slab: warn on zero-length allocations
[linux-2.6.git] / mm / slab.c
blob2043102c0425ecb711f994c9e201e5765c11ab2b
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/seq_file.h>
99 #include <linux/notifier.h>
100 #include <linux/kallsyms.h>
101 #include <linux/cpu.h>
102 #include <linux/sysctl.h>
103 #include <linux/module.h>
104 #include <linux/rcupdate.h>
105 #include <linux/string.h>
106 #include <linux/uaccess.h>
107 #include <linux/nodemask.h>
108 #include <linux/mempolicy.h>
109 #include <linux/mutex.h>
110 #include <linux/fault-inject.h>
111 #include <linux/rtmutex.h>
112 #include <linux/reciprocal_div.h>
114 #include <asm/cacheflush.h>
115 #include <asm/tlbflush.h>
116 #include <asm/page.h>
119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
120 * 0 for faster, smaller code (especially in the critical paths).
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
128 #ifdef CONFIG_DEBUG_SLAB
129 #define DEBUG 1
130 #define STATS 1
131 #define FORCED_DEBUG 1
132 #else
133 #define DEBUG 0
134 #define STATS 0
135 #define FORCED_DEBUG 0
136 #endif
138 /* Shouldn't this be in a header file somewhere? */
139 #define BYTES_PER_WORD sizeof(void *)
141 #ifndef cache_line_size
142 #define cache_line_size() L1_CACHE_BYTES
143 #endif
145 #ifndef ARCH_KMALLOC_MINALIGN
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
151 * alignment larger than the alignment of a 64-bit integer.
152 * ARCH_KMALLOC_MINALIGN allows that.
153 * Note that increasing this value may disable some debug features.
155 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
156 #endif
158 #ifndef ARCH_SLAB_MINALIGN
160 * Enforce a minimum alignment for all caches.
161 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
162 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
163 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
164 * some debug features.
166 #define ARCH_SLAB_MINALIGN 0
167 #endif
169 #ifndef ARCH_KMALLOC_FLAGS
170 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
171 #endif
173 /* Legal flag mask for kmem_cache_create(). */
174 #if DEBUG
175 # define CREATE_MASK (SLAB_RED_ZONE | \
176 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
177 SLAB_CACHE_DMA | \
178 SLAB_STORE_USER | \
179 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
180 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
181 #else
182 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
183 SLAB_CACHE_DMA | \
184 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
185 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
186 #endif
189 * kmem_bufctl_t:
191 * Bufctl's are used for linking objs within a slab
192 * linked offsets.
194 * This implementation relies on "struct page" for locating the cache &
195 * slab an object belongs to.
196 * This allows the bufctl structure to be small (one int), but limits
197 * the number of objects a slab (not a cache) can contain when off-slab
198 * bufctls are used. The limit is the size of the largest general cache
199 * that does not use off-slab slabs.
200 * For 32bit archs with 4 kB pages, is this 56.
201 * This is not serious, as it is only for large objects, when it is unwise
202 * to have too many per slab.
203 * Note: This limit can be raised by introducing a general cache whose size
204 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
207 typedef unsigned int kmem_bufctl_t;
208 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
209 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
210 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
211 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
214 * struct slab
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
220 struct slab {
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
230 * struct slab_rcu
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
243 * We assume struct slab_rcu can overlay struct slab when destroying.
245 struct slab_rcu {
246 struct rcu_head head;
247 struct kmem_cache *cachep;
248 void *addr;
252 * struct array_cache
254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
263 struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
268 spinlock_t lock;
269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
281 #define BOOT_CPUCACHE_ENTRIES 1
282 struct arraycache_init {
283 struct array_cache cache;
284 void *entries[BOOT_CPUCACHE_ENTRIES];
288 * The slab lists for all objects.
290 struct kmem_list3 {
291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
295 unsigned int free_limit;
296 unsigned int colour_next; /* Per-node cache coloring */
297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
300 unsigned long next_reap; /* updated without locking */
301 int free_touched; /* updated without locking */
305 * Need this for bootstrapping a per node allocator.
307 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
308 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309 #define CACHE_CACHE 0
310 #define SIZE_AC 1
311 #define SIZE_L3 (1 + MAX_NUMNODES)
313 static int drain_freelist(struct kmem_cache *cache,
314 struct kmem_list3 *l3, int tofree);
315 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
316 int node);
317 static int enable_cpucache(struct kmem_cache *cachep);
318 static void cache_reap(struct work_struct *unused);
321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
324 static __always_inline int index_of(const size_t size)
326 extern void __bad_size(void);
328 if (__builtin_constant_p(size)) {
329 int i = 0;
331 #define CACHE(x) \
332 if (size <=x) \
333 return i; \
334 else \
335 i++;
336 #include "linux/kmalloc_sizes.h"
337 #undef CACHE
338 __bad_size();
339 } else
340 __bad_size();
341 return 0;
344 static int slab_early_init = 1;
346 #define INDEX_AC index_of(sizeof(struct arraycache_init))
347 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
349 static void kmem_list3_init(struct kmem_list3 *parent)
351 INIT_LIST_HEAD(&parent->slabs_full);
352 INIT_LIST_HEAD(&parent->slabs_partial);
353 INIT_LIST_HEAD(&parent->slabs_free);
354 parent->shared = NULL;
355 parent->alien = NULL;
356 parent->colour_next = 0;
357 spin_lock_init(&parent->list_lock);
358 parent->free_objects = 0;
359 parent->free_touched = 0;
362 #define MAKE_LIST(cachep, listp, slab, nodeid) \
363 do { \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
366 } while (0)
368 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 do { \
370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
373 } while (0)
376 * struct kmem_cache
378 * manages a cache.
381 struct kmem_cache {
382 /* 1) per-cpu data, touched during every alloc/free */
383 struct array_cache *array[NR_CPUS];
384 /* 2) Cache tunables. Protected by cache_chain_mutex */
385 unsigned int batchcount;
386 unsigned int limit;
387 unsigned int shared;
389 unsigned int buffer_size;
390 u32 reciprocal_buffer_size;
391 /* 3) touched by every alloc & free from the backend */
393 unsigned int flags; /* constant flags */
394 unsigned int num; /* # of objs per slab */
396 /* 4) cache_grow/shrink */
397 /* order of pgs per slab (2^n) */
398 unsigned int gfporder;
400 /* force GFP flags, e.g. GFP_DMA */
401 gfp_t gfpflags;
403 size_t colour; /* cache colouring range */
404 unsigned int colour_off; /* colour offset */
405 struct kmem_cache *slabp_cache;
406 unsigned int slab_size;
407 unsigned int dflags; /* dynamic flags */
409 /* constructor func */
410 void (*ctor) (void *, struct kmem_cache *, unsigned long);
412 /* 5) cache creation/removal */
413 const char *name;
414 struct list_head next;
416 /* 6) statistics */
417 #if STATS
418 unsigned long num_active;
419 unsigned long num_allocations;
420 unsigned long high_mark;
421 unsigned long grown;
422 unsigned long reaped;
423 unsigned long errors;
424 unsigned long max_freeable;
425 unsigned long node_allocs;
426 unsigned long node_frees;
427 unsigned long node_overflow;
428 atomic_t allochit;
429 atomic_t allocmiss;
430 atomic_t freehit;
431 atomic_t freemiss;
432 #endif
433 #if DEBUG
435 * If debugging is enabled, then the allocator can add additional
436 * fields and/or padding to every object. buffer_size contains the total
437 * object size including these internal fields, the following two
438 * variables contain the offset to the user object and its size.
440 int obj_offset;
441 int obj_size;
442 #endif
444 * We put nodelists[] at the end of kmem_cache, because we want to size
445 * this array to nr_node_ids slots instead of MAX_NUMNODES
446 * (see kmem_cache_init())
447 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
448 * is statically defined, so we reserve the max number of nodes.
450 struct kmem_list3 *nodelists[MAX_NUMNODES];
452 * Do not add fields after nodelists[]
456 #define CFLGS_OFF_SLAB (0x80000000UL)
457 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
459 #define BATCHREFILL_LIMIT 16
461 * Optimization question: fewer reaps means less probability for unnessary
462 * cpucache drain/refill cycles.
464 * OTOH the cpuarrays can contain lots of objects,
465 * which could lock up otherwise freeable slabs.
467 #define REAPTIMEOUT_CPUC (2*HZ)
468 #define REAPTIMEOUT_LIST3 (4*HZ)
470 #if STATS
471 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
472 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
473 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
474 #define STATS_INC_GROWN(x) ((x)->grown++)
475 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
476 #define STATS_SET_HIGH(x) \
477 do { \
478 if ((x)->num_active > (x)->high_mark) \
479 (x)->high_mark = (x)->num_active; \
480 } while (0)
481 #define STATS_INC_ERR(x) ((x)->errors++)
482 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
483 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
484 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
485 #define STATS_SET_FREEABLE(x, i) \
486 do { \
487 if ((x)->max_freeable < i) \
488 (x)->max_freeable = i; \
489 } while (0)
490 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
491 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
492 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
493 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
494 #else
495 #define STATS_INC_ACTIVE(x) do { } while (0)
496 #define STATS_DEC_ACTIVE(x) do { } while (0)
497 #define STATS_INC_ALLOCED(x) do { } while (0)
498 #define STATS_INC_GROWN(x) do { } while (0)
499 #define STATS_ADD_REAPED(x,y) do { } while (0)
500 #define STATS_SET_HIGH(x) do { } while (0)
501 #define STATS_INC_ERR(x) do { } while (0)
502 #define STATS_INC_NODEALLOCS(x) do { } while (0)
503 #define STATS_INC_NODEFREES(x) do { } while (0)
504 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
505 #define STATS_SET_FREEABLE(x, i) do { } while (0)
506 #define STATS_INC_ALLOCHIT(x) do { } while (0)
507 #define STATS_INC_ALLOCMISS(x) do { } while (0)
508 #define STATS_INC_FREEHIT(x) do { } while (0)
509 #define STATS_INC_FREEMISS(x) do { } while (0)
510 #endif
512 #if DEBUG
515 * memory layout of objects:
516 * 0 : objp
517 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
518 * the end of an object is aligned with the end of the real
519 * allocation. Catches writes behind the end of the allocation.
520 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
521 * redzone word.
522 * cachep->obj_offset: The real object.
523 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
524 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
525 * [BYTES_PER_WORD long]
527 static int obj_offset(struct kmem_cache *cachep)
529 return cachep->obj_offset;
532 static int obj_size(struct kmem_cache *cachep)
534 return cachep->obj_size;
537 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
539 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
540 return (unsigned long long*) (objp + obj_offset(cachep) -
541 sizeof(unsigned long long));
544 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
546 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
547 if (cachep->flags & SLAB_STORE_USER)
548 return (unsigned long long *)(objp + cachep->buffer_size -
549 sizeof(unsigned long long) -
550 BYTES_PER_WORD);
551 return (unsigned long long *) (objp + cachep->buffer_size -
552 sizeof(unsigned long long));
555 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
557 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
558 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
561 #else
563 #define obj_offset(x) 0
564 #define obj_size(cachep) (cachep->buffer_size)
565 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
566 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
567 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
569 #endif
572 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
573 * order.
575 #if defined(CONFIG_LARGE_ALLOCS)
576 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
577 #define MAX_GFP_ORDER 13 /* up to 32Mb */
578 #elif defined(CONFIG_MMU)
579 #define MAX_OBJ_ORDER 5 /* 32 pages */
580 #define MAX_GFP_ORDER 5 /* 32 pages */
581 #else
582 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
583 #define MAX_GFP_ORDER 8 /* up to 1Mb */
584 #endif
587 * Do not go above this order unless 0 objects fit into the slab.
589 #define BREAK_GFP_ORDER_HI 1
590 #define BREAK_GFP_ORDER_LO 0
591 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
594 * Functions for storing/retrieving the cachep and or slab from the page
595 * allocator. These are used to find the slab an obj belongs to. With kfree(),
596 * these are used to find the cache which an obj belongs to.
598 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
600 page->lru.next = (struct list_head *)cache;
603 static inline struct kmem_cache *page_get_cache(struct page *page)
605 page = compound_head(page);
606 BUG_ON(!PageSlab(page));
607 return (struct kmem_cache *)page->lru.next;
610 static inline void page_set_slab(struct page *page, struct slab *slab)
612 page->lru.prev = (struct list_head *)slab;
615 static inline struct slab *page_get_slab(struct page *page)
617 BUG_ON(!PageSlab(page));
618 return (struct slab *)page->lru.prev;
621 static inline struct kmem_cache *virt_to_cache(const void *obj)
623 struct page *page = virt_to_head_page(obj);
624 return page_get_cache(page);
627 static inline struct slab *virt_to_slab(const void *obj)
629 struct page *page = virt_to_head_page(obj);
630 return page_get_slab(page);
633 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
634 unsigned int idx)
636 return slab->s_mem + cache->buffer_size * idx;
640 * We want to avoid an expensive divide : (offset / cache->buffer_size)
641 * Using the fact that buffer_size is a constant for a particular cache,
642 * we can replace (offset / cache->buffer_size) by
643 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
645 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
646 const struct slab *slab, void *obj)
648 u32 offset = (obj - slab->s_mem);
649 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
653 * These are the default caches for kmalloc. Custom caches can have other sizes.
655 struct cache_sizes malloc_sizes[] = {
656 #define CACHE(x) { .cs_size = (x) },
657 #include <linux/kmalloc_sizes.h>
658 CACHE(ULONG_MAX)
659 #undef CACHE
661 EXPORT_SYMBOL(malloc_sizes);
663 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
664 struct cache_names {
665 char *name;
666 char *name_dma;
669 static struct cache_names __initdata cache_names[] = {
670 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
671 #include <linux/kmalloc_sizes.h>
672 {NULL,}
673 #undef CACHE
676 static struct arraycache_init initarray_cache __initdata =
677 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
678 static struct arraycache_init initarray_generic =
679 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
681 /* internal cache of cache description objs */
682 static struct kmem_cache cache_cache = {
683 .batchcount = 1,
684 .limit = BOOT_CPUCACHE_ENTRIES,
685 .shared = 1,
686 .buffer_size = sizeof(struct kmem_cache),
687 .name = "kmem_cache",
690 #define BAD_ALIEN_MAGIC 0x01020304ul
692 #ifdef CONFIG_LOCKDEP
695 * Slab sometimes uses the kmalloc slabs to store the slab headers
696 * for other slabs "off slab".
697 * The locking for this is tricky in that it nests within the locks
698 * of all other slabs in a few places; to deal with this special
699 * locking we put on-slab caches into a separate lock-class.
701 * We set lock class for alien array caches which are up during init.
