4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
11 #include <linux/vmalloc.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <linux/atomic.h>
30 #include <asm/uaccess.h>
31 #include <asm/tlbflush.h>
32 #include <asm/shmparam.h>
34 /*** Page table manipulation functions ***/
36 static void vunmap_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
)
40 pte
= pte_offset_kernel(pmd
, addr
);
42 pte_t ptent
= ptep_get_and_clear(&init_mm
, addr
, pte
);
43 WARN_ON(!pte_none(ptent
) && !pte_present(ptent
));
44 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
47 static void vunmap_pmd_range(pud_t
*pud
, unsigned long addr
, unsigned long end
)
52 pmd
= pmd_offset(pud
, addr
);
54 next
= pmd_addr_end(addr
, end
);
55 if (pmd_none_or_clear_bad(pmd
))
57 vunmap_pte_range(pmd
, addr
, next
);
58 } while (pmd
++, addr
= next
, addr
!= end
);
61 static void vunmap_pud_range(pgd_t
*pgd
, unsigned long addr
, unsigned long end
)
66 pud
= pud_offset(pgd
, addr
);
68 next
= pud_addr_end(addr
, end
);
69 if (pud_none_or_clear_bad(pud
))
71 vunmap_pmd_range(pud
, addr
, next
);
72 } while (pud
++, addr
= next
, addr
!= end
);
75 static void vunmap_page_range(unsigned long addr
, unsigned long end
)
81 pgd
= pgd_offset_k(addr
);
83 next
= pgd_addr_end(addr
, end
);
84 if (pgd_none_or_clear_bad(pgd
))
86 vunmap_pud_range(pgd
, addr
, next
);
87 } while (pgd
++, addr
= next
, addr
!= end
);
90 static int vmap_pte_range(pmd_t
*pmd
, unsigned long addr
,
91 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
96 * nr is a running index into the array which helps higher level
97 * callers keep track of where we're up to.
100 pte
= pte_alloc_kernel(pmd
, addr
);
104 struct page
*page
= pages
[*nr
];
106 if (WARN_ON(!pte_none(*pte
)))
110 set_pte_at(&init_mm
, addr
, pte
, mk_pte(page
, prot
));
112 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
116 static int vmap_pmd_range(pud_t
*pud
, unsigned long addr
,
117 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
122 pmd
= pmd_alloc(&init_mm
, pud
, addr
);
126 next
= pmd_addr_end(addr
, end
);
127 if (vmap_pte_range(pmd
, addr
, next
, prot
, pages
, nr
))
129 } while (pmd
++, addr
= next
, addr
!= end
);
133 static int vmap_pud_range(pgd_t
*pgd
, unsigned long addr
,
134 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
139 pud
= pud_alloc(&init_mm
, pgd
, addr
);
143 next
= pud_addr_end(addr
, end
);
144 if (vmap_pmd_range(pud
, addr
, next
, prot
, pages
, nr
))
146 } while (pud
++, addr
= next
, addr
!= end
);
151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
152 * will have pfns corresponding to the "pages" array.
154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
156 static int vmap_page_range_noflush(unsigned long start
, unsigned long end
,
157 pgprot_t prot
, struct page
**pages
)
161 unsigned long addr
= start
;
166 pgd
= pgd_offset_k(addr
);
168 next
= pgd_addr_end(addr
, end
);
169 err
= vmap_pud_range(pgd
, addr
, next
, prot
, pages
, &nr
);
172 } while (pgd
++, addr
= next
, addr
!= end
);
177 static int vmap_page_range(unsigned long start
, unsigned long end
,
178 pgprot_t prot
, struct page
**pages
)
182 ret
= vmap_page_range_noflush(start
, end
, prot
, pages
);
183 flush_cache_vmap(start
, end
);
187 int is_vmalloc_or_module_addr(const void *x
)
190 * ARM, x86-64 and sparc64 put modules in a special place,
191 * and fall back on vmalloc() if that fails. Others
192 * just put it in the vmalloc space.
194 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
195 unsigned long addr
= (unsigned long)x
;
196 if (addr
>= MODULES_VADDR
&& addr
< MODULES_END
)
199 return is_vmalloc_addr(x
);
203 * Walk a vmap address to the struct page it maps.
205 struct page
*vmalloc_to_page(const void *vmalloc_addr
)
207 unsigned long addr
= (unsigned long) vmalloc_addr
;
208 struct page
*page
= NULL
;
209 pgd_t
*pgd
= pgd_offset_k(addr
);
212 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
213 * architectures that do not vmalloc module space
215 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr
));
217 if (!pgd_none(*pgd
)) {
218 pud_t
*pud
= pud_offset(pgd
, addr
);
219 if (!pud_none(*pud
)) {
220 pmd_t
*pmd
= pmd_offset(pud
, addr
);
221 if (!pmd_none(*pmd
)) {
224 ptep
= pte_offset_map(pmd
, addr
);
226 if (pte_present(pte
))
227 page
= pte_page(pte
);
234 EXPORT_SYMBOL(vmalloc_to_page
);
237 * Map a vmalloc()-space virtual address to the physical page frame number.
239 unsigned long vmalloc_to_pfn(const void *vmalloc_addr
)
241 return page_to_pfn(vmalloc_to_page(vmalloc_addr
));
243 EXPORT_SYMBOL(vmalloc_to_pfn
);
246 /*** Global kva allocator ***/
248 #define VM_LAZY_FREE 0x01
249 #define VM_LAZY_FREEING 0x02
250 #define VM_VM_AREA 0x04
252 static DEFINE_SPINLOCK(vmap_area_lock
);
253 /* Export for kexec only */
254 LIST_HEAD(vmap_area_list
);
255 static struct rb_root vmap_area_root
= RB_ROOT
;
257 /* The vmap cache globals are protected by vmap_area_lock */
258 static struct rb_node
*free_vmap_cache
;
259 static unsigned long cached_hole_size
;
260 static unsigned long cached_vstart
;
261 static unsigned long cached_align
;
263 static unsigned long vmap_area_pcpu_hole
;
265 static struct vmap_area
*__find_vmap_area(unsigned long addr
)
267 struct rb_node
*n
= vmap_area_root
.rb_node
;
270 struct vmap_area
*va
;
272 va
= rb_entry(n
, struct vmap_area
, rb_node
);
273 if (addr
< va
->va_start
)
275 else if (addr
> va
->va_start
)
284 static void __insert_vmap_area(struct vmap_area
*va
)
286 struct rb_node
**p
= &vmap_area_root
.rb_node
;
287 struct rb_node
*parent
= NULL
;
291 struct vmap_area
*tmp_va
;
294 tmp_va
= rb_entry(parent
, struct vmap_area
, rb_node
);
295 if (va
->va_start
< tmp_va
->va_end
)
297 else if (va
->va_end
> tmp_va
->va_start
)
303 rb_link_node(&va
->rb_node
, parent
, p
);
304 rb_insert_color(&va
->rb_node
, &vmap_area_root
);
306 /* address-sort this list */
307 tmp
= rb_prev(&va
->rb_node
);
309 struct vmap_area
*prev
;
310 prev
= rb_entry(tmp
, struct vmap_area
, rb_node
);
311 list_add_rcu(&va
->list
, &prev
->list
);
313 list_add_rcu(&va
->list
, &vmap_area_list
);
316 static void purge_vmap_area_lazy(void);
319 * Allocate a region of KVA of the specified size and alignment, within the
322 static struct vmap_area
*alloc_vmap_area(unsigned long size
,
324 unsigned long vstart
, unsigned long vend
,
325 int node
, gfp_t gfp_mask
)
327 struct vmap_area
*va
;
331 struct vmap_area
*first
;
334 BUG_ON(size
& ~PAGE_MASK
);
335 BUG_ON(!is_power_of_2(align
));
337 va
= kmalloc_node(sizeof(struct vmap_area
),
338 gfp_mask
& GFP_RECLAIM_MASK
, node
);
340 return ERR_PTR(-ENOMEM
);
343 spin_lock(&vmap_area_lock
);
345 * Invalidate cache if we have more permissive parameters.
346 * cached_hole_size notes the largest hole noticed _below_
347 * the vmap_area cached in free_vmap_cache: if size fits
348 * into that hole, we want to scan from vstart to reuse
349 * the hole instead of allocating above free_vmap_cache.
350 * Note that __free_vmap_area may update free_vmap_cache
351 * without updating cached_hole_size or cached_align.
