1578 dev->mtu = mtu[board_idx];
1580 if (dev->mem_start & MEDIA_MASK)
1581 tp->default_port = dev->mem_start & MEDIA_MASK;
1582 if (tp->default_port) {
1583 printk(KERN_INFO "tulip%d: Transceiver selection forced to %s.\n",
1584 board_idx, medianame[tp->default_port & MEDIA_MASK]);
1585 tp->medialock = 1;
1586 if (tulip_media_cap[tp->default_port] & MediaAlwaysFD)
1587 tp->full_duplex = 1;
1589 if (tp->full_duplex)
1590 tp->full_duplex_lock = 1;
1592 if (tulip_media_cap[tp->default_port] & MediaIsMII) {
1593 u16 media2advert[] = { 0x20, 0x40, 0x03e0, 0x60, 0x80, 0x100, 0x200 };
1594 tp->mii_advertise = media2advert[tp->default_port - 9];
1595 tp->mii_advertise |= (tp->flags & HAS_8023X); /* Matching bits! */
1598 if (tp->flags & HAS_MEDIA_TABLE) {
1599 sprintf(dev->name, "tulip%d", board_idx); /* hack */
1600 tulip_parse_eeprom(dev);
1601 strcpy(dev->name, "eth%d"); /* un-hack */
1604 if ((tp->flags & ALWAYS_CHECK_MII) ||
1605 (tp->mtable && tp->mtable->has_mii) ||
1606 ( ! tp->mtable && (tp->flags & HAS_MII))) {
1607 if (tp->mtable && tp->mtable->has_mii) {
1608 for (i = 0; i < tp->mtable->leafcount; i++)
1609 if (tp->mtable->mleaf[i].media == 11) {
1610 tp->cur_index = i;
1611 tp->saved_if_port = dev->if_port;
1612 tulip_select_media(dev, 2);
1613 dev->if_port = tp->saved_if_port;
1614 break;
1618 /* Find the connected MII xcvrs.
1619 Doing this in open() would allow detecting external xcvrs
1620 later, but takes much time. */
1621 tulip_find_mii (dev, board_idx);
1624 /* The Tulip-specific entries in the device structure. */
1625 dev->open = tulip_open;
1626 dev->hard_start_xmit = tulip_start_xmit;
1627 dev->tx_timeout = tulip_tx_timeout;
1628 dev->watchdog_timeo = TX_TIMEOUT;
1629 #ifdef CONFIG_TULIP_NAPI
1630 dev->poll = tulip_poll;
1631 dev->weight = 16;
1632 #endif
1633 dev->stop = tulip_close;
1634 dev->get_stats = tulip_get_stats;
1635 dev->do_ioctl = private_ioctl;
1636 dev->set_multicast_list = set_rx_mode;
1637 #ifdef CONFIG_NET_POLL_CONTROLLER
1638 dev->poll_controller = &poll_tulip;
1639 #endif
1640 SET_ETHTOOL_OPS(dev, &ops);
1642 if (register_netdev(dev))
1643 goto err_out_free_ring;
1645 printk(KERN_INFO "%s: %s rev %d at "
1646 #ifdef CONFIG_TULIP_MMIO
1647 "MMIO"
1648 #else
1649 "Port"
1650 #endif
1651 " %#llx,", dev->name, chip_name, chip_rev,
1652 (unsigned long long) pci_resource_start(pdev, TULIP_BAR));
1653 pci_set_drvdata(pdev, dev);
1655 if (eeprom_missing)
1656 printk(" EEPROM not present,");
1657 for (i = 0; i < 6; i++)
1658 printk("%c%2.2X", i ? ':' : ' ', dev->dev_addr[i]);
1659 printk(", IRQ %d.\n", irq);
1661 if (tp->chip_id == PNIC2)
1662 tp->link_change = pnic2_lnk_change;
1663 else if (tp->flags & HAS_NWAY)
1664 tp->link_change = t21142_lnk_change;
1665 else if (tp->flags & HAS_PNICNWAY)
1666 tp->link_change = pnic_lnk_change;
1668 /* Reset the xcvr interface and turn on heartbeat. */
1669 switch (chip_idx) {
1670 case DC21140:
1671 case DM910X:
1672 default:
1673 if (tp->mtable)
1674 iowrite32(tp->mtable->csr12dir | 0x100, ioaddr + CSR12);
1675 break;
1676 case DC21142:
1677 if (tp->mii_cnt || tulip_media_cap[dev->if_port] & MediaIsMII) {
1678 iowrite32(csr6_mask_defstate, ioaddr + CSR6);
1679 iowrite32(0x0000, ioaddr + CSR13);
1680 iowrite32(0x0000, ioaddr + CSR14);
1681 iowrite32(csr6_mask_hdcap, ioaddr + CSR6);
1682 } else
1683 t21142_start_nway(dev);
1684 break;
1685 case PNIC2:
1686 /* just do a reset for sanity sake */
1687 iowrite32(0x0000, ioaddr + CSR13);
1688 iowrite32(0x0000, ioaddr + CSR14);
1689 break;
1690 case LC82C168:
1691 if ( ! tp->mii_cnt) {
1692 tp->nway = 1;
1693 tp->nwayset = 0;
1694 iowrite32(csr6_ttm | csr6_ca, ioaddr + CSR6);
1695 iowrite32(0x30, ioaddr + CSR12);
1696 iowrite32(0x0001F078, ioaddr + CSR6);
1697 iowrite32(0x0201F078, ioaddr + CSR6); /* Turn on autonegotiation. */
1699 break;
1700 case MX98713:
