qlge: Get rid of irqsave/restore in intr disable.
[linux-2.6.git] / drivers / net / qlge / qlge_main.c
blob45ad4cc298bf594ddf55218cf4847211d24643e7
1 /*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/skbuff.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/if_vlan.h>
39 #include <linux/delay.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <net/ip6_checksum.h>
44 #include "qlge.h"
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
54 static const u32 default_msg =
55 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER | */
57 NETIF_MSG_IFDOWN |
58 NETIF_MSG_IFUP |
59 NETIF_MSG_RX_ERR |
60 NETIF_MSG_TX_ERR |
61 /* NETIF_MSG_TX_QUEUED | */
62 /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
63 /* NETIF_MSG_PKTDATA | */
64 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
66 static int debug = 0x00007fff; /* defaults above */
67 module_param(debug, int, 0);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
70 #define MSIX_IRQ 0
71 #define MSI_IRQ 1
72 #define LEG_IRQ 2
73 static int irq_type = MSIX_IRQ;
74 module_param(irq_type, int, MSIX_IRQ);
75 MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
77 static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
78 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
79 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
80 /* required last entry */
81 {0,}
84 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
86 /* This hardware semaphore causes exclusive access to
87 * resources shared between the NIC driver, MPI firmware,
88 * FCOE firmware and the FC driver.
90 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
92 u32 sem_bits = 0;
94 switch (sem_mask) {
95 case SEM_XGMAC0_MASK:
96 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
97 break;
98 case SEM_XGMAC1_MASK:
99 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
100 break;
101 case SEM_ICB_MASK:
102 sem_bits = SEM_SET << SEM_ICB_SHIFT;
103 break;
104 case SEM_MAC_ADDR_MASK:
105 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
106 break;
107 case SEM_FLASH_MASK:
108 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
109 break;
110 case SEM_PROBE_MASK:
111 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
112 break;
113 case SEM_RT_IDX_MASK:
114 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
115 break;
116 case SEM_PROC_REG_MASK:
117 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
118 break;
119 default:
120 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
121 return -EINVAL;
124 ql_write32(qdev, SEM, sem_bits | sem_mask);
125 return !(ql_read32(qdev, SEM) & sem_bits);
128 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
130 unsigned int wait_count = 30;
131 do {
132 if (!ql_sem_trylock(qdev, sem_mask))
133 return 0;
134 udelay(100);
135 } while (--wait_count);
136 return -ETIMEDOUT;
139 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
141 ql_write32(qdev, SEM, sem_mask);
142 ql_read32(qdev, SEM); /* flush */
145 /* This function waits for a specific bit to come ready
146 * in a given register. It is used mostly by the initialize
147 * process, but is also used in kernel thread API such as
148 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
150 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
152 u32 temp;
153 int count = UDELAY_COUNT;
155 while (count) {
156 temp = ql_read32(qdev, reg);
158 /* check for errors */
159 if (temp & err_bit) {
160 QPRINTK(qdev, PROBE, ALERT,
161 "register 0x%.08x access error, value = 0x%.08x!.\n",
162 reg, temp);
163 return -EIO;
164 } else if (temp & bit)
165 return 0;
166 udelay(UDELAY_DELAY);
167 count--;
169 QPRINTK(qdev, PROBE, ALERT,
170 "Timed out waiting for reg %x to come ready.\n", reg);
171 return -ETIMEDOUT;
174 /* The CFG register is used to download TX and RX control blocks
175 * to the chip. This function waits for an operation to complete.
177 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
179 int count = UDELAY_COUNT;
180 u32 temp;
182 while (count) {
183 temp = ql_read32(qdev, CFG);
184 if (temp & CFG_LE)
185 return -EIO;
186 if (!(temp & bit))
187 return 0;
188 udelay(UDELAY_DELAY);
189 count--;
191 return -ETIMEDOUT;
195 /* Used to issue init control blocks to hw. Maps control block,
196 * sets address, triggers download, waits for completion.
198 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
199 u16 q_id)
201 u64 map;
202 int status = 0;
203 int direction;
204 u32 mask;
205 u32 value;
207 direction =
208 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
209 PCI_DMA_FROMDEVICE;
211 map = pci_map_single(qdev->pdev, ptr, size, direction);
212 if (pci_dma_mapping_error(qdev->pdev, map)) {
213 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
214 return -ENOMEM;
217 status = ql_wait_cfg(qdev, bit);
218 if (status) {
219 QPRINTK(qdev, IFUP, ERR,
220 "Timed out waiting for CFG to come ready.\n");
221 goto exit;
224 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
225 if (status)
226 goto exit;
227 ql_write32(qdev, ICB_L, (u32) map);
228 ql_write32(qdev, ICB_H, (u32) (map >> 32));
229 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
231 mask = CFG_Q_MASK | (bit << 16);
232 value = bit | (q_id << CFG_Q_SHIFT);
233 ql_write32(qdev, CFG, (mask | value));
236 * Wait for the bit to clear after signaling hw.
238 status = ql_wait_cfg(qdev, bit);
239 exit:
240 pci_unmap_single(qdev->pdev, map, size, direction);
241 return status;
244 /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
245 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
246 u32 *value)
248 u32 offset = 0;
249 int status;
251 switch (type) {
252 case MAC_ADDR_TYPE_MULTI_MAC:
253 case MAC_ADDR_TYPE_CAM_MAC:
255 status =
256 ql_wait_reg_rdy(qdev,
257 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
258 if (status)
259 goto exit;
260 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
261 (index << MAC_ADDR_IDX_SHIFT) | /* index */
262 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
263 status =
264 ql_wait_reg_rdy(qdev,
265 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
266 if (status)
267 goto exit;
268 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
269 status =
270 ql_wait_reg_rdy(qdev,
271 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
272 if (status)
273 goto exit;
274 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
275 (index << MAC_ADDR_IDX_SHIFT) | /* index */
276 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
277 status =
278 ql_wait_reg_rdy(qdev,
279 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
280 if (status)
281 goto exit;
282 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
283 if (type == MAC_ADDR_TYPE_CAM_MAC) {
284 status =
285 ql_wait_reg_rdy(qdev,
286 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
287 if (status)
288 goto exit;
289 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
290 (index << MAC_ADDR_IDX_SHIFT) | /* index */
291 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
292 status =
293 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
294 MAC_ADDR_MR, 0);
295 if (status)
296 goto exit;
297 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
299 break;
301 case MAC_ADDR_TYPE_VLAN:
302 case MAC_ADDR_TYPE_MULTI_FLTR:
303 default:
304 QPRINTK(qdev, IFUP, CRIT,
305 "Address type %d not yet supported.\n", type);
306 status = -EPERM;
308 exit:
309 return status;
312 /* Set up a MAC, multicast or VLAN address for the
313 * inbound frame matching.
315 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
316 u16 index)
318 u32 offset = 0;
319 int status = 0;
321 switch (type) {
322 case MAC_ADDR_TYPE_MULTI_MAC:
323 case MAC_ADDR_TYPE_CAM_MAC:
325 u32 cam_output;
326 u32 upper = (addr[0] << 8) | addr[1];
327 u32 lower =
328 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
329 (addr[5]);
331 QPRINTK(qdev, IFUP, DEBUG,
332 "Adding %s address %pM"
333 " at index %d in the CAM.\n",
334 ((type ==
335 MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
336 "UNICAST"), addr, index);
338 status =
339 ql_wait_reg_rdy(qdev,
340 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
341 if (status)
342 goto exit;
343 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
344 (index << MAC_ADDR_IDX_SHIFT) | /* index */
345 type); /* type */
346 ql_write32(qdev, MAC_ADDR_DATA, lower);
347 status =
348 ql_wait_reg_rdy(qdev,
349 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
350 if (status)
351 goto exit;
352 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
353 (index << MAC_ADDR_IDX_SHIFT) | /* index */
354 type); /* type */
355 ql_write32(qdev, MAC_ADDR_DATA, upper);
356 status =
357 ql_wait_reg_rdy(qdev,
358 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
359 if (status)
360 goto exit;
361 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
362 (index << MAC_ADDR_IDX_SHIFT) | /* index */
363 type); /* type */
364 /* This field should also include the queue id
365 and possibly the function id. Right now we hardcode
366 the route field to NIC core.
368 if (type == MAC_ADDR_TYPE_CAM_MAC) {
369 cam_output = (CAM_OUT_ROUTE_NIC |
370 (qdev->
371 func << CAM_OUT_FUNC_SHIFT) |
372 (qdev->
373 rss_ring_first_cq_id <<
374 CAM_OUT_CQ_ID_SHIFT));
375 if (qdev->vlgrp)
376 cam_output |= CAM_OUT_RV;
377 /* route to NIC core */
378 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
380 break;
382 case MAC_ADDR_TYPE_VLAN:
384 u32 enable_bit = *((u32 *) &addr[0]);
385 /* For VLAN, the addr actually holds a bit that
386 * either enables or disables the vlan id we are
387 * addressing. It's either MAC_ADDR_E on or off.
388 * That's bit-27 we're talking about.
390 QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
391 (enable_bit ? "Adding" : "Removing"),
392 index, (enable_bit ? "to" : "from"));
394 status =
395 ql_wait_reg_rdy(qdev,
396 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
397 if (status)
398 goto exit;
399 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
400 (index << MAC_ADDR_IDX_SHIFT) | /* index */
401 type | /* type */
402 enable_bit); /* enable/disable */
403 break;
405 case MAC_ADDR_TYPE_MULTI_FLTR:
406 default:
407 QPRINTK(qdev, IFUP, CRIT,
408 "Address type %d not yet supported.\n", type);
409 status = -EPERM;
411 exit:
412 return status;
415 /* Get a specific frame routing value from the CAM.
416 * Used for debug and reg dump.
418 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
420 int status = 0;
422 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
423 if (status)
424 goto exit;
426 ql_write32(qdev, RT_IDX,
427 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
428 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
429 if (status)
430 goto exit;
431 *value = ql_read32(qdev, RT_DATA);
432 exit:
433 return status;
436 /* The NIC function for this chip has 16 routing indexes. Each one can be used
437 * to route different frame types to various inbound queues. We send broadcast/
438 * multicast/error frames to the default queue for slow handling,
439 * and CAM hit/RSS frames to the fast handling queues.
441 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
442 int enable)
444 int status = -EINVAL; /* Return error if no mask match. */
445 u32 value = 0;
447 QPRINTK(qdev, IFUP, DEBUG,
448 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
449 (enable ? "Adding" : "Removing"),
450 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
451 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
452 ((index ==
453 RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
454 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
455 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
456 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
457 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
458 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
459 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
460 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
461 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
462 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
463 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
464 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
465 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
466 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
467 (enable ? "to" : "from"));
469 switch (mask) {
470 case RT_IDX_CAM_HIT:
472 value = RT_IDX_DST_CAM_Q | /* dest */
473 RT_IDX_TYPE_NICQ | /* type */
474 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
475 break;
477 case RT_IDX_VALID: /* Promiscuous Mode frames. */
479 value = RT_IDX_DST_DFLT_Q | /* dest */
480 RT_IDX_TYPE_NICQ | /* type */
481 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
482 break;
484 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
486 value = RT_IDX_DST_DFLT_Q | /* dest */
487 RT_IDX_TYPE_NICQ | /* type */
488 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
489 break;
491 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
493 value = RT_IDX_DST_DFLT_Q | /* dest */
494 RT_IDX_TYPE_NICQ | /* type */
495 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
496 break;
498 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
500 value = RT_IDX_DST_CAM_Q | /* dest */
501 RT_IDX_TYPE_NICQ | /* type */
502 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
503 break;
505 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
507 value = RT_IDX_DST_CAM_Q | /* dest */
508 RT_IDX_TYPE_NICQ | /* type */
509 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
510 break;
512 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
514 value = RT_IDX_DST_RSS | /* dest */
515 RT_IDX_TYPE_NICQ | /* type */
516 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
517 break;
519 case 0: /* Clear the E-bit on an entry. */
521 value = RT_IDX_DST_DFLT_Q | /* dest */
522 RT_IDX_TYPE_NICQ | /* type */
523 (index << RT_IDX_IDX_SHIFT);/* index */
524 break;
526 default:
527 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
528 mask);
529 status = -EPERM;
530 goto exit;
533 if (value) {
534 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
535 if (status)
536 goto exit;
537 value |= (enable ? RT_IDX_E : 0);
538 ql_write32(qdev, RT_IDX, value);
539 ql_write32(qdev, RT_DATA, enable ? mask : 0);
541 exit:
542 return status;
545 static void ql_enable_interrupts(struct ql_adapter *qdev)
547 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
550 static void ql_disable_interrupts(struct ql_adapter *qdev)
552 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
555 /* If we're running with multiple MSI-X vectors then we enable on the fly.
