[PATCH] efs: Remove incorrect unlock_kernel from failure path in efs_symlink_readpage()
[linux-2.6.git] / include / linux / mmzone.h
blob656b588a9f9640a027fdca5d00064d01b371db2a
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
4 #ifdef __KERNEL__
5 #ifndef __ASSEMBLY__
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/cache.h>
11 #include <linux/threads.h>
12 #include <linux/numa.h>
13 #include <linux/init.h>
14 #include <linux/seqlock.h>
15 #include <linux/nodemask.h>
16 #include <asm/atomic.h>
17 #include <asm/page.h>
19 /* Free memory management - zoned buddy allocator. */
20 #ifndef CONFIG_FORCE_MAX_ZONEORDER
21 #define MAX_ORDER 11
22 #else
23 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
24 #endif
25 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
27 struct free_area {
28 struct list_head free_list;
29 unsigned long nr_free;
32 struct pglist_data;
35 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
36 * So add a wild amount of padding here to ensure that they fall into separate
37 * cachelines. There are very few zone structures in the machine, so space
38 * consumption is not a concern here.
40 #if defined(CONFIG_SMP)
41 struct zone_padding {
42 char x[0];
43 } ____cacheline_internodealigned_in_smp;
44 #define ZONE_PADDING(name) struct zone_padding name;
45 #else
46 #define ZONE_PADDING(name)
47 #endif
49 enum zone_stat_item {
50 NR_ANON_PAGES, /* Mapped anonymous pages */
51 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
52 only modified from process context */
53 NR_FILE_PAGES,
54 NR_SLAB, /* Pages used by slab allocator */
55 NR_PAGETABLE, /* used for pagetables */
56 NR_FILE_DIRTY,
57 NR_WRITEBACK,
58 NR_UNSTABLE_NFS, /* NFS unstable pages */
59 NR_BOUNCE,
60 #ifdef CONFIG_NUMA
61 NUMA_HIT, /* allocated in intended node */
62 NUMA_MISS, /* allocated in non intended node */
63 NUMA_FOREIGN, /* was intended here, hit elsewhere */
64 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
65 NUMA_LOCAL, /* allocation from local node */
66 NUMA_OTHER, /* allocation from other node */
67 #endif
68 NR_VM_ZONE_STAT_ITEMS };
70 struct per_cpu_pages {
71 int count; /* number of pages in the list */
72 int high; /* high watermark, emptying needed */
73 int batch; /* chunk size for buddy add/remove */
74 struct list_head list; /* the list of pages */
77 struct per_cpu_pageset {
78 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
79 #ifdef CONFIG_SMP
80 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
81 #endif
82 } ____cacheline_aligned_in_smp;
84 #ifdef CONFIG_NUMA
85 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
86 #else
87 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
88 #endif
90 #define ZONE_DMA 0
91 #define ZONE_DMA32 1
92 #define ZONE_NORMAL 2
93 #define ZONE_HIGHMEM 3
95 #define MAX_NR_ZONES 4 /* Sync this with ZONES_SHIFT */
96 #define ZONES_SHIFT 2 /* ceil(log2(MAX_NR_ZONES)) */
100 * When a memory allocation must conform to specific limitations (such
101 * as being suitable for DMA) the caller will pass in hints to the
102 * allocator in the gfp_mask, in the zone modifier bits. These bits
103 * are used to select a priority ordered list of memory zones which
104 * match the requested limits. GFP_ZONEMASK defines which bits within
105 * the gfp_mask should be considered as zone modifiers. Each valid
106 * combination of the zone modifier bits has a corresponding list
107 * of zones (in node_zonelists). Thus for two zone modifiers there
108 * will be a maximum of 4 (2 ** 2) zonelists, for 3 modifiers there will
109 * be 8 (2 ** 3) zonelists. GFP_ZONETYPES defines the number of possible
110 * combinations of zone modifiers in "zone modifier space".
112 * As an optimisation any zone modifier bits which are only valid when
113 * no other zone modifier bits are set (loners) should be placed in
114 * the highest order bits of this field. This allows us to reduce the
115 * extent of the zonelists thus saving space. For example in the case
116 * of three zone modifier bits, we could require up to eight zonelists.
117 * If the left most zone modifier is a "loner" then the highest valid
118 * zonelist would be four allowing us to allocate only five zonelists.
119 * Use the first form for GFP_ZONETYPES when the left most bit is not
120 * a "loner", otherwise use the second.