702 * The lock annotation will be lost if all cpus of a node goes down and
703 * then comes back up during hotplug
705 static struct lock_class_key on_slab_l3_key;
706 static struct lock_class_key on_slab_alc_key;
708 static inline void init_lock_keys(void)
711 int q;
712 struct cache_sizes *s = malloc_sizes;
714 while (s->cs_size != ULONG_MAX) {
715 for_each_node(q) {
716 struct array_cache **alc;
717 int r;
718 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
719 if (!l3 || OFF_SLAB(s->cs_cachep))
720 continue;
721 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
722 alc = l3->alien;
724 * FIXME: This check for BAD_ALIEN_MAGIC
725 * should go away when common slab code is taught to
726 * work even without alien caches.
727 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
728 * for alloc_alien_cache,
730 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
731 continue;
732 for_each_node(r) {
733 if (alc[r])
734 lockdep_set_class(&alc[r]->lock,
735 &on_slab_alc_key);
738 s++;
741 #else
742 static inline void init_lock_keys(void)
745 #endif
748 * 1. Guard access to the cache-chain.
749 * 2. Protect sanity of cpu_online_map against cpu hotplug events
751 static DEFINE_MUTEX(cache_chain_mutex);
752 static struct list_head cache_chain;
755 * chicken and egg problem: delay the per-cpu array allocation
756 * until the general caches are up.
758 static enum {
759 NONE,
760 PARTIAL_AC,
761 PARTIAL_L3,
762 FULL
763 } g_cpucache_up;
766 * used by boot code to determine if it can use slab based allocator
768 int slab_is_available(void)
770 return g_cpucache_up == FULL;
773 static DEFINE_PER_CPU(struct delayed_work, reap_work);
775 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
777 return cachep->array[smp_processor_id()];
780 static inline struct kmem_cache *__find_general_cachep(size_t size,
781 gfp_t gfpflags)
783 struct cache_sizes *csizep = malloc_sizes;
785 #if DEBUG
786 /* This happens if someone tries to call
787 * kmem_cache_create(), or __kmalloc(), before
788 * the generic caches are initialized.
790 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
791 #endif
792 WARN_ON_ONCE(size == 0);
793 while (size > csizep->cs_size)
794 csizep++;
797 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
798 * has cs_{dma,}cachep==NULL. Thus no special case
799 * for large kmalloc calls required.
801 #ifdef CONFIG_ZONE_DMA
802 if (unlikely(gfpflags & GFP_DMA))
803 return csizep->cs_dmacachep;
804 #endif
805 return csizep->cs_cachep;
808 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
810 return __find_general_cachep(size, gfpflags);
813 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
815 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
819 * Calculate the number of objects and left-over bytes for a given buffer size.
821 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
822 size_t align, int flags, size_t *left_over,
823 unsigned int *num)
825 int nr_objs;
826 size_t mgmt_size;
827 size_t slab_size = PAGE_SIZE << gfporder;
830 * The slab management structure can be either off the slab or
831 * on it. For the latter case, the memory allocated for a
832 * slab is used for:
834 * - The struct slab
835 * - One kmem_bufctl_t for each object
836 * - Padding to respect alignment of @align
837 * - @buffer_size bytes for each object
839 * If the slab management structure is off the slab, then the
840 * alignment will already be calculated into the size. Because
841 * the slabs are all pages aligned, the objects will be at the
842 * correct alignment when allocated.
844 if (flags & CFLGS_OFF_SLAB) {
845 mgmt_size = 0;
846 nr_objs = slab_size / buffer_size;
848 if (nr_objs > SLAB_LIMIT)
849 nr_objs = SLAB_LIMIT;
850 } else {
852 * Ignore padding for the initial guess. The padding
853 * is at most @align-1 bytes, and @buffer_size is at
854 * least @align. In the worst case, this result will
855 * be one greater than the number of objects that fit
856 * into the memory allocation when taking the padding
857 * into account.
859 nr_objs = (slab_size - sizeof(struct slab)) /
860 (buffer_size + sizeof(kmem_bufctl_t));
863 * This calculated number will be either the right
864 * amount, or one greater than what we want.
866 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
867 > slab_size)
868 nr_objs--;
870 if (nr_objs > SLAB_LIMIT)
871 nr_objs = SLAB_LIMIT;
873 mgmt_size = slab_mgmt_size(nr_objs, align);
875 *num = nr_objs;
876 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
879 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
881 static void __slab_error(const char *function, struct kmem_cache *cachep,
882 char *msg)
884 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
885 function, cachep->name, msg);
886 dump_stack();
890 * By default on NUMA we use alien caches to stage the freeing of
891 * objects allocated from other nodes. This causes massive memory
892 * inefficiencies when using fake NUMA setup to split memory into a
893 * large number of small nodes, so it can be disabled on the command
894 * line
897 static int use_alien_caches __read_mostly = 1;
898 static int __init noaliencache_setup(char *s)
900 use_alien_caches = 0;
901 return 1;
903 __setup("noaliencache", noaliencache_setup);
905 #ifdef CONFIG_NUMA
907 * Special reaping functions for NUMA systems called from cache_reap().
908 * These take care of doing round robin flushing of alien caches (containing
909 * objects freed on different nodes from which they were allocated) and the
910 * flushing of remote pcps by calling drain_node_pages.
912 static DEFINE_PER_CPU(unsigned long, reap_node);
914 static void init_reap_node(int cpu)
916 int node;
918 node = next_node(cpu_to_node(cpu), node_online_map);
919 if (node == MAX_NUMNODES)
920 node = first_node(node_online_map);
922 per_cpu(reap_node, cpu) = node;
925 static void next_reap_node(void)
927 int node = __get_cpu_var(reap_node);
929 node = next_node(node, node_online_map);
930 if (unlikely(node >= MAX_NUMNODES))
931 node = first_node(node_online_map);
932 __get_cpu_var(reap_node) = node;
935 #else
936 #define init_reap_node(cpu) do { } while (0)
937 #define next_reap_node(void) do { } while (0)
938 #endif
941 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
942 * via the workqueue/eventd.
943 * Add the CPU number into the expiration time to minimize the possibility of
944 * the CPUs getting into lockstep and contending for the global cache chain
945 * lock.
947 static void __devinit start_cpu_timer(int cpu)
949 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
952 * When this gets called from do_initcalls via cpucache_init(),
953 * init_workqueues() has already run, so keventd will be setup
954 * at that time.
956 if (keventd_up() && reap_work->work.func == NULL) {
957 init_reap_node(cpu);
958 INIT_DELAYED_WORK(reap_work, cache_reap);
959 schedule_delayed_work_on(cpu, reap_work,
960 __round_jiffies_relative(HZ, cpu));
964 static struct array_cache *alloc_arraycache(int node, int entries,
965 int batchcount)
967 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
968 struct array_cache *nc = NULL;
970 nc = kmalloc_node(memsize, GFP_KERNEL, node);
971 if (nc) {
972 nc->avail = 0;
973 nc->limit = entries;
974 nc->batchcount = batchcount;
975 nc->touched = 0;
976 spin_lock_init(&nc->lock);
978 return nc;
982 * Transfer objects in one arraycache to another.
983 * Locking must be handled by the caller.
985 * Return the number of entries transferred.
987 static int transfer_objects(struct array_cache *to,
988 struct array_cache *from, unsigned int max)
990 /* Figure out how many entries to transfer */
991 int nr = min(min(from->avail, max), to->limit - to->avail);
993 if (!nr)
994 return 0;
996 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
997 sizeof(void *) *nr);
999 from->avail -= nr;
1000 to->avail += nr;
1001 to->touched = 1;
1002 return nr;
1005 #ifndef CONFIG_NUMA
1007 #define drain_alien_cache(cachep, alien) do { } while (0)
1008 #define reap_alien(cachep, l3) do { } while (0)
1010 static inline struct array_cache **alloc_alien_cache(int node, int limit)
1012 return (struct array_cache **)BAD_ALIEN_MAGIC;
1015 static inline void free_alien_cache(struct array_cache **ac_ptr)
1019 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1021 return 0;
1024 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1025 gfp_t flags)
1027 return NULL;
1030 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1031 gfp_t flags, int nodeid)
1033 return NULL;
1036 #else /* CONFIG_NUMA */
1038 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1039 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1041 static struct array_cache **alloc_alien_cache(int node, int limit)
1043 struct array_cache **ac_ptr;
1044 int memsize = sizeof(void *) * nr_node_ids;
1045 int i;
1047 if (limit > 1)
1048 limit = 12;
1049 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1050 if (ac_ptr) {
1051 for_each_node(i) {
1052 if (i == node || !node_online(i)) {
1053 ac_ptr[i] = NULL;
1054 continue;
1056 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1057 if (!ac_ptr[i]) {
1058 for (i--; i <= 0; i--)
1059 kfree(ac_ptr[i]);
1060 kfree(ac_ptr);
1061 return NULL;
1065 return ac_ptr;
1068 static void free_alien_cache(struct array_cache **ac_ptr)
1070 int i;
1072 if (!ac_ptr)
1073 return;
1074 for_each_node(i)
1075 kfree(ac_ptr[i]);
1076 kfree(ac_ptr);
1079 static void __drain_alien_cache(struct kmem_cache *cachep,
1080 struct array_cache *ac, int node)
1082 struct kmem_list3 *rl3 = cachep->nodelists[node];
1084 if (ac->avail) {
1085 spin_lock(&rl3->list_lock);
1087 * Stuff objects into the remote nodes shared array first.
1088 * That way we could avoid the overhead of putting the objects
1089 * into the free lists and getting them back later.
1091 if (rl3->shared)
1092 transfer_objects(rl3->shared, ac, ac->limit);
1094 free_block(cachep, ac->entry, ac->avail, node);
1095 ac->avail = 0;
1096 spin_unlock(&rl3->list_lock);
1101 * Called from cache_reap() to regularly drain alien caches round robin.
1103 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1105 int node = __get_cpu_var(reap_node);
1107 if (l3->alien) {
1108 struct array_cache *ac = l3->alien[node];
1110 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1111 __drain_alien_cache(cachep, ac, node);
1112 spin_unlock_irq(&ac->lock);
1117 static void drain_alien_cache(struct kmem_cache *cachep,
1118 struct array_cache **alien)
1120 int i = 0;
1121 struct array_cache *ac;
1122 unsigned long flags;
1124 for_each_online_node(i) {
1125 ac = alien[i];
1126 if (ac) {
1127 spin_lock_irqsave(&ac->lock, flags);
1128 __drain_alien_cache(cachep, ac, i);
1129 spin_unlock_irqrestore(&ac->lock, flags);
1134 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1136 struct slab *slabp = virt_to_slab(objp);
1137 int nodeid = slabp->nodeid;
1138 struct kmem_list3 *l3;
1139 struct array_cache *alien = NULL;
1140 int node;
1142 node = numa_node_id();
1145 * Make sure we are not freeing a object from another node to the array
1146 * cache on this cpu.
1148 if (likely(slabp->nodeid == node))
1149 return 0;
1151 l3 = cachep->nodelists[node];
1152 STATS_INC_NODEFREES(cachep);
1153 if (l3->alien && l3->alien[nodeid]) {
1154 alien = l3->alien[nodeid];
1155 spin_lock(&alien->lock);
1156 if (unlikely(alien->avail == alien->limit)) {
1157 STATS_INC_ACOVERFLOW(cachep);
1158 __drain_alien_cache(cachep, alien, nodeid);
1160 alien->entry[alien->avail++] = objp;
1161 spin_unlock(&alien->lock);
1162 } else {
1163 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1164 free_block(cachep, &objp, 1, nodeid);
1165 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1167 return 1;
1169 #endif
1171 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1172 unsigned long action, void *hcpu)
1174 long cpu = (long)hcpu;
1175 struct kmem_cache *cachep;
1176 struct kmem_list3 *l3 = NULL;
1177 int node = cpu_to_node(cpu);
1178 int memsize = sizeof(struct kmem_list3);
1180 switch (action) {
1181 case CPU_LOCK_ACQUIRE:
1182 mutex_lock(&cache_chain_mutex);
1183 break;
1184 case CPU_UP_PREPARE:
1185 case CPU_UP_PREPARE_FROZEN:
1187 * We need to do this right in the beginning since
1188 * alloc_arraycache's are going to use this list.
1189 * kmalloc_node allows us to add the slab to the right
1190 * kmem_list3 and not this cpu's kmem_list3
1193 list_for_each_entry(cachep, &cache_chain, next) {
1195 * Set up the size64 kmemlist for cpu before we can
1196 * begin anything. Make sure some other cpu on this
1197 * node has not already allocated this
1199 if (!cachep->nodelists[node]) {
1200 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1201 if (!l3)
1202 goto bad;
1203 kmem_list3_init(l3);
1204 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1205 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1208 * The l3s don't come and go as CPUs come and
1209 * go. cache_chain_mutex is sufficient
1210 * protection here.
1212 cachep->nodelists[node] = l3;
1215 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1216 cachep->nodelists[node]->free_limit =
1217 (1 + nr_cpus_node(node)) *
1218 cachep->batchcount + cachep->num;
1219 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1223 * Now we can go ahead with allocating the shared arrays and
1224 * array caches
1226 list_for_each_entry(cachep, &cache_chain, next) {
1227 struct array_cache *nc;
1228 struct array_cache *shared = NULL;
1229 struct array_cache **alien = NULL;
1231 nc = alloc_arraycache(node, cachep->limit,
1232 cachep->batchcount);
1233 if (!nc)
1234 goto bad;
1235 if (cachep->shared) {
1236 shared = alloc_arraycache(node,
1237 cachep->shared * cachep->batchcount,
1238 0xbaadf00d);
1239 if (!shared)
1240 goto bad;
1242 if (use_alien_caches) {
1243 alien = alloc_alien_cache(node, cachep->limit);
1244 if (!alien)
1245 goto bad;
1247 cachep->array[cpu] = nc;
1248 l3 = cachep->nodelists[node];
1249 BUG_ON(!l3);
1251 spin_lock_irq(&l3->list_lock);
1252 if (!l3->shared) {
1254 * We are serialised from CPU_DEAD or
1255 * CPU_UP_CANCELLED by the cpucontrol lock
1257 l3->shared = shared;
1258 shared = NULL;
1260 #ifdef CONFIG_NUMA
1261 if (!l3->alien) {
1262 l3->alien = alien;
1263 alien = NULL;
1265 #endif
1266 spin_unlock_irq(&l3->list_lock);
1267 kfree(shared);
1268 free_alien_cache(alien);
1270 break;
1271 case CPU_ONLINE:
1272 case CPU_ONLINE_FROZEN:
1273 start_cpu_timer(cpu);
1274 break;
1275 #ifdef CONFIG_HOTPLUG_CPU
1276 case CPU_DOWN_PREPARE:
1277 case CPU_DOWN_PREPARE_FROZEN:
1279 * Shutdown cache reaper. Note that the cache_chain_mutex is
1280 * held so that if cache_reap() is invoked it cannot do
1281 * anything expensive but will only modify reap_work
1282 * and reschedule the timer.