353 if (!free_vmap_cache
||
354 size
< cached_hole_size
||
355 vstart
< cached_vstart
||
356 align
< cached_align
) {
358 cached_hole_size
= 0;
359 free_vmap_cache
= NULL
;
361 /* record if we encounter less permissive parameters */
362 cached_vstart
= vstart
;
363 cached_align
= align
;
365 /* find starting point for our search */
366 if (free_vmap_cache
) {
367 first
= rb_entry(free_vmap_cache
, struct vmap_area
, rb_node
);
368 addr
= ALIGN(first
->va_end
, align
);
371 if (addr
+ size
- 1 < addr
)
375 addr
= ALIGN(vstart
, align
);
376 if (addr
+ size
- 1 < addr
)
379 n
= vmap_area_root
.rb_node
;
383 struct vmap_area
*tmp
;
384 tmp
= rb_entry(n
, struct vmap_area
, rb_node
);
385 if (tmp
->va_end
>= addr
) {
387 if (tmp
->va_start
<= addr
)
398 /* from the starting point, walk areas until a suitable hole is found */
399 while (addr
+ size
> first
->va_start
&& addr
+ size
<= vend
) {
400 if (addr
+ cached_hole_size
< first
->va_start
)
401 cached_hole_size
= first
->va_start
- addr
;
402 addr
= ALIGN(first
->va_end
, align
);
403 if (addr
+ size
- 1 < addr
)
406 if (list_is_last(&first
->list
, &vmap_area_list
))
409 first
= list_entry(first
->list
.next
,
410 struct vmap_area
, list
);
414 if (addr
+ size
> vend
)
418 va
->va_end
= addr
+ size
;
420 __insert_vmap_area(va
);
421 free_vmap_cache
= &va
->rb_node
;
422 spin_unlock(&vmap_area_lock
);
424 BUG_ON(va
->va_start
& (align
-1));
425 BUG_ON(va
->va_start
< vstart
);
426 BUG_ON(va
->va_end
> vend
);
431 spin_unlock(&vmap_area_lock
);
433 purge_vmap_area_lazy();
437 if (printk_ratelimit())
439 "vmap allocation for size %lu failed: "
440 "use vmalloc=<size> to increase size.\n", size
);
442 return ERR_PTR(-EBUSY
);
445 static void __free_vmap_area(struct vmap_area
*va
)
447 BUG_ON(RB_EMPTY_NODE(&va
->rb_node
));
449 if (free_vmap_cache
) {
450 if (va
->va_end
< cached_vstart
) {
451 free_vmap_cache
= NULL
;
453 struct vmap_area
*cache
;
454 cache
= rb_entry(free_vmap_cache
, struct vmap_area
, rb_node
);
455 if (va
->va_start
<= cache
->va_start
) {
456 free_vmap_cache
= rb_prev(&va
->rb_node
);
458 * We don't try to update cached_hole_size or
459 * cached_align, but it won't go very wrong.
464 rb_erase(&va
->rb_node
, &vmap_area_root
);
465 RB_CLEAR_NODE(&va
->rb_node
);
466 list_del_rcu(&va
->list
);
469 * Track the highest possible candidate for pcpu area
470 * allocation. Areas outside of vmalloc area can be returned
471 * here too, consider only end addresses which fall inside
472 * vmalloc area proper.
474 if (va
->va_end
> VMALLOC_START
&& va
->va_end
<= VMALLOC_END
)
475 vmap_area_pcpu_hole
= max(vmap_area_pcpu_hole
, va
->va_end
);
477 kfree_rcu(va
, rcu_head
);
481 * Free a region of KVA allocated by alloc_vmap_area
483 static void free_vmap_area(struct vmap_area
*va
)
485 spin_lock(&vmap_area_lock
);
486 __free_vmap_area(va
);
487 spin_unlock(&vmap_area_lock
);
491 * Clear the pagetable entries of a given vmap_area
493 static void unmap_vmap_area(struct vmap_area
*va
)
495 vunmap_page_range(va
->va_start
, va
->va_end
);
498 static void vmap_debug_free_range(unsigned long start
, unsigned long end
)
501 * Unmap page tables and force a TLB flush immediately if
502 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
503 * bugs similarly to those in linear kernel virtual address
504 * space after a page has been freed.
506 * All the lazy freeing logic is still retained, in order to
507 * minimise intrusiveness of this debugging feature.
509 * This is going to be *slow* (linear kernel virtual address
510 * debugging doesn't do a broadcast TLB flush so it is a lot
513 #ifdef CONFIG_DEBUG_PAGEALLOC
514 vunmap_page_range(start
, end
);
515 flush_tlb_kernel_range(start
, end
);
520 * lazy_max_pages is the maximum amount of virtual address space we gather up
521 * before attempting to purge with a TLB flush.
523 * There is a tradeoff here: a larger number will cover more kernel page tables
524 * and take slightly longer to purge, but it will linearly reduce the number of
525 * global TLB flushes that must be performed. It would seem natural to scale
526 * this number up linearly with the number of CPUs (because vmapping activity
527 * could also scale linearly with the number of CPUs), however it is likely
528 * that in practice, workloads might be constrained in other ways that mean
529 * vmap activity will not scale linearly with CPUs. Also, I want to be
530 * conservative and not introduce a big latency on huge systems, so go with
531 * a less aggressive log scale. It will still be an improvement over the old
532 * code, and it will be simple to change the scale factor if we find that it
533 * becomes a problem on bigger systems.
535 static unsigned long lazy_max_pages(void)
539 log
= fls(num_online_cpus());
541 return log
* (32UL * 1024 * 1024 / PAGE_SIZE
);
544 static atomic_t vmap_lazy_nr
= ATOMIC_INIT(0);
546 /* for per-CPU blocks */
547 static void purge_fragmented_blocks_allcpus(void);
550 * called before a call to iounmap() if the caller wants vm_area_struct's
553 void set_iounmap_nonlazy(void)
555 atomic_set(&vmap_lazy_nr
, lazy_max_pages()+1);
559 * Purges all lazily-freed vmap areas.
561 * If sync is 0 then don't purge if there is already a purge in progress.
562 * If force_flush is 1, then flush kernel TLBs between *start and *end even
563 * if we found no lazy vmap areas to unmap (callers can use this to optimise
564 * their own TLB flushing).
565 * Returns with *start = min(*start, lowest purged address)
566 * *end = max(*end, highest purged address)
568 static void __purge_vmap_area_lazy(unsigned long *start
, unsigned long *end
,
569 int sync
, int force_flush
)
571 static DEFINE_SPINLOCK(purge_lock
);
573 struct vmap_area
*va
;
574 struct vmap_area
*n_va
;
578 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
579 * should not expect such behaviour. This just simplifies locking for
580 * the case that isn't actually used at the moment anyway.
582 if (!sync
&& !force_flush
) {
583 if (!spin_trylock(&purge_lock
))
586 spin_lock(&purge_lock
);
589 purge_fragmented_blocks_allcpus();
592 list_for_each_entry_rcu(va
, &vmap_area_list
, list
) {
593 if (va
->flags
& VM_LAZY_FREE
) {
594 if (va
->va_start
< *start
)
595 *start
= va
->va_start
;
596 if (va
->va_end
> *end
)
598 nr
+= (va
->va_end
- va
->va_start
) >> PAGE_SHIFT
;
599 list_add_tail(&va
->purge_list
, &valist
);
600 va
->flags
|= VM_LAZY_FREEING
;
601 va
->flags
&= ~VM_LAZY_FREE
;
607 atomic_sub(nr
, &vmap_lazy_nr
);
609 if (nr
|| force_flush
)
610 flush_tlb_kernel_range(*start
, *end
);
613 spin_lock(&vmap_area_lock
);
614 list_for_each_entry_safe(va
, n_va
, &valist
, purge_list
)
615 __free_vmap_area(va
);
616 spin_unlock(&vmap_area_lock
);
618 spin_unlock(&purge_lock
);
622 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
623 * is already purging.
625 static void try_purge_vmap_area_lazy(void)
627 unsigned long start
= ULONG_MAX
, end
= 0;
629 __purge_vmap_area_lazy(&start
, &end
, 0, 0);
633 * Kick off a purge of the outstanding lazy areas.
635 static void purge_vmap_area_lazy(void)
637 unsigned long start
= ULONG_MAX
, end
= 0;
639 __purge_vmap_area_lazy(&start
, &end
, 1, 0);
643 * Free a vmap area, caller ensuring that the area has been unmapped
644 * and flush_cache_vunmap had been called for the correct range
647 static void free_vmap_area_noflush(struct vmap_area
*va
)
649 va
->flags
|= VM_LAZY_FREE
;
650 atomic_add((va
->va_end
- va
->va_start
) >> PAGE_SHIFT
, &vmap_lazy_nr
);
651 if (unlikely(atomic_read(&vmap_lazy_nr
) > lazy_max_pages()))
652 try_purge_vmap_area_lazy();
656 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
657 * called for the correct range previously.
659 static void free_unmap_vmap_area_noflush(struct vmap_area
*va
)
662 free_vmap_area_noflush(va
);
666 * Free and unmap a vmap area
668 static void free_unmap_vmap_area(struct vmap_area
*va
)
670 flush_cache_vunmap(va
->va_start
, va
->va_end
);
671 free_unmap_vmap_area_noflush(va
);
674 static struct vmap_area
*find_vmap_area(unsigned long addr
)
676 struct vmap_area
*va
;
678 spin_lock(&vmap_area_lock
);
679 va
= __find_vmap_area(addr
);
680 spin_unlock(&vmap_area_lock
);
685 static void free_unmap_vmap_area_addr(unsigned long addr
)
687 struct vmap_area
*va
;
689 va
= find_vmap_area(addr
);
691 free_unmap_vmap_area(va
);
695 /*** Per cpu kva allocator ***/
698 * vmap space is limited especially on 32 bit architectures. Ensure there is
699 * room for at least 16 percpu vmap blocks per CPU.