556 * Otherwise, we may have multiple outstanding workers and don't want to
557 * enable until the last one finishes. In this case, the irq_cnt gets
558 * incremented everytime we queue a worker and decremented everytime
559 * a worker finishes. Once it hits zero we enable the interrupt.
561 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
563 u32 var = 0;
564 unsigned long hw_flags = 0;
565 struct intr_context *ctx = qdev->intr_context + intr;
567 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
568 /* Always enable if we're MSIX multi interrupts and
569 * it's not the default (zeroeth) interrupt.
571 ql_write32(qdev, INTR_EN,
572 ctx->intr_en_mask);
573 var = ql_read32(qdev, STS);
574 return var;
577 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
578 if (atomic_dec_and_test(&ctx->irq_cnt)) {
579 ql_write32(qdev, INTR_EN,
580 ctx->intr_en_mask);
581 var = ql_read32(qdev, STS);
583 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
584 return var;
587 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
589 u32 var = 0;
590 struct intr_context *ctx;
592 /* HW disables for us if we're MSIX multi interrupts and
593 * it's not the default (zeroeth) interrupt.
595 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
596 return 0;
598 ctx = qdev->intr_context + intr;
599 spin_lock(&qdev->hw_lock);
600 if (!atomic_read(&ctx->irq_cnt)) {
601 ql_write32(qdev, INTR_EN,
602 ctx->intr_dis_mask);
603 var = ql_read32(qdev, STS);
605 atomic_inc(&ctx->irq_cnt);
606 spin_unlock(&qdev->hw_lock);
607 return var;
610 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
612 int i;
613 for (i = 0; i < qdev->intr_count; i++) {
614 /* The enable call does a atomic_dec_and_test
615 * and enables only if the result is zero.
616 * So we precharge it here.
618 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
619 i == 0))
620 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
621 ql_enable_completion_interrupt(qdev, i);
626 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
628 int status, i;
629 u16 csum = 0;
630 __le16 *flash = (__le16 *)&qdev->flash;
632 status = strncmp((char *)&qdev->flash, str, 4);
633 if (status) {
634 QPRINTK(qdev, IFUP, ERR, "Invalid flash signature.\n");
635 return status;
638 for (i = 0; i < size; i++)
639 csum += le16_to_cpu(*flash++);
641 if (csum)
642 QPRINTK(qdev, IFUP, ERR,
643 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
645 return csum;
648 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
650 int status = 0;
651 /* wait for reg to come ready */
652 status = ql_wait_reg_rdy(qdev,
653 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
654 if (status)
655 goto exit;
656 /* set up for reg read */
657 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
658 /* wait for reg to come ready */
659 status = ql_wait_reg_rdy(qdev,
660 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
661 if (status)
662 goto exit;
663 /* This data is stored on flash as an array of
664 * __le32. Since ql_read32() returns cpu endian
665 * we need to swap it back.
667 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
668 exit:
669 return status;
672 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
674 u32 i, size;
675 int status;
676 __le32 *p = (__le32 *)&qdev->flash;
677 u32 offset;
679 /* Get flash offset for function and adjust
680 * for dword access.
682 if (!qdev->func)
683 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
684 else
685 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
687 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
688 return -ETIMEDOUT;
690 size = sizeof(struct flash_params_8000) / sizeof(u32);
691 for (i = 0; i < size; i++, p++) {
692 status = ql_read_flash_word(qdev, i+offset, p);
693 if (status) {
694 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
695 goto exit;
699 status = ql_validate_flash(qdev,
700 sizeof(struct flash_params_8000) / sizeof(u16),
701 "8000");
702 if (status) {
703 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
704 status = -EINVAL;
705 goto exit;
708 if (!is_valid_ether_addr(qdev->flash.flash_params_8000.mac_addr)) {
709 QPRINTK(qdev, IFUP, ERR, "Invalid MAC address.\n");
710 status = -EINVAL;
711 goto exit;
714 memcpy(qdev->ndev->dev_addr,
715 qdev->flash.flash_params_8000.mac_addr,
716 qdev->ndev->addr_len);
718 exit:
719 ql_sem_unlock(qdev, SEM_FLASH_MASK);
720 return status;
723 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
725 int i;
726 int status;
727 __le32 *p = (__le32 *)&qdev->flash;
728 u32 offset = 0;
729 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
731 /* Second function's parameters follow the first
732 * function's.
734 if (qdev->func)
735 offset = size;
737 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
738 return -ETIMEDOUT;
740 for (i = 0; i < size; i++, p++) {
741 status = ql_read_flash_word(qdev, i+offset, p);
742 if (status) {
743 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
744 goto exit;
749 status = ql_validate_flash(qdev,
750 sizeof(struct flash_params_8012) / sizeof(u16),
751 "8012");
752 if (status) {
753 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
754 status = -EINVAL;
755 goto exit;
758 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
759 status = -EINVAL;
760 goto exit;
763 memcpy(qdev->ndev->dev_addr,
764 qdev->flash.flash_params_8012.mac_addr,
765 qdev->ndev->addr_len);
767 exit:
768 ql_sem_unlock(qdev, SEM_FLASH_MASK);
769 return status;
772 /* xgmac register are located behind the xgmac_addr and xgmac_data
773 * register pair. Each read/write requires us to wait for the ready
774 * bit before reading/writing the data.
776 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
778 int status;
779 /* wait for reg to come ready */
780 status = ql_wait_reg_rdy(qdev,
781 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
782 if (status)
783 return status;
784 /* write the data to the data reg */
785 ql_write32(qdev, XGMAC_DATA, data);
786 /* trigger the write */
787 ql_write32(qdev, XGMAC_ADDR, reg);
788 return status;
791 /* xgmac register are located behind the xgmac_addr and xgmac_data
792 * register pair. Each read/write requires us to wait for the ready
793 * bit before reading/writing the data.
795 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
797 int status = 0;
798 /* wait for reg to come ready */
799 status = ql_wait_reg_rdy(qdev,
800 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
801 if (status)
802 goto exit;
803 /* set up for reg read */
804 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
805 /* wait for reg to come ready */
806 status = ql_wait_reg_rdy(qdev,
807 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
808 if (status)
809 goto exit;
810 /* get the data */
811 *data = ql_read32(qdev, XGMAC_DATA);
812 exit:
813 return status;
816 /* This is used for reading the 64-bit statistics regs. */
817 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
819 int status = 0;
820 u32 hi = 0;
821 u32 lo = 0;
823 status = ql_read_xgmac_reg(qdev, reg, &lo);
824 if (status)
825 goto exit;
827 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
828 if (status)
829 goto exit;
831 *data = (u64) lo | ((u64) hi << 32);
833 exit:
834 return status;
837 static int ql_8000_port_initialize(struct ql_adapter *qdev)
839 int status;
840 status = ql_mb_get_fw_state(qdev);
841 if (status)
842 goto exit;
843 /* Wake up a worker to get/set the TX/RX frame sizes. */
844 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
845 exit:
846 return status;
849 /* Take the MAC Core out of reset.
850 * Enable statistics counting.
851 * Take the transmitter/receiver out of reset.
852 * This functionality may be done in the MPI firmware at a
853 * later date.
855 static int ql_8012_port_initialize(struct ql_adapter *qdev)
857 int status = 0;
858 u32 data;
860 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
861 /* Another function has the semaphore, so
862 * wait for the port init bit to come ready.
864 QPRINTK(qdev, LINK, INFO,
865 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
866 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
867 if (status) {
868 QPRINTK(qdev, LINK, CRIT,
869 "Port initialize timed out.\n");
871 return status;
874 QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
875 /* Set the core reset. */
876 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
877 if (status)
878 goto end;
879 data |= GLOBAL_CFG_RESET;
880 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
881 if (status)
882 goto end;
884 /* Clear the core reset and turn on jumbo for receiver. */
885 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
886 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
887 data |= GLOBAL_CFG_TX_STAT_EN;
888 data |= GLOBAL_CFG_RX_STAT_EN;
889 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
890 if (status)
891 goto end;
893 /* Enable transmitter, and clear it's reset. */
894 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
895 if (status)
896 goto end;
897 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
898 data |= TX_CFG_EN; /* Enable the transmitter. */
899 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
900 if (status)
901 goto end;
903 /* Enable receiver and clear it's reset. */
904 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
905 if (status)
906 goto end;
907 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
908 data |= RX_CFG_EN; /* Enable the receiver. */
909 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
910 if (status)
911 goto end;
913 /* Turn on jumbo. */
914 status =
915 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
916 if (status)
917 goto end;
918 status =
919 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
920 if (status)
921 goto end;
923 /* Signal to the world that the port is enabled. */
924 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
925 end:
926 ql_sem_unlock(qdev, qdev->xg_sem_mask);
927 return status;
930 /* Get the next large buffer. */
931 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
933 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
934 rx_ring->lbq_curr_idx++;
935 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
936 rx_ring->lbq_curr_idx = 0;
937 rx_ring->lbq_free_cnt++;
938 return lbq_desc;
941 /* Get the next small buffer. */
942 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
944 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
945 rx_ring->sbq_curr_idx++;
946 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
947 rx_ring->sbq_curr_idx = 0;
948 rx_ring->sbq_free_cnt++;
949 return sbq_desc;
952 /* Update an rx ring index. */
953 static void ql_update_cq(struct rx_ring *rx_ring)
955 rx_ring->cnsmr_idx++;
956 rx_ring->curr_entry++;
957 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
958 rx_ring->cnsmr_idx = 0;
959 rx_ring->curr_entry = rx_ring->cq_base;
963 static void ql_write_cq_idx(struct rx_ring *rx_ring)
965 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
968 /* Process (refill) a large buffer queue. */
969 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
971 u32 clean_idx = rx_ring->lbq_clean_idx;
972 u32 start_idx = clean_idx;
973 struct bq_desc *lbq_desc;
974 u64 map;
975 int i;
977 while (rx_ring->lbq_free_cnt > 16) {
978 for (i = 0; i < 16; i++) {
979 QPRINTK(qdev, RX_STATUS, DEBUG,
980 "lbq: try cleaning clean_idx = %d.\n",
981 clean_idx);
982 lbq_desc = &rx_ring->lbq[clean_idx];
983 if (lbq_desc->p.lbq_page == NULL) {
984 QPRINTK(qdev, RX_STATUS, DEBUG,
985 "lbq: getting new page for index %d.\n",
986 lbq_desc->index);
987 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
988 if (lbq_desc->p.lbq_page == NULL) {
989 rx_ring->lbq_clean_idx = clean_idx;
990 QPRINTK(qdev, RX_STATUS, ERR,
991 "Couldn't get a page.\n");
992 return;
994 map = pci_map_page(qdev->pdev,
995 lbq_desc->p.lbq_page,
996 0, PAGE_SIZE,
997 PCI_DMA_FROMDEVICE);
998 if (pci_dma_mapping_error(qdev->pdev, map)) {
999 rx_ring->lbq_clean_idx = clean_idx;
1000 put_page(lbq_desc->p.lbq_page);
1001 lbq_desc->p.lbq_page = NULL;
1002 QPRINTK(qdev, RX_STATUS, ERR,
1003 "PCI mapping failed.\n");
1004 return;
1006 pci_unmap_addr_set(lbq_desc, mapaddr, map);
1007 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
1008 *lbq_desc->addr = cpu_to_le64(map);
1010 clean_idx++;
1011 if (clean_idx == rx_ring->lbq_len)
1012 clean_idx = 0;
1015 rx_ring->lbq_clean_idx = clean_idx;
1016 rx_ring->lbq_prod_idx += 16;
1017 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1018 rx_ring->lbq_prod_idx = 0;
1019 rx_ring->lbq_free_cnt -= 16;
1022 if (start_idx != clean_idx) {
1023 QPRINTK(qdev, RX_STATUS, DEBUG,
1024 "lbq: updating prod idx = %d.\n",
1025 rx_ring->lbq_prod_idx);
1026 ql_write_db_reg(rx_ring->lbq_prod_idx,
1027 rx_ring->lbq_prod_idx_db_reg);
1031 /* Process (refill) a small buffer queue. */
1032 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1034 u32 clean_idx = rx_ring->sbq_clean_idx;
1035 u32 start_idx = clean_idx;
1036 struct bq_desc *sbq_desc;
1037 u64 map;
1038 int i;
1040 while (rx_ring->sbq_free_cnt > 16) {
1041 for (i = 0; i < 16; i++) {
1042 sbq_desc = &rx_ring->sbq[clean_idx];
1043 QPRINTK(qdev, RX_STATUS, DEBUG,
1044 "sbq: try cleaning clean_idx = %d.\n",
1045 clean_idx);
1046 if (sbq_desc->p.skb == NULL) {
1047 QPRINTK(qdev, RX_STATUS, DEBUG,
1048 "sbq: getting new skb for index %d.\n",
1049 sbq_desc->index);
1050 sbq_desc->p.skb =
1051 netdev_alloc_skb(qdev->ndev,
1052 rx_ring->sbq_buf_size);
1053 if (sbq_desc->p.skb == NULL) {
1054 QPRINTK(qdev, PROBE, ERR,
1055 "Couldn't get an skb.\n");
1056 rx_ring->sbq_clean_idx = clean_idx;
1057 return;
1059 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1060 map = pci_map_single(qdev->pdev,
1061 sbq_desc->p.skb->data,
1062 rx_ring->sbq_buf_size /
1063 2, PCI_DMA_FROMDEVICE);
1064 if (pci_dma_mapping_error(qdev->pdev, map)) {
1065 QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
1066 rx_ring->sbq_clean_idx = clean_idx;
1067 dev_kfree_skb_any(sbq_desc->p.skb);
1068 sbq_desc->p.skb = NULL;
1069 return;
1071 pci_unmap_addr_set(sbq_desc, mapaddr, map);
1072 pci_unmap_len_set(sbq_desc, maplen,
1073 rx_ring->sbq_buf_size / 2);
1074 *sbq_desc->addr = cpu_to_le64(map);
1077 clean_idx++;
1078 if (clean_idx == rx_ring->sbq_len)
1079 clean_idx = 0;
1081 rx_ring->sbq_clean_idx = clean_idx;
1082 rx_ring->sbq_prod_idx += 16;
1083 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1084 rx_ring->sbq_prod_idx = 0;
1085 rx_ring->sbq_free_cnt -= 16;
1088 if (start_idx != clean_idx) {
1089 QPRINTK(qdev, RX_STATUS, DEBUG,
1090 "sbq: updating prod idx = %d.\n",
1091 rx_ring->sbq_prod_idx);
1092 ql_write_db_reg(rx_ring->sbq_prod_idx,
1093 rx_ring->sbq_prod_idx_db_reg);
1097 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1098 struct rx_ring *rx_ring)
1100 ql_update_sbq(qdev, rx_ring);
1101 ql_update_lbq(qdev, rx_ring);
1104 /* Unmaps tx buffers. Can be called from send() if a pci mapping
1105 * fails at some stage, or from the interrupt when a tx completes.