1284 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1285 /* Now the cache_reaper is guaranteed to be not running. */
1286 per_cpu(reap_work, cpu).work.func = NULL;
1287 break;
1288 case CPU_DOWN_FAILED:
1289 case CPU_DOWN_FAILED_FROZEN:
1290 start_cpu_timer(cpu);
1291 break;
1292 case CPU_DEAD:
1293 case CPU_DEAD_FROZEN:
1295 * Even if all the cpus of a node are down, we don't free the
1296 * kmem_list3 of any cache. This to avoid a race between
1297 * cpu_down, and a kmalloc allocation from another cpu for
1298 * memory from the node of the cpu going down. The list3
1299 * structure is usually allocated from kmem_cache_create() and
1300 * gets destroyed at kmem_cache_destroy().
1302 /* fall thru */
1303 #endif
1304 case CPU_UP_CANCELED:
1305 case CPU_UP_CANCELED_FROZEN:
1306 list_for_each_entry(cachep, &cache_chain, next) {
1307 struct array_cache *nc;
1308 struct array_cache *shared;
1309 struct array_cache **alien;
1310 cpumask_t mask;
1312 mask = node_to_cpumask(node);
1313 /* cpu is dead; no one can alloc from it. */
1314 nc = cachep->array[cpu];
1315 cachep->array[cpu] = NULL;
1316 l3 = cachep->nodelists[node];
1318 if (!l3)
1319 goto free_array_cache;
1321 spin_lock_irq(&l3->list_lock);
1323 /* Free limit for this kmem_list3 */
1324 l3->free_limit -= cachep->batchcount;
1325 if (nc)
1326 free_block(cachep, nc->entry, nc->avail, node);
1328 if (!cpus_empty(mask)) {
1329 spin_unlock_irq(&l3->list_lock);
1330 goto free_array_cache;
1333 shared = l3->shared;
1334 if (shared) {
1335 free_block(cachep, shared->entry,
1336 shared->avail, node);
1337 l3->shared = NULL;
1340 alien = l3->alien;
1341 l3->alien = NULL;
1343 spin_unlock_irq(&l3->list_lock);
1345 kfree(shared);
1346 if (alien) {
1347 drain_alien_cache(cachep, alien);
1348 free_alien_cache(alien);
1350 free_array_cache:
1351 kfree(nc);
1354 * In the previous loop, all the objects were freed to
1355 * the respective cache's slabs, now we can go ahead and
1356 * shrink each nodelist to its limit.
1358 list_for_each_entry(cachep, &cache_chain, next) {
1359 l3 = cachep->nodelists[node];
1360 if (!l3)
1361 continue;
1362 drain_freelist(cachep, l3, l3->free_objects);
1364 break;
1365 case CPU_LOCK_RELEASE:
1366 mutex_unlock(&cache_chain_mutex);
1367 break;
1369 return NOTIFY_OK;
1370 bad:
1371 return NOTIFY_BAD;
1374 static struct notifier_block __cpuinitdata cpucache_notifier = {
1375 &cpuup_callback, NULL, 0
1379 * swap the static kmem_list3 with kmalloced memory
1381 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1382 int nodeid)
1384 struct kmem_list3 *ptr;
1386 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1387 BUG_ON(!ptr);
1389 local_irq_disable();
1390 memcpy(ptr, list, sizeof(struct kmem_list3));
1392 * Do not assume that spinlocks can be initialized via memcpy:
1394 spin_lock_init(&ptr->list_lock);
1396 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1397 cachep->nodelists[nodeid] = ptr;
1398 local_irq_enable();
1402 * Initialisation. Called after the page allocator have been initialised and
1403 * before smp_init().
1405 void __init kmem_cache_init(void)
1407 size_t left_over;
1408 struct cache_sizes *sizes;
1409 struct cache_names *names;
1410 int i;
1411 int order;
1412 int node;
1414 if (num_possible_nodes() == 1)
1415 use_alien_caches = 0;
1417 for (i = 0; i < NUM_INIT_LISTS; i++) {
1418 kmem_list3_init(&initkmem_list3[i]);
1419 if (i < MAX_NUMNODES)
1420 cache_cache.nodelists[i] = NULL;
1424 * Fragmentation resistance on low memory - only use bigger
1425 * page orders on machines with more than 32MB of memory.
1427 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1428 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1430 /* Bootstrap is tricky, because several objects are allocated
1431 * from caches that do not exist yet:
1432 * 1) initialize the cache_cache cache: it contains the struct
1433 * kmem_cache structures of all caches, except cache_cache itself:
1434 * cache_cache is statically allocated.
1435 * Initially an __init data area is used for the head array and the
1436 * kmem_list3 structures, it's replaced with a kmalloc allocated
1437 * array at the end of the bootstrap.
1438 * 2) Create the first kmalloc cache.
1439 * The struct kmem_cache for the new cache is allocated normally.
1440 * An __init data area is used for the head array.
1441 * 3) Create the remaining kmalloc caches, with minimally sized
1442 * head arrays.
1443 * 4) Replace the __init data head arrays for cache_cache and the first
1444 * kmalloc cache with kmalloc allocated arrays.
1445 * 5) Replace the __init data for kmem_list3 for cache_cache and
1446 * the other cache's with kmalloc allocated memory.
1447 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1450 node = numa_node_id();
1452 /* 1) create the cache_cache */
1453 INIT_LIST_HEAD(&cache_chain);
1454 list_add(&cache_cache.next, &cache_chain);
1455 cache_cache.colour_off = cache_line_size();
1456 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1457 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1460 * struct kmem_cache size depends on nr_node_ids, which
1461 * can be less than MAX_NUMNODES.
1463 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1464 nr_node_ids * sizeof(struct kmem_list3 *);
1465 #if DEBUG
1466 cache_cache.obj_size = cache_cache.buffer_size;
1467 #endif
1468 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1469 cache_line_size());
1470 cache_cache.reciprocal_buffer_size =
1471 reciprocal_value(cache_cache.buffer_size);
1473 for (order = 0; order < MAX_ORDER; order++) {
1474 cache_estimate(order, cache_cache.buffer_size,
1475 cache_line_size(), 0, &left_over, &cache_cache.num);
1476 if (cache_cache.num)
1477 break;
1479 BUG_ON(!cache_cache.num);
1480 cache_cache.gfporder = order;
1481 cache_cache.colour = left_over / cache_cache.colour_off;
1482 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1483 sizeof(struct slab), cache_line_size());
1485 /* 2+3) create the kmalloc caches */
1486 sizes = malloc_sizes;
1487 names = cache_names;
1490 * Initialize the caches that provide memory for the array cache and the
1491 * kmem_list3 structures first. Without this, further allocations will
1492 * bug.
1495 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1496 sizes[INDEX_AC].cs_size,
1497 ARCH_KMALLOC_MINALIGN,
1498 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1499 NULL, NULL);
1501 if (INDEX_AC != INDEX_L3) {
1502 sizes[INDEX_L3].cs_cachep =
1503 kmem_cache_create(names[INDEX_L3].name,
1504 sizes[INDEX_L3].cs_size,
1505 ARCH_KMALLOC_MINALIGN,
1506 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1507 NULL, NULL);
1510 slab_early_init = 0;
1512 while (sizes->cs_size != ULONG_MAX) {
1514 * For performance, all the general caches are L1 aligned.
1515 * This should be particularly beneficial on SMP boxes, as it
1516 * eliminates "false sharing".
1517 * Note for systems short on memory removing the alignment will
1518 * allow tighter packing of the smaller caches.
1520 if (!sizes->cs_cachep) {
1521 sizes->cs_cachep = kmem_cache_create(names->name,
1522 sizes->cs_size,
1523 ARCH_KMALLOC_MINALIGN,
1524 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1525 NULL, NULL);
1527 #ifdef CONFIG_ZONE_DMA
1528 sizes->cs_dmacachep = kmem_cache_create(
1529 names->name_dma,
1530 sizes->cs_size,
1531 ARCH_KMALLOC_MINALIGN,
1532 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1533 SLAB_PANIC,
1534 NULL, NULL);
1535 #endif
1536 sizes++;
1537 names++;
1539 /* 4) Replace the bootstrap head arrays */
1541 struct array_cache *ptr;
1543 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1545 local_irq_disable();
1546 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1547 memcpy(ptr, cpu_cache_get(&cache_cache),
1548 sizeof(struct arraycache_init));
1550 * Do not assume that spinlocks can be initialized via memcpy:
1552 spin_lock_init(&ptr->lock);
1554 cache_cache.array[smp_processor_id()] = ptr;
1555 local_irq_enable();
1557 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1559 local_irq_disable();
1560 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1561 != &initarray_generic.cache);
1562 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1563 sizeof(struct arraycache_init));
1565 * Do not assume that spinlocks can be initialized via memcpy:
1567 spin_lock_init(&ptr->lock);
1569 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1570 ptr;
1571 local_irq_enable();
1573 /* 5) Replace the bootstrap kmem_list3's */
1575 int nid;
1577 /* Replace the static kmem_list3 structures for the boot cpu */
1578 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1580 for_each_online_node(nid) {
1581 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1582 &initkmem_list3[SIZE_AC + nid], nid);
1584 if (INDEX_AC != INDEX_L3) {
1585 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1586 &initkmem_list3[SIZE_L3 + nid], nid);
1591 /* 6) resize the head arrays to their final sizes */
1593 struct kmem_cache *cachep;
1594 mutex_lock(&cache_chain_mutex);
1595 list_for_each_entry(cachep, &cache_chain, next)
1596 if (enable_cpucache(cachep))
1597 BUG();
1598 mutex_unlock(&cache_chain_mutex);
1601 /* Annotate slab for lockdep -- annotate the malloc caches */
1602 init_lock_keys();
1605 /* Done! */
1606 g_cpucache_up = FULL;
1609 * Register a cpu startup notifier callback that initializes
1610 * cpu_cache_get for all new cpus
1612 register_cpu_notifier(&cpucache_notifier);
1615 * The reap timers are started later, with a module init call: That part
1616 * of the kernel is not yet operational.
1620 static int __init cpucache_init(void)
1622 int cpu;
1625 * Register the timers that return unneeded pages to the page allocator
1627 for_each_online_cpu(cpu)
1628 start_cpu_timer(cpu);
1629 return 0;
1631 __initcall(cpucache_init);
1634 * Interface to system's page allocator. No need to hold the cache-lock.
1636 * If we requested dmaable memory, we will get it. Even if we
1637 * did not request dmaable memory, we might get it, but that
1638 * would be relatively rare and ignorable.
1640 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1642 struct page *page;
1643 int nr_pages;
1644 int i;
1646 #ifndef CONFIG_MMU
1648 * Nommu uses slab's for process anonymous memory allocations, and thus
1649 * requires __GFP_COMP to properly refcount higher order allocations
1651 flags |= __GFP_COMP;
1652 #endif
1654 flags |= cachep->gfpflags;
1656 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1657 if (!page)
1658 return NULL;
1660 nr_pages = (1 << cachep->gfporder);
1661 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1662 add_zone_page_state(page_zone(page),
1663 NR_SLAB_RECLAIMABLE, nr_pages);
1664 else
1665 add_zone_page_state(page_zone(page),
1666 NR_SLAB_UNRECLAIMABLE, nr_pages);
1667 for (i = 0; i < nr_pages; i++)
1668 __SetPageSlab(page + i);
1669 return page_address(page);
1673 * Interface to system's page release.
1675 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1677 unsigned long i = (1 << cachep->gfporder);
1678 struct page *page = virt_to_page(addr);
1679 const unsigned long nr_freed = i;
1681 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1682 sub_zone_page_state(page_zone(page),
1683 NR_SLAB_RECLAIMABLE, nr_freed);
1684 else
1685 sub_zone_page_state(page_zone(page),
1686 NR_SLAB_UNRECLAIMABLE, nr_freed);
1687 while (i--) {
1688 BUG_ON(!PageSlab(page));
1689 __ClearPageSlab(page);
1690 page++;
1692 if (current->reclaim_state)
1693 current->reclaim_state->reclaimed_slab += nr_freed;
1694 free_pages((unsigned long)addr, cachep->gfporder);
1697 static void kmem_rcu_free(struct rcu_head *head)
1699 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1700 struct kmem_cache *cachep = slab_rcu->cachep;
1702 kmem_freepages(cachep, slab_rcu->addr);
1703 if (OFF_SLAB(cachep))
1704 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1707 #if DEBUG
1709 #ifdef CONFIG_DEBUG_PAGEALLOC
1710 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1711 unsigned long caller)
1713 int size = obj_size(cachep);
1715 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1717 if (size < 5 * sizeof(unsigned long))
1718 return;
1720 *addr++ = 0x12345678;
1721 *addr++ = caller;
1722 *addr++ = smp_processor_id();
1723 size -= 3 * sizeof(unsigned long);
1725 unsigned long *sptr = &caller;
1726 unsigned long svalue;
1728 while (!kstack_end(sptr)) {
1729 svalue = *sptr++;
1730 if (kernel_text_address(svalue)) {
1731 *addr++ = svalue;
1732 size -= sizeof(unsigned long);
1733 if (size <= sizeof(unsigned long))
1734 break;
1739 *addr++ = 0x87654321;
1741 #endif
1743 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1745 int size = obj_size(cachep);
1746 addr = &((char *)addr)[obj_offset(cachep)];
1748 memset(addr, val, size);
1749 *(unsigned char *)(addr + size - 1) = POISON_END;
1752 static void dump_line(char *data, int offset, int limit)
1754 int i;
1755 unsigned char error = 0;
1756 int bad_count = 0;
1758 printk(KERN_ERR "%03x:", offset);
1759 for (i = 0; i < limit; i++) {
1760 if (data[offset + i] != POISON_FREE) {
1761 error = data[offset + i];
1762 bad_count++;
1764 printk(" %02x", (unsigned char)data[offset + i]);
1766 printk("\n");
1768 if (bad_count == 1) {
1769 error ^= POISON_FREE;
1770 if (!(error & (error - 1))) {
1771 printk(KERN_ERR "Single bit error detected. Probably "
1772 "bad RAM.\n");
1773 #ifdef CONFIG_X86
1774 printk(KERN_ERR "Run memtest86+ or a similar memory "
1775 "test tool.\n");
1776 #else
1777 printk(KERN_ERR "Run a memory test tool.\n");
1778 #endif
1782 #endif
1784 #if DEBUG
1786 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1788 int i, size;
1789 char *realobj;
1791 if (cachep->flags & SLAB_RED_ZONE) {
1792 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1793 *dbg_redzone1(cachep, objp),
1794 *dbg_redzone2(cachep, objp));
1797 if (cachep->flags & SLAB_STORE_USER) {
1798 printk(KERN_ERR "Last user: [<%p>]",
1799 *dbg_userword(cachep, objp));
1800 print_symbol("(%s)",
1801 (unsigned long)*dbg_userword(cachep, objp));
1802 printk("\n");
1804 realobj = (char *)objp + obj_offset(cachep);
1805 size = obj_size(cachep);
1806 for (i = 0; i < size && lines; i += 16, lines--) {
1807 int limit;
1808 limit = 16;
1809 if (i + limit > size)
1810 limit = size - i;
1811 dump_line(realobj, i, limit);
1815 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1817 char *realobj;
1818 int size, i;
1819 int lines = 0;
1821 realobj = (char *)objp + obj_offset(cachep);
1822 size = obj_size(cachep);
1824 for (i = 0; i < size; i++) {
1825 char exp = POISON_FREE;
1826 if (i == size - 1)
1827 exp = POISON_END;
1828 if (realobj[i] != exp) {
1829 int limit;
1830 /* Mismatch ! */
1831 /* Print header */
1832 if (lines == 0) {
1833 printk(KERN_ERR
1834 "Slab corruption: %s start=%p, len=%d\n",
1835 cachep->name, realobj, size);
1836 print_objinfo(cachep, objp, 0);
1838 /* Hexdump the affected line */
1839 i = (i / 16) * 16;
1840 limit = 16;
1841 if (i + limit > size)
1842 limit = size - i;
1843 dump_line(realobj, i, limit);
1844 i += 16;
1845 lines++;
1846 /* Limit to 5 lines */
1847 if (lines > 5)
1848 break;
1851 if (lines != 0) {
1852 /* Print some data about the neighboring objects, if they
1853 * exist:
1855 struct slab *slabp = virt_to_slab(objp);
1856 unsigned int objnr;
1858 objnr = obj_to_index(cachep, slabp, objp);
1859 if (objnr) {
1860 objp = index_to_obj(cachep, slabp, objnr - 1);
1861 realobj = (char *)objp + obj_offset(cachep);
1862 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1863 realobj, size);
1864 print_objinfo(cachep, objp, 2);
1866 if (objnr + 1 < cachep->num) {
1867 objp = index_to_obj(cachep, slabp, objnr + 1);
1868 realobj = (char *)objp + obj_offset(cachep);
1869 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1870 realobj, size);
1871 print_objinfo(cachep, objp, 2);
1875 #endif
1877 #if DEBUG
1879 * slab_destroy_objs - destroy a slab and its objects
1880 * @cachep: cache pointer being destroyed
1881 * @slabp: slab pointer being destroyed
1883 * Call the registered destructor for each object in a slab that is being
1884 * destroyed.