702 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
703 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
704 * instead (we just need a rough idea)
706 #if BITS_PER_LONG == 32
707 #define VMALLOC_SPACE (128UL*1024*1024)
709 #define VMALLOC_SPACE (128UL*1024*1024*1024)
712 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
713 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
714 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
715 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
716 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
717 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
718 #define VMAP_BBMAP_BITS \
719 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
720 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
721 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
723 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
725 static bool vmap_initialized __read_mostly
= false;
727 struct vmap_block_queue
{
729 struct list_head free
;
734 struct vmap_area
*va
;
735 struct vmap_block_queue
*vbq
;
736 unsigned long free
, dirty
;
737 DECLARE_BITMAP(alloc_map
, VMAP_BBMAP_BITS
);
738 DECLARE_BITMAP(dirty_map
, VMAP_BBMAP_BITS
);
739 struct list_head free_list
;
740 struct rcu_head rcu_head
;
741 struct list_head purge
;
744 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
745 static DEFINE_PER_CPU(struct vmap_block_queue
, vmap_block_queue
);
748 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
749 * in the free path. Could get rid of this if we change the API to return a
750 * "cookie" from alloc, to be passed to free. But no big deal yet.
752 static DEFINE_SPINLOCK(vmap_block_tree_lock
);
753 static RADIX_TREE(vmap_block_tree
, GFP_ATOMIC
);
756 * We should probably have a fallback mechanism to allocate virtual memory
757 * out of partially filled vmap blocks. However vmap block sizing should be
758 * fairly reasonable according to the vmalloc size, so it shouldn't be a
762 static unsigned long addr_to_vb_idx(unsigned long addr
)
764 addr
-= VMALLOC_START
& ~(VMAP_BLOCK_SIZE
-1);
765 addr
/= VMAP_BLOCK_SIZE
;
769 static struct vmap_block
*new_vmap_block(gfp_t gfp_mask
)
771 struct vmap_block_queue
*vbq
;
772 struct vmap_block
*vb
;
773 struct vmap_area
*va
;
774 unsigned long vb_idx
;
777 node
= numa_node_id();
779 vb
= kmalloc_node(sizeof(struct vmap_block
),
780 gfp_mask
& GFP_RECLAIM_MASK
, node
);
782 return ERR_PTR(-ENOMEM
);
784 va
= alloc_vmap_area(VMAP_BLOCK_SIZE
, VMAP_BLOCK_SIZE
,
785 VMALLOC_START
, VMALLOC_END
,
792 err
= radix_tree_preload(gfp_mask
);
799 spin_lock_init(&vb
->lock
);
801 vb
->free
= VMAP_BBMAP_BITS
;
803 bitmap_zero(vb
->alloc_map
, VMAP_BBMAP_BITS
);
804 bitmap_zero(vb
->dirty_map
, VMAP_BBMAP_BITS
);
805 INIT_LIST_HEAD(&vb
->free_list
);
807 vb_idx
= addr_to_vb_idx(va
->va_start
);
808 spin_lock(&vmap_block_tree_lock
);
809 err
= radix_tree_insert(&vmap_block_tree
, vb_idx
, vb
);
810 spin_unlock(&vmap_block_tree_lock
);
812 radix_tree_preload_end();
814 vbq
= &get_cpu_var(vmap_block_queue
);
816 spin_lock(&vbq
->lock
);
817 list_add_rcu(&vb
->free_list
, &vbq
->free
);
818 spin_unlock(&vbq
->lock
);
819 put_cpu_var(vmap_block_queue
);
824 static void free_vmap_block(struct vmap_block
*vb
)
826 struct vmap_block
*tmp
;
827 unsigned long vb_idx
;
829 vb_idx
= addr_to_vb_idx(vb
->va
->va_start
);
830 spin_lock(&vmap_block_tree_lock
);
831 tmp
= radix_tree_delete(&vmap_block_tree
, vb_idx
);
832 spin_unlock(&vmap_block_tree_lock
);
835 free_vmap_area_noflush(vb
->va
);
836 kfree_rcu(vb
, rcu_head
);
839 static void purge_fragmented_blocks(int cpu
)
842 struct vmap_block
*vb
;
843 struct vmap_block
*n_vb
;
844 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
847 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
849 if (!(vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
))
852 spin_lock(&vb
->lock
);
853 if (vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
) {
854 vb
->free
= 0; /* prevent further allocs after releasing lock */
855 vb
->dirty
= VMAP_BBMAP_BITS
; /* prevent purging it again */
856 bitmap_fill(vb
->alloc_map
, VMAP_BBMAP_BITS
);
857 bitmap_fill(vb
->dirty_map
, VMAP_BBMAP_BITS
);
858 spin_lock(&vbq
->lock
);
859 list_del_rcu(&vb
->free_list
);
860 spin_unlock(&vbq
->lock
);
861 spin_unlock(&vb
->lock
);
862 list_add_tail(&vb
->purge
, &purge
);
864 spin_unlock(&vb
->lock
);
868 list_for_each_entry_safe(vb
, n_vb
, &purge
, purge
) {
869 list_del(&vb
->purge
);
874 static void purge_fragmented_blocks_thiscpu(void)
876 purge_fragmented_blocks(smp_processor_id());
879 static void purge_fragmented_blocks_allcpus(void)
883 for_each_possible_cpu(cpu
)
884 purge_fragmented_blocks(cpu
);
887 static void *vb_alloc(unsigned long size
, gfp_t gfp_mask
)
889 struct vmap_block_queue
*vbq
;
890 struct vmap_block
*vb
;
891 unsigned long addr
= 0;
895 BUG_ON(size
& ~PAGE_MASK
);
896 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
897 if (WARN_ON(size
== 0)) {
899 * Allocating 0 bytes isn't what caller wants since
900 * get_order(0) returns funny result. Just warn and terminate
905 order
= get_order(size
);
909 vbq
= &get_cpu_var(vmap_block_queue
);
910 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
913 spin_lock(&vb
->lock
);
914 if (vb
->free
< 1UL << order
)
917 i
= bitmap_find_free_region(vb
->alloc_map
,
918 VMAP_BBMAP_BITS
, order
);
921 if (vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
) {
922 /* fragmented and no outstanding allocations */
923 BUG_ON(vb
->dirty
!= VMAP_BBMAP_BITS
);
928 addr
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
929 BUG_ON(addr_to_vb_idx(addr
) !=
930 addr_to_vb_idx(vb
->va
->va_start
));
931 vb
->free
-= 1UL << order
;
933 spin_lock(&vbq
->lock
);
934 list_del_rcu(&vb
->free_list
);
935 spin_unlock(&vbq
->lock
);
937 spin_unlock(&vb
->lock
);
940 spin_unlock(&vb
->lock
);
944 purge_fragmented_blocks_thiscpu();
946 put_cpu_var(vmap_block_queue
);
950 vb
= new_vmap_block(gfp_mask
);
959 static void vb_free(const void *addr
, unsigned long size
)
961 unsigned long offset
;
962 unsigned long vb_idx
;
964 struct vmap_block
*vb
;
966 BUG_ON(size
& ~PAGE_MASK
);
967 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
969 flush_cache_vunmap((unsigned long)addr
, (unsigned long)addr
+ size
);
971 order
= get_order(size
);
973 offset
= (unsigned long)addr
& (VMAP_BLOCK_SIZE
- 1);
975 vb_idx
= addr_to_vb_idx((unsigned long)addr
);
977 vb
= radix_tree_lookup(&vmap_block_tree
, vb_idx
);
981 vunmap_page_range((unsigned long)addr
, (unsigned long)addr
+ size
);
983 spin_lock(&vb
->lock
);
984 BUG_ON(bitmap_allocate_region(vb
->dirty_map
, offset
>> PAGE_SHIFT
, order
));
986 vb
->dirty
+= 1UL << order
;
987 if (vb
->dirty
== VMAP_BBMAP_BITS
) {
989 spin_unlock(&vb
->lock
);
992 spin_unlock(&vb
->lock
);
996 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
998 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
999 * to amortize TLB flushing overheads. What this means is that any page you
1000 * have now, may, in a former life, have been mapped into kernel virtual
1001 * address by the vmap layer and so there might be some CPUs with TLB entries
1002 * still referencing that page (additional to the regular 1:1 kernel mapping).
1004 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1005 * be sure that none of the pages we have control over will have any aliases
1006 * from the vmap layer.