1107 static void ql_unmap_send(struct ql_adapter *qdev,
1108 struct tx_ring_desc *tx_ring_desc, int mapped)
1110 int i;
1111 for (i = 0; i < mapped; i++) {
1112 if (i == 0 || (i == 7 && mapped > 7)) {
1114 * Unmap the skb->data area, or the
1115 * external sglist (AKA the Outbound
1116 * Address List (OAL)).
1117 * If its the zeroeth element, then it's
1118 * the skb->data area. If it's the 7th
1119 * element and there is more than 6 frags,
1120 * then its an OAL.
1122 if (i == 7) {
1123 QPRINTK(qdev, TX_DONE, DEBUG,
1124 "unmapping OAL area.\n");
1126 pci_unmap_single(qdev->pdev,
1127 pci_unmap_addr(&tx_ring_desc->map[i],
1128 mapaddr),
1129 pci_unmap_len(&tx_ring_desc->map[i],
1130 maplen),
1131 PCI_DMA_TODEVICE);
1132 } else {
1133 QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1135 pci_unmap_page(qdev->pdev,
1136 pci_unmap_addr(&tx_ring_desc->map[i],
1137 mapaddr),
1138 pci_unmap_len(&tx_ring_desc->map[i],
1139 maplen), PCI_DMA_TODEVICE);
1145 /* Map the buffers for this transmit. This will return
1146 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1148 static int ql_map_send(struct ql_adapter *qdev,
1149 struct ob_mac_iocb_req *mac_iocb_ptr,
1150 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1152 int len = skb_headlen(skb);
1153 dma_addr_t map;
1154 int frag_idx, err, map_idx = 0;
1155 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1156 int frag_cnt = skb_shinfo(skb)->nr_frags;
1158 if (frag_cnt) {
1159 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1162 * Map the skb buffer first.
1164 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1166 err = pci_dma_mapping_error(qdev->pdev, map);
1167 if (err) {
1168 QPRINTK(qdev, TX_QUEUED, ERR,
1169 "PCI mapping failed with error: %d\n", err);
1171 return NETDEV_TX_BUSY;
1174 tbd->len = cpu_to_le32(len);
1175 tbd->addr = cpu_to_le64(map);
1176 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1177 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1178 map_idx++;
1181 * This loop fills the remainder of the 8 address descriptors
1182 * in the IOCB. If there are more than 7 fragments, then the
1183 * eighth address desc will point to an external list (OAL).
1184 * When this happens, the remainder of the frags will be stored
1185 * in this list.
1187 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1188 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1189 tbd++;
1190 if (frag_idx == 6 && frag_cnt > 7) {
1191 /* Let's tack on an sglist.
1192 * Our control block will now
1193 * look like this:
1194 * iocb->seg[0] = skb->data
1195 * iocb->seg[1] = frag[0]
1196 * iocb->seg[2] = frag[1]
1197 * iocb->seg[3] = frag[2]
1198 * iocb->seg[4] = frag[3]
1199 * iocb->seg[5] = frag[4]
1200 * iocb->seg[6] = frag[5]
1201 * iocb->seg[7] = ptr to OAL (external sglist)
1202 * oal->seg[0] = frag[6]
1203 * oal->seg[1] = frag[7]
1204 * oal->seg[2] = frag[8]
1205 * oal->seg[3] = frag[9]
1206 * oal->seg[4] = frag[10]
1207 * etc...
1209 /* Tack on the OAL in the eighth segment of IOCB. */
1210 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1211 sizeof(struct oal),
1212 PCI_DMA_TODEVICE);
1213 err = pci_dma_mapping_error(qdev->pdev, map);
1214 if (err) {
1215 QPRINTK(qdev, TX_QUEUED, ERR,
1216 "PCI mapping outbound address list with error: %d\n",
1217 err);
1218 goto map_error;
1221 tbd->addr = cpu_to_le64(map);
1223 * The length is the number of fragments
1224 * that remain to be mapped times the length
1225 * of our sglist (OAL).
1227 tbd->len =
1228 cpu_to_le32((sizeof(struct tx_buf_desc) *
1229 (frag_cnt - frag_idx)) | TX_DESC_C);
1230 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1231 map);
1232 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1233 sizeof(struct oal));
1234 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1235 map_idx++;
1238 map =
1239 pci_map_page(qdev->pdev, frag->page,
1240 frag->page_offset, frag->size,
1241 PCI_DMA_TODEVICE);
1243 err = pci_dma_mapping_error(qdev->pdev, map);
1244 if (err) {
1245 QPRINTK(qdev, TX_QUEUED, ERR,
1246 "PCI mapping frags failed with error: %d.\n",
1247 err);
1248 goto map_error;
1251 tbd->addr = cpu_to_le64(map);
1252 tbd->len = cpu_to_le32(frag->size);
1253 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1254 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1255 frag->size);
1258 /* Save the number of segments we've mapped. */
1259 tx_ring_desc->map_cnt = map_idx;
1260 /* Terminate the last segment. */
1261 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1262 return NETDEV_TX_OK;
1264 map_error:
1266 * If the first frag mapping failed, then i will be zero.
1267 * This causes the unmap of the skb->data area. Otherwise
1268 * we pass in the number of frags that mapped successfully
1269 * so they can be umapped.
1271 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1272 return NETDEV_TX_BUSY;
1275 static void ql_realign_skb(struct sk_buff *skb, int len)
1277 void *temp_addr = skb->data;
1279 /* Undo the skb_reserve(skb,32) we did before
1280 * giving to hardware, and realign data on
1281 * a 2-byte boundary.
1283 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1284 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1285 skb_copy_to_linear_data(skb, temp_addr,
1286 (unsigned int)len);
1290 * This function builds an skb for the given inbound
1291 * completion. It will be rewritten for readability in the near
1292 * future, but for not it works well.
1294 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1295 struct rx_ring *rx_ring,
1296 struct ib_mac_iocb_rsp *ib_mac_rsp)
1298 struct bq_desc *lbq_desc;
1299 struct bq_desc *sbq_desc;
1300 struct sk_buff *skb = NULL;
1301 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1302 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1305 * Handle the header buffer if present.
1307 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1308 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1309 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1311 * Headers fit nicely into a small buffer.
1313 sbq_desc = ql_get_curr_sbuf(rx_ring);
1314 pci_unmap_single(qdev->pdev,
1315 pci_unmap_addr(sbq_desc, mapaddr),
1316 pci_unmap_len(sbq_desc, maplen),
1317 PCI_DMA_FROMDEVICE);
1318 skb = sbq_desc->p.skb;
1319 ql_realign_skb(skb, hdr_len);
1320 skb_put(skb, hdr_len);
1321 sbq_desc->p.skb = NULL;
1325 * Handle the data buffer(s).
1327 if (unlikely(!length)) { /* Is there data too? */
1328 QPRINTK(qdev, RX_STATUS, DEBUG,
1329 "No Data buffer in this packet.\n");
1330 return skb;
1333 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1334 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1335 QPRINTK(qdev, RX_STATUS, DEBUG,
1336 "Headers in small, data of %d bytes in small, combine them.\n", length);
1338 * Data is less than small buffer size so it's
1339 * stuffed in a small buffer.
1340 * For this case we append the data
1341 * from the "data" small buffer to the "header" small
1342 * buffer.
1344 sbq_desc = ql_get_curr_sbuf(rx_ring);
1345 pci_dma_sync_single_for_cpu(qdev->pdev,
1346 pci_unmap_addr
1347 (sbq_desc, mapaddr),
1348 pci_unmap_len
1349 (sbq_desc, maplen),
1350 PCI_DMA_FROMDEVICE);
1351 memcpy(skb_put(skb, length),
1352 sbq_desc->p.skb->data, length);
1353 pci_dma_sync_single_for_device(qdev->pdev,
1354 pci_unmap_addr
1355 (sbq_desc,
1356 mapaddr),
1357 pci_unmap_len
1358 (sbq_desc,
1359 maplen),
1360 PCI_DMA_FROMDEVICE);
1361 } else {
1362 QPRINTK(qdev, RX_STATUS, DEBUG,
1363 "%d bytes in a single small buffer.\n", length);
1364 sbq_desc = ql_get_curr_sbuf(rx_ring);
1365 skb = sbq_desc->p.skb;
1366 ql_realign_skb(skb, length);
1367 skb_put(skb, length);
1368 pci_unmap_single(qdev->pdev,
1369 pci_unmap_addr(sbq_desc,
1370 mapaddr),
1371 pci_unmap_len(sbq_desc,
1372 maplen),
1373 PCI_DMA_FROMDEVICE);
1374 sbq_desc->p.skb = NULL;
1376 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1377 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1378 QPRINTK(qdev, RX_STATUS, DEBUG,
1379 "Header in small, %d bytes in large. Chain large to small!\n", length);
1381 * The data is in a single large buffer. We
1382 * chain it to the header buffer's skb and let
1383 * it rip.
1385 lbq_desc = ql_get_curr_lbuf(rx_ring);
1386 pci_unmap_page(qdev->pdev,
1387 pci_unmap_addr(lbq_desc,
1388 mapaddr),
1389 pci_unmap_len(lbq_desc, maplen),
1390 PCI_DMA_FROMDEVICE);
1391 QPRINTK(qdev, RX_STATUS, DEBUG,
1392 "Chaining page to skb.\n");
1393 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1394 0, length);
1395 skb->len += length;
1396 skb->data_len += length;
1397 skb->truesize += length;
1398 lbq_desc->p.lbq_page = NULL;
1399 } else {
1401 * The headers and data are in a single large buffer. We
1402 * copy it to a new skb and let it go. This can happen with
1403 * jumbo mtu on a non-TCP/UDP frame.