1886 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1888 int i;
1889 for (i = 0; i < cachep->num; i++) {
1890 void *objp = index_to_obj(cachep, slabp, i);
1892 if (cachep->flags & SLAB_POISON) {
1893 #ifdef CONFIG_DEBUG_PAGEALLOC
1894 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1895 OFF_SLAB(cachep))
1896 kernel_map_pages(virt_to_page(objp),
1897 cachep->buffer_size / PAGE_SIZE, 1);
1898 else
1899 check_poison_obj(cachep, objp);
1900 #else
1901 check_poison_obj(cachep, objp);
1902 #endif
1904 if (cachep->flags & SLAB_RED_ZONE) {
1905 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1906 slab_error(cachep, "start of a freed object "
1907 "was overwritten");
1908 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1909 slab_error(cachep, "end of a freed object "
1910 "was overwritten");
1914 #else
1915 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1918 #endif
1921 * slab_destroy - destroy and release all objects in a slab
1922 * @cachep: cache pointer being destroyed
1923 * @slabp: slab pointer being destroyed
1925 * Destroy all the objs in a slab, and release the mem back to the system.
1926 * Before calling the slab must have been unlinked from the cache. The
1927 * cache-lock is not held/needed.
1929 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1931 void *addr = slabp->s_mem - slabp->colouroff;
1933 slab_destroy_objs(cachep, slabp);
1934 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1935 struct slab_rcu *slab_rcu;
1937 slab_rcu = (struct slab_rcu *)slabp;
1938 slab_rcu->cachep = cachep;
1939 slab_rcu->addr = addr;
1940 call_rcu(&slab_rcu->head, kmem_rcu_free);
1941 } else {
1942 kmem_freepages(cachep, addr);
1943 if (OFF_SLAB(cachep))
1944 kmem_cache_free(cachep->slabp_cache, slabp);
1949 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1950 * size of kmem_list3.
1952 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1954 int node;
1956 for_each_online_node(node) {
1957 cachep->nodelists[node] = &initkmem_list3[index + node];
1958 cachep->nodelists[node]->next_reap = jiffies +
1959 REAPTIMEOUT_LIST3 +
1960 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1964 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1966 int i;
1967 struct kmem_list3 *l3;
1969 for_each_online_cpu(i)
1970 kfree(cachep->array[i]);
1972 /* NUMA: free the list3 structures */
1973 for_each_online_node(i) {
1974 l3 = cachep->nodelists[i];
1975 if (l3) {
1976 kfree(l3->shared);
1977 free_alien_cache(l3->alien);
1978 kfree(l3);
1981 kmem_cache_free(&cache_cache, cachep);
1986 * calculate_slab_order - calculate size (page order) of slabs
1987 * @cachep: pointer to the cache that is being created
1988 * @size: size of objects to be created in this cache.
1989 * @align: required alignment for the objects.
1990 * @flags: slab allocation flags
1992 * Also calculates the number of objects per slab.
1994 * This could be made much more intelligent. For now, try to avoid using
1995 * high order pages for slabs. When the gfp() functions are more friendly
1996 * towards high-order requests, this should be changed.
1998 static size_t calculate_slab_order(struct kmem_cache *cachep,
1999 size_t size, size_t align, unsigned long flags)
2001 unsigned long offslab_limit;
2002 size_t left_over = 0;
2003 int gfporder;
2005 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
2006 unsigned int num;
2007 size_t remainder;
2009 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2010 if (!num)
2011 continue;
2013 if (flags & CFLGS_OFF_SLAB) {
2015 * Max number of objs-per-slab for caches which
2016 * use off-slab slabs. Needed to avoid a possible
2017 * looping condition in cache_grow().
2019 offslab_limit = size - sizeof(struct slab);
2020 offslab_limit /= sizeof(kmem_bufctl_t);
2022 if (num > offslab_limit)
2023 break;
2026 /* Found something acceptable - save it away */
2027 cachep->num = num;
2028 cachep->gfporder = gfporder;
2029 left_over = remainder;
2032 * A VFS-reclaimable slab tends to have most allocations
2033 * as GFP_NOFS and we really don't want to have to be allocating
2034 * higher-order pages when we are unable to shrink dcache.
2036 if (flags & SLAB_RECLAIM_ACCOUNT)
2037 break;
2040 * Large number of objects is good, but very large slabs are
2041 * currently bad for the gfp()s.
2043 if (gfporder >= slab_break_gfp_order)
2044 break;
2047 * Acceptable internal fragmentation?
2049 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2050 break;
2052 return left_over;
2055 static int setup_cpu_cache(struct kmem_cache *cachep)
2057 if (g_cpucache_up == FULL)
2058 return enable_cpucache(cachep);
2060 if (g_cpucache_up == NONE) {
2062 * Note: the first kmem_cache_create must create the cache
2063 * that's used by kmalloc(24), otherwise the creation of
2064 * further caches will BUG().
2066 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2069 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2070 * the first cache, then we need to set up all its list3s,
2071 * otherwise the creation of further caches will BUG().
2073 set_up_list3s(cachep, SIZE_AC);
2074 if (INDEX_AC == INDEX_L3)
2075 g_cpucache_up = PARTIAL_L3;
2076 else
2077 g_cpucache_up = PARTIAL_AC;
2078 } else {
2079 cachep->array[smp_processor_id()] =
2080 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2082 if (g_cpucache_up == PARTIAL_AC) {
2083 set_up_list3s(cachep, SIZE_L3);
2084 g_cpucache_up = PARTIAL_L3;
2085 } else {
2086 int node;
2087 for_each_online_node(node) {
2088 cachep->nodelists[node] =
2089 kmalloc_node(sizeof(struct kmem_list3),
2090 GFP_KERNEL, node);
2091 BUG_ON(!cachep->nodelists[node]);
2092 kmem_list3_init(cachep->nodelists[node]);
2096 cachep->nodelists[numa_node_id()]->next_reap =
2097 jiffies + REAPTIMEOUT_LIST3 +
2098 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2100 cpu_cache_get(cachep)->avail = 0;
2101 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2102 cpu_cache_get(cachep)->batchcount = 1;
2103 cpu_cache_get(cachep)->touched = 0;
2104 cachep->batchcount = 1;
2105 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2106 return 0;
2110 * kmem_cache_create - Create a cache.
2111 * @name: A string which is used in /proc/slabinfo to identify this cache.
2112 * @size: The size of objects to be created in this cache.
2113 * @align: The required alignment for the objects.
2114 * @flags: SLAB flags
2115 * @ctor: A constructor for the objects.
2116 * @dtor: A destructor for the objects (not implemented anymore).
2118 * Returns a ptr to the cache on success, NULL on failure.
2119 * Cannot be called within a int, but can be interrupted.
2120 * The @ctor is run when new pages are allocated by the cache
2121 * and the @dtor is run before the pages are handed back.
2123 * @name must be valid until the cache is destroyed. This implies that
2124 * the module calling this has to destroy the cache before getting unloaded.
2126 * The flags are
2128 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2129 * to catch references to uninitialised memory.
2131 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2132 * for buffer overruns.
2134 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2135 * cacheline. This can be beneficial if you're counting cycles as closely
2136 * as davem.
2138 struct kmem_cache *
2139 kmem_cache_create (const char *name, size_t size, size_t align,
2140 unsigned long flags,
2141 void (*ctor)(void*, struct kmem_cache *, unsigned long),
2142 void (*dtor)(void*, struct kmem_cache *, unsigned long))
2144 size_t left_over, slab_size, ralign;
2145 struct kmem_cache *cachep = NULL, *pc;
2148 * Sanity checks... these are all serious usage bugs.
2150 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2151 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || dtor) {
2152 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2153 name);
2154 BUG();
2158 * We use cache_chain_mutex to ensure a consistent view of
2159 * cpu_online_map as well. Please see cpuup_callback
2161 mutex_lock(&cache_chain_mutex);
2163 list_for_each_entry(pc, &cache_chain, next) {
2164 char tmp;
2165 int res;
2168 * This happens when the module gets unloaded and doesn't
2169 * destroy its slab cache and no-one else reuses the vmalloc
2170 * area of the module. Print a warning.
2172 res = probe_kernel_address(pc->name, tmp);
2173 if (res) {
2174 printk(KERN_ERR
2175 "SLAB: cache with size %d has lost its name\n",
2176 pc->buffer_size);
2177 continue;
2180 if (!strcmp(pc->name, name)) {
2181 printk(KERN_ERR
2182 "kmem_cache_create: duplicate cache %s\n", name);
2183 dump_stack();
2184 goto oops;
2188 #if DEBUG
2189 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2190 #if FORCED_DEBUG
2192 * Enable redzoning and last user accounting, except for caches with
2193 * large objects, if the increased size would increase the object size
2194 * above the next power of two: caches with object sizes just above a
2195 * power of two have a significant amount of internal fragmentation.
2197 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
2198 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2199 if (!(flags & SLAB_DESTROY_BY_RCU))
2200 flags |= SLAB_POISON;
2201 #endif
2202 if (flags & SLAB_DESTROY_BY_RCU)
2203 BUG_ON(flags & SLAB_POISON);
2204 #endif
2206 * Always checks flags, a caller might be expecting debug support which
2207 * isn't available.
2209 BUG_ON(flags & ~CREATE_MASK);
2212 * Check that size is in terms of words. This is needed to avoid
2213 * unaligned accesses for some archs when redzoning is used, and makes
2214 * sure any on-slab bufctl's are also correctly aligned.
2216 if (size & (BYTES_PER_WORD - 1)) {
2217 size += (BYTES_PER_WORD - 1);
2218 size &= ~(BYTES_PER_WORD - 1);
2221 /* calculate the final buffer alignment: */
2223 /* 1) arch recommendation: can be overridden for debug */
2224 if (flags & SLAB_HWCACHE_ALIGN) {
2226 * Default alignment: as specified by the arch code. Except if
2227 * an object is really small, then squeeze multiple objects into
2228 * one cacheline.
2230 ralign = cache_line_size();
2231 while (size <= ralign / 2)
2232 ralign /= 2;
2233 } else {
2234 ralign = BYTES_PER_WORD;
2238 * Redzoning and user store require word alignment. Note this will be
2239 * overridden by architecture or caller mandated alignment if either
2240 * is greater than BYTES_PER_WORD.
2242 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2243 ralign = __alignof__(unsigned long long);
2245 /* 2) arch mandated alignment */
2246 if (ralign < ARCH_SLAB_MINALIGN) {
2247 ralign = ARCH_SLAB_MINALIGN;
2249 /* 3) caller mandated alignment */
2250 if (ralign < align) {
2251 ralign = align;
2253 /* disable debug if necessary */
2254 if (ralign > __alignof__(unsigned long long))
2255 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2257 * 4) Store it.
2259 align = ralign;
2261 /* Get cache's description obj. */
2262 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
2263 if (!cachep)
2264 goto oops;
2266 #if DEBUG
2267 cachep->obj_size = size;
2270 * Both debugging options require word-alignment which is calculated
2271 * into align above.
2273 if (flags & SLAB_RED_ZONE) {
2274 /* add space for red zone words */
2275 cachep->obj_offset += sizeof(unsigned long long);
2276 size += 2 * sizeof(unsigned long long);
2278 if (flags & SLAB_STORE_USER) {
2279 /* user store requires one word storage behind the end of
2280 * the real object.
2282 size += BYTES_PER_WORD;
2284 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2285 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2286 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2287 cachep->obj_offset += PAGE_SIZE - size;
2288 size = PAGE_SIZE;
2290 #endif
2291 #endif
2294 * Determine if the slab management is 'on' or 'off' slab.
2295 * (bootstrapping cannot cope with offslab caches so don't do
2296 * it too early on.)
2298 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
2300 * Size is large, assume best to place the slab management obj
2301 * off-slab (should allow better packing of objs).
2303 flags |= CFLGS_OFF_SLAB;
2305 size = ALIGN(size, align);
2307 left_over = calculate_slab_order(cachep, size, align, flags);
2309 if (!cachep->num) {
2310 printk(KERN_ERR
2311 "kmem_cache_create: couldn't create cache %s.\n", name);
2312 kmem_cache_free(&cache_cache, cachep);
2313 cachep = NULL;
2314 goto oops;
2316 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2317 + sizeof(struct slab), align);
2320 * If the slab has been placed off-slab, and we have enough space then
2321 * move it on-slab. This is at the expense of any extra colouring.
2323 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2324 flags &= ~CFLGS_OFF_SLAB;
2325 left_over -= slab_size;
2328 if (flags & CFLGS_OFF_SLAB) {
2329 /* really off slab. No need for manual alignment */
2330 slab_size =
2331 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2334 cachep->colour_off = cache_line_size();
2335 /* Offset must be a multiple of the alignment. */
2336 if (cachep->colour_off < align)
2337 cachep->colour_off = align;
2338 cachep->colour = left_over / cachep->colour_off;
2339 cachep->slab_size = slab_size;
2340 cachep->flags = flags;
2341 cachep->gfpflags = 0;
2342 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2343 cachep->gfpflags |= GFP_DMA;
2344 cachep->buffer_size = size;
2345 cachep->reciprocal_buffer_size = reciprocal_value(size);
2347 if (flags & CFLGS_OFF_SLAB) {
2348 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2350 * This is a possibility for one of the malloc_sizes caches.