122 * NOTE! Make sure this matches the zones in <linux/gfp.h>
124 #define GFP_ZONEMASK 0x07
125 /* #define GFP_ZONETYPES (GFP_ZONEMASK + 1) */ /* Non-loner */
126 #define GFP_ZONETYPES ((GFP_ZONEMASK + 1) / 2 + 1) /* Loner */
129 * On machines where it is needed (eg PCs) we divide physical memory
130 * into multiple physical zones. On a 32bit PC we have 4 zones:
132 * ZONE_DMA < 16 MB ISA DMA capable memory
133 * ZONE_DMA32 0 MB Empty
134 * ZONE_NORMAL 16-896 MB direct mapped by the kernel
135 * ZONE_HIGHMEM > 896 MB only page cache and user processes
138 struct zone {
139 /* Fields commonly accessed by the page allocator */
140 unsigned long free_pages;
141 unsigned long pages_min, pages_low, pages_high;
143 * We don't know if the memory that we're going to allocate will be freeable
144 * or/and it will be released eventually, so to avoid totally wasting several
145 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
146 * to run OOM on the lower zones despite there's tons of freeable ram
147 * on the higher zones). This array is recalculated at runtime if the
148 * sysctl_lowmem_reserve_ratio sysctl changes.
150 unsigned long lowmem_reserve[MAX_NR_ZONES];
152 #ifdef CONFIG_NUMA
154 * zone reclaim becomes active if more unmapped pages exist.
156 unsigned long min_unmapped_ratio;
157 struct per_cpu_pageset *pageset[NR_CPUS];
158 #else
159 struct per_cpu_pageset pageset[NR_CPUS];
160 #endif
162 * free areas of different sizes
164 spinlock_t lock;
165 #ifdef CONFIG_MEMORY_HOTPLUG
166 /* see spanned/present_pages for more description */
167 seqlock_t span_seqlock;
168 #endif
169 struct free_area free_area[MAX_ORDER];
172 ZONE_PADDING(_pad1_)
174 /* Fields commonly accessed by the page reclaim scanner */
175 spinlock_t lru_lock;
176 struct list_head active_list;
177 struct list_head inactive_list;
178 unsigned long nr_scan_active;
179 unsigned long nr_scan_inactive;
180 unsigned long nr_active;
181 unsigned long nr_inactive;
182 unsigned long pages_scanned; /* since last reclaim */
183 int all_unreclaimable; /* All pages pinned */
185 /* A count of how many reclaimers are scanning this zone */
186 atomic_t reclaim_in_progress;
188 /* Zone statistics */
189 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
192 * prev_priority holds the scanning priority for this zone. It is
193 * defined as the scanning priority at which we achieved our reclaim
194 * target at the previous try_to_free_pages() or balance_pgdat()
195 * invokation.
197 * We use prev_priority as a measure of how much stress page reclaim is
198 * under - it drives the swappiness decision: whether to unmap mapped
199 * pages.
201 * temp_priority is used to remember the scanning priority at which
202 * this zone was successfully refilled to free_pages == pages_high.
204 * Access to both these fields is quite racy even on uniprocessor. But
205 * it is expected to average out OK.
207 int temp_priority;
208 int prev_priority;
211 ZONE_PADDING(_pad2_)
212 /* Rarely used or read-mostly fields */
215 * wait_table -- the array holding the hash table
216 * wait_table_hash_nr_entries -- the size of the hash table array
217 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
219 * The purpose of all these is to keep track of the people
220 * waiting for a page to become available and make them
221 * runnable again when possible. The trouble is that this
222 * consumes a lot of space, especially when so few things
223 * wait on pages at a given time. So instead of using
224 * per-page waitqueues, we use a waitqueue hash table.
226 * The bucket discipline is to sleep on the same queue when
227 * colliding and wake all in that wait queue when removing.
228 * When something wakes, it must check to be sure its page is
229 * truly available, a la thundering herd. The cost of a
230 * collision is great, but given the expected load of the
231 * table, they should be so rare as to be outweighed by the
232 * benefits from the saved space.
234 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
235 * primary users of these fields, and in mm/page_alloc.c
236 * free_area_init_core() performs the initialization of them.
238 wait_queue_head_t * wait_table;
239 unsigned long wait_table_hash_nr_entries;
240 unsigned long wait_table_bits;
243 * Discontig memory support fields.
245 struct pglist_data *zone_pgdat;
246 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
247 unsigned long zone_start_pfn;
250 * zone_start_pfn, spanned_pages and present_pages are all
251 * protected by span_seqlock. It is a seqlock because it has
252 * to be read outside of zone->lock, and it is done in the main
253 * allocator path. But, it is written quite infrequently.
255 * The lock is declared along with zone->lock because it is
256 * frequently read in proximity to zone->lock. It's good to
257 * give them a chance of being in the same cacheline.
259 unsigned long spanned_pages; /* total size, including holes */
260 unsigned long present_pages; /* amount of memory (excluding holes) */
263 * rarely used fields:
265 char *name;
266 } ____cacheline_internodealigned_in_smp;
270 * The "priority" of VM scanning is how much of the queues we will scan in one
271 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
272 * queues ("queue_length >> 12") during an aging round.