1405 lbq_desc = ql_get_curr_lbuf(rx_ring);
1406 skb = netdev_alloc_skb(qdev->ndev, length);
1407 if (skb == NULL) {
1408 QPRINTK(qdev, PROBE, DEBUG,
1409 "No skb available, drop the packet.\n");
1410 return NULL;
1412 pci_unmap_page(qdev->pdev,
1413 pci_unmap_addr(lbq_desc,
1414 mapaddr),
1415 pci_unmap_len(lbq_desc, maplen),
1416 PCI_DMA_FROMDEVICE);
1417 skb_reserve(skb, NET_IP_ALIGN);
1418 QPRINTK(qdev, RX_STATUS, DEBUG,
1419 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1420 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1421 0, length);
1422 skb->len += length;
1423 skb->data_len += length;
1424 skb->truesize += length;
1425 length -= length;
1426 lbq_desc->p.lbq_page = NULL;
1427 __pskb_pull_tail(skb,
1428 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1429 VLAN_ETH_HLEN : ETH_HLEN);
1431 } else {
1433 * The data is in a chain of large buffers
1434 * pointed to by a small buffer. We loop
1435 * thru and chain them to the our small header
1436 * buffer's skb.
1437 * frags: There are 18 max frags and our small
1438 * buffer will hold 32 of them. The thing is,
1439 * we'll use 3 max for our 9000 byte jumbo
1440 * frames. If the MTU goes up we could
1441 * eventually be in trouble.
1443 int size, offset, i = 0;
1444 __le64 *bq, bq_array[8];
1445 sbq_desc = ql_get_curr_sbuf(rx_ring);
1446 pci_unmap_single(qdev->pdev,
1447 pci_unmap_addr(sbq_desc, mapaddr),
1448 pci_unmap_len(sbq_desc, maplen),
1449 PCI_DMA_FROMDEVICE);
1450 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1452 * This is an non TCP/UDP IP frame, so
1453 * the headers aren't split into a small
1454 * buffer. We have to use the small buffer
1455 * that contains our sg list as our skb to
1456 * send upstairs. Copy the sg list here to
1457 * a local buffer and use it to find the
1458 * pages to chain.
1460 QPRINTK(qdev, RX_STATUS, DEBUG,
1461 "%d bytes of headers & data in chain of large.\n", length);
1462 skb = sbq_desc->p.skb;
1463 bq = &bq_array[0];
1464 memcpy(bq, skb->data, sizeof(bq_array));
1465 sbq_desc->p.skb = NULL;
1466 skb_reserve(skb, NET_IP_ALIGN);
1467 } else {
1468 QPRINTK(qdev, RX_STATUS, DEBUG,
1469 "Headers in small, %d bytes of data in chain of large.\n", length);
1470 bq = (__le64 *)sbq_desc->p.skb->data;
1472 while (length > 0) {
1473 lbq_desc = ql_get_curr_lbuf(rx_ring);
1474 pci_unmap_page(qdev->pdev,
1475 pci_unmap_addr(lbq_desc,
1476 mapaddr),
1477 pci_unmap_len(lbq_desc,
1478 maplen),
1479 PCI_DMA_FROMDEVICE);
1480 size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1481 offset = 0;
1483 QPRINTK(qdev, RX_STATUS, DEBUG,
1484 "Adding page %d to skb for %d bytes.\n",
1485 i, size);
1486 skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1487 offset, size);
1488 skb->len += size;
1489 skb->data_len += size;
1490 skb->truesize += size;
1491 length -= size;
1492 lbq_desc->p.lbq_page = NULL;
1493 bq++;
1494 i++;
1496 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1497 VLAN_ETH_HLEN : ETH_HLEN);
1499 return skb;
1502 /* Process an inbound completion from an rx ring. */
1503 static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1504 struct rx_ring *rx_ring,
1505 struct ib_mac_iocb_rsp *ib_mac_rsp)
1507 struct net_device *ndev = qdev->ndev;
1508 struct sk_buff *skb = NULL;
1509 u16 vlan_id = (le16_to_cpu(ib_mac_rsp->vlan_id) &
1510 IB_MAC_IOCB_RSP_VLAN_MASK)
1512 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1514 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1515 if (unlikely(!skb)) {
1516 QPRINTK(qdev, RX_STATUS, DEBUG,
1517 "No skb available, drop packet.\n");
1518 return;
1521 prefetch(skb->data);
1522 skb->dev = ndev;
1523 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1524 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1525 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1526 IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1527 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1528 IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1529 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1530 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1532 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1533 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1537 skb->protocol = eth_type_trans(skb, ndev);
1538 skb->ip_summed = CHECKSUM_NONE;
1540 /* If rx checksum is on, and there are no
1541 * csum or frame errors.
1543 if (qdev->rx_csum &&
1544 !(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) &&
1545 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1546 /* TCP frame. */
1547 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1548 QPRINTK(qdev, RX_STATUS, DEBUG,
1549 "TCP checksum done!\n");
1550 skb->ip_summed = CHECKSUM_UNNECESSARY;
1551 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1552 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1553 /* Unfragmented ipv4 UDP frame. */
1554 struct iphdr *iph = (struct iphdr *) skb->data;
1555 if (!(iph->frag_off &
1556 cpu_to_be16(IP_MF|IP_OFFSET))) {
1557 skb->ip_summed = CHECKSUM_UNNECESSARY;
1558 QPRINTK(qdev, RX_STATUS, DEBUG,
1559 "TCP checksum done!\n");
1564 qdev->stats.rx_packets++;
1565 qdev->stats.rx_bytes += skb->len;
1566 skb_record_rx_queue(skb,
1567 rx_ring->cq_id - qdev->rss_ring_first_cq_id);
1568 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
1569 if (qdev->vlgrp &&
1570 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
1571 (vlan_id != 0))
1572 vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
1573 vlan_id, skb);
1574 else
1575 napi_gro_receive(&rx_ring->napi, skb);
1576 } else {
1577 if (qdev->vlgrp &&
1578 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
1579 (vlan_id != 0))
1580 vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
1581 else
1582 netif_receive_skb(skb);
1586 /* Process an outbound completion from an rx ring. */
1587 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1588 struct ob_mac_iocb_rsp *mac_rsp)
1590 struct tx_ring *tx_ring;
1591 struct tx_ring_desc *tx_ring_desc;
1593 QL_DUMP_OB_MAC_RSP(mac_rsp);
1594 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1595 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1596 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
1597 qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
1598 qdev->stats.tx_packets++;
1599 dev_kfree_skb(tx_ring_desc->skb);
1600 tx_ring_desc->skb = NULL;
1602 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1603 OB_MAC_IOCB_RSP_S |
1604 OB_MAC_IOCB_RSP_L |
1605 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1606 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1607 QPRINTK(qdev, TX_DONE, WARNING,
1608 "Total descriptor length did not match transfer length.\n");
1610 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1611 QPRINTK(qdev, TX_DONE, WARNING,
1612 "Frame too short to be legal, not sent.\n");
1614 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1615 QPRINTK(qdev, TX_DONE, WARNING,
1616 "Frame too long, but sent anyway.\n");
1618 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1619 QPRINTK(qdev, TX_DONE, WARNING,
1620 "PCI backplane error. Frame not sent.\n");
1623 atomic_inc(&tx_ring->tx_count);
1626 /* Fire up a handler to reset the MPI processor. */
1627 void ql_queue_fw_error(struct ql_adapter *qdev)
1629 netif_carrier_off(qdev->ndev);
1630 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1633 void ql_queue_asic_error(struct ql_adapter *qdev)
1635 netif_carrier_off(qdev->ndev);
1636 ql_disable_interrupts(qdev);
1637 /* Clear adapter up bit to signal the recovery
1638 * process that it shouldn't kill the reset worker
1639 * thread
1641 clear_bit(QL_ADAPTER_UP, &qdev->flags);
1642 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1645 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1646 struct ib_ae_iocb_rsp *ib_ae_rsp)
1648 switch (ib_ae_rsp->event) {
1649 case MGMT_ERR_EVENT:
1650 QPRINTK(qdev, RX_ERR, ERR,
1651 "Management Processor Fatal Error.\n");
1652 ql_queue_fw_error(qdev);
1653 return;
1655 case CAM_LOOKUP_ERR_EVENT:
1656 QPRINTK(qdev, LINK, ERR,
1657 "Multiple CAM hits lookup occurred.\n");
1658 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1659 ql_queue_asic_error(qdev);
1660 return;
1662 case SOFT_ECC_ERROR_EVENT:
1663 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1664 ql_queue_asic_error(qdev);
1665 break;
1667 case PCI_ERR_ANON_BUF_RD:
1668 QPRINTK(qdev, RX_ERR, ERR,
1669 "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1670 ib_ae_rsp->q_id);
1671 ql_queue_asic_error(qdev);
1672 break;
1674 default:
1675 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1676 ib_ae_rsp->event);
1677 ql_queue_asic_error(qdev);
1678 break;
1682 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1684 struct ql_adapter *qdev = rx_ring->qdev;
1685 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1686 struct ob_mac_iocb_rsp *net_rsp = NULL;
1687 int count = 0;
1689 struct tx_ring *tx_ring;
1690 /* While there are entries in the completion queue. */
1691 while (prod != rx_ring->cnsmr_idx) {
1693 QPRINTK(qdev, RX_STATUS, DEBUG,
1694 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1695 prod, rx_ring->cnsmr_idx);
1697 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1698 rmb();
1699 switch (net_rsp->opcode) {
1701 case OPCODE_OB_MAC_TSO_IOCB:
1702 case OPCODE_OB_MAC_IOCB:
1703 ql_process_mac_tx_intr(qdev, net_rsp);
1704 break;
1705 default:
1706 QPRINTK(qdev, RX_STATUS, DEBUG,
1707 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1708 net_rsp->opcode);
1710 count++;
1711 ql_update_cq(rx_ring);
1712 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1714 ql_write_cq_idx(rx_ring);
1715 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1716 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id) &&
1717 net_rsp != NULL) {
1718 if (atomic_read(&tx_ring->queue_stopped) &&
1719 (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1721 * The queue got stopped because the tx_ring was full.
1722 * Wake it up, because it's now at least 25% empty.
1724 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
1727 return count;
1730 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1732 struct ql_adapter *qdev = rx_ring->qdev;
1733 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1734 struct ql_net_rsp_iocb *net_rsp;
1735 int count = 0;
1737 /* While there are entries in the completion queue. */
1738 while (prod != rx_ring->cnsmr_idx) {
1740 QPRINTK(qdev, RX_STATUS, DEBUG,
1741 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1742 prod, rx_ring->cnsmr_idx);
1744 net_rsp = rx_ring->curr_entry;
1745 rmb();
1746 switch (net_rsp->opcode) {
1747 case OPCODE_IB_MAC_IOCB:
1748 ql_process_mac_rx_intr(qdev, rx_ring,
1749 (struct ib_mac_iocb_rsp *)
1750 net_rsp);
1751 break;
1753 case OPCODE_IB_AE_IOCB:
1754 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1755 net_rsp);
1756 break;
1757 default:
1759 QPRINTK(qdev, RX_STATUS, DEBUG,
1760 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1761 net_rsp->opcode);
1764 count++;
1765 ql_update_cq(rx_ring);
1766 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1767 if (count == budget)
1768 break;
1770 ql_update_buffer_queues(qdev, rx_ring);
1771 ql_write_cq_idx(rx_ring);
1772 return count;
1775 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1777 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1778 struct ql_adapter *qdev = rx_ring->qdev;
1779 int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1781 QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1782 rx_ring->cq_id);
1784 if (work_done < budget) {
1785 napi_complete(napi);
1786 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1788 return work_done;
1791 static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1793 struct ql_adapter *qdev = netdev_priv(ndev);
1795 qdev->vlgrp = grp;
1796 if (grp) {
1797 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1798 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1799 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1800 } else {
1801 QPRINTK(qdev, IFUP, DEBUG,
1802 "Turning off VLAN in NIC_RCV_CFG.\n");
1803 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1807 static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1809 struct ql_adapter *qdev = netdev_priv(ndev);
1810 u32 enable_bit = MAC_ADDR_E;
1811 int status;
1813 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1814 if (status)
1815 return;
1816 spin_lock(&qdev->hw_lock);
1817 if (ql_set_mac_addr_reg
1818 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1819 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1821 spin_unlock(&qdev->hw_lock);
1822 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
1825 static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1827 struct ql_adapter *qdev = netdev_priv(ndev);
1828 u32 enable_bit = 0;
1829 int status;
1831 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1832 if (status)
1833 return;
1835 spin_lock(&qdev->hw_lock);
1836 if (ql_set_mac_addr_reg
1837 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1838 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1840 spin_unlock(&qdev->hw_lock);
1841 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
1845 /* Worker thread to process a given rx_ring that is dedicated
1846 * to outbound completions.