2351 * But since we go off slab only for object size greater than
2352 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2353 * this should not happen at all.
2354 * But leave a BUG_ON for some lucky dude.
2356 BUG_ON(!cachep->slabp_cache);
2358 cachep->ctor = ctor;
2359 cachep->name = name;
2361 if (setup_cpu_cache(cachep)) {
2362 __kmem_cache_destroy(cachep);
2363 cachep = NULL;
2364 goto oops;
2367 /* cache setup completed, link it into the list */
2368 list_add(&cachep->next, &cache_chain);
2369 oops:
2370 if (!cachep && (flags & SLAB_PANIC))
2371 panic("kmem_cache_create(): failed to create slab `%s'\n",
2372 name);
2373 mutex_unlock(&cache_chain_mutex);
2374 return cachep;
2376 EXPORT_SYMBOL(kmem_cache_create);
2378 #if DEBUG
2379 static void check_irq_off(void)
2381 BUG_ON(!irqs_disabled());
2384 static void check_irq_on(void)
2386 BUG_ON(irqs_disabled());
2389 static void check_spinlock_acquired(struct kmem_cache *cachep)
2391 #ifdef CONFIG_SMP
2392 check_irq_off();
2393 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2394 #endif
2397 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2399 #ifdef CONFIG_SMP
2400 check_irq_off();
2401 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2402 #endif
2405 #else
2406 #define check_irq_off() do { } while(0)
2407 #define check_irq_on() do { } while(0)
2408 #define check_spinlock_acquired(x) do { } while(0)
2409 #define check_spinlock_acquired_node(x, y) do { } while(0)
2410 #endif
2412 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2413 struct array_cache *ac,
2414 int force, int node);
2416 static void do_drain(void *arg)
2418 struct kmem_cache *cachep = arg;
2419 struct array_cache *ac;
2420 int node = numa_node_id();
2422 check_irq_off();
2423 ac = cpu_cache_get(cachep);
2424 spin_lock(&cachep->nodelists[node]->list_lock);
2425 free_block(cachep, ac->entry, ac->avail, node);
2426 spin_unlock(&cachep->nodelists[node]->list_lock);
2427 ac->avail = 0;
2430 static void drain_cpu_caches(struct kmem_cache *cachep)
2432 struct kmem_list3 *l3;
2433 int node;
2435 on_each_cpu(do_drain, cachep, 1, 1);
2436 check_irq_on();
2437 for_each_online_node(node) {
2438 l3 = cachep->nodelists[node];
2439 if (l3 && l3->alien)
2440 drain_alien_cache(cachep, l3->alien);
2443 for_each_online_node(node) {
2444 l3 = cachep->nodelists[node];
2445 if (l3)
2446 drain_array(cachep, l3, l3->shared, 1, node);
2451 * Remove slabs from the list of free slabs.
2452 * Specify the number of slabs to drain in tofree.
2454 * Returns the actual number of slabs released.
2456 static int drain_freelist(struct kmem_cache *cache,
2457 struct kmem_list3 *l3, int tofree)
2459 struct list_head *p;
2460 int nr_freed;
2461 struct slab *slabp;
2463 nr_freed = 0;
2464 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2466 spin_lock_irq(&l3->list_lock);
2467 p = l3->slabs_free.prev;
2468 if (p == &l3->slabs_free) {
2469 spin_unlock_irq(&l3->list_lock);
2470 goto out;
2473 slabp = list_entry(p, struct slab, list);
2474 #if DEBUG
2475 BUG_ON(slabp->inuse);
2476 #endif
2477 list_del(&slabp->list);
2479 * Safe to drop the lock. The slab is no longer linked
2480 * to the cache.
2482 l3->free_objects -= cache->num;
2483 spin_unlock_irq(&l3->list_lock);
2484 slab_destroy(cache, slabp);
2485 nr_freed++;
2487 out:
2488 return nr_freed;
2491 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2492 static int __cache_shrink(struct kmem_cache *cachep)
2494 int ret = 0, i = 0;
2495 struct kmem_list3 *l3;
2497 drain_cpu_caches(cachep);
2499 check_irq_on();
2500 for_each_online_node(i) {
2501 l3 = cachep->nodelists[i];
2502 if (!l3)
2503 continue;
2505 drain_freelist(cachep, l3, l3->free_objects);
2507 ret += !list_empty(&l3->slabs_full) ||
2508 !list_empty(&l3->slabs_partial);
2510 return (ret ? 1 : 0);
2514 * kmem_cache_shrink - Shrink a cache.
2515 * @cachep: The cache to shrink.
2517 * Releases as many slabs as possible for a cache.
2518 * To help debugging, a zero exit status indicates all slabs were released.
2520 int kmem_cache_shrink(struct kmem_cache *cachep)
2522 int ret;
2523 BUG_ON(!cachep || in_interrupt());
2525 mutex_lock(&cache_chain_mutex);
2526 ret = __cache_shrink(cachep);
2527 mutex_unlock(&cache_chain_mutex);
2528 return ret;
2530 EXPORT_SYMBOL(kmem_cache_shrink);
2533 * kmem_cache_destroy - delete a cache
2534 * @cachep: the cache to destroy
2536 * Remove a &struct kmem_cache object from the slab cache.
2538 * It is expected this function will be called by a module when it is
2539 * unloaded. This will remove the cache completely, and avoid a duplicate
2540 * cache being allocated each time a module is loaded and unloaded, if the
2541 * module doesn't have persistent in-kernel storage across loads and unloads.
2543 * The cache must be empty before calling this function.
2545 * The caller must guarantee that noone will allocate memory from the cache
2546 * during the kmem_cache_destroy().
2548 void kmem_cache_destroy(struct kmem_cache *cachep)
2550 BUG_ON(!cachep || in_interrupt());
2552 /* Find the cache in the chain of caches. */
2553 mutex_lock(&cache_chain_mutex);
2555 * the chain is never empty, cache_cache is never destroyed
2557 list_del(&cachep->next);
2558 if (__cache_shrink(cachep)) {
2559 slab_error(cachep, "Can't free all objects");
2560 list_add(&cachep->next, &cache_chain);
2561 mutex_unlock(&cache_chain_mutex);
2562 return;
2565 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2566 synchronize_rcu();
2568 __kmem_cache_destroy(cachep);
2569 mutex_unlock(&cache_chain_mutex);
2571 EXPORT_SYMBOL(kmem_cache_destroy);
2574 * Get the memory for a slab management obj.
2575 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2576 * always come from malloc_sizes caches. The slab descriptor cannot
2577 * come from the same cache which is getting created because,
2578 * when we are searching for an appropriate cache for these
2579 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2580 * If we are creating a malloc_sizes cache here it would not be visible to
2581 * kmem_find_general_cachep till the initialization is complete.
2582 * Hence we cannot have slabp_cache same as the original cache.
2584 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2585 int colour_off, gfp_t local_flags,
2586 int nodeid)
2588 struct slab *slabp;
2590 if (OFF_SLAB(cachep)) {
2591 /* Slab management obj is off-slab. */
2592 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2593 local_flags & ~GFP_THISNODE, nodeid);
2594 if (!slabp)
2595 return NULL;
2596 } else {
2597 slabp = objp + colour_off;
2598 colour_off += cachep->slab_size;
2600 slabp->inuse = 0;
2601 slabp->colouroff = colour_off;
2602 slabp->s_mem = objp + colour_off;
2603 slabp->nodeid = nodeid;
2604 return slabp;
2607 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2609 return (kmem_bufctl_t *) (slabp + 1);
2612 static void cache_init_objs(struct kmem_cache *cachep,
2613 struct slab *slabp, unsigned long ctor_flags)
2615 int i;
2617 for (i = 0; i < cachep->num; i++) {
2618 void *objp = index_to_obj(cachep, slabp, i);
2619 #if DEBUG
2620 /* need to poison the objs? */
2621 if (cachep->flags & SLAB_POISON)
2622 poison_obj(cachep, objp, POISON_FREE);
2623 if (cachep->flags & SLAB_STORE_USER)
2624 *dbg_userword(cachep, objp) = NULL;
2626 if (cachep->flags & SLAB_RED_ZONE) {
2627 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2628 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2631 * Constructors are not allowed to allocate memory from the same
2632 * cache which they are a constructor for. Otherwise, deadlock.
2633 * They must also be threaded.
2635 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2636 cachep->ctor(objp + obj_offset(cachep), cachep,
2637 ctor_flags);
2639 if (cachep->flags & SLAB_RED_ZONE) {
2640 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2641 slab_error(cachep, "constructor overwrote the"
2642 " end of an object");
2643 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2644 slab_error(cachep, "constructor overwrote the"
2645 " start of an object");
2647 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2648 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2649 kernel_map_pages(virt_to_page(objp),
2650 cachep->buffer_size / PAGE_SIZE, 0);
2651 #else
2652 if (cachep->ctor)
2653 cachep->ctor(objp, cachep, ctor_flags);
2654 #endif
2655 slab_bufctl(slabp)[i] = i + 1;
2657 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2658 slabp->free = 0;
2661 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2663 if (CONFIG_ZONE_DMA_FLAG) {
2664 if (flags & GFP_DMA)
2665 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2666 else
2667 BUG_ON(cachep->gfpflags & GFP_DMA);
2671 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2672 int nodeid)
2674 void *objp = index_to_obj(cachep, slabp, slabp->free);
2675 kmem_bufctl_t next;
2677 slabp->inuse++;
2678 next = slab_bufctl(slabp)[slabp->free];
2679 #if DEBUG
2680 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2681 WARN_ON(slabp->nodeid != nodeid);
2682 #endif
2683 slabp->free = next;
2685 return objp;
2688 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2689 void *objp, int nodeid)
2691 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2693 #if DEBUG
2694 /* Verify that the slab belongs to the intended node */
2695 WARN_ON(slabp->nodeid != nodeid);
2697 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2698 printk(KERN_ERR "slab: double free detected in cache "
2699 "'%s', objp %p\n", cachep->name, objp);
2700 BUG();
2702 #endif
2703 slab_bufctl(slabp)[objnr] = slabp->free;
2704 slabp->free = objnr;
2705 slabp->inuse--;
2709 * Map pages beginning at addr to the given cache and slab. This is required
2710 * for the slab allocator to be able to lookup the cache and slab of a
2711 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2713 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2714 void *addr)
2716 int nr_pages;
2717 struct page *page;
2719 page = virt_to_page(addr);
2721 nr_pages = 1;
2722 if (likely(!PageCompound(page)))
2723 nr_pages <<= cache->gfporder;
2725 do {
2726 page_set_cache(page, cache);
2727 page_set_slab(page, slab);
2728 page++;
2729 } while (--nr_pages);
2733 * Grow (by 1) the number of slabs within a cache. This is called by
2734 * kmem_cache_alloc() when there are no active objs left in a cache.
2736 static int cache_grow(struct kmem_cache *cachep,
2737 gfp_t flags, int nodeid, void *objp)
2739 struct slab *slabp;
2740 size_t offset;
2741 gfp_t local_flags;
2742 unsigned long ctor_flags;
2743 struct kmem_list3 *l3;
2746 * Be lazy and only check for valid flags here, keeping it out of the
2747 * critical path in kmem_cache_alloc().
2749 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
2751 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2752 local_flags = (flags & GFP_LEVEL_MASK);
2753 /* Take the l3 list lock to change the colour_next on this node */
2754 check_irq_off();
2755 l3 = cachep->nodelists[nodeid];
2756 spin_lock(&l3->list_lock);
2758 /* Get colour for the slab, and cal the next value. */
2759 offset = l3->colour_next;
2760 l3->colour_next++;
2761 if (l3->colour_next >= cachep->colour)
2762 l3->colour_next = 0;
2763 spin_unlock(&l3->list_lock);
2765 offset *= cachep->colour_off;
2767 if (local_flags & __GFP_WAIT)
2768 local_irq_enable();
2771 * The test for missing atomic flag is performed here, rather than
2772 * the more obvious place, simply to reduce the critical path length
2773 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2774 * will eventually be caught here (where it matters).
2776 kmem_flagcheck(cachep, flags);
2779 * Get mem for the objs. Attempt to allocate a physical page from
2780 * 'nodeid'.
2782 if (!objp)
2783 objp = kmem_getpages(cachep, flags, nodeid);
2784 if (!objp)
2785 goto failed;
2787 /* Get slab management. */
2788 slabp = alloc_slabmgmt(cachep, objp, offset,
2789 local_flags & ~GFP_THISNODE, nodeid);
2790 if (!slabp)
2791 goto opps1;
2793 slabp->nodeid = nodeid;
2794 slab_map_pages(cachep, slabp, objp);
2796 cache_init_objs(cachep, slabp, ctor_flags);
2798 if (local_flags & __GFP_WAIT)
2799 local_irq_disable();
2800 check_irq_off();
2801 spin_lock(&l3->list_lock);
2803 /* Make slab active. */
2804 list_add_tail(&slabp->list, &(l3->slabs_free));
2805 STATS_INC_GROWN(cachep);
2806 l3->free_objects += cachep->num;
2807 spin_unlock(&l3->list_lock);
2808 return 1;
2809 opps1:
2810 kmem_freepages(cachep, objp);
2811 failed:
2812 if (local_flags & __GFP_WAIT)
2813 local_irq_disable();
2814 return 0;
2817 #if DEBUG
2820 * Perform extra freeing checks:
2821 * - detect bad pointers.
2822 * - POISON/RED_ZONE checking
2824 static void kfree_debugcheck(const void *objp)
2826 if (!virt_addr_valid(objp)) {
2827 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2828 (unsigned long)objp);
2829 BUG();
2833 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2835 unsigned long long redzone1, redzone2;
2837 redzone1 = *dbg_redzone1(cache, obj);
2838 redzone2 = *dbg_redzone2(cache, obj);
2841 * Redzone is ok.