1008 void vm_unmap_aliases(void)
1010 unsigned long start
= ULONG_MAX
, end
= 0;
1014 if (unlikely(!vmap_initialized
))
1017 for_each_possible_cpu(cpu
) {
1018 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
1019 struct vmap_block
*vb
;
1022 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
1025 spin_lock(&vb
->lock
);
1026 i
= find_first_bit(vb
->dirty_map
, VMAP_BBMAP_BITS
);
1027 while (i
< VMAP_BBMAP_BITS
) {
1030 j
= find_next_zero_bit(vb
->dirty_map
,
1031 VMAP_BBMAP_BITS
, i
);
1033 s
= vb
->va
->va_start
+ (i
<< PAGE_SHIFT
);
1034 e
= vb
->va
->va_start
+ (j
<< PAGE_SHIFT
);
1043 i
= find_next_bit(vb
->dirty_map
,
1044 VMAP_BBMAP_BITS
, i
);
1046 spin_unlock(&vb
->lock
);
1051 __purge_vmap_area_lazy(&start
, &end
, 1, flush
);
1053 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
1056 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1057 * @mem: the pointer returned by vm_map_ram
1058 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1060 void vm_unmap_ram(const void *mem
, unsigned int count
)
1062 unsigned long size
= count
<< PAGE_SHIFT
;
1063 unsigned long addr
= (unsigned long)mem
;
1066 BUG_ON(addr
< VMALLOC_START
);
1067 BUG_ON(addr
> VMALLOC_END
);
1068 BUG_ON(addr
& (PAGE_SIZE
-1));
1070 debug_check_no_locks_freed(mem
, size
);
1071 vmap_debug_free_range(addr
, addr
+size
);
1073 if (likely(count
<= VMAP_MAX_ALLOC
))
1076 free_unmap_vmap_area_addr(addr
);
1078 EXPORT_SYMBOL(vm_unmap_ram
);
1081 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1082 * @pages: an array of pointers to the pages to be mapped
1083 * @count: number of pages
1084 * @node: prefer to allocate data structures on this node
1085 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1087 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1089 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
1091 unsigned long size
= count
<< PAGE_SHIFT
;
1095 if (likely(count
<= VMAP_MAX_ALLOC
)) {
1096 mem
= vb_alloc(size
, GFP_KERNEL
);
1099 addr
= (unsigned long)mem
;
1101 struct vmap_area
*va
;
1102 va
= alloc_vmap_area(size
, PAGE_SIZE
,
1103 VMALLOC_START
, VMALLOC_END
, node
, GFP_KERNEL
);
1107 addr
= va
->va_start
;
1110 if (vmap_page_range(addr
, addr
+ size
, prot
, pages
) < 0) {
1111 vm_unmap_ram(mem
, count
);
1116 EXPORT_SYMBOL(vm_map_ram
);
1118 static struct vm_struct
*vmlist __initdata
;
1120 * vm_area_add_early - add vmap area early during boot
1121 * @vm: vm_struct to add
1123 * This function is used to add fixed kernel vm area to vmlist before
1124 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1125 * should contain proper values and the other fields should be zero.
1127 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1129 void __init
vm_area_add_early(struct vm_struct
*vm
)
1131 struct vm_struct
*tmp
, **p
;
1133 BUG_ON(vmap_initialized
);
1134 for (p
= &vmlist
; (tmp
= *p
) != NULL
; p
= &tmp
->next
) {
1135 if (tmp
->addr
>= vm
->addr
) {
1136 BUG_ON(tmp
->addr
< vm
->addr
+ vm
->size
);
1139 BUG_ON(tmp
->addr
+ tmp
->size
> vm
->addr
);
1146 * vm_area_register_early - register vmap area early during boot
1147 * @vm: vm_struct to register
1148 * @align: requested alignment
1150 * This function is used to register kernel vm area before
1151 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1152 * proper values on entry and other fields should be zero. On return,
1153 * vm->addr contains the allocated address.
1155 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1157 void __init
vm_area_register_early(struct vm_struct
*vm
, size_t align
)
1159 static size_t vm_init_off __initdata
;
1162 addr
= ALIGN(VMALLOC_START
+ vm_init_off
, align
);
1163 vm_init_off
= PFN_ALIGN(addr
+ vm
->size
) - VMALLOC_START
;
1165 vm
->addr
= (void *)addr
;
1167 vm_area_add_early(vm
);
1170 void __init
vmalloc_init(void)
1172 struct vmap_area
*va
;
1173 struct vm_struct
*tmp
;
1176 for_each_possible_cpu(i
) {
1177 struct vmap_block_queue
*vbq
;
1179 vbq
= &per_cpu(vmap_block_queue
, i
);
1180 spin_lock_init(&vbq
->lock
);
1181 INIT_LIST_HEAD(&vbq
->free
);
1184 /* Import existing vmlist entries. */
1185 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1186 va
= kzalloc(sizeof(struct vmap_area
), GFP_NOWAIT
);
1187 va
->flags
= VM_VM_AREA
;
1188 va
->va_start
= (unsigned long)tmp
->addr
;
1189 va
->va_end
= va
->va_start
+ tmp
->size
;
1191 __insert_vmap_area(va
);
1194 vmap_area_pcpu_hole
= VMALLOC_END
;
1196 vmap_initialized
= true;
1200 * map_kernel_range_noflush - map kernel VM area with the specified pages
1201 * @addr: start of the VM area to map
1202 * @size: size of the VM area to map
1203 * @prot: page protection flags to use
1204 * @pages: pages to map
1206 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1207 * specify should have been allocated using get_vm_area() and its
1211 * This function does NOT do any cache flushing. The caller is
1212 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1213 * before calling this function.
1216 * The number of pages mapped on success, -errno on failure.
1218 int map_kernel_range_noflush(unsigned long addr
, unsigned long size
,
1219 pgprot_t prot
, struct page
**pages
)
1221 return vmap_page_range_noflush(addr
, addr
+ size
, prot
, pages
);
1225 * unmap_kernel_range_noflush - unmap kernel VM area
1226 * @addr: start of the VM area to unmap
1227 * @size: size of the VM area to unmap
1229 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1230 * specify should have been allocated using get_vm_area() and its
1234 * This function does NOT do any cache flushing. The caller is
1235 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1236 * before calling this function and flush_tlb_kernel_range() after.
1238 void unmap_kernel_range_noflush(unsigned long addr
, unsigned long size
)
1240 vunmap_page_range(addr
, addr
+ size
);
1242 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush
);
1245 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1246 * @addr: start of the VM area to unmap
1247 * @size: size of the VM area to unmap
1249 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1250 * the unmapping and tlb after.
1252 void unmap_kernel_range(unsigned long addr
, unsigned long size
)
1254 unsigned long end
= addr
+ size
;
1256 flush_cache_vunmap(addr
, end
);
1257 vunmap_page_range(addr
, end
);
1258 flush_tlb_kernel_range(addr
, end
);
1261 int map_vm_area(struct vm_struct
*area
, pgprot_t prot
, struct page
***pages
)
1263 unsigned long addr
= (unsigned long)area
->addr
;
1264 unsigned long end
= addr
+ area
->size
- PAGE_SIZE
;
1267 err
= vmap_page_range(addr
, end
, prot
, *pages
);
1275 EXPORT_SYMBOL_GPL(map_vm_area
);
1277 static void setup_vmalloc_vm(struct vm_struct
*vm
, struct vmap_area
*va
,
1278 unsigned long flags
, const void *caller
)
1280 spin_lock(&vmap_area_lock
);
1282 vm
->addr
= (void *)va
->va_start
;
1283 vm
->size
= va
->va_end
- va
->va_start
;
1284 vm
->caller
= caller
;
1286 va
->flags
|= VM_VM_AREA
;
1287 spin_unlock(&vmap_area_lock
);
1290 static void clear_vm_unlist(struct vm_struct
*vm
)
1293 * Before removing VM_UNLIST,
1294 * we should make sure that vm has proper values.
1295 * Pair with smp_rmb() in show_numa_info().
1298 vm
->flags
&= ~VM_UNLIST
;
1301 static void insert_vmalloc_vm(struct vm_struct
*vm
, struct vmap_area
*va
,
1302 unsigned long flags
, const void *caller
)
1304 setup_vmalloc_vm(vm
, va
, flags
, caller
);
1305 clear_vm_unlist(vm
);
1308 static struct vm_struct
*__get_vm_area_node(unsigned long size
,
1309 unsigned long align
, unsigned long flags
, unsigned long start
,
1310 unsigned long end
, int node
, gfp_t gfp_mask
, const void *caller
)
1312 struct vmap_area
*va
;
1313 struct vm_struct
*area
;
1315 BUG_ON(in_interrupt());
1316 if (flags
& VM_IOREMAP
) {
1317 int bit
= fls(size
);
1319 if (bit
> IOREMAP_MAX_ORDER
)
1320 bit
= IOREMAP_MAX_ORDER
;
1321 else if (bit
< PAGE_SHIFT
)
1327 size
= PAGE_ALIGN(size
);
1328 if (unlikely(!size
))
1331 area
= kzalloc_node(sizeof(*area
), gfp_mask
& GFP_RECLAIM_MASK
, node
);
1332 if (unlikely(!area
))
1336 * We always allocate a guard page.
1340 va
= alloc_vmap_area(size
, align
, start
, end
, node
, gfp_mask
);
1347 * When this function is called from __vmalloc_node_range,
1348 * we add VM_UNLIST flag to avoid accessing uninitialized
1349 * members of vm_struct such as pages and nr_pages fields.
1350 * They will be set later.