1848 static void ql_tx_clean(struct work_struct *work)
1850 struct rx_ring *rx_ring =
1851 container_of(work, struct rx_ring, rx_work.work);
1852 ql_clean_outbound_rx_ring(rx_ring);
1853 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1857 /* Worker thread to process a given rx_ring that is dedicated
1858 * to inbound completions.
1860 static void ql_rx_clean(struct work_struct *work)
1862 struct rx_ring *rx_ring =
1863 container_of(work, struct rx_ring, rx_work.work);
1864 ql_clean_inbound_rx_ring(rx_ring, 64);
1865 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1868 /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
1869 static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
1871 struct rx_ring *rx_ring = dev_id;
1872 queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
1873 &rx_ring->rx_work, 0);
1874 return IRQ_HANDLED;
1877 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1878 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1880 struct rx_ring *rx_ring = dev_id;
1881 napi_schedule(&rx_ring->napi);
1882 return IRQ_HANDLED;
1885 /* This handles a fatal error, MPI activity, and the default
1886 * rx_ring in an MSI-X multiple vector environment.
1887 * In MSI/Legacy environment it also process the rest of
1888 * the rx_rings.
1890 static irqreturn_t qlge_isr(int irq, void *dev_id)
1892 struct rx_ring *rx_ring = dev_id;
1893 struct ql_adapter *qdev = rx_ring->qdev;
1894 struct intr_context *intr_context = &qdev->intr_context[0];
1895 u32 var;
1896 int i;
1897 int work_done = 0;
1899 spin_lock(&qdev->hw_lock);
1900 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
1901 QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
1902 spin_unlock(&qdev->hw_lock);
1903 return IRQ_NONE;
1905 spin_unlock(&qdev->hw_lock);
1907 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
1910 * Check for fatal error.
1912 if (var & STS_FE) {
1913 ql_queue_asic_error(qdev);
1914 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
1915 var = ql_read32(qdev, ERR_STS);
1916 QPRINTK(qdev, INTR, ERR,
1917 "Resetting chip. Error Status Register = 0x%x\n", var);
1918 return IRQ_HANDLED;
1922 * Check MPI processor activity.
1924 if (var & STS_PI) {
1926 * We've got an async event or mailbox completion.
1927 * Handle it and clear the source of the interrupt.
1929 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
1930 ql_disable_completion_interrupt(qdev, intr_context->intr);
1931 queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
1932 &qdev->mpi_work, 0);
1933 work_done++;
1937 * Check the default queue and wake handler if active.
1939 rx_ring = &qdev->rx_ring[0];
1940 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
1941 QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
1942 ql_disable_completion_interrupt(qdev, intr_context->intr);
1943 queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
1944 &rx_ring->rx_work, 0);
1945 work_done++;
1948 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
1950 * Start the DPC for each active queue.
1952 for (i = 1; i < qdev->rx_ring_count; i++) {
1953 rx_ring = &qdev->rx_ring[i];
1954 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
1955 rx_ring->cnsmr_idx) {
1956 QPRINTK(qdev, INTR, INFO,
1957 "Waking handler for rx_ring[%d].\n", i);
1958 ql_disable_completion_interrupt(qdev,
1959 intr_context->
1960 intr);
1961 if (i < qdev->rss_ring_first_cq_id)
1962 queue_delayed_work_on(rx_ring->cpu,
1963 qdev->q_workqueue,
1964 &rx_ring->rx_work,
1966 else
1967 napi_schedule(&rx_ring->napi);
1968 work_done++;
1972 ql_enable_completion_interrupt(qdev, intr_context->intr);
1973 return work_done ? IRQ_HANDLED : IRQ_NONE;
1976 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1979 if (skb_is_gso(skb)) {
1980 int err;
1981 if (skb_header_cloned(skb)) {
1982 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1983 if (err)
1984 return err;
1987 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1988 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
1989 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1990 mac_iocb_ptr->total_hdrs_len =
1991 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
1992 mac_iocb_ptr->net_trans_offset =
1993 cpu_to_le16(skb_network_offset(skb) |
1994 skb_transport_offset(skb)
1995 << OB_MAC_TRANSPORT_HDR_SHIFT);
1996 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
1997 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
1998 if (likely(skb->protocol == htons(ETH_P_IP))) {
1999 struct iphdr *iph = ip_hdr(skb);
2000 iph->check = 0;
2001 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2002 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2003 iph->daddr, 0,
2004 IPPROTO_TCP,
2006 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2007 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2008 tcp_hdr(skb)->check =
2009 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2010 &ipv6_hdr(skb)->daddr,
2011 0, IPPROTO_TCP, 0);
2013 return 1;
2015 return 0;
2018 static void ql_hw_csum_setup(struct sk_buff *skb,
2019 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2021 int len;
2022 struct iphdr *iph = ip_hdr(skb);
2023 __sum16 *check;
2024 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2025 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2026 mac_iocb_ptr->net_trans_offset =
2027 cpu_to_le16(skb_network_offset(skb) |
2028 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2030 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2031 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2032 if (likely(iph->protocol == IPPROTO_TCP)) {
2033 check = &(tcp_hdr(skb)->check);
2034 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2035 mac_iocb_ptr->total_hdrs_len =
2036 cpu_to_le16(skb_transport_offset(skb) +
2037 (tcp_hdr(skb)->doff << 2));
2038 } else {
2039 check = &(udp_hdr(skb)->check);
2040 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2041 mac_iocb_ptr->total_hdrs_len =
2042 cpu_to_le16(skb_transport_offset(skb) +
2043 sizeof(struct udphdr));
2045 *check = ~csum_tcpudp_magic(iph->saddr,
2046 iph->daddr, len, iph->protocol, 0);
2049 static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
2051 struct tx_ring_desc *tx_ring_desc;
2052 struct ob_mac_iocb_req *mac_iocb_ptr;
2053 struct ql_adapter *qdev = netdev_priv(ndev);
2054 int tso;
2055 struct tx_ring *tx_ring;
2056 u32 tx_ring_idx = (u32) skb->queue_mapping;
2058 tx_ring = &qdev->tx_ring[tx_ring_idx];
2060 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2061 QPRINTK(qdev, TX_QUEUED, INFO,
2062 "%s: shutting down tx queue %d du to lack of resources.\n",
2063 __func__, tx_ring_idx);
2064 netif_stop_subqueue(ndev, tx_ring->wq_id);
2065 atomic_inc(&tx_ring->queue_stopped);
2066 return NETDEV_TX_BUSY;
2068 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2069 mac_iocb_ptr = tx_ring_desc->queue_entry;
2070 memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
2072 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2073 mac_iocb_ptr->tid = tx_ring_desc->index;
2074 /* We use the upper 32-bits to store the tx queue for this IO.
2075 * When we get the completion we can use it to establish the context.
2077 mac_iocb_ptr->txq_idx = tx_ring_idx;
2078 tx_ring_desc->skb = skb;
2080 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2082 if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
2083 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
2084 vlan_tx_tag_get(skb));
2085 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2086 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2088 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2089 if (tso < 0) {
2090 dev_kfree_skb_any(skb);
2091 return NETDEV_TX_OK;
2092 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2093 ql_hw_csum_setup(skb,
2094 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2096 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2097 NETDEV_TX_OK) {
2098 QPRINTK(qdev, TX_QUEUED, ERR,
2099 "Could not map the segments.\n");
2100 return NETDEV_TX_BUSY;
2102 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2103 tx_ring->prod_idx++;
2104 if (tx_ring->prod_idx == tx_ring->wq_len)
2105 tx_ring->prod_idx = 0;
2106 wmb();
2108 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2109 ndev->trans_start = jiffies;
2110 QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
2111 tx_ring->prod_idx, skb->len);
2113 atomic_dec(&tx_ring->tx_count);
2114 return NETDEV_TX_OK;
2117 static void ql_free_shadow_space(struct ql_adapter *qdev)
2119 if (qdev->rx_ring_shadow_reg_area) {
2120 pci_free_consistent(qdev->pdev,
2121 PAGE_SIZE,
2122 qdev->rx_ring_shadow_reg_area,
2123 qdev->rx_ring_shadow_reg_dma);
2124 qdev->rx_ring_shadow_reg_area = NULL;
2126 if (qdev->tx_ring_shadow_reg_area) {
2127 pci_free_consistent(qdev->pdev,
2128 PAGE_SIZE,
2129 qdev->tx_ring_shadow_reg_area,
2130 qdev->tx_ring_shadow_reg_dma);
2131 qdev->tx_ring_shadow_reg_area = NULL;
2135 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2137 qdev->rx_ring_shadow_reg_area =
2138 pci_alloc_consistent(qdev->pdev,
2139 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2140 if (qdev->rx_ring_shadow_reg_area == NULL) {
2141 QPRINTK(qdev, IFUP, ERR,
2142 "Allocation of RX shadow space failed.\n");
2143 return -ENOMEM;
2145 qdev->tx_ring_shadow_reg_area =
2146 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2147 &qdev->tx_ring_shadow_reg_dma);
2148 if (qdev->tx_ring_shadow_reg_area == NULL) {
2149 QPRINTK(qdev, IFUP, ERR,
2150 "Allocation of TX shadow space failed.\n");
2151 goto err_wqp_sh_area;
2153 return 0;
2155 err_wqp_sh_area:
2156 pci_free_consistent(qdev->pdev,
2157 PAGE_SIZE,
2158 qdev->rx_ring_shadow_reg_area,
2159 qdev->rx_ring_shadow_reg_dma);
2160 return -ENOMEM;
2163 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2165 struct tx_ring_desc *tx_ring_desc;
2166 int i;
2167 struct ob_mac_iocb_req *mac_iocb_ptr;
2169 mac_iocb_ptr = tx_ring->wq_base;
2170 tx_ring_desc = tx_ring->q;
2171 for (i = 0; i < tx_ring->wq_len; i++) {
2172 tx_ring_desc->index = i;
2173 tx_ring_desc->skb = NULL;
2174 tx_ring_desc->queue_entry = mac_iocb_ptr;
2175 mac_iocb_ptr++;
2176 tx_ring_desc++;
2178 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2179 atomic_set(&tx_ring->queue_stopped, 0);
2182 static void ql_free_tx_resources(struct ql_adapter *qdev,
2183 struct tx_ring *tx_ring)
2185 if (tx_ring->wq_base) {
2186 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2187 tx_ring->wq_base, tx_ring->wq_base_dma);
2188 tx_ring->wq_base = NULL;
2190 kfree(tx_ring->q);
2191 tx_ring->q = NULL;
2194 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2195 struct tx_ring *tx_ring)
2197 tx_ring->wq_base =
2198 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2199 &tx_ring->wq_base_dma);
2201 if ((tx_ring->wq_base == NULL)
2202 || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
2203 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2204 return -ENOMEM;
2206 tx_ring->q =
2207 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2208 if (tx_ring->q == NULL)
2209 goto err;
2211 return 0;
2212 err:
2213 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2214 tx_ring->wq_base, tx_ring->wq_base_dma);
2215 return -ENOMEM;
2218 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2220 int i;
2221 struct bq_desc *lbq_desc;
2223 for (i = 0; i < rx_ring->lbq_len; i++) {
2224 lbq_desc = &rx_ring->lbq[i];
2225 if (lbq_desc->p.lbq_page) {
2226 pci_unmap_page(qdev->pdev,
2227 pci_unmap_addr(lbq_desc, mapaddr),
2228 pci_unmap_len(lbq_desc, maplen),
2229 PCI_DMA_FROMDEVICE);
2231 put_page(lbq_desc->p.lbq_page);
2232 lbq_desc->p.lbq_page = NULL;
2237 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2239 int i;
2240 struct bq_desc *sbq_desc;
2242 for (i = 0; i < rx_ring->sbq_len; i++) {
2243 sbq_desc = &rx_ring->sbq[i];
2244 if (sbq_desc == NULL) {
2245 QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2246 return;
2248 if (sbq_desc->p.skb) {
2249 pci_unmap_single(qdev->pdev,
2250 pci_unmap_addr(sbq_desc, mapaddr),
2251 pci_unmap_len(sbq_desc, maplen),
2252 PCI_DMA_FROMDEVICE);
2253 dev_kfree_skb(sbq_desc->p.skb);
2254 sbq_desc->p.skb = NULL;
2259 /* Free all large and small rx buffers associated
2260 * with the completion queues for this device.