2843 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2844 return;
2846 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2847 slab_error(cache, "double free detected");
2848 else
2849 slab_error(cache, "memory outside object was overwritten");
2851 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2852 obj, redzone1, redzone2);
2855 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2856 void *caller)
2858 struct page *page;
2859 unsigned int objnr;
2860 struct slab *slabp;
2862 objp -= obj_offset(cachep);
2863 kfree_debugcheck(objp);
2864 page = virt_to_head_page(objp);
2866 slabp = page_get_slab(page);
2868 if (cachep->flags & SLAB_RED_ZONE) {
2869 verify_redzone_free(cachep, objp);
2870 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2871 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2873 if (cachep->flags & SLAB_STORE_USER)
2874 *dbg_userword(cachep, objp) = caller;
2876 objnr = obj_to_index(cachep, slabp, objp);
2878 BUG_ON(objnr >= cachep->num);
2879 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2881 #ifdef CONFIG_DEBUG_SLAB_LEAK
2882 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2883 #endif
2884 if (cachep->flags & SLAB_POISON) {
2885 #ifdef CONFIG_DEBUG_PAGEALLOC
2886 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2887 store_stackinfo(cachep, objp, (unsigned long)caller);
2888 kernel_map_pages(virt_to_page(objp),
2889 cachep->buffer_size / PAGE_SIZE, 0);
2890 } else {
2891 poison_obj(cachep, objp, POISON_FREE);
2893 #else
2894 poison_obj(cachep, objp, POISON_FREE);
2895 #endif
2897 return objp;
2900 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2902 kmem_bufctl_t i;
2903 int entries = 0;
2905 /* Check slab's freelist to see if this obj is there. */
2906 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2907 entries++;
2908 if (entries > cachep->num || i >= cachep->num)
2909 goto bad;
2911 if (entries != cachep->num - slabp->inuse) {
2912 bad:
2913 printk(KERN_ERR "slab: Internal list corruption detected in "
2914 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2915 cachep->name, cachep->num, slabp, slabp->inuse);
2916 for (i = 0;
2917 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2918 i++) {
2919 if (i % 16 == 0)
2920 printk("\n%03x:", i);
2921 printk(" %02x", ((unsigned char *)slabp)[i]);
2923 printk("\n");
2924 BUG();
2927 #else
2928 #define kfree_debugcheck(x) do { } while(0)
2929 #define cache_free_debugcheck(x,objp,z) (objp)
2930 #define check_slabp(x,y) do { } while(0)
2931 #endif
2933 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2935 int batchcount;
2936 struct kmem_list3 *l3;
2937 struct array_cache *ac;
2938 int node;
2940 node = numa_node_id();
2942 check_irq_off();
2943 ac = cpu_cache_get(cachep);
2944 retry:
2945 batchcount = ac->batchcount;
2946 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2948 * If there was little recent activity on this cache, then
2949 * perform only a partial refill. Otherwise we could generate
2950 * refill bouncing.
2952 batchcount = BATCHREFILL_LIMIT;
2954 l3 = cachep->nodelists[node];
2956 BUG_ON(ac->avail > 0 || !l3);
2957 spin_lock(&l3->list_lock);
2959 /* See if we can refill from the shared array */
2960 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2961 goto alloc_done;
2963 while (batchcount > 0) {
2964 struct list_head *entry;
2965 struct slab *slabp;
2966 /* Get slab alloc is to come from. */
2967 entry = l3->slabs_partial.next;
2968 if (entry == &l3->slabs_partial) {
2969 l3->free_touched = 1;
2970 entry = l3->slabs_free.next;
2971 if (entry == &l3->slabs_free)
2972 goto must_grow;
2975 slabp = list_entry(entry, struct slab, list);
2976 check_slabp(cachep, slabp);
2977 check_spinlock_acquired(cachep);
2980 * The slab was either on partial or free list so
2981 * there must be at least one object available for
2982 * allocation.
2984 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
2986 while (slabp->inuse < cachep->num && batchcount--) {
2987 STATS_INC_ALLOCED(cachep);
2988 STATS_INC_ACTIVE(cachep);
2989 STATS_SET_HIGH(cachep);
2991 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2992 node);
2994 check_slabp(cachep, slabp);
2996 /* move slabp to correct slabp list: */
2997 list_del(&slabp->list);
2998 if (slabp->free == BUFCTL_END)
2999 list_add(&slabp->list, &l3->slabs_full);
3000 else
3001 list_add(&slabp->list, &l3->slabs_partial);
3004 must_grow:
3005 l3->free_objects -= ac->avail;
3006 alloc_done:
3007 spin_unlock(&l3->list_lock);
3009 if (unlikely(!ac->avail)) {
3010 int x;
3011 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3013 /* cache_grow can reenable interrupts, then ac could change. */
3014 ac = cpu_cache_get(cachep);
3015 if (!x && ac->avail == 0) /* no objects in sight? abort */
3016 return NULL;
3018 if (!ac->avail) /* objects refilled by interrupt? */
3019 goto retry;
3021 ac->touched = 1;
3022 return ac->entry[--ac->avail];
3025 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3026 gfp_t flags)
3028 might_sleep_if(flags & __GFP_WAIT);
3029 #if DEBUG
3030 kmem_flagcheck(cachep, flags);
3031 #endif
3034 #if DEBUG
3035 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3036 gfp_t flags, void *objp, void *caller)
3038 if (!objp)
3039 return objp;
3040 if (cachep->flags & SLAB_POISON) {
3041 #ifdef CONFIG_DEBUG_PAGEALLOC
3042 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3043 kernel_map_pages(virt_to_page(objp),
3044 cachep->buffer_size / PAGE_SIZE, 1);
3045 else
3046 check_poison_obj(cachep, objp);
3047 #else
3048 check_poison_obj(cachep, objp);
3049 #endif
3050 poison_obj(cachep, objp, POISON_INUSE);
3052 if (cachep->flags & SLAB_STORE_USER)
3053 *dbg_userword(cachep, objp) = caller;
3055 if (cachep->flags & SLAB_RED_ZONE) {
3056 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3057 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3058 slab_error(cachep, "double free, or memory outside"
3059 " object was overwritten");
3060 printk(KERN_ERR
3061 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3062 objp, *dbg_redzone1(cachep, objp),
3063 *dbg_redzone2(cachep, objp));
3065 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3066 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3068 #ifdef CONFIG_DEBUG_SLAB_LEAK
3070 struct slab *slabp;
3071 unsigned objnr;
3073 slabp = page_get_slab(virt_to_head_page(objp));
3074 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3075 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3077 #endif
3078 objp += obj_offset(cachep);
3079 if (cachep->ctor && cachep->flags & SLAB_POISON)
3080 cachep->ctor(objp, cachep, SLAB_CTOR_CONSTRUCTOR);
3081 #if ARCH_SLAB_MINALIGN
3082 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3083 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3084 objp, ARCH_SLAB_MINALIGN);
3086 #endif
3087 return objp;
3089 #else
3090 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3091 #endif
3093 #ifdef CONFIG_FAILSLAB
3095 static struct failslab_attr {
3097 struct fault_attr attr;
3099 u32 ignore_gfp_wait;
3100 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3101 struct dentry *ignore_gfp_wait_file;
3102 #endif
3104 } failslab = {
3105 .attr = FAULT_ATTR_INITIALIZER,
3106 .ignore_gfp_wait = 1,
3109 static int __init setup_failslab(char *str)
3111 return setup_fault_attr(&failslab.attr, str);
3113 __setup("failslab=", setup_failslab);
3115 static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3117 if (cachep == &cache_cache)
3118 return 0;
3119 if (flags & __GFP_NOFAIL)
3120 return 0;
3121 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3122 return 0;
3124 return should_fail(&failslab.attr, obj_size(cachep));
3127 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3129 static int __init failslab_debugfs(void)
3131 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3132 struct dentry *dir;
3133 int err;
3135 err = init_fault_attr_dentries(&failslab.attr, "failslab");
3136 if (err)
3137 return err;
3138 dir = failslab.attr.dentries.dir;
3140 failslab.ignore_gfp_wait_file =
3141 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3142 &failslab.ignore_gfp_wait);
3144 if (!failslab.ignore_gfp_wait_file) {
3145 err = -ENOMEM;
3146 debugfs_remove(failslab.ignore_gfp_wait_file);
3147 cleanup_fault_attr_dentries(&failslab.attr);
3150 return err;
3153 late_initcall(failslab_debugfs);
3155 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3157 #else /* CONFIG_FAILSLAB */
3159 static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3161 return 0;
3164 #endif /* CONFIG_FAILSLAB */
3166 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3168 void *objp;
3169 struct array_cache *ac;
3171 check_irq_off();
3173 ac = cpu_cache_get(cachep);
3174 if (likely(ac->avail)) {
3175 STATS_INC_ALLOCHIT(cachep);
3176 ac->touched = 1;
3177 objp = ac->entry[--ac->avail];
3178 } else {
3179 STATS_INC_ALLOCMISS(cachep);
3180 objp = cache_alloc_refill(cachep, flags);
3182 return objp;
3185 #ifdef CONFIG_NUMA
3187 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3189 * If we are in_interrupt, then process context, including cpusets and
3190 * mempolicy, may not apply and should not be used for allocation policy.
3192 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3194 int nid_alloc, nid_here;
3196 if (in_interrupt() || (flags & __GFP_THISNODE))
3197 return NULL;
3198 nid_alloc = nid_here = numa_node_id();
3199 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3200 nid_alloc = cpuset_mem_spread_node();
3201 else if (current->mempolicy)
3202 nid_alloc = slab_node(current->mempolicy);
3203 if (nid_alloc != nid_here)
3204 return ____cache_alloc_node(cachep, flags, nid_alloc);
3205 return NULL;
3209 * Fallback function if there was no memory available and no objects on a
3210 * certain node and fall back is permitted. First we scan all the
3211 * available nodelists for available objects. If that fails then we
3212 * perform an allocation without specifying a node. This allows the page
3213 * allocator to do its reclaim / fallback magic. We then insert the
3214 * slab into the proper nodelist and then allocate from it.
3216 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3218 struct zonelist *zonelist;
3219 gfp_t local_flags;
3220 struct zone **z;
3221 void *obj = NULL;
3222 int nid;
3224 if (flags & __GFP_THISNODE)
3225 return NULL;
3227 zonelist = &NODE_DATA(slab_node(current->mempolicy))
3228 ->node_zonelists[gfp_zone(flags)];
3229 local_flags = (flags & GFP_LEVEL_MASK);
3231 retry:
3233 * Look through allowed nodes for objects available
3234 * from existing per node queues.
3236 for (z = zonelist->zones; *z && !obj; z++) {
3237 nid = zone_to_nid(*z);
3239 if (cpuset_zone_allowed_hardwall(*z, flags) &&
3240 cache->nodelists[nid] &&
3241 cache->nodelists[nid]->free_objects)
3242 obj = ____cache_alloc_node(cache,
3243 flags | GFP_THISNODE, nid);
3246 if (!obj) {
3248 * This allocation will be performed within the constraints
3249 * of the current cpuset / memory policy requirements.
3250 * We may trigger various forms of reclaim on the allowed
3251 * set and go into memory reserves if necessary.
3253 if (local_flags & __GFP_WAIT)
3254 local_irq_enable();
3255 kmem_flagcheck(cache, flags);
3256 obj = kmem_getpages(cache, flags, -1);
3257 if (local_flags & __GFP_WAIT)
3258 local_irq_disable();
3259 if (obj) {
3261 * Insert into the appropriate per node queues
3263 nid = page_to_nid(virt_to_page(obj));
3264 if (cache_grow(cache, flags, nid, obj)) {
3265 obj = ____cache_alloc_node(cache,
3266 flags | GFP_THISNODE, nid);
3267 if (!obj)
3269 * Another processor may allocate the
3270 * objects in the slab since we are
3271 * not holding any locks.
3273 goto retry;
3274 } else {
3275 /* cache_grow already freed obj */
3276 obj = NULL;
3280 return obj;
3284 * A interface to enable slab creation on nodeid
3286 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3287 int nodeid)
3289 struct list_head *entry;
3290 struct slab *slabp;
3291 struct kmem_list3 *l3;
3292 void *obj;
3293 int x;
3295 l3 = cachep->nodelists[nodeid];
3296 BUG_ON(!l3);
3298 retry:
3299 check_irq_off();
3300 spin_lock(&l3->list_lock);
3301 entry = l3->slabs_partial.next;
3302 if (entry == &l3->slabs_partial) {
3303 l3->free_touched = 1;
3304 entry = l3->slabs_free.next;
3305 if (entry == &l3->slabs_free)
3306 goto must_grow;
3309 slabp = list_entry(entry, struct slab, list);
3310 check_spinlock_acquired_node(cachep, nodeid);
3311 check_slabp(cachep, slabp);
3313 STATS_INC_NODEALLOCS(cachep);
3314 STATS_INC_ACTIVE(cachep);
3315 STATS_SET_HIGH(cachep);
3317 BUG_ON(slabp->inuse == cachep->num);
3319 obj = slab_get_obj(cachep, slabp, nodeid);
3320 check_slabp(cachep, slabp);
3321 l3->free_objects--;
3322 /* move slabp to correct slabp list: */
3323 list_del(&slabp->list);
3325 if (slabp->free == BUFCTL_END)
3326 list_add(&slabp->list, &l3->slabs_full);
3327 else
3328 list_add(&slabp->list, &l3->slabs_partial);
3330 spin_unlock(&l3->list_lock);
3331 goto done;
3333 must_grow:
3334 spin_unlock(&l3->list_lock);
3335 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3336 if (x)
3337 goto retry;
3339 return fallback_alloc(cachep, flags);
3341 done:
3342 return obj;
3346 * kmem_cache_alloc_node - Allocate an object on the specified node
3347 * @cachep: The cache to allocate from.
3348 * @flags: See kmalloc().
3349 * @nodeid: node number of the target node.
3350 * @caller: return address of caller, used for debug information
3352 * Identical to kmem_cache_alloc but it will allocate memory on the given
3353 * node, which can improve the performance for cpu bound structures.
3355 * Fallback to other node is possible if __GFP_THISNODE is not set.
3357 static __always_inline void *
3358 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3359 void *caller)
3361 unsigned long save_flags;
3362 void *ptr;
3364 if (should_failslab(cachep, flags))
3365 return NULL;
3367 cache_alloc_debugcheck_before(cachep, flags);
3368 local_irq_save(save_flags);
3370 if (unlikely(nodeid == -1))
3371 nodeid = numa_node_id();
3373 if (unlikely(!cachep->nodelists[nodeid])) {
3374 /* Node not bootstrapped yet */
3375 ptr = fallback_alloc(cachep, flags);
3376 goto out;
3379 if (nodeid == numa_node_id()) {
3381 * Use the locally cached objects if possible.
3382 * However ____cache_alloc does not allow fallback
3383 * to other nodes. It may fail while we still have
3384 * objects on other nodes available.
3386 ptr = ____cache_alloc(cachep, flags);
3387 if (ptr)
3388 goto out;
3390 /* ___cache_alloc_node can fall back to other nodes */
3391 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3392 out:
3393 local_irq_restore(save_flags);
3394 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3396 return ptr;
3399 static __always_inline void *
3400 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3402 void *objp;
3404 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3405 objp = alternate_node_alloc(cache, flags);
3406 if (objp)
3407 goto out;
3409 objp = ____cache_alloc(cache, flags);
3412 * We may just have run out of memory on the local node.