274 #define DEF_PRIORITY 12
277 * One allocation request operates on a zonelist. A zonelist
278 * is a list of zones, the first one is the 'goal' of the
279 * allocation, the other zones are fallback zones, in decreasing
280 * priority.
282 * Right now a zonelist takes up less than a cacheline. We never
283 * modify it apart from boot-up, and only a few indices are used,
284 * so despite the zonelist table being relatively big, the cache
285 * footprint of this construct is very small.
287 struct zonelist {
288 struct zone *zones[MAX_NUMNODES * MAX_NR_ZONES + 1]; // NULL delimited
293 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
294 * (mostly NUMA machines?) to denote a higher-level memory zone than the
295 * zone denotes.
297 * On NUMA machines, each NUMA node would have a pg_data_t to describe
298 * it's memory layout.
300 * Memory statistics and page replacement data structures are maintained on a
301 * per-zone basis.
303 struct bootmem_data;
304 typedef struct pglist_data {
305 struct zone node_zones[MAX_NR_ZONES];
306 struct zonelist node_zonelists[GFP_ZONETYPES];
307 int nr_zones;
308 #ifdef CONFIG_FLAT_NODE_MEM_MAP
309 struct page *node_mem_map;
310 #endif
311 struct bootmem_data *bdata;
312 #ifdef CONFIG_MEMORY_HOTPLUG
314 * Must be held any time you expect node_start_pfn, node_present_pages
315 * or node_spanned_pages stay constant. Holding this will also
316 * guarantee that any pfn_valid() stays that way.
318 * Nests above zone->lock and zone->size_seqlock.
320 spinlock_t node_size_lock;
321 #endif
322 unsigned long node_start_pfn;
323 unsigned long node_present_pages; /* total number of physical pages */
324 unsigned long node_spanned_pages; /* total size of physical page
325 range, including holes */
326 int node_id;
327 wait_queue_head_t kswapd_wait;
328 struct task_struct *kswapd;
329 int kswapd_max_order;
330 } pg_data_t;
332 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
333 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
334 #ifdef CONFIG_FLAT_NODE_MEM_MAP
335 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
336 #else
337 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
338 #endif
339 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
341 #include <linux/memory_hotplug.h>
343 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
344 unsigned long *free, struct pglist_data *pgdat);
345 void get_zone_counts(unsigned long *active, unsigned long *inactive,
346 unsigned long *free);
347 void build_all_zonelists(void);
348 void wakeup_kswapd(struct zone *zone, int order);
349 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
350 int classzone_idx, int alloc_flags);
352 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
353 unsigned long size);
355 #ifdef CONFIG_HAVE_MEMORY_PRESENT
356 void memory_present(int nid, unsigned long start, unsigned long end);
357 #else
358 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
359 #endif
361 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
362 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
363 #endif
366 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
368 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
370 static inline int populated_zone(struct zone *zone)
372 return (!!zone->present_pages);
375 static inline int is_highmem_idx(int idx)
377 return (idx == ZONE_HIGHMEM);
380 static inline int is_normal_idx(int idx)
382 return (idx == ZONE_NORMAL);
386 * is_highmem - helper function to quickly check if a struct zone is a
387 * highmem zone or not. This is an attempt to keep references
388 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
389 * @zone - pointer to struct zone variable
391 static inline int is_highmem(struct zone *zone)
393 return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM;
396 static inline int is_normal(struct zone *zone)
398 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
401 static inline int is_dma32(struct zone *zone)
403 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
406 static inline int is_dma(struct zone *zone)
408 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
411 /* These two functions are used to setup the per zone pages min values */
412 struct ctl_table;
413 struct file;
414 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
415 void __user *, size_t *, loff_t *);
416 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
417 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
418 void __user *, size_t *, loff_t *);
419 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
420 void __user *, size_t *, loff_t *);
421 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
422 struct file *, void __user *, size_t *, loff_t *);
424 #include <linux/topology.h>
425 /* Returns the number of the current Node. */
426 #ifndef numa_node_id
427 #define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
428 #endif
430 #ifndef CONFIG_NEED_MULTIPLE_NODES
432 extern struct pglist_data contig_page_data;
433 #define NODE_DATA(nid) (&contig_page_data)
434 #define NODE_MEM_MAP(nid) mem_map
435 #define MAX_NODES_SHIFT 1
437 #else /* CONFIG_NEED_MULTIPLE_NODES */
439 #include <asm/mmzone.h>
441 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
443 extern struct pglist_data *first_online_pgdat(void);
444 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
445 extern struct zone *next_zone(struct zone *zone);
448 * for_each_pgdat - helper macro to iterate over all nodes
449 * @pgdat - pointer to a pg_data_t variable
451 #define for_each_online_pgdat(pgdat) \
452 for (pgdat = first_online_pgdat(); \
453 pgdat; \
454 pgdat = next_online_pgdat(pgdat))
456 * for_each_zone - helper macro to iterate over all memory zones
457 * @zone - pointer to struct zone variable
459 * The user only needs to declare the zone variable, for_each_zone
460 * fills it in.