2262 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2264 int i;
2265 struct rx_ring *rx_ring;
2267 for (i = 0; i < qdev->rx_ring_count; i++) {
2268 rx_ring = &qdev->rx_ring[i];
2269 if (rx_ring->lbq)
2270 ql_free_lbq_buffers(qdev, rx_ring);
2271 if (rx_ring->sbq)
2272 ql_free_sbq_buffers(qdev, rx_ring);
2276 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2278 struct rx_ring *rx_ring;
2279 int i;
2281 for (i = 0; i < qdev->rx_ring_count; i++) {
2282 rx_ring = &qdev->rx_ring[i];
2283 if (rx_ring->type != TX_Q)
2284 ql_update_buffer_queues(qdev, rx_ring);
2288 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2289 struct rx_ring *rx_ring)
2291 int i;
2292 struct bq_desc *lbq_desc;
2293 __le64 *bq = rx_ring->lbq_base;
2295 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2296 for (i = 0; i < rx_ring->lbq_len; i++) {
2297 lbq_desc = &rx_ring->lbq[i];
2298 memset(lbq_desc, 0, sizeof(*lbq_desc));
2299 lbq_desc->index = i;
2300 lbq_desc->addr = bq;
2301 bq++;
2305 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2306 struct rx_ring *rx_ring)
2308 int i;
2309 struct bq_desc *sbq_desc;
2310 __le64 *bq = rx_ring->sbq_base;
2312 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2313 for (i = 0; i < rx_ring->sbq_len; i++) {
2314 sbq_desc = &rx_ring->sbq[i];
2315 memset(sbq_desc, 0, sizeof(*sbq_desc));
2316 sbq_desc->index = i;
2317 sbq_desc->addr = bq;
2318 bq++;
2322 static void ql_free_rx_resources(struct ql_adapter *qdev,
2323 struct rx_ring *rx_ring)
2325 /* Free the small buffer queue. */
2326 if (rx_ring->sbq_base) {
2327 pci_free_consistent(qdev->pdev,
2328 rx_ring->sbq_size,
2329 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2330 rx_ring->sbq_base = NULL;
2333 /* Free the small buffer queue control blocks. */
2334 kfree(rx_ring->sbq);
2335 rx_ring->sbq = NULL;
2337 /* Free the large buffer queue. */
2338 if (rx_ring->lbq_base) {
2339 pci_free_consistent(qdev->pdev,
2340 rx_ring->lbq_size,
2341 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2342 rx_ring->lbq_base = NULL;
2345 /* Free the large buffer queue control blocks. */
2346 kfree(rx_ring->lbq);
2347 rx_ring->lbq = NULL;
2349 /* Free the rx queue. */
2350 if (rx_ring->cq_base) {
2351 pci_free_consistent(qdev->pdev,
2352 rx_ring->cq_size,
2353 rx_ring->cq_base, rx_ring->cq_base_dma);
2354 rx_ring->cq_base = NULL;
2358 /* Allocate queues and buffers for this completions queue based
2359 * on the values in the parameter structure. */
2360 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2361 struct rx_ring *rx_ring)
2365 * Allocate the completion queue for this rx_ring.
2367 rx_ring->cq_base =
2368 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2369 &rx_ring->cq_base_dma);
2371 if (rx_ring->cq_base == NULL) {
2372 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2373 return -ENOMEM;
2376 if (rx_ring->sbq_len) {
2378 * Allocate small buffer queue.
2380 rx_ring->sbq_base =
2381 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2382 &rx_ring->sbq_base_dma);
2384 if (rx_ring->sbq_base == NULL) {
2385 QPRINTK(qdev, IFUP, ERR,
2386 "Small buffer queue allocation failed.\n");
2387 goto err_mem;
2391 * Allocate small buffer queue control blocks.
2393 rx_ring->sbq =
2394 kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2395 GFP_KERNEL);
2396 if (rx_ring->sbq == NULL) {
2397 QPRINTK(qdev, IFUP, ERR,
2398 "Small buffer queue control block allocation failed.\n");
2399 goto err_mem;
2402 ql_init_sbq_ring(qdev, rx_ring);
2405 if (rx_ring->lbq_len) {
2407 * Allocate large buffer queue.
2409 rx_ring->lbq_base =
2410 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2411 &rx_ring->lbq_base_dma);
2413 if (rx_ring->lbq_base == NULL) {
2414 QPRINTK(qdev, IFUP, ERR,
2415 "Large buffer queue allocation failed.\n");
2416 goto err_mem;
2419 * Allocate large buffer queue control blocks.
2421 rx_ring->lbq =
2422 kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2423 GFP_KERNEL);
2424 if (rx_ring->lbq == NULL) {
2425 QPRINTK(qdev, IFUP, ERR,
2426 "Large buffer queue control block allocation failed.\n");
2427 goto err_mem;
2430 ql_init_lbq_ring(qdev, rx_ring);
2433 return 0;
2435 err_mem:
2436 ql_free_rx_resources(qdev, rx_ring);
2437 return -ENOMEM;
2440 static void ql_tx_ring_clean(struct ql_adapter *qdev)
2442 struct tx_ring *tx_ring;
2443 struct tx_ring_desc *tx_ring_desc;
2444 int i, j;
2447 * Loop through all queues and free
2448 * any resources.
2450 for (j = 0; j < qdev->tx_ring_count; j++) {
2451 tx_ring = &qdev->tx_ring[j];
2452 for (i = 0; i < tx_ring->wq_len; i++) {
2453 tx_ring_desc = &tx_ring->q[i];
2454 if (tx_ring_desc && tx_ring_desc->skb) {
2455 QPRINTK(qdev, IFDOWN, ERR,
2456 "Freeing lost SKB %p, from queue %d, index %d.\n",
2457 tx_ring_desc->skb, j,
2458 tx_ring_desc->index);
2459 ql_unmap_send(qdev, tx_ring_desc,
2460 tx_ring_desc->map_cnt);
2461 dev_kfree_skb(tx_ring_desc->skb);
2462 tx_ring_desc->skb = NULL;
2468 static void ql_free_mem_resources(struct ql_adapter *qdev)
2470 int i;
2472 for (i = 0; i < qdev->tx_ring_count; i++)
2473 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2474 for (i = 0; i < qdev->rx_ring_count; i++)
2475 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2476 ql_free_shadow_space(qdev);
2479 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2481 int i;
2483 /* Allocate space for our shadow registers and such. */
2484 if (ql_alloc_shadow_space(qdev))
2485 return -ENOMEM;
2487 for (i = 0; i < qdev->rx_ring_count; i++) {
2488 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2489 QPRINTK(qdev, IFUP, ERR,
2490 "RX resource allocation failed.\n");
2491 goto err_mem;
2494 /* Allocate tx queue resources */
2495 for (i = 0; i < qdev->tx_ring_count; i++) {
2496 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2497 QPRINTK(qdev, IFUP, ERR,
2498 "TX resource allocation failed.\n");
2499 goto err_mem;
2502 return 0;
2504 err_mem:
2505 ql_free_mem_resources(qdev);
2506 return -ENOMEM;
2509 /* Set up the rx ring control block and pass it to the chip.
2510 * The control block is defined as
2511 * "Completion Queue Initialization Control Block", or cqicb.
2513 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2515 struct cqicb *cqicb = &rx_ring->cqicb;
2516 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
2517 (rx_ring->cq_id * sizeof(u64) * 4);
2518 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
2519 (rx_ring->cq_id * sizeof(u64) * 4);
2520 void __iomem *doorbell_area =
2521 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2522 int err = 0;
2523 u16 bq_len;
2525 /* Set up the shadow registers for this ring. */
2526 rx_ring->prod_idx_sh_reg = shadow_reg;
2527 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2528 shadow_reg += sizeof(u64);
2529 shadow_reg_dma += sizeof(u64);
2530 rx_ring->lbq_base_indirect = shadow_reg;
2531 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
2532 shadow_reg += sizeof(u64);
2533 shadow_reg_dma += sizeof(u64);
2534 rx_ring->sbq_base_indirect = shadow_reg;
2535 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2537 /* PCI doorbell mem area + 0x00 for consumer index register */
2538 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
2539 rx_ring->cnsmr_idx = 0;
2540 rx_ring->curr_entry = rx_ring->cq_base;
2542 /* PCI doorbell mem area + 0x04 for valid register */
2543 rx_ring->valid_db_reg = doorbell_area + 0x04;
2545 /* PCI doorbell mem area + 0x18 for large buffer consumer */
2546 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
2548 /* PCI doorbell mem area + 0x1c */
2549 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
2551 memset((void *)cqicb, 0, sizeof(struct cqicb));
2552 cqicb->msix_vect = rx_ring->irq;
2554 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
2555 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
2557 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
2559 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
2562 * Set up the control block load flags.
2564 cqicb->flags = FLAGS_LC | /* Load queue base address */
2565 FLAGS_LV | /* Load MSI-X vector */
2566 FLAGS_LI; /* Load irq delay values */
2567 if (rx_ring->lbq_len) {
2568 cqicb->flags |= FLAGS_LL; /* Load lbq values */
2569 *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
2570 cqicb->lbq_addr =
2571 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
2572 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
2573 (u16) rx_ring->lbq_buf_size;
2574 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
2575 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
2576 (u16) rx_ring->lbq_len;
2577 cqicb->lbq_len = cpu_to_le16(bq_len);
2578 rx_ring->lbq_prod_idx = 0;
2579 rx_ring->lbq_curr_idx = 0;
2580 rx_ring->lbq_clean_idx = 0;
2581 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
2583 if (rx_ring->sbq_len) {
2584 cqicb->flags |= FLAGS_LS; /* Load sbq values */
2585 *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
2586 cqicb->sbq_addr =
2587 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
2588 cqicb->sbq_buf_size =
2589 cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
2590 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
2591 (u16) rx_ring->sbq_len;
2592 cqicb->sbq_len = cpu_to_le16(bq_len);
2593 rx_ring->sbq_prod_idx = 0;
2594 rx_ring->sbq_curr_idx = 0;
2595 rx_ring->sbq_clean_idx = 0;
2596 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
2598 switch (rx_ring->type) {
2599 case TX_Q:
2600 /* If there's only one interrupt, then we use
2601 * worker threads to process the outbound
2602 * completion handling rx_rings. We do this so
2603 * they can be run on multiple CPUs. There is
2604 * room to play with this more where we would only
2605 * run in a worker if there are more than x number
2606 * of outbound completions on the queue and more
2607 * than one queue active. Some threshold that
2608 * would indicate a benefit in spite of the cost
2609 * of a context switch.
2610 * If there's more than one interrupt, then the
2611 * outbound completions are processed in the ISR.
2613 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
2614 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2615 else {
2616 /* With all debug warnings on we see a WARN_ON message
2617 * when we free the skb in the interrupt context.
2619 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2621 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2622 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2623 break;
2624 case DEFAULT_Q:
2625 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
2626 cqicb->irq_delay = 0;
2627 cqicb->pkt_delay = 0;
2628 break;
2629 case RX_Q:
2630 /* Inbound completion handling rx_rings run in
2631 * separate NAPI contexts.
2633 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2634 64);
2635 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2636 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2637 break;
2638 default:
2639 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2640 rx_ring->type);
2642 QPRINTK(qdev, IFUP, DEBUG, "Initializing rx work queue.\n");
2643 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2644 CFG_LCQ, rx_ring->cq_id);
2645 if (err) {
2646 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2647 return err;
2649 return err;
2652 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2654 struct wqicb *wqicb = (struct wqicb *)tx_ring;
2655 void __iomem *doorbell_area =
2656 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2657 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2658 (tx_ring->wq_id * sizeof(u64));
2659 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2660 (tx_ring->wq_id * sizeof(u64));
2661 int err = 0;
2664 * Assign doorbell registers for this tx_ring.
2666 /* TX PCI doorbell mem area for tx producer index */
2667 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
2668 tx_ring->prod_idx = 0;
2669 /* TX PCI doorbell mem area + 0x04 */
2670 tx_ring->valid_db_reg = doorbell_area + 0x04;
2673 * Assign shadow registers for this tx_ring.
2675 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2676 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2678 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2679 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2680 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2681 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2682 wqicb->rid = 0;
2683 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
2685 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
2687 ql_init_tx_ring(qdev, tx_ring);
2689 err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
2690 (u16) tx_ring->wq_id);
2691 if (err) {
2692 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2693 return err;
2695 QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded WQICB.\n");
2696 return err;
2699 static void ql_disable_msix(struct ql_adapter *qdev)
2701 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2702 pci_disable_msix(qdev->pdev);
2703 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2704 kfree(qdev->msi_x_entry);
2705 qdev->msi_x_entry = NULL;
2706 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2707 pci_disable_msi(qdev->pdev);
2708 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2712 static void ql_enable_msix(struct ql_adapter *qdev)
2714 int i;
2716 qdev->intr_count = 1;
2717 /* Get the MSIX vectors. */
2718 if (irq_type == MSIX_IRQ) {
2719 /* Try to alloc space for the msix struct,
2720 * if it fails then go to MSI/legacy.