1352 if (flags
& VM_UNLIST
)
1353 setup_vmalloc_vm(area
, va
, flags
, caller
);
1355 insert_vmalloc_vm(area
, va
, flags
, caller
);
1360 struct vm_struct
*__get_vm_area(unsigned long size
, unsigned long flags
,
1361 unsigned long start
, unsigned long end
)
1363 return __get_vm_area_node(size
, 1, flags
, start
, end
, NUMA_NO_NODE
,
1364 GFP_KERNEL
, __builtin_return_address(0));
1366 EXPORT_SYMBOL_GPL(__get_vm_area
);
1368 struct vm_struct
*__get_vm_area_caller(unsigned long size
, unsigned long flags
,
1369 unsigned long start
, unsigned long end
,
1372 return __get_vm_area_node(size
, 1, flags
, start
, end
, NUMA_NO_NODE
,
1373 GFP_KERNEL
, caller
);
1377 * get_vm_area - reserve a contiguous kernel virtual area
1378 * @size: size of the area
1379 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1381 * Search an area of @size in the kernel virtual mapping area,
1382 * and reserved it for out purposes. Returns the area descriptor
1383 * on success or %NULL on failure.
1385 struct vm_struct
*get_vm_area(unsigned long size
, unsigned long flags
)
1387 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1388 NUMA_NO_NODE
, GFP_KERNEL
,
1389 __builtin_return_address(0));
1392 struct vm_struct
*get_vm_area_caller(unsigned long size
, unsigned long flags
,
1395 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1396 NUMA_NO_NODE
, GFP_KERNEL
, caller
);
1400 * find_vm_area - find a continuous kernel virtual area
1401 * @addr: base address
1403 * Search for the kernel VM area starting at @addr, and return it.
1404 * It is up to the caller to do all required locking to keep the returned
1407 struct vm_struct
*find_vm_area(const void *addr
)
1409 struct vmap_area
*va
;
1411 va
= find_vmap_area((unsigned long)addr
);
1412 if (va
&& va
->flags
& VM_VM_AREA
)
1419 * remove_vm_area - find and remove a continuous kernel virtual area
1420 * @addr: base address
1422 * Search for the kernel VM area starting at @addr, and remove it.
1423 * This function returns the found VM area, but using it is NOT safe
1424 * on SMP machines, except for its size or flags.
1426 struct vm_struct
*remove_vm_area(const void *addr
)
1428 struct vmap_area
*va
;
1430 va
= find_vmap_area((unsigned long)addr
);
1431 if (va
&& va
->flags
& VM_VM_AREA
) {
1432 struct vm_struct
*vm
= va
->vm
;
1434 spin_lock(&vmap_area_lock
);
1436 va
->flags
&= ~VM_VM_AREA
;
1437 spin_unlock(&vmap_area_lock
);
1439 vmap_debug_free_range(va
->va_start
, va
->va_end
);
1440 free_unmap_vmap_area(va
);
1441 vm
->size
-= PAGE_SIZE
;
1448 static void __vunmap(const void *addr
, int deallocate_pages
)
1450 struct vm_struct
*area
;
1455 if ((PAGE_SIZE
-1) & (unsigned long)addr
) {
1456 WARN(1, KERN_ERR
"Trying to vfree() bad address (%p)\n", addr
);
1460 area
= remove_vm_area(addr
);
1461 if (unlikely(!area
)) {
1462 WARN(1, KERN_ERR
"Trying to vfree() nonexistent vm area (%p)\n",
1467 debug_check_no_locks_freed(addr
, area
->size
);
1468 debug_check_no_obj_freed(addr
, area
->size
);
1470 if (deallocate_pages
) {
1473 for (i
= 0; i
< area
->nr_pages
; i
++) {
1474 struct page
*page
= area
->pages
[i
];
1480 if (area
->flags
& VM_VPAGES
)
1491 * vfree - release memory allocated by vmalloc()
1492 * @addr: memory base address
1494 * Free the virtually continuous memory area starting at @addr, as
1495 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1496 * NULL, no operation is performed.
1498 * Must not be called in interrupt context.
1500 void vfree(const void *addr
)
1502 BUG_ON(in_interrupt());
1504 kmemleak_free(addr
);
1508 EXPORT_SYMBOL(vfree
);
1511 * vunmap - release virtual mapping obtained by vmap()
1512 * @addr: memory base address
1514 * Free the virtually contiguous memory area starting at @addr,
1515 * which was created from the page array passed to vmap().
1517 * Must not be called in interrupt context.
1519 void vunmap(const void *addr
)
1521 BUG_ON(in_interrupt());
1525 EXPORT_SYMBOL(vunmap
);
1528 * vmap - map an array of pages into virtually contiguous space
1529 * @pages: array of page pointers
1530 * @count: number of pages to map
1531 * @flags: vm_area->flags
1532 * @prot: page protection for the mapping
1534 * Maps @count pages from @pages into contiguous kernel virtual
1537 void *vmap(struct page
**pages
, unsigned int count
,
1538 unsigned long flags
, pgprot_t prot
)
1540 struct vm_struct
*area
;
1544 if (count
> totalram_pages
)
1547 area
= get_vm_area_caller((count
<< PAGE_SHIFT
), flags
,
1548 __builtin_return_address(0));
1552 if (map_vm_area(area
, prot
, &pages
)) {
1559 EXPORT_SYMBOL(vmap
);
1561 static void *__vmalloc_node(unsigned long size
, unsigned long align
,
1562 gfp_t gfp_mask
, pgprot_t prot
,
1563 int node
, const void *caller
);
1564 static void *__vmalloc_area_node(struct vm_struct
*area
, gfp_t gfp_mask
,
1565 pgprot_t prot
, int node
, const void *caller
)
1567 const int order
= 0;
1568 struct page
**pages
;
1569 unsigned int nr_pages
, array_size
, i
;
1570 gfp_t nested_gfp
= (gfp_mask
& GFP_RECLAIM_MASK
) | __GFP_ZERO
;
1572 nr_pages
= (area
->size
- PAGE_SIZE
) >> PAGE_SHIFT
;
1573 array_size
= (nr_pages
* sizeof(struct page
*));
1575 area
->nr_pages
= nr_pages
;
1576 /* Please note that the recursion is strictly bounded. */
1577 if (array_size
> PAGE_SIZE
) {
1578 pages
= __vmalloc_node(array_size
, 1, nested_gfp
|__GFP_HIGHMEM
,
1579 PAGE_KERNEL
, node
, caller
);
1580 area
->flags
|= VM_VPAGES
;
1582 pages
= kmalloc_node(array_size
, nested_gfp
, node
);
1584 area
->pages
= pages
;
1585 area
->caller
= caller
;
1587 remove_vm_area(area
->addr
);
1592 for (i
= 0; i
< area
->nr_pages
; i
++) {
1594 gfp_t tmp_mask
= gfp_mask
| __GFP_NOWARN
;
1597 page
= alloc_page(tmp_mask
);
1599 page
= alloc_pages_node(node
, tmp_mask
, order
);
1601 if (unlikely(!page
)) {
1602 /* Successfully allocated i pages, free them in __vunmap() */
1606 area
->pages
[i
] = page
;
1609 if (map_vm_area(area
, prot
, &pages
))
1614 warn_alloc_failed(gfp_mask
, order
,
1615 "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1616 (area
->nr_pages
*PAGE_SIZE
), area
->size
);
1622 * __vmalloc_node_range - allocate virtually contiguous memory
1623 * @size: allocation size
1624 * @align: desired alignment
1625 * @start: vm area range start
1626 * @end: vm area range end
1627 * @gfp_mask: flags for the page level allocator
1628 * @prot: protection mask for the allocated pages
1629 * @node: node to use for allocation or NUMA_NO_NODE
1630 * @caller: caller's return address
1632 * Allocate enough pages to cover @size from the page level
1633 * allocator with @gfp_mask flags. Map them into contiguous
1634 * kernel virtual space, using a pagetable protection of @prot.
1636 void *__vmalloc_node_range(unsigned long size
, unsigned long align
,
1637 unsigned long start
, unsigned long end
, gfp_t gfp_mask
,
1638 pgprot_t prot
, int node
, const void *caller
)
1640 struct vm_struct
*area
;
1642 unsigned long real_size
= size
;
1644 size
= PAGE_ALIGN(size
);
1645 if (!size
|| (size
>> PAGE_SHIFT
) > totalram_pages
)
1648 area
= __get_vm_area_node(size
, align
, VM_ALLOC
| VM_UNLIST
,
1649 start
, end
, node
, gfp_mask
, caller
);
1653 addr
= __vmalloc_area_node(area
, gfp_mask
, prot
, node
, caller
);
1658 * In this function, newly allocated vm_struct has VM_UNLIST flag.
1659 * It means that vm_struct is not fully initialized.
1660 * Now, it is fully initialized, so remove this flag here.
1662 clear_vm_unlist(area
);
1665 * A ref_count = 3 is needed because the vm_struct and vmap_area
1666 * structures allocated in the __get_vm_area_node() function contain
1667 * references to the virtual address of the vmalloc'ed block.
1669 kmemleak_alloc(addr
, real_size
, 3, gfp_mask
);
1674 warn_alloc_failed(gfp_mask
, 0,
1675 "vmalloc: allocation failure: %lu bytes\n",
1681 * __vmalloc_node - allocate virtually contiguous memory
1682 * @size: allocation size
1683 * @align: desired alignment
1684 * @gfp_mask: flags for the page level allocator
1685 * @prot: protection mask for the allocated pages
1686 * @node: node to use for allocation or NUMA_NO_NODE
1687 * @caller: caller's return address
1689 * Allocate enough pages to cover @size from the page level
1690 * allocator with @gfp_mask flags. Map them into contiguous
1691 * kernel virtual space, using a pagetable protection of @prot.