462 #define for_each_zone(zone) \
463 for (zone = (first_online_pgdat())->node_zones; \
464 zone; \
465 zone = next_zone(zone))
467 #ifdef CONFIG_SPARSEMEM
468 #include <asm/sparsemem.h>
469 #endif
471 #if BITS_PER_LONG == 32
473 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
474 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
476 #define FLAGS_RESERVED 9
478 #elif BITS_PER_LONG == 64
480 * with 64 bit flags field, there's plenty of room.
482 #define FLAGS_RESERVED 32
484 #else
486 #error BITS_PER_LONG not defined
488 #endif
490 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
491 #define early_pfn_to_nid(nid) (0UL)
492 #endif
494 #ifdef CONFIG_FLATMEM
495 #define pfn_to_nid(pfn) (0)
496 #endif
498 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
499 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
501 #ifdef CONFIG_SPARSEMEM
504 * SECTION_SHIFT #bits space required to store a section #
506 * PA_SECTION_SHIFT physical address to/from section number
507 * PFN_SECTION_SHIFT pfn to/from section number
509 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
511 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
512 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
514 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
516 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
517 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
519 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
520 #error Allocator MAX_ORDER exceeds SECTION_SIZE
521 #endif
523 struct page;
524 struct mem_section {
526 * This is, logically, a pointer to an array of struct
527 * pages. However, it is stored with some other magic.
528 * (see sparse.c::sparse_init_one_section())
530 * Additionally during early boot we encode node id of
531 * the location of the section here to guide allocation.
532 * (see sparse.c::memory_present())
534 * Making it a UL at least makes someone do a cast
535 * before using it wrong.
537 unsigned long section_mem_map;
540 #ifdef CONFIG_SPARSEMEM_EXTREME
541 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
542 #else
543 #define SECTIONS_PER_ROOT 1
544 #endif
546 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
547 #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
548 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
550 #ifdef CONFIG_SPARSEMEM_EXTREME
551 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
552 #else
553 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
554 #endif
556 static inline struct mem_section *__nr_to_section(unsigned long nr)
558 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
559 return NULL;
560 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
562 extern int __section_nr(struct mem_section* ms);
565 * We use the lower bits of the mem_map pointer to store
566 * a little bit of information. There should be at least
567 * 3 bits here due to 32-bit alignment.
569 #define SECTION_MARKED_PRESENT (1UL<<0)
570 #define SECTION_HAS_MEM_MAP (1UL<<1)
571 #define SECTION_MAP_LAST_BIT (1UL<<2)
572 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
573 #define SECTION_NID_SHIFT 2
575 static inline struct page *__section_mem_map_addr(struct mem_section *section)
577 unsigned long map = section->section_mem_map;
578 map &= SECTION_MAP_MASK;
579 return (struct page *)map;
582 static inline int valid_section(struct mem_section *section)
584 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
587 static inline int section_has_mem_map(struct mem_section *section)
589 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
592 static inline int valid_section_nr(unsigned long nr)
594 return valid_section(__nr_to_section(nr));
597 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
599 return __nr_to_section(pfn_to_section_nr(pfn));
602 static inline int pfn_valid(unsigned long pfn)
604 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
605 return 0;
606 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
610 * These are _only_ used during initialisation, therefore they
611 * can use __initdata ... They could have names to indicate
612 * this restriction.
614 #ifdef CONFIG_NUMA
615 #define pfn_to_nid(pfn) \
616 ({ \
617 unsigned long __pfn_to_nid_pfn = (pfn); \
618 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
620 #else
621 #define pfn_to_nid(pfn) (0)
622 #endif
624 #define early_pfn_valid(pfn) pfn_valid(pfn)
625 void sparse_init(void);
626 #else
627 #define sparse_init() do {} while (0)
628 #define sparse_index_init(_sec, _nid) do {} while (0)
629 #endif /* CONFIG_SPARSEMEM */
631 #ifndef early_pfn_valid
632 #define early_pfn_valid(pfn) (1)
633 #endif
635 void memory_present(int nid, unsigned long start, unsigned long end);
636 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
638 #endif /* !__ASSEMBLY__ */
639 #endif /* __KERNEL__ */
640 #endif /* _LINUX_MMZONE_H */