2722 qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
2723 sizeof(struct msix_entry),
2724 GFP_KERNEL);
2725 if (!qdev->msi_x_entry) {
2726 irq_type = MSI_IRQ;
2727 goto msi;
2730 for (i = 0; i < qdev->rx_ring_count; i++)
2731 qdev->msi_x_entry[i].entry = i;
2733 if (!pci_enable_msix
2734 (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
2735 set_bit(QL_MSIX_ENABLED, &qdev->flags);
2736 qdev->intr_count = qdev->rx_ring_count;
2737 QPRINTK(qdev, IFUP, DEBUG,
2738 "MSI-X Enabled, got %d vectors.\n",
2739 qdev->intr_count);
2740 return;
2741 } else {
2742 kfree(qdev->msi_x_entry);
2743 qdev->msi_x_entry = NULL;
2744 QPRINTK(qdev, IFUP, WARNING,
2745 "MSI-X Enable failed, trying MSI.\n");
2746 irq_type = MSI_IRQ;
2749 msi:
2750 if (irq_type == MSI_IRQ) {
2751 if (!pci_enable_msi(qdev->pdev)) {
2752 set_bit(QL_MSI_ENABLED, &qdev->flags);
2753 QPRINTK(qdev, IFUP, INFO,
2754 "Running with MSI interrupts.\n");
2755 return;
2758 irq_type = LEG_IRQ;
2759 QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2763 * Here we build the intr_context structures based on
2764 * our rx_ring count and intr vector count.
2765 * The intr_context structure is used to hook each vector
2766 * to possibly different handlers.
2768 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2770 int i = 0;
2771 struct intr_context *intr_context = &qdev->intr_context[0];
2773 ql_enable_msix(qdev);
2775 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2776 /* Each rx_ring has it's
2777 * own intr_context since we have separate
2778 * vectors for each queue.
2779 * This only true when MSI-X is enabled.
2781 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2782 qdev->rx_ring[i].irq = i;
2783 intr_context->intr = i;
2784 intr_context->qdev = qdev;
2786 * We set up each vectors enable/disable/read bits so
2787 * there's no bit/mask calculations in the critical path.
2789 intr_context->intr_en_mask =
2790 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2791 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2792 | i;
2793 intr_context->intr_dis_mask =
2794 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2795 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2796 INTR_EN_IHD | i;
2797 intr_context->intr_read_mask =
2798 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2799 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2802 if (i == 0) {
2804 * Default queue handles bcast/mcast plus
2805 * async events. Needs buffers.
2807 intr_context->handler = qlge_isr;
2808 sprintf(intr_context->name, "%s-default-queue",
2809 qdev->ndev->name);
2810 } else if (i < qdev->rss_ring_first_cq_id) {
2812 * Outbound queue is for outbound completions only.
2814 intr_context->handler = qlge_msix_tx_isr;
2815 sprintf(intr_context->name, "%s-tx-%d",
2816 qdev->ndev->name, i);
2817 } else {
2819 * Inbound queues handle unicast frames only.
2821 intr_context->handler = qlge_msix_rx_isr;
2822 sprintf(intr_context->name, "%s-rx-%d",
2823 qdev->ndev->name, i);
2826 } else {
2828 * All rx_rings use the same intr_context since
2829 * there is only one vector.
2831 intr_context->intr = 0;
2832 intr_context->qdev = qdev;
2834 * We set up each vectors enable/disable/read bits so
2835 * there's no bit/mask calculations in the critical path.
2837 intr_context->intr_en_mask =
2838 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2839 intr_context->intr_dis_mask =
2840 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2841 INTR_EN_TYPE_DISABLE;
2842 intr_context->intr_read_mask =
2843 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2845 * Single interrupt means one handler for all rings.
2847 intr_context->handler = qlge_isr;
2848 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
2849 for (i = 0; i < qdev->rx_ring_count; i++)
2850 qdev->rx_ring[i].irq = 0;
2854 static void ql_free_irq(struct ql_adapter *qdev)
2856 int i;
2857 struct intr_context *intr_context = &qdev->intr_context[0];
2859 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2860 if (intr_context->hooked) {
2861 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2862 free_irq(qdev->msi_x_entry[i].vector,
2863 &qdev->rx_ring[i]);
2864 QPRINTK(qdev, IFDOWN, DEBUG,
2865 "freeing msix interrupt %d.\n", i);
2866 } else {
2867 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
2868 QPRINTK(qdev, IFDOWN, DEBUG,
2869 "freeing msi interrupt %d.\n", i);
2873 ql_disable_msix(qdev);
2876 static int ql_request_irq(struct ql_adapter *qdev)
2878 int i;
2879 int status = 0;
2880 struct pci_dev *pdev = qdev->pdev;
2881 struct intr_context *intr_context = &qdev->intr_context[0];
2883 ql_resolve_queues_to_irqs(qdev);
2885 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2886 atomic_set(&intr_context->irq_cnt, 0);
2887 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2888 status = request_irq(qdev->msi_x_entry[i].vector,
2889 intr_context->handler,
2891 intr_context->name,
2892 &qdev->rx_ring[i]);
2893 if (status) {
2894 QPRINTK(qdev, IFUP, ERR,
2895 "Failed request for MSIX interrupt %d.\n",
2897 goto err_irq;
2898 } else {
2899 QPRINTK(qdev, IFUP, DEBUG,
2900 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2902 qdev->rx_ring[i].type ==
2903 DEFAULT_Q ? "DEFAULT_Q" : "",
2904 qdev->rx_ring[i].type ==
2905 TX_Q ? "TX_Q" : "",
2906 qdev->rx_ring[i].type ==
2907 RX_Q ? "RX_Q" : "", intr_context->name);
2909 } else {
2910 QPRINTK(qdev, IFUP, DEBUG,
2911 "trying msi or legacy interrupts.\n");
2912 QPRINTK(qdev, IFUP, DEBUG,
2913 "%s: irq = %d.\n", __func__, pdev->irq);
2914 QPRINTK(qdev, IFUP, DEBUG,
2915 "%s: context->name = %s.\n", __func__,
2916 intr_context->name);
2917 QPRINTK(qdev, IFUP, DEBUG,
2918 "%s: dev_id = 0x%p.\n", __func__,
2919 &qdev->rx_ring[0]);
2920 status =
2921 request_irq(pdev->irq, qlge_isr,
2922 test_bit(QL_MSI_ENABLED,
2923 &qdev->
2924 flags) ? 0 : IRQF_SHARED,
2925 intr_context->name, &qdev->rx_ring[0]);
2926 if (status)
2927 goto err_irq;
2929 QPRINTK(qdev, IFUP, ERR,
2930 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2932 qdev->rx_ring[0].type ==
2933 DEFAULT_Q ? "DEFAULT_Q" : "",
2934 qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
2935 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
2936 intr_context->name);
2938 intr_context->hooked = 1;
2940 return status;
2941 err_irq:
2942 QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
2943 ql_free_irq(qdev);
2944 return status;
2947 static int ql_start_rss(struct ql_adapter *qdev)
2949 struct ricb *ricb = &qdev->ricb;
2950 int status = 0;
2951 int i;
2952 u8 *hash_id = (u8 *) ricb->hash_cq_id;
2954 memset((void *)ricb, 0, sizeof(ricb));
2956 ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
2957 ricb->flags =
2958 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
2959 RSS_RT6);
2960 ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
2963 * Fill out the Indirection Table.
2965 for (i = 0; i < 256; i++)
2966 hash_id[i] = i & (qdev->rss_ring_count - 1);
2969 * Random values for the IPv6 and IPv4 Hash Keys.
2971 get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
2972 get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
2974 QPRINTK(qdev, IFUP, DEBUG, "Initializing RSS.\n");
2976 status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
2977 if (status) {
2978 QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
2979 return status;
2981 QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded RICB.\n");
2982 return status;
2985 /* Initialize the frame-to-queue routing. */
2986 static int ql_route_initialize(struct ql_adapter *qdev)
2988 int status = 0;
2989 int i;
2991 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
2992 if (status)
2993 return status;
2995 /* Clear all the entries in the routing table. */
2996 for (i = 0; i < 16; i++) {
2997 status = ql_set_routing_reg(qdev, i, 0, 0);
2998 if (status) {
2999 QPRINTK(qdev, IFUP, ERR,
3000 "Failed to init routing register for CAM packets.\n");
3001 goto exit;
3005 status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
3006 if (status) {
3007 QPRINTK(qdev, IFUP, ERR,
3008 "Failed to init routing register for error packets.\n");
3009 goto exit;
3011 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3012 if (status) {
3013 QPRINTK(qdev, IFUP, ERR,
3014 "Failed to init routing register for broadcast packets.\n");
3015 goto exit;
3017 /* If we have more than one inbound queue, then turn on RSS in the
3018 * routing block.
3020 if (qdev->rss_ring_count > 1) {
3021 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3022 RT_IDX_RSS_MATCH, 1);
3023 if (status) {
3024 QPRINTK(qdev, IFUP, ERR,
3025 "Failed to init routing register for MATCH RSS packets.\n");
3026 goto exit;
3030 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3031 RT_IDX_CAM_HIT, 1);
3032 if (status)
3033 QPRINTK(qdev, IFUP, ERR,
3034 "Failed to init routing register for CAM packets.\n");
3035 exit:
3036 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3037 return status;
3040 int ql_cam_route_initialize(struct ql_adapter *qdev)
3042 int status;
3044 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3045 if (status)
3046 return status;
3047 status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
3048 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
3049 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3050 if (status) {
3051 QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
3052 return status;
3055 status = ql_route_initialize(qdev);
3056 if (status)
3057 QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
3059 return status;
3062 static int ql_adapter_initialize(struct ql_adapter *qdev)
3064 u32 value, mask;
3065 int i;
3066 int status = 0;
3069 * Set up the System register to halt on errors.
3071 value = SYS_EFE | SYS_FAE;
3072 mask = value << 16;
3073 ql_write32(qdev, SYS, mask | value);
3075 /* Set the default queue, and VLAN behavior. */
3076 value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
3077 mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
3078 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3080 /* Set the MPI interrupt to enabled. */
3081 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3083 /* Enable the function, set pagesize, enable error checking. */
3084 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3085 FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
3087 /* Set/clear header splitting. */
3088 mask = FSC_VM_PAGESIZE_MASK |
3089 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3090 ql_write32(qdev, FSC, mask | value);
3092 ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
3093 min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
3095 /* Start up the rx queues. */
3096 for (i = 0; i < qdev->rx_ring_count; i++) {
3097 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3098 if (status) {
3099 QPRINTK(qdev, IFUP, ERR,
3100 "Failed to start rx ring[%d].\n", i);
3101 return status;
3105 /* If there is more than one inbound completion queue
3106 * then download a RICB to configure RSS.
3108 if (qdev->rss_ring_count > 1) {
3109 status = ql_start_rss(qdev);
3110 if (status) {
3111 QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
3112 return status;
3116 /* Start up the tx queues. */
3117 for (i = 0; i < qdev->tx_ring_count; i++) {
3118 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3119 if (status) {
3120 QPRINTK(qdev, IFUP, ERR,
3121 "Failed to start tx ring[%d].\n", i);
3122 return status;
3126 /* Initialize the port and set the max framesize. */
3127 status = qdev->nic_ops->port_initialize(qdev);
3128 if (status) {
3129 QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
3130 return status;
3133 /* Set up the MAC address and frame routing filter. */
3134 status = ql_cam_route_initialize(qdev);
3135 if (status) {
3136 QPRINTK(qdev, IFUP, ERR,
3137 "Failed to init CAM/Routing tables.\n");
3138 return status;
3141 /* Start NAPI for the RSS queues. */
3142 for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
3143 QPRINTK(qdev, IFUP, DEBUG, "Enabling NAPI for rx_ring[%d].\n",
3145 napi_enable(&qdev->rx_ring[i].napi);
3148 return status;
3151 /* Issue soft reset to chip. */
3152 static int ql_adapter_reset(struct ql_adapter *qdev)
3154 u32 value;
3155 int status = 0;
3156 unsigned long end_jiffies = jiffies +
3157 max((unsigned long)1, usecs_to_jiffies(30));
3159 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3161 do {
3162 value = ql_read32(qdev, RST_FO);
3163 if ((value & RST_FO_FR) == 0)
3164 break;
3165 cpu_relax();
3166 } while (time_before(jiffies, end_jiffies));
3168 if (value & RST_FO_FR) {
3169 QPRINTK(qdev, IFDOWN, ERR,
3170 "ETIMEOUT!!! errored out of resetting the chip!\n");
3171 status = -ETIMEDOUT;
3174 return status;
3177 static void ql_display_dev_info(struct net_device *ndev)
3179 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3181 QPRINTK(qdev, PROBE, INFO,
3182 "Function #%d, NIC Roll %d, NIC Rev = %d, "
3183 "XG Roll = %d, XG Rev = %d.\n",
3184 qdev->func,
3185 qdev->chip_rev_id & 0x0000000f,
3186 qdev->chip_rev_id >> 4 & 0x0000000f,
3187 qdev->chip_rev_id >> 8 & 0x0000000f,
3188 qdev->chip_rev_id >> 12 & 0x0000000f);
3189 QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
3192 static int ql_adapter_down(struct ql_adapter *qdev)
3194 int i, status = 0;
3195 struct rx_ring *rx_ring;
3197 netif_carrier_off(qdev->ndev);
3199 /* Don't kill the reset worker thread if we
3200 * are in the process of recovery.