3413 * ____cache_alloc_node() knows how to locate memory on other nodes
3415 if (!objp)
3416 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3418 out:
3419 return objp;
3421 #else
3423 static __always_inline void *
3424 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3426 return ____cache_alloc(cachep, flags);
3429 #endif /* CONFIG_NUMA */
3431 static __always_inline void *
3432 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3434 unsigned long save_flags;
3435 void *objp;
3437 if (should_failslab(cachep, flags))
3438 return NULL;
3440 cache_alloc_debugcheck_before(cachep, flags);
3441 local_irq_save(save_flags);
3442 objp = __do_cache_alloc(cachep, flags);
3443 local_irq_restore(save_flags);
3444 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3445 prefetchw(objp);
3447 return objp;
3451 * Caller needs to acquire correct kmem_list's list_lock
3453 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3454 int node)
3456 int i;
3457 struct kmem_list3 *l3;
3459 for (i = 0; i < nr_objects; i++) {
3460 void *objp = objpp[i];
3461 struct slab *slabp;
3463 slabp = virt_to_slab(objp);
3464 l3 = cachep->nodelists[node];
3465 list_del(&slabp->list);
3466 check_spinlock_acquired_node(cachep, node);
3467 check_slabp(cachep, slabp);
3468 slab_put_obj(cachep, slabp, objp, node);
3469 STATS_DEC_ACTIVE(cachep);
3470 l3->free_objects++;
3471 check_slabp(cachep, slabp);
3473 /* fixup slab chains */
3474 if (slabp->inuse == 0) {
3475 if (l3->free_objects > l3->free_limit) {
3476 l3->free_objects -= cachep->num;
3477 /* No need to drop any previously held
3478 * lock here, even if we have a off-slab slab
3479 * descriptor it is guaranteed to come from
3480 * a different cache, refer to comments before
3481 * alloc_slabmgmt.
3483 slab_destroy(cachep, slabp);
3484 } else {
3485 list_add(&slabp->list, &l3->slabs_free);
3487 } else {
3488 /* Unconditionally move a slab to the end of the
3489 * partial list on free - maximum time for the
3490 * other objects to be freed, too.
3492 list_add_tail(&slabp->list, &l3->slabs_partial);
3497 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3499 int batchcount;
3500 struct kmem_list3 *l3;
3501 int node = numa_node_id();
3503 batchcount = ac->batchcount;
3504 #if DEBUG
3505 BUG_ON(!batchcount || batchcount > ac->avail);
3506 #endif
3507 check_irq_off();
3508 l3 = cachep->nodelists[node];
3509 spin_lock(&l3->list_lock);
3510 if (l3->shared) {
3511 struct array_cache *shared_array = l3->shared;
3512 int max = shared_array->limit - shared_array->avail;
3513 if (max) {
3514 if (batchcount > max)
3515 batchcount = max;
3516 memcpy(&(shared_array->entry[shared_array->avail]),
3517 ac->entry, sizeof(void *) * batchcount);
3518 shared_array->avail += batchcount;
3519 goto free_done;
3523 free_block(cachep, ac->entry, batchcount, node);
3524 free_done:
3525 #if STATS
3527 int i = 0;
3528 struct list_head *p;
3530 p = l3->slabs_free.next;
3531 while (p != &(l3->slabs_free)) {
3532 struct slab *slabp;
3534 slabp = list_entry(p, struct slab, list);
3535 BUG_ON(slabp->inuse);
3537 i++;
3538 p = p->next;
3540 STATS_SET_FREEABLE(cachep, i);
3542 #endif
3543 spin_unlock(&l3->list_lock);
3544 ac->avail -= batchcount;
3545 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3549 * Release an obj back to its cache. If the obj has a constructed state, it must
3550 * be in this state _before_ it is released. Called with disabled ints.
3552 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3554 struct array_cache *ac = cpu_cache_get(cachep);
3556 check_irq_off();
3557 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3559 if (use_alien_caches && cache_free_alien(cachep, objp))
3560 return;
3562 if (likely(ac->avail < ac->limit)) {
3563 STATS_INC_FREEHIT(cachep);
3564 ac->entry[ac->avail++] = objp;
3565 return;
3566 } else {
3567 STATS_INC_FREEMISS(cachep);
3568 cache_flusharray(cachep, ac);
3569 ac->entry[ac->avail++] = objp;
3574 * kmem_cache_alloc - Allocate an object
3575 * @cachep: The cache to allocate from.
3576 * @flags: See kmalloc().
3578 * Allocate an object from this cache. The flags are only relevant
3579 * if the cache has no available objects.
3581 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3583 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3585 EXPORT_SYMBOL(kmem_cache_alloc);
3588 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3589 * @cache: The cache to allocate from.
3590 * @flags: See kmalloc().
3592 * Allocate an object from this cache and set the allocated memory to zero.
3593 * The flags are only relevant if the cache has no available objects.
3595 void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3597 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3598 if (ret)
3599 memset(ret, 0, obj_size(cache));
3600 return ret;
3602 EXPORT_SYMBOL(kmem_cache_zalloc);
3605 * kmem_ptr_validate - check if an untrusted pointer might
3606 * be a slab entry.
3607 * @cachep: the cache we're checking against
3608 * @ptr: pointer to validate
3610 * This verifies that the untrusted pointer looks sane:
3611 * it is _not_ a guarantee that the pointer is actually
3612 * part of the slab cache in question, but it at least
3613 * validates that the pointer can be dereferenced and
3614 * looks half-way sane.
3616 * Currently only used for dentry validation.
3618 int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3620 unsigned long addr = (unsigned long)ptr;
3621 unsigned long min_addr = PAGE_OFFSET;
3622 unsigned long align_mask = BYTES_PER_WORD - 1;
3623 unsigned long size = cachep->buffer_size;
3624 struct page *page;
3626 if (unlikely(addr < min_addr))
3627 goto out;
3628 if (unlikely(addr > (unsigned long)high_memory - size))
3629 goto out;
3630 if (unlikely(addr & align_mask))
3631 goto out;
3632 if (unlikely(!kern_addr_valid(addr)))
3633 goto out;
3634 if (unlikely(!kern_addr_valid(addr + size - 1)))
3635 goto out;
3636 page = virt_to_page(ptr);
3637 if (unlikely(!PageSlab(page)))
3638 goto out;
3639 if (unlikely(page_get_cache(page) != cachep))
3640 goto out;
3641 return 1;
3642 out:
3643 return 0;
3646 #ifdef CONFIG_NUMA
3647 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3649 return __cache_alloc_node(cachep, flags, nodeid,
3650 __builtin_return_address(0));
3652 EXPORT_SYMBOL(kmem_cache_alloc_node);
3654 static __always_inline void *
3655 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3657 struct kmem_cache *cachep;
3659 cachep = kmem_find_general_cachep(size, flags);
3660 if (unlikely(cachep == NULL))
3661 return NULL;
3662 return kmem_cache_alloc_node(cachep, flags, node);
3665 #ifdef CONFIG_DEBUG_SLAB
3666 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3668 return __do_kmalloc_node(size, flags, node,
3669 __builtin_return_address(0));
3671 EXPORT_SYMBOL(__kmalloc_node);
3673 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3674 int node, void *caller)
3676 return __do_kmalloc_node(size, flags, node, caller);
3678 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3679 #else
3680 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3682 return __do_kmalloc_node(size, flags, node, NULL);
3684 EXPORT_SYMBOL(__kmalloc_node);
3685 #endif /* CONFIG_DEBUG_SLAB */
3686 #endif /* CONFIG_NUMA */
3689 * __do_kmalloc - allocate memory
3690 * @size: how many bytes of memory are required.
3691 * @flags: the type of memory to allocate (see kmalloc).
3692 * @caller: function caller for debug tracking of the caller
3694 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3695 void *caller)
3697 struct kmem_cache *cachep;
3699 /* If you want to save a few bytes .text space: replace
3700 * __ with kmem_.
3701 * Then kmalloc uses the uninlined functions instead of the inline
3702 * functions.
3704 cachep = __find_general_cachep(size, flags);
3705 if (unlikely(cachep == NULL))
3706 return NULL;
3707 return __cache_alloc(cachep, flags, caller);
3711 #ifdef CONFIG_DEBUG_SLAB
3712 void *__kmalloc(size_t size, gfp_t flags)
3714 return __do_kmalloc(size, flags, __builtin_return_address(0));
3716 EXPORT_SYMBOL(__kmalloc);
3718 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3720 return __do_kmalloc(size, flags, caller);
3722 EXPORT_SYMBOL(__kmalloc_track_caller);
3724 #else
3725 void *__kmalloc(size_t size, gfp_t flags)
3727 return __do_kmalloc(size, flags, NULL);
3729 EXPORT_SYMBOL(__kmalloc);
3730 #endif
3733 * krealloc - reallocate memory. The contents will remain unchanged.
3734 * @p: object to reallocate memory for.
3735 * @new_size: how many bytes of memory are required.
3736 * @flags: the type of memory to allocate.
3738 * The contents of the object pointed to are preserved up to the
3739 * lesser of the new and old sizes. If @p is %NULL, krealloc()
3740 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
3741 * %NULL pointer, the object pointed to is freed.
3743 void *krealloc(const void *p, size_t new_size, gfp_t flags)
3745 struct kmem_cache *cache, *new_cache;
3746 void *ret;
3748 if (unlikely(!p))
3749 return kmalloc_track_caller(new_size, flags);
3751 if (unlikely(!new_size)) {
3752 kfree(p);
3753 return NULL;
3756 cache = virt_to_cache(p);
3757 new_cache = __find_general_cachep(new_size, flags);
3760 * If new size fits in the current cache, bail out.
3762 if (likely(cache == new_cache))
3763 return (void *)p;
3766 * We are on the slow-path here so do not use __cache_alloc
3767 * because it bloats kernel text.
3769 ret = kmalloc_track_caller(new_size, flags);
3770 if (ret) {
3771 memcpy(ret, p, min(new_size, ksize(p)));
3772 kfree(p);
3774 return ret;
3776 EXPORT_SYMBOL(krealloc);
3779 * kmem_cache_free - Deallocate an object
3780 * @cachep: The cache the allocation was from.
3781 * @objp: The previously allocated object.
3783 * Free an object which was previously allocated from this
3784 * cache.
3786 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3788 unsigned long flags;
3790 BUG_ON(virt_to_cache(objp) != cachep);
3792 local_irq_save(flags);
3793 debug_check_no_locks_freed(objp, obj_size(cachep));
3794 __cache_free(cachep, objp);
3795 local_irq_restore(flags);
3797 EXPORT_SYMBOL(kmem_cache_free);
3800 * kfree - free previously allocated memory
3801 * @objp: pointer returned by kmalloc.
3803 * If @objp is NULL, no operation is performed.
3805 * Don't free memory not originally allocated by kmalloc()
3806 * or you will run into trouble.
3808 void kfree(const void *objp)
3810 struct kmem_cache *c;
3811 unsigned long flags;
3813 if (unlikely(!objp))
3814 return;
3815 local_irq_save(flags);
3816 kfree_debugcheck(objp);
3817 c = virt_to_cache(objp);
3818 debug_check_no_locks_freed(objp, obj_size(c));
3819 __cache_free(c, (void *)objp);
3820 local_irq_restore(flags);
3822 EXPORT_SYMBOL(kfree);
3824 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3826 return obj_size(cachep);
3828 EXPORT_SYMBOL(kmem_cache_size);
3830 const char *kmem_cache_name(struct kmem_cache *cachep)
3832 return cachep->name;
3834 EXPORT_SYMBOL_GPL(kmem_cache_name);
3837 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3839 static int alloc_kmemlist(struct kmem_cache *cachep)
3841 int node;
3842 struct kmem_list3 *l3;
3843 struct array_cache *new_shared;
3844 struct array_cache **new_alien = NULL;
3846 for_each_online_node(node) {
3848 if (use_alien_caches) {
3849 new_alien = alloc_alien_cache(node, cachep->limit);
3850 if (!new_alien)
3851 goto fail;
3854 new_shared = NULL;
3855 if (cachep->shared) {
3856 new_shared = alloc_arraycache(node,
3857 cachep->shared*cachep->batchcount,
3858 0xbaadf00d);
3859 if (!new_shared) {
3860 free_alien_cache(new_alien);
3861 goto fail;
3865 l3 = cachep->nodelists[node];
3866 if (l3) {
3867 struct array_cache *shared = l3->shared;
3869 spin_lock_irq(&l3->list_lock);
3871 if (shared)
3872 free_block(cachep, shared->entry,
3873 shared->avail, node);
3875 l3->shared = new_shared;
3876 if (!l3->alien) {
3877 l3->alien = new_alien;
3878 new_alien = NULL;
3880 l3->free_limit = (1 + nr_cpus_node(node)) *
3881 cachep->batchcount + cachep->num;
3882 spin_unlock_irq(&l3->list_lock);
3883 kfree(shared);
3884 free_alien_cache(new_alien);
3885 continue;
3887 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3888 if (!l3) {
3889 free_alien_cache(new_alien);
3890 kfree(new_shared);
3891 goto fail;
3894 kmem_list3_init(l3);
3895 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3896 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3897 l3->shared = new_shared;
3898 l3->alien = new_alien;
3899 l3->free_limit = (1 + nr_cpus_node(node)) *
3900 cachep->batchcount + cachep->num;
3901 cachep->nodelists[node] = l3;
3903 return 0;
3905 fail:
3906 if (!cachep->next.next) {
3907 /* Cache is not active yet. Roll back what we did */
3908 node--;
3909 while (node >= 0) {
3910 if (cachep->nodelists[node]) {
3911 l3 = cachep->nodelists[node];
3913 kfree(l3->shared);
3914 free_alien_cache(l3->alien);
3915 kfree(l3);
3916 cachep->nodelists[node] = NULL;
3918 node--;
3921 return -ENOMEM;
3924 struct ccupdate_struct {
3925 struct kmem_cache *cachep;
3926 struct array_cache *new[NR_CPUS];
3929 static void do_ccupdate_local(void *info)
3931 struct ccupdate_struct *new = info;
3932 struct array_cache *old;
3934 check_irq_off();
3935 old = cpu_cache_get(new->cachep);
3937 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3938 new->new[smp_processor_id()] = old;
3941 /* Always called with the cache_chain_mutex held */
3942 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3943 int batchcount, int shared)
3945 struct ccupdate_struct *new;
3946 int i;
3948 new = kzalloc(sizeof(*new), GFP_KERNEL);
3949 if (!new)
3950 return -ENOMEM;
3952 for_each_online_cpu(i) {
3953 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3954 batchcount);
3955 if (!new->new[i]) {
3956 for (i--; i >= 0; i--)
3957 kfree(new->new[i]);
3958 kfree(new);
3959 return -ENOMEM;
3962 new->cachep = cachep;
3964 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3966 check_irq_on();
3967 cachep->batchcount = batchcount;
3968 cachep->limit = limit;
3969 cachep->shared = shared;
3971 for_each_online_cpu(i) {
3972 struct array_cache *ccold = new->new[i];
3973 if (!ccold)
3974 continue;
3975 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3976 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3977 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3978 kfree(ccold);
3980 kfree(new);
3981 return alloc_kmemlist(cachep);
3984 /* Called with cache_chain_mutex held always */
3985 static int enable_cpucache(struct kmem_cache *cachep)
3987 int err;
3988 int limit, shared;
3991 * The head array serves three purposes:
3992 * - create a LIFO ordering, i.e. return objects that are cache-warm
3993 * - reduce the number of spinlock operations.