1693 static void *__vmalloc_node(unsigned long size
, unsigned long align
,
1694 gfp_t gfp_mask
, pgprot_t prot
,
1695 int node
, const void *caller
)
1697 return __vmalloc_node_range(size
, align
, VMALLOC_START
, VMALLOC_END
,
1698 gfp_mask
, prot
, node
, caller
);
1701 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
1703 return __vmalloc_node(size
, 1, gfp_mask
, prot
, NUMA_NO_NODE
,
1704 __builtin_return_address(0));
1706 EXPORT_SYMBOL(__vmalloc
);
1708 static inline void *__vmalloc_node_flags(unsigned long size
,
1709 int node
, gfp_t flags
)
1711 return __vmalloc_node(size
, 1, flags
, PAGE_KERNEL
,
1712 node
, __builtin_return_address(0));
1716 * vmalloc - allocate virtually contiguous memory
1717 * @size: allocation size
1718 * Allocate enough pages to cover @size from the page level
1719 * allocator and map them into contiguous kernel virtual space.
1721 * For tight control over page level allocator and protection flags
1722 * use __vmalloc() instead.
1724 void *vmalloc(unsigned long size
)
1726 return __vmalloc_node_flags(size
, NUMA_NO_NODE
,
1727 GFP_KERNEL
| __GFP_HIGHMEM
);
1729 EXPORT_SYMBOL(vmalloc
);
1732 * vzalloc - allocate virtually contiguous memory with zero fill
1733 * @size: allocation size
1734 * Allocate enough pages to cover @size from the page level
1735 * allocator and map them into contiguous kernel virtual space.
1736 * The memory allocated is set to zero.
1738 * For tight control over page level allocator and protection flags
1739 * use __vmalloc() instead.
1741 void *vzalloc(unsigned long size
)
1743 return __vmalloc_node_flags(size
, NUMA_NO_NODE
,
1744 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
);
1746 EXPORT_SYMBOL(vzalloc
);
1749 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1750 * @size: allocation size
1752 * The resulting memory area is zeroed so it can be mapped to userspace
1753 * without leaking data.
1755 void *vmalloc_user(unsigned long size
)
1757 struct vm_struct
*area
;
1760 ret
= __vmalloc_node(size
, SHMLBA
,
1761 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
1762 PAGE_KERNEL
, NUMA_NO_NODE
,
1763 __builtin_return_address(0));
1765 area
= find_vm_area(ret
);
1766 area
->flags
|= VM_USERMAP
;
1770 EXPORT_SYMBOL(vmalloc_user
);
1773 * vmalloc_node - allocate memory on a specific node
1774 * @size: allocation size
1777 * Allocate enough pages to cover @size from the page level
1778 * allocator and map them into contiguous kernel virtual space.
1780 * For tight control over page level allocator and protection flags
1781 * use __vmalloc() instead.
1783 void *vmalloc_node(unsigned long size
, int node
)
1785 return __vmalloc_node(size
, 1, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
,
1786 node
, __builtin_return_address(0));
1788 EXPORT_SYMBOL(vmalloc_node
);
1791 * vzalloc_node - allocate memory on a specific node with zero fill
1792 * @size: allocation size
1795 * Allocate enough pages to cover @size from the page level
1796 * allocator and map them into contiguous kernel virtual space.
1797 * The memory allocated is set to zero.
1799 * For tight control over page level allocator and protection flags
1800 * use __vmalloc_node() instead.
1802 void *vzalloc_node(unsigned long size
, int node
)
1804 return __vmalloc_node_flags(size
, node
,
1805 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
);
1807 EXPORT_SYMBOL(vzalloc_node
);
1809 #ifndef PAGE_KERNEL_EXEC
1810 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1814 * vmalloc_exec - allocate virtually contiguous, executable memory
1815 * @size: allocation size
1817 * Kernel-internal function to allocate enough pages to cover @size
1818 * the page level allocator and map them into contiguous and
1819 * executable kernel virtual space.
1821 * For tight control over page level allocator and protection flags
1822 * use __vmalloc() instead.
1825 void *vmalloc_exec(unsigned long size
)
1827 return __vmalloc_node(size
, 1, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
,
1828 NUMA_NO_NODE
, __builtin_return_address(0));
1831 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1832 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1833 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1834 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1836 #define GFP_VMALLOC32 GFP_KERNEL
1840 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1841 * @size: allocation size
1843 * Allocate enough 32bit PA addressable pages to cover @size from the
1844 * page level allocator and map them into contiguous kernel virtual space.
1846 void *vmalloc_32(unsigned long size
)
1848 return __vmalloc_node(size
, 1, GFP_VMALLOC32
, PAGE_KERNEL
,
1849 NUMA_NO_NODE
, __builtin_return_address(0));
1851 EXPORT_SYMBOL(vmalloc_32
);
1854 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1855 * @size: allocation size
1857 * The resulting memory area is 32bit addressable and zeroed so it can be
1858 * mapped to userspace without leaking data.
1860 void *vmalloc_32_user(unsigned long size
)
1862 struct vm_struct
*area
;
1865 ret
= __vmalloc_node(size
, 1, GFP_VMALLOC32
| __GFP_ZERO
, PAGE_KERNEL
,
1866 NUMA_NO_NODE
, __builtin_return_address(0));
1868 area
= find_vm_area(ret
);
1869 area
->flags
|= VM_USERMAP
;
1873 EXPORT_SYMBOL(vmalloc_32_user
);
1876 * small helper routine , copy contents to buf from addr.
1877 * If the page is not present, fill zero.
1880 static int aligned_vread(char *buf
, char *addr
, unsigned long count
)
1886 unsigned long offset
, length
;
1888 offset
= (unsigned long)addr
& ~PAGE_MASK
;
1889 length
= PAGE_SIZE
- offset
;
1892 p
= vmalloc_to_page(addr
);
1894 * To do safe access to this _mapped_ area, we need
1895 * lock. But adding lock here means that we need to add
1896 * overhead of vmalloc()/vfree() calles for this _debug_
1897 * interface, rarely used. Instead of that, we'll use
1898 * kmap() and get small overhead in this access function.
1902 * we can expect USER0 is not used (see vread/vwrite's
1903 * function description)
1905 void *map
= kmap_atomic(p
);
1906 memcpy(buf
, map
+ offset
, length
);
1909 memset(buf
, 0, length
);
1919 static int aligned_vwrite(char *buf
, char *addr
, unsigned long count
)
1925 unsigned long offset
, length
;
1927 offset
= (unsigned long)addr
& ~PAGE_MASK
;
1928 length
= PAGE_SIZE
- offset
;
1931 p
= vmalloc_to_page(addr
);
1933 * To do safe access to this _mapped_ area, we need
1934 * lock. But adding lock here means that we need to add
1935 * overhead of vmalloc()/vfree() calles for this _debug_
1936 * interface, rarely used. Instead of that, we'll use
1937 * kmap() and get small overhead in this access function.
1941 * we can expect USER0 is not used (see vread/vwrite's
1942 * function description)
1944 void *map
= kmap_atomic(p
);
1945 memcpy(map
+ offset
, buf
, length
);
1957 * vread() - read vmalloc area in a safe way.
1958 * @buf: buffer for reading data
1959 * @addr: vm address.
1960 * @count: number of bytes to be read.
1962 * Returns # of bytes which addr and buf should be increased.
1963 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1964 * includes any intersect with alive vmalloc area.
1966 * This function checks that addr is a valid vmalloc'ed area, and
1967 * copy data from that area to a given buffer. If the given memory range
1968 * of [addr...addr+count) includes some valid address, data is copied to
1969 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1970 * IOREMAP area is treated as memory hole and no copy is done.
1972 * If [addr...addr+count) doesn't includes any intersects with alive
1973 * vm_struct area, returns 0. @buf should be kernel's buffer.
1975 * Note: In usual ops, vread() is never necessary because the caller
1976 * should know vmalloc() area is valid and can use memcpy().
1977 * This is for routines which have to access vmalloc area without
1978 * any informaion, as /dev/kmem.
1982 long vread(char *buf
, char *addr
, unsigned long count
)
1984 struct vmap_area
*va
;
1985 struct vm_struct
*vm
;
1986 char *vaddr
, *buf_start
= buf
;
1987 unsigned long buflen
= count
;
1990 /* Don't allow overflow */
1991 if ((unsigned long) addr
+ count
< count
)
1992 count
= -(unsigned long) addr
;
1994 spin_lock(&vmap_area_lock
);
1995 list_for_each_entry(va
, &vmap_area_list
, list
) {
1999 if (!(va
->flags
& VM_VM_AREA
))
2003 vaddr
= (char *) vm
->addr
;
2004 if (addr
>= vaddr
+ vm
->size
- PAGE_SIZE
)
2006 while (addr
< vaddr
) {
2014 n
= vaddr
+ vm
->size
- PAGE_SIZE
- addr
;
2017 if (!(vm
->flags
& VM_IOREMAP
))
2018 aligned_vread(buf
, addr
, n
);
2019 else /* IOREMAP area is treated as memory hole */
2026 spin_unlock(&vmap_area_lock
);
2028 if (buf
== buf_start
)
2030 /* zero-fill memory holes */
2031 if (buf
!= buf_start
+ buflen
)
2032 memset(buf
, 0, buflen
- (buf
- buf_start
));
2038 * vwrite() - write vmalloc area in a safe way.