1701 case COMPEX9881:
1702 iowrite32(0x00000000, ioaddr + CSR6);
1703 iowrite32(0x000711C0, ioaddr + CSR14); /* Turn on NWay. */
1704 iowrite32(0x00000001, ioaddr + CSR13);
1705 break;
1706 case MX98715:
1707 case MX98725:
1708 iowrite32(0x01a80000, ioaddr + CSR6);
1709 iowrite32(0xFFFFFFFF, ioaddr + CSR14);
1710 iowrite32(0x00001000, ioaddr + CSR12);
1711 break;
1712 case COMET:
1713 /* No initialization necessary. */
1714 break;
1717 /* put the chip in snooze mode until opened */
1718 tulip_set_power_state (tp, 0, 1);
1720 return 0;
1722 err_out_free_ring:
1723 pci_free_consistent (pdev,
1724 sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
1725 sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
1726 tp->rx_ring, tp->rx_ring_dma);
1728 err_out_mtable:
1729 kfree (tp->mtable);
1730 pci_iounmap(pdev, ioaddr);
1732 err_out_free_res:
1733 pci_release_regions (pdev);
1735 err_out_free_netdev:
1736 free_netdev (dev);
1737 return -ENODEV;
1741 #ifdef CONFIG_PM
1743 static int tulip_suspend (struct pci_dev *pdev, pm_message_t state)
1745 struct net_device *dev = pci_get_drvdata(pdev);
1747 if (!dev)
1748 return -EINVAL;
1750 if (netif_running(dev))
1751 tulip_down(dev);
1753 netif_device_detach(dev);
1754 free_irq(dev->irq, dev);
1756 pci_save_state(pdev);
1757 pci_disable_device(pdev);
1758 pci_set_power_state(pdev, pci_choose_state(pdev, state));
1760 return 0;
1764 static int tulip_resume(struct pci_dev *pdev)
1766 struct net_device *dev = pci_get_drvdata(pdev);
1767 int retval;
1769 if (!dev)
1770 return -EINVAL;
1772 pci_set_power_state(pdev, PCI_D0);
1773 pci_restore_state(pdev);
1775 pci_enable_device(pdev);
1777 if ((retval = request_irq(dev->irq, &tulip_interrupt, IRQF_SHARED, dev->name, dev))) {
1778 printk (KERN_ERR "tulip: request_irq failed in resume\n");
1779 return retval;
1782 netif_device_attach(dev);
1784 if (netif_running(dev))
1785 tulip_up(dev);
1787 return 0;
1790 #endif /* CONFIG_PM */
1793 static void __devexit tulip_remove_one (struct pci_dev *pdev)
1795 struct net_device *dev = pci_get_drvdata (pdev);
1796 struct tulip_private *tp;
1798 if (!dev)
1799 return;
1801 tp = netdev_priv(dev);
1802 unregister_netdev(dev);
1803 pci_free_consistent (pdev,
1804 sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
1805 sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
1806 tp->rx_ring, tp->rx_ring_dma);
1807 kfree (tp->mtable);
1808 pci_iounmap(pdev, tp->base_addr);
1809 free_netdev (dev);
1810 pci_release_regions (pdev);
1811 pci_set_drvdata (pdev, NULL);
1813 /* pci_power_off (pdev, -1); */
1816 #ifdef CONFIG_NET_POLL_CONTROLLER
1818 * Polling 'interrupt' - used by things like netconsole to send skbs
1819 * without having to re-enable interrupts. It's not called while
1820 * the interrupt routine is executing.
1823 static void poll_tulip (struct net_device *dev)
1825 /* disable_irq here is not very nice, but with the lockless
1826 interrupt handler we have no other choice. */
1827 disable_irq(dev->irq);
1828 tulip_interrupt (dev->irq, dev, NULL);
1829 enable_irq(dev->irq);
1831 #endif
1833 static struct pci_driver tulip_driver = {
1834 .name = DRV_NAME,
1835 .id_table = tulip_pci_tbl,
1836 .probe = tulip_init_one,
1837 .remove = __devexit_p(tulip_remove_one),
1838 #ifdef CONFIG_PM
1839 .suspend = tulip_suspend,
1840 .resume = tulip_resume,
1841 #endif /* CONFIG_PM */
1845 static int __init tulip_init (void)
1847 #ifdef MODULE
1848 printk (KERN_INFO "%s", version);
1849 #endif
1851 /* copy module parms into globals */
1852 tulip_rx_copybreak = rx_copybreak;
1853 tulip_max_interrupt_work = max_interrupt_work;
1855 /* probe for and init boards */
1856 return pci_register_driver(&tulip_driver);
1860 static void __exit tulip_cleanup (void)
1862 pci_unregister_driver (&tulip_driver);
1866 module_init(tulip_init);
1867 module_exit(tulip_cleanup);