3994 * - reduce the number of linked list operations on the slab and
3995 * bufctl chains: array operations are cheaper.
3996 * The numbers are guessed, we should auto-tune as described by
3997 * Bonwick.
3999 if (cachep->buffer_size > 131072)
4000 limit = 1;
4001 else if (cachep->buffer_size > PAGE_SIZE)
4002 limit = 8;
4003 else if (cachep->buffer_size > 1024)
4004 limit = 24;
4005 else if (cachep->buffer_size > 256)
4006 limit = 54;
4007 else
4008 limit = 120;
4011 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4012 * allocation behaviour: Most allocs on one cpu, most free operations
4013 * on another cpu. For these cases, an efficient object passing between
4014 * cpus is necessary. This is provided by a shared array. The array
4015 * replaces Bonwick's magazine layer.
4016 * On uniprocessor, it's functionally equivalent (but less efficient)
4017 * to a larger limit. Thus disabled by default.
4019 shared = 0;
4020 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
4021 shared = 8;
4023 #if DEBUG
4025 * With debugging enabled, large batchcount lead to excessively long
4026 * periods with disabled local interrupts. Limit the batchcount
4028 if (limit > 32)
4029 limit = 32;
4030 #endif
4031 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
4032 if (err)
4033 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4034 cachep->name, -err);
4035 return err;
4039 * Drain an array if it contains any elements taking the l3 lock only if
4040 * necessary. Note that the l3 listlock also protects the array_cache
4041 * if drain_array() is used on the shared array.
4043 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4044 struct array_cache *ac, int force, int node)
4046 int tofree;
4048 if (!ac || !ac->avail)
4049 return;
4050 if (ac->touched && !force) {
4051 ac->touched = 0;
4052 } else {
4053 spin_lock_irq(&l3->list_lock);
4054 if (ac->avail) {
4055 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4056 if (tofree > ac->avail)
4057 tofree = (ac->avail + 1) / 2;
4058 free_block(cachep, ac->entry, tofree, node);
4059 ac->avail -= tofree;
4060 memmove(ac->entry, &(ac->entry[tofree]),
4061 sizeof(void *) * ac->avail);
4063 spin_unlock_irq(&l3->list_lock);
4068 * cache_reap - Reclaim memory from caches.
4069 * @w: work descriptor
4071 * Called from workqueue/eventd every few seconds.
4072 * Purpose:
4073 * - clear the per-cpu caches for this CPU.
4074 * - return freeable pages to the main free memory pool.
4076 * If we cannot acquire the cache chain mutex then just give up - we'll try
4077 * again on the next iteration.
4079 static void cache_reap(struct work_struct *w)
4081 struct kmem_cache *searchp;
4082 struct kmem_list3 *l3;
4083 int node = numa_node_id();
4084 struct delayed_work *work =
4085 container_of(w, struct delayed_work, work);
4087 if (!mutex_trylock(&cache_chain_mutex))
4088 /* Give up. Setup the next iteration. */
4089 goto out;
4091 list_for_each_entry(searchp, &cache_chain, next) {
4092 check_irq_on();
4095 * We only take the l3 lock if absolutely necessary and we
4096 * have established with reasonable certainty that
4097 * we can do some work if the lock was obtained.
4099 l3 = searchp->nodelists[node];
4101 reap_alien(searchp, l3);
4103 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4106 * These are racy checks but it does not matter
4107 * if we skip one check or scan twice.
4109 if (time_after(l3->next_reap, jiffies))
4110 goto next;
4112 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4114 drain_array(searchp, l3, l3->shared, 0, node);
4116 if (l3->free_touched)
4117 l3->free_touched = 0;
4118 else {
4119 int freed;
4121 freed = drain_freelist(searchp, l3, (l3->free_limit +
4122 5 * searchp->num - 1) / (5 * searchp->num));
4123 STATS_ADD_REAPED(searchp, freed);
4125 next:
4126 cond_resched();
4128 check_irq_on();
4129 mutex_unlock(&cache_chain_mutex);
4130 next_reap_node();
4131 out:
4132 /* Set up the next iteration */
4133 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4136 #ifdef CONFIG_PROC_FS
4138 static void print_slabinfo_header(struct seq_file *m)
4141 * Output format version, so at least we can change it
4142 * without _too_ many complaints.
4144 #if STATS
4145 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4146 #else
4147 seq_puts(m, "slabinfo - version: 2.1\n");
4148 #endif
4149 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4150 "<objperslab> <pagesperslab>");
4151 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4152 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4153 #if STATS
4154 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4155 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4156 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4157 #endif
4158 seq_putc(m, '\n');
4161 static void *s_start(struct seq_file *m, loff_t *pos)
4163 loff_t n = *pos;
4164 struct list_head *p;
4166 mutex_lock(&cache_chain_mutex);
4167 if (!n)
4168 print_slabinfo_header(m);
4169 p = cache_chain.next;
4170 while (n--) {
4171 p = p->next;
4172 if (p == &cache_chain)
4173 return NULL;
4175 return list_entry(p, struct kmem_cache, next);
4178 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4180 struct kmem_cache *cachep = p;
4181 ++*pos;
4182 return cachep->next.next == &cache_chain ?
4183 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
4186 static void s_stop(struct seq_file *m, void *p)
4188 mutex_unlock(&cache_chain_mutex);
4191 static int s_show(struct seq_file *m, void *p)
4193 struct kmem_cache *cachep = p;
4194 struct slab *slabp;
4195 unsigned long active_objs;
4196 unsigned long num_objs;
4197 unsigned long active_slabs = 0;
4198 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4199 const char *name;
4200 char *error = NULL;
4201 int node;
4202 struct kmem_list3 *l3;
4204 active_objs = 0;
4205 num_slabs = 0;
4206 for_each_online_node(node) {
4207 l3 = cachep->nodelists[node];
4208 if (!l3)
4209 continue;
4211 check_irq_on();
4212 spin_lock_irq(&l3->list_lock);
4214 list_for_each_entry(slabp, &l3->slabs_full, list) {
4215 if (slabp->inuse != cachep->num && !error)
4216 error = "slabs_full accounting error";
4217 active_objs += cachep->num;
4218 active_slabs++;
4220 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4221 if (slabp->inuse == cachep->num && !error)
4222 error = "slabs_partial inuse accounting error";
4223 if (!slabp->inuse && !error)
4224 error = "slabs_partial/inuse accounting error";
4225 active_objs += slabp->inuse;
4226 active_slabs++;
4228 list_for_each_entry(slabp, &l3->slabs_free, list) {
4229 if (slabp->inuse && !error)
4230 error = "slabs_free/inuse accounting error";
4231 num_slabs++;
4233 free_objects += l3->free_objects;
4234 if (l3->shared)
4235 shared_avail += l3->shared->avail;
4237 spin_unlock_irq(&l3->list_lock);
4239 num_slabs += active_slabs;
4240 num_objs = num_slabs * cachep->num;
4241 if (num_objs - active_objs != free_objects && !error)
4242 error = "free_objects accounting error";
4244 name = cachep->name;
4245 if (error)
4246 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4248 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4249 name, active_objs, num_objs, cachep->buffer_size,
4250 cachep->num, (1 << cachep->gfporder));
4251 seq_printf(m, " : tunables %4u %4u %4u",
4252 cachep->limit, cachep->batchcount, cachep->shared);
4253 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4254 active_slabs, num_slabs, shared_avail);
4255 #if STATS
4256 { /* list3 stats */
4257 unsigned long high = cachep->high_mark;
4258 unsigned long allocs = cachep->num_allocations;
4259 unsigned long grown = cachep->grown;
4260 unsigned long reaped = cachep->reaped;
4261 unsigned long errors = cachep->errors;
4262 unsigned long max_freeable = cachep->max_freeable;
4263 unsigned long node_allocs = cachep->node_allocs;
4264 unsigned long node_frees = cachep->node_frees;
4265 unsigned long overflows = cachep->node_overflow;
4267 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4268 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
4269 reaped, errors, max_freeable, node_allocs,
4270 node_frees, overflows);
4272 /* cpu stats */
4274 unsigned long allochit = atomic_read(&cachep->allochit);
4275 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4276 unsigned long freehit = atomic_read(&cachep->freehit);
4277 unsigned long freemiss = atomic_read(&cachep->freemiss);
4279 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4280 allochit, allocmiss, freehit, freemiss);
4282 #endif
4283 seq_putc(m, '\n');
4284 return 0;
4288 * slabinfo_op - iterator that generates /proc/slabinfo
4290 * Output layout:
4291 * cache-name
4292 * num-active-objs
4293 * total-objs
4294 * object size
4295 * num-active-slabs
4296 * total-slabs
4297 * num-pages-per-slab
4298 * + further values on SMP and with statistics enabled
4301 const struct seq_operations slabinfo_op = {
4302 .start = s_start,
4303 .next = s_next,
4304 .stop = s_stop,
4305 .show = s_show,
4308 #define MAX_SLABINFO_WRITE 128
4310 * slabinfo_write - Tuning for the slab allocator
4311 * @file: unused
4312 * @buffer: user buffer
4313 * @count: data length
4314 * @ppos: unused
4316 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4317 size_t count, loff_t *ppos)
4319 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4320 int limit, batchcount, shared, res;
4321 struct kmem_cache *cachep;
4323 if (count > MAX_SLABINFO_WRITE)
4324 return -EINVAL;
4325 if (copy_from_user(&kbuf, buffer, count))
4326 return -EFAULT;
4327 kbuf[MAX_SLABINFO_WRITE] = '\0';
4329 tmp = strchr(kbuf, ' ');
4330 if (!tmp)
4331 return -EINVAL;
4332 *tmp = '\0';
4333 tmp++;
4334 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4335 return -EINVAL;
4337 /* Find the cache in the chain of caches. */
4338 mutex_lock(&cache_chain_mutex);
4339 res = -EINVAL;
4340 list_for_each_entry(cachep, &cache_chain, next) {
4341 if (!strcmp(cachep->name, kbuf)) {
4342 if (limit < 1 || batchcount < 1 ||
4343 batchcount > limit || shared < 0) {
4344 res = 0;
4345 } else {
4346 res = do_tune_cpucache(cachep, limit,
4347 batchcount, shared);
4349 break;
4352 mutex_unlock(&cache_chain_mutex);
4353 if (res >= 0)
4354 res = count;
4355 return res;
4358 #ifdef CONFIG_DEBUG_SLAB_LEAK
4360 static void *leaks_start(struct seq_file *m, loff_t *pos)
4362 loff_t n = *pos;
4363 struct list_head *p;
4365 mutex_lock(&cache_chain_mutex);
4366 p = cache_chain.next;
4367 while (n--) {
4368 p = p->next;
4369 if (p == &cache_chain)
4370 return NULL;
4372 return list_entry(p, struct kmem_cache, next);
4375 static inline int add_caller(unsigned long *n, unsigned long v)
4377 unsigned long *p;
4378 int l;
4379 if (!v)
4380 return 1;
4381 l = n[1];
4382 p = n + 2;
4383 while (l) {
4384 int i = l/2;
4385 unsigned long *q = p + 2 * i;
4386 if (*q == v) {
4387 q[1]++;
4388 return 1;
4390 if (*q > v) {
4391 l = i;
4392 } else {
4393 p = q + 2;
4394 l -= i + 1;
4397 if (++n[1] == n[0])
4398 return 0;
4399 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4400 p[0] = v;
4401 p[1] = 1;
4402 return 1;
4405 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4407 void *p;
4408 int i;
4409 if (n[0] == n[1])
4410 return;
4411 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4412 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4413 continue;
4414 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4415 return;
4419 static void show_symbol(struct seq_file *m, unsigned long address)
4421 #ifdef CONFIG_KALLSYMS
4422 unsigned long offset, size;
4423 char modname[MODULE_NAME_LEN + 1], name[KSYM_NAME_LEN + 1];
4425 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4426 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4427 if (modname[0])
4428 seq_printf(m, " [%s]", modname);
4429 return;
4431 #endif
4432 seq_printf(m, "%p", (void *)address);
4435 static int leaks_show(struct seq_file *m, void *p)
4437 struct kmem_cache *cachep = p;
4438 struct slab *slabp;
4439 struct kmem_list3 *l3;
4440 const char *name;
4441 unsigned long *n = m->private;
4442 int node;
4443 int i;
4445 if (!(cachep->flags & SLAB_STORE_USER))
4446 return 0;
4447 if (!(cachep->flags & SLAB_RED_ZONE))
4448 return 0;
4450 /* OK, we can do it */
4452 n[1] = 0;
4454 for_each_online_node(node) {
4455 l3 = cachep->nodelists[node];
4456 if (!l3)
4457 continue;
4459 check_irq_on();
4460 spin_lock_irq(&l3->list_lock);
4462 list_for_each_entry(slabp, &l3->slabs_full, list)
4463 handle_slab(n, cachep, slabp);
4464 list_for_each_entry(slabp, &l3->slabs_partial, list)
4465 handle_slab(n, cachep, slabp);
4466 spin_unlock_irq(&l3->list_lock);
4468 name = cachep->name;
4469 if (n[0] == n[1]) {
4470 /* Increase the buffer size */
4471 mutex_unlock(&cache_chain_mutex);
4472 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4473 if (!m->private) {
4474 /* Too bad, we are really out */
4475 m->private = n;
4476 mutex_lock(&cache_chain_mutex);
4477 return -ENOMEM;
4479 *(unsigned long *)m->private = n[0] * 2;
4480 kfree(n);
4481 mutex_lock(&cache_chain_mutex);
4482 /* Now make sure this entry will be retried */
4483 m->count = m->size;
4484 return 0;
4486 for (i = 0; i < n[1]; i++) {
4487 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4488 show_symbol(m, n[2*i+2]);
4489 seq_putc(m, '\n');
4492 return 0;
4495 const struct seq_operations slabstats_op = {
4496 .start = leaks_start,
4497 .next = s_next,
4498 .stop = s_stop,
4499 .show = leaks_show,
4501 #endif
4502 #endif
4505 * ksize - get the actual amount of memory allocated for a given object
4506 * @objp: Pointer to the object
4508 * kmalloc may internally round up allocations and return more memory
4509 * than requested. ksize() can be used to determine the actual amount of
4510 * memory allocated. The caller may use this additional memory, even though
4511 * a smaller amount of memory was initially specified with the kmalloc call.
4512 * The caller must guarantee that objp points to a valid object previously
4513 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4514 * must not be freed during the duration of the call.
4516 size_t ksize(const void *objp)
4518 if (unlikely(objp == NULL))
4519 return 0;
4521 return obj_size(virt_to_cache(objp));