2039 * @buf: buffer for source data
2040 * @addr: vm address.
2041 * @count: number of bytes to be read.
2043 * Returns # of bytes which addr and buf should be incresed.
2044 * (same number to @count).
2045 * If [addr...addr+count) doesn't includes any intersect with valid
2046 * vmalloc area, returns 0.
2048 * This function checks that addr is a valid vmalloc'ed area, and
2049 * copy data from a buffer to the given addr. If specified range of
2050 * [addr...addr+count) includes some valid address, data is copied from
2051 * proper area of @buf. If there are memory holes, no copy to hole.
2052 * IOREMAP area is treated as memory hole and no copy is done.
2054 * If [addr...addr+count) doesn't includes any intersects with alive
2055 * vm_struct area, returns 0. @buf should be kernel's buffer.
2057 * Note: In usual ops, vwrite() is never necessary because the caller
2058 * should know vmalloc() area is valid and can use memcpy().
2059 * This is for routines which have to access vmalloc area without
2060 * any informaion, as /dev/kmem.
2063 long vwrite(char *buf
, char *addr
, unsigned long count
)
2065 struct vmap_area
*va
;
2066 struct vm_struct
*vm
;
2068 unsigned long n
, buflen
;
2071 /* Don't allow overflow */
2072 if ((unsigned long) addr
+ count
< count
)
2073 count
= -(unsigned long) addr
;
2076 spin_lock(&vmap_area_lock
);
2077 list_for_each_entry(va
, &vmap_area_list
, list
) {
2081 if (!(va
->flags
& VM_VM_AREA
))
2085 vaddr
= (char *) vm
->addr
;
2086 if (addr
>= vaddr
+ vm
->size
- PAGE_SIZE
)
2088 while (addr
< vaddr
) {
2095 n
= vaddr
+ vm
->size
- PAGE_SIZE
- addr
;
2098 if (!(vm
->flags
& VM_IOREMAP
)) {
2099 aligned_vwrite(buf
, addr
, n
);
2107 spin_unlock(&vmap_area_lock
);
2114 * remap_vmalloc_range - map vmalloc pages to userspace
2115 * @vma: vma to cover (map full range of vma)
2116 * @addr: vmalloc memory
2117 * @pgoff: number of pages into addr before first page to map
2119 * Returns: 0 for success, -Exxx on failure
2121 * This function checks that addr is a valid vmalloc'ed area, and
2122 * that it is big enough to cover the vma. Will return failure if
2123 * that criteria isn't met.
2125 * Similar to remap_pfn_range() (see mm/memory.c)
2127 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
2128 unsigned long pgoff
)
2130 struct vm_struct
*area
;
2131 unsigned long uaddr
= vma
->vm_start
;
2132 unsigned long usize
= vma
->vm_end
- vma
->vm_start
;
2134 if ((PAGE_SIZE
-1) & (unsigned long)addr
)
2137 area
= find_vm_area(addr
);
2141 if (!(area
->flags
& VM_USERMAP
))
2144 if (usize
+ (pgoff
<< PAGE_SHIFT
) > area
->size
- PAGE_SIZE
)
2147 addr
+= pgoff
<< PAGE_SHIFT
;
2149 struct page
*page
= vmalloc_to_page(addr
);
2152 ret
= vm_insert_page(vma
, uaddr
, page
);
2159 } while (usize
> 0);
2161 vma
->vm_flags
|= VM_DONTEXPAND
| VM_DONTDUMP
;
2165 EXPORT_SYMBOL(remap_vmalloc_range
);
2168 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2171 void __attribute__((weak
)) vmalloc_sync_all(void)
2176 static int f(pte_t
*pte
, pgtable_t table
, unsigned long addr
, void *data
)
2188 * alloc_vm_area - allocate a range of kernel address space
2189 * @size: size of the area
2190 * @ptes: returns the PTEs for the address space
2192 * Returns: NULL on failure, vm_struct on success
2194 * This function reserves a range of kernel address space, and
2195 * allocates pagetables to map that range. No actual mappings
2198 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2199 * allocated for the VM area are returned.
2201 struct vm_struct
*alloc_vm_area(size_t size
, pte_t
**ptes
)
2203 struct vm_struct
*area
;
2205 area
= get_vm_area_caller(size
, VM_IOREMAP
,
2206 __builtin_return_address(0));
2211 * This ensures that page tables are constructed for this region
2212 * of kernel virtual address space and mapped into init_mm.
2214 if (apply_to_page_range(&init_mm
, (unsigned long)area
->addr
,
2215 size
, f
, ptes
? &ptes
: NULL
)) {
2222 EXPORT_SYMBOL_GPL(alloc_vm_area
);
2224 void free_vm_area(struct vm_struct
*area
)
2226 struct vm_struct
*ret
;
2227 ret
= remove_vm_area(area
->addr
);
2228 BUG_ON(ret
!= area
);
2231 EXPORT_SYMBOL_GPL(free_vm_area
);
2234 static struct vmap_area
*node_to_va(struct rb_node
*n
)
2236 return n
? rb_entry(n
, struct vmap_area
, rb_node
) : NULL
;
2240 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2241 * @end: target address
2242 * @pnext: out arg for the next vmap_area
2243 * @pprev: out arg for the previous vmap_area
2245 * Returns: %true if either or both of next and prev are found,
2246 * %false if no vmap_area exists
2248 * Find vmap_areas end addresses of which enclose @end. ie. if not
2249 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2251 static bool pvm_find_next_prev(unsigned long end
,
2252 struct vmap_area
**pnext
,
2253 struct vmap_area
**pprev
)
2255 struct rb_node
*n
= vmap_area_root
.rb_node
;
2256 struct vmap_area
*va
= NULL
;
2259 va
= rb_entry(n
, struct vmap_area
, rb_node
);
2260 if (end
< va
->va_end
)
2262 else if (end
> va
->va_end
)
2271 if (va
->va_end
> end
) {
2273 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
2276 *pnext
= node_to_va(rb_next(&(*pprev
)->rb_node
));
2282 * pvm_determine_end - find the highest aligned address between two vmap_areas
2283 * @pnext: in/out arg for the next vmap_area
2284 * @pprev: in/out arg for the previous vmap_area
2287 * Returns: determined end address
2289 * Find the highest aligned address between *@pnext and *@pprev below
2290 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2291 * down address is between the end addresses of the two vmap_areas.
2293 * Please note that the address returned by this function may fall
2294 * inside *@pnext vmap_area. The caller is responsible for checking
2297 static unsigned long pvm_determine_end(struct vmap_area
**pnext
,
2298 struct vmap_area
**pprev
,
2299 unsigned long align
)
2301 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
2305 addr
= min((*pnext
)->va_start
& ~(align
- 1), vmalloc_end
);
2309 while (*pprev
&& (*pprev
)->va_end
> addr
) {
2311 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
2318 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2319 * @offsets: array containing offset of each area
2320 * @sizes: array containing size of each area
2321 * @nr_vms: the number of areas to allocate
2322 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2324 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2325 * vm_structs on success, %NULL on failure
2327 * Percpu allocator wants to use congruent vm areas so that it can
2328 * maintain the offsets among percpu areas. This function allocates
2329 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2330 * be scattered pretty far, distance between two areas easily going up
2331 * to gigabytes. To avoid interacting with regular vmallocs, these
2332 * areas are allocated from top.
2334 * Despite its complicated look, this allocator is rather simple. It
2335 * does everything top-down and scans areas from the end looking for
2336 * matching slot. While scanning, if any of the areas overlaps with
2337 * existing vmap_area, the base address is pulled down to fit the
2338 * area. Scanning is repeated till all the areas fit and then all
2339 * necessary data structres are inserted and the result is returned.
2341 struct vm_struct
**pcpu_get_vm_areas(const unsigned long *offsets
,
2342 const size_t *sizes
, int nr_vms
,
2345 const unsigned long vmalloc_start
= ALIGN(VMALLOC_START
, align
);
2346 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
2347 struct vmap_area
**vas
, *prev
, *next
;
2348 struct vm_struct
**vms
;
2349 int area
, area2
, last_area
, term_area
;
2350 unsigned long base
, start
, end
, last_end
;
2351 bool purged
= false;
2353 /* verify parameters and allocate data structures */
2354 BUG_ON(align
& ~PAGE_MASK
|| !is_power_of_2(align
));
2355 for (last_area
= 0, area
= 0; area
< nr_vms
; area
++) {
2356 start
= offsets
[area
];
2357 end
= start
+ sizes
[area
];
2359 /* is everything aligned properly? */
2360 BUG_ON(!IS_ALIGNED(offsets
[area
], align
));
2361 BUG_ON(!IS_ALIGNED(sizes
[area
], align
));
2363 /* detect the area with the highest address */
2364 if (start
> offsets
[last_area
])
2367 for (area2
= 0; area2
< nr_vms
; area2
++) {
2368 unsigned long start2
= offsets
[area2
];
2369 unsigned long end2
= start2
+ sizes
[area2
];
2374 BUG_ON(start2
>= start
&& start2
< end
);
2375 BUG_ON(end2
<= end
&& end2
> start
);
2378 last_end
= offsets
[last_area
] + sizes
[last_area
];
2380 if (vmalloc_end
- vmalloc_start
< last_end
) {
2385 vms
= kcalloc(nr_vms
, sizeof(vms
[0]), GFP_KERNEL
);
2386 vas
= kcalloc(nr_vms
, sizeof(vas
[0]), GFP_KERNEL
);
2390 for (area
= 0; area
< nr_vms
; area
++) {
2391 vas
[area
] = kzalloc(sizeof(struct vmap_area
), GFP_KERNEL
);
2392 vms
[area
] = kzalloc(sizeof(struct vm_struct
), GFP_KERNEL
);
2393 if (!vas
[area
] || !vms
[area
])
2397 spin_lock(&vmap_area_lock
);
2399 /* start scanning - we scan from the top, begin with the last area */
2400 area
= term_area
= last_area
;
2401 start
= offsets
[area
];
2402 end
= start
+ sizes
[area
];
2404 if (!pvm_find_next_prev(vmap_area_pcpu_hole
, &next
, &prev
)) {
2405 base
= vmalloc_end
- last_end
;
2408 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2411 BUG_ON(next
&& next
->va_end
<= base
+ end
);
2412 BUG_ON(prev
&& prev
->va_end
> base
+ end
);
2415 * base might have underflowed, add last_end before
2418 if (base
+ last_end
< vmalloc_start
+ last_end
) {
2419 spin_unlock(&vmap_area_lock
);
2421 purge_vmap_area_lazy();
2429 * If next overlaps, move base downwards so that it's
2430 * right below next and then recheck.
2432 if (next
&& next
->va_start
< base
+ end
) {
2433 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2439 * If prev overlaps, shift down next and prev and move
2440 * base so that it's right below new next and then
2443 if (prev
&& prev
->va_end
> base
+ start
) {
2445 prev
= node_to_va(rb_prev(&next
->rb_node
));
2446 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2452 * This area fits, move on to the previous one. If
2453 * the previous one is the terminal one, we're done.
2455 area
= (area
+ nr_vms
- 1) % nr_vms
;
2456 if (area
== term_area
)
2458 start
= offsets
[area
];
2459 end
= start
+ sizes
[area
];
2460 pvm_find_next_prev(base
+ end
, &next
, &prev
);
2463 /* we've found a fitting base, insert all va's */
2464 for (area
= 0; area
< nr_vms
; area
++) {
2465 struct vmap_area
*va
= vas
[area
];
2467 va
->va_start
= base
+ offsets
[area
];
2468 va
->va_end
= va
->va_start
+ sizes
[area
];
2469 __insert_vmap_area(va
);
2472 vmap_area_pcpu_hole
= base
+ offsets
[last_area
];
2474 spin_unlock(&vmap_area_lock
);
2476 /* insert all vm's */
2477 for (area
= 0; area
< nr_vms
; area
++)
2478 insert_vmalloc_vm(vms
[area
], vas
[area
], VM_ALLOC
,
2485 for (area
= 0; area
< nr_vms
; area
++) {
2496 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2497 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2498 * @nr_vms: the number of allocated areas
2500 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2502 void pcpu_free_vm_areas(struct vm_struct
**vms
, int nr_vms
)
2506 for (i
= 0; i
< nr_vms
; i
++)
2507 free_vm_area(vms
[i
]);
2510 #endif /* CONFIG_SMP */
2512 #ifdef CONFIG_PROC_FS
2513 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
2514 __acquires(&vmap_area_lock
)
2517 struct vmap_area
*va
;
2519 spin_lock(&vmap_area_lock
);
2520 va
= list_entry((&vmap_area_list
)->next
, typeof(*va
), list
);
2521 while (n
> 0 && &va
->list
!= &vmap_area_list
) {
2523 va
= list_entry(va
->list
.next
, typeof(*va
), list
);
2525 if (!n
&& &va
->list
!= &vmap_area_list
)
2532 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
2534 struct vmap_area
*va
= p
, *next
;
2537 next
= list_entry(va
->list
.next
, typeof(*va
), list
);
2538 if (&next
->list
!= &vmap_area_list
)
2544 static void s_stop(struct seq_file
*m
, void *p
)
2545 __releases(&vmap_area_lock
)
2547 spin_unlock(&vmap_area_lock
);
2550 static void show_numa_info(struct seq_file
*m
, struct vm_struct
*v
)
2552 if (IS_ENABLED(CONFIG_NUMA
)) {
2553 unsigned int nr
, *counters
= m
->private;
2558 /* Pair with smp_wmb() in clear_vm_unlist() */
2560 if (v
->flags
& VM_UNLIST
)
2563 memset(counters
, 0, nr_node_ids
* sizeof(unsigned int));
2565 for (nr
= 0; nr
< v
->nr_pages
; nr
++)
2566 counters
[page_to_nid(v
->pages
[nr
])]++;
2568 for_each_node_state(nr
, N_HIGH_MEMORY
)
2570 seq_printf(m
, " N%u=%u", nr
, counters
[nr
]);
2574 static int s_show(struct seq_file
*m
, void *p
)
2576 struct vmap_area
*va
= p
;
2577 struct vm_struct
*v
;
2579 if (va
->flags
& (VM_LAZY_FREE
| VM_LAZY_FREEING
))
2582 if (!(va
->flags
& VM_VM_AREA
)) {
2583 seq_printf(m
, "0x%pK-0x%pK %7ld vm_map_ram\n",
2584 (void *)va
->va_start
, (void *)va
->va_end
,
2585 va
->va_end
- va
->va_start
);
2591 seq_printf(m
, "0x%pK-0x%pK %7ld",
2592 v
->addr
, v
->addr
+ v
->size
, v
->size
);
2595 seq_printf(m
, " %pS", v
->caller
);
2598 seq_printf(m
, " pages=%d", v
->nr_pages
);
2601 seq_printf(m
, " phys=%llx", (unsigned long long)v
->phys_addr
);
2603 if (v
->flags
& VM_IOREMAP
)
2604 seq_printf(m
, " ioremap");
2606 if (v
->flags
& VM_ALLOC
)
2607 seq_printf(m
, " vmalloc");
2609 if (v
->flags
& VM_MAP
)
2610 seq_printf(m
, " vmap");
2612 if (v
->flags
& VM_USERMAP
)
2613 seq_printf(m
, " user");
2615 if (v
->flags
& VM_VPAGES
)
2616 seq_printf(m
, " vpages");
2618 show_numa_info(m
, v
);
2623 static const struct seq_operations vmalloc_op
= {
2630 static int vmalloc_open(struct inode
*inode
, struct file
*file
)
2632 unsigned int *ptr
= NULL
;
2635 if (IS_ENABLED(CONFIG_NUMA
)) {
2636 ptr
= kmalloc(nr_node_ids
* sizeof(unsigned int), GFP_KERNEL
);
2640 ret
= seq_open(file
, &vmalloc_op
);
2642 struct seq_file
*m
= file
->private_data
;
2649 static const struct file_operations proc_vmalloc_operations
= {
2650 .open
= vmalloc_open
,
2652 .llseek
= seq_lseek
,
2653 .release
= seq_release_private
,
2656 static int __init
proc_vmalloc_init(void)
2658 proc_create("vmallocinfo", S_IRUSR
, NULL
, &proc_vmalloc_operations
);
2661 module_init(proc_vmalloc_init
);
2663 void get_vmalloc_info(struct vmalloc_info
*vmi
)
2665 struct vmap_area
*va
;
2666 unsigned long free_area_size
;
2667 unsigned long prev_end
;
2670 vmi
->largest_chunk
= 0;
2672 prev_end
= VMALLOC_START
;
2674 spin_lock(&vmap_area_lock
);
2676 if (list_empty(&vmap_area_list
)) {
2677 vmi
->largest_chunk
= VMALLOC_TOTAL
;
2681 list_for_each_entry(va
, &vmap_area_list
, list
) {
2682 unsigned long addr
= va
->va_start
;
2685 * Some archs keep another range for modules in vmalloc space
2687 if (addr
< VMALLOC_START
)
2689 if (addr
>= VMALLOC_END
)
2692 if (va
->flags
& (VM_LAZY_FREE
| VM_LAZY_FREEING
))
2695 vmi
->used
+= (va
->va_end
- va
->va_start
);
2697 free_area_size
= addr
- prev_end
;
2698 if (vmi
->largest_chunk
< free_area_size
)
2699 vmi
->largest_chunk
= free_area_size
;
2701 prev_end
= va
->va_end
;
2704 if (VMALLOC_END
- prev_end
> vmi
->largest_chunk
)
2705 vmi
->largest_chunk
= VMALLOC_END
- prev_end
;
2708 spin_unlock(&vmap_area_lock
);