3202 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3203 cancel_delayed_work_sync(&qdev->asic_reset_work);
3204 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3205 cancel_delayed_work_sync(&qdev->mpi_work);
3206 cancel_delayed_work_sync(&qdev->mpi_idc_work);
3207 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3209 /* The default queue at index 0 is always processed in
3210 * a workqueue.
3212 cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
3214 /* The rest of the rx_rings are processed in
3215 * a workqueue only if it's a single interrupt
3216 * environment (MSI/Legacy).
3218 for (i = 1; i < qdev->rx_ring_count; i++) {
3219 rx_ring = &qdev->rx_ring[i];
3220 /* Only the RSS rings use NAPI on multi irq
3221 * environment. Outbound completion processing
3222 * is done in interrupt context.
3224 if (i >= qdev->rss_ring_first_cq_id) {
3225 napi_disable(&rx_ring->napi);
3226 } else {
3227 cancel_delayed_work_sync(&rx_ring->rx_work);
3231 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3233 ql_disable_interrupts(qdev);
3235 ql_tx_ring_clean(qdev);
3237 ql_free_rx_buffers(qdev);
3238 spin_lock(&qdev->hw_lock);
3239 status = ql_adapter_reset(qdev);
3240 if (status)
3241 QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3242 qdev->func);
3243 spin_unlock(&qdev->hw_lock);
3244 return status;
3247 static int ql_adapter_up(struct ql_adapter *qdev)
3249 int err = 0;
3251 spin_lock(&qdev->hw_lock);
3252 err = ql_adapter_initialize(qdev);
3253 if (err) {
3254 QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
3255 spin_unlock(&qdev->hw_lock);
3256 goto err_init;
3258 spin_unlock(&qdev->hw_lock);
3259 set_bit(QL_ADAPTER_UP, &qdev->flags);
3260 ql_alloc_rx_buffers(qdev);
3261 if ((ql_read32(qdev, STS) & qdev->port_init))
3262 netif_carrier_on(qdev->ndev);
3263 ql_enable_interrupts(qdev);
3264 ql_enable_all_completion_interrupts(qdev);
3265 netif_tx_start_all_queues(qdev->ndev);
3267 return 0;
3268 err_init:
3269 ql_adapter_reset(qdev);
3270 return err;
3273 static void ql_release_adapter_resources(struct ql_adapter *qdev)
3275 ql_free_mem_resources(qdev);
3276 ql_free_irq(qdev);
3279 static int ql_get_adapter_resources(struct ql_adapter *qdev)
3281 int status = 0;
3283 if (ql_alloc_mem_resources(qdev)) {
3284 QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
3285 return -ENOMEM;
3287 status = ql_request_irq(qdev);
3288 if (status)
3289 goto err_irq;
3290 return status;
3291 err_irq:
3292 ql_free_mem_resources(qdev);
3293 return status;
3296 static int qlge_close(struct net_device *ndev)
3298 struct ql_adapter *qdev = netdev_priv(ndev);
3301 * Wait for device to recover from a reset.
3302 * (Rarely happens, but possible.)
3304 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3305 msleep(1);
3306 ql_adapter_down(qdev);
3307 ql_release_adapter_resources(qdev);
3308 return 0;
3311 static int ql_configure_rings(struct ql_adapter *qdev)
3313 int i;
3314 struct rx_ring *rx_ring;
3315 struct tx_ring *tx_ring;
3316 int cpu_cnt = num_online_cpus();
3319 * For each processor present we allocate one
3320 * rx_ring for outbound completions, and one
3321 * rx_ring for inbound completions. Plus there is
3322 * always the one default queue. For the CPU
3323 * counts we end up with the following rx_rings:
3324 * rx_ring count =
3325 * one default queue +
3326 * (CPU count * outbound completion rx_ring) +
3327 * (CPU count * inbound (RSS) completion rx_ring)
3328 * To keep it simple we limit the total number of
3329 * queues to < 32, so we truncate CPU to 8.
3330 * This limitation can be removed when requested.
3333 if (cpu_cnt > MAX_CPUS)
3334 cpu_cnt = MAX_CPUS;
3337 * rx_ring[0] is always the default queue.
3339 /* Allocate outbound completion ring for each CPU. */
3340 qdev->tx_ring_count = cpu_cnt;
3341 /* Allocate inbound completion (RSS) ring for each CPU. */
3342 qdev->rss_ring_count = cpu_cnt;
3343 /* cq_id for the first inbound ring handler. */
3344 qdev->rss_ring_first_cq_id = cpu_cnt + 1;
3346 * qdev->rx_ring_count:
3347 * Total number of rx_rings. This includes the one
3348 * default queue, a number of outbound completion
3349 * handler rx_rings, and the number of inbound
3350 * completion handler rx_rings.
3352 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
3353 netif_set_gso_max_size(qdev->ndev, 65536);
3355 for (i = 0; i < qdev->tx_ring_count; i++) {
3356 tx_ring = &qdev->tx_ring[i];
3357 memset((void *)tx_ring, 0, sizeof(tx_ring));
3358 tx_ring->qdev = qdev;
3359 tx_ring->wq_id = i;
3360 tx_ring->wq_len = qdev->tx_ring_size;
3361 tx_ring->wq_size =
3362 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3365 * The completion queue ID for the tx rings start
3366 * immediately after the default Q ID, which is zero.
3368 tx_ring->cq_id = i + 1;
3371 for (i = 0; i < qdev->rx_ring_count; i++) {
3372 rx_ring = &qdev->rx_ring[i];
3373 memset((void *)rx_ring, 0, sizeof(rx_ring));
3374 rx_ring->qdev = qdev;
3375 rx_ring->cq_id = i;
3376 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
3377 if (i == 0) { /* Default queue at index 0. */
3379 * Default queue handles bcast/mcast plus
3380 * async events. Needs buffers.
3382 rx_ring->cq_len = qdev->rx_ring_size;
3383 rx_ring->cq_size =
3384 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3385 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3386 rx_ring->lbq_size =
3387 rx_ring->lbq_len * sizeof(__le64);
3388 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3389 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3390 rx_ring->sbq_size =
3391 rx_ring->sbq_len * sizeof(__le64);
3392 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3393 rx_ring->type = DEFAULT_Q;
3394 } else if (i < qdev->rss_ring_first_cq_id) {
3396 * Outbound queue handles outbound completions only.
3398 /* outbound cq is same size as tx_ring it services. */
3399 rx_ring->cq_len = qdev->tx_ring_size;
3400 rx_ring->cq_size =
3401 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3402 rx_ring->lbq_len = 0;
3403 rx_ring->lbq_size = 0;
3404 rx_ring->lbq_buf_size = 0;
3405 rx_ring->sbq_len = 0;
3406 rx_ring->sbq_size = 0;
3407 rx_ring->sbq_buf_size = 0;
3408 rx_ring->type = TX_Q;
3409 } else { /* Inbound completions (RSS) queues */
3411 * Inbound queues handle unicast frames only.
3413 rx_ring->cq_len = qdev->rx_ring_size;
3414 rx_ring->cq_size =
3415 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3416 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3417 rx_ring->lbq_size =
3418 rx_ring->lbq_len * sizeof(__le64);
3419 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3420 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3421 rx_ring->sbq_size =
3422 rx_ring->sbq_len * sizeof(__le64);
3423 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3424 rx_ring->type = RX_Q;
3427 return 0;
3430 static int qlge_open(struct net_device *ndev)
3432 int err = 0;
3433 struct ql_adapter *qdev = netdev_priv(ndev);
3435 err = ql_configure_rings(qdev);
3436 if (err)
3437 return err;
3439 err = ql_get_adapter_resources(qdev);
3440 if (err)
3441 goto error_up;
3443 err = ql_adapter_up(qdev);
3444 if (err)
3445 goto error_up;
3447 return err;
3449 error_up:
3450 ql_release_adapter_resources(qdev);
3451 return err;
3454 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3456 struct ql_adapter *qdev = netdev_priv(ndev);
3458 if (ndev->mtu == 1500 && new_mtu == 9000) {
3459 QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
3460 queue_delayed_work(qdev->workqueue,
3461 &qdev->mpi_port_cfg_work, 0);
3462 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
3463 QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3464 } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3465 (ndev->mtu == 9000 && new_mtu == 9000)) {
3466 return 0;
3467 } else
3468 return -EINVAL;
3469 ndev->mtu = new_mtu;
3470 return 0;
3473 static struct net_device_stats *qlge_get_stats(struct net_device
3474 *ndev)
3476 struct ql_adapter *qdev = netdev_priv(ndev);
3477 return &qdev->stats;
3480 static void qlge_set_multicast_list(struct net_device *ndev)
3482 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3483 struct dev_mc_list *mc_ptr;
3484 int i, status;
3486 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3487 if (status)
3488 return;
3489 spin_lock(&qdev->hw_lock);
3491 * Set or clear promiscuous mode if a
3492 * transition is taking place.
3494 if (ndev->flags & IFF_PROMISC) {
3495 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3496 if (ql_set_routing_reg
3497 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3498 QPRINTK(qdev, HW, ERR,
3499 "Failed to set promiscous mode.\n");
3500 } else {
3501 set_bit(QL_PROMISCUOUS, &qdev->flags);
3504 } else {
3505 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3506 if (ql_set_routing_reg
3507 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3508 QPRINTK(qdev, HW, ERR,
3509 "Failed to clear promiscous mode.\n");
3510 } else {
3511 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3517 * Set or clear all multicast mode if a
3518 * transition is taking place.
3520 if ((ndev->flags & IFF_ALLMULTI) ||
3521 (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3522 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3523 if (ql_set_routing_reg
3524 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3525 QPRINTK(qdev, HW, ERR,
3526 "Failed to set all-multi mode.\n");
3527 } else {
3528 set_bit(QL_ALLMULTI, &qdev->flags);
3531 } else {
3532 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3533 if (ql_set_routing_reg
3534 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3535 QPRINTK(qdev, HW, ERR,
3536 "Failed to clear all-multi mode.\n");
3537 } else {
3538 clear_bit(QL_ALLMULTI, &qdev->flags);
3543 if (ndev->mc_count) {
3544 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3545 if (status)
3546 goto exit;
3547 for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3548 i++, mc_ptr = mc_ptr->next)
3549 if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3550 MAC_ADDR_TYPE_MULTI_MAC, i)) {
3551 QPRINTK(qdev, HW, ERR,
3552 "Failed to loadmulticast address.\n");
3553 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3554 goto exit;
3556 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3557 if (ql_set_routing_reg
3558 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3559 QPRINTK(qdev, HW, ERR,
3560 "Failed to set multicast match mode.\n");
3561 } else {
3562 set_bit(QL_ALLMULTI, &qdev->flags);
3565 exit:
3566 spin_unlock(&qdev->hw_lock);
3567 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3570 static int qlge_set_mac_address(struct net_device *ndev, void *p)
3572 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3573 struct sockaddr *addr = p;
3574 int status;
3576 if (netif_running(ndev))
3577 return -EBUSY;
3579 if (!is_valid_ether_addr(addr->sa_data))
3580 return -EADDRNOTAVAIL;
3581 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3583 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3584 if (status)
3585 return status;
3586 spin_lock(&qdev->hw_lock);
3587 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3588 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
3589 spin_unlock(&qdev->hw_lock);
3590 if (status)
3591 QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
3592 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3593 return status;
3596 static void qlge_tx_timeout(struct net_device *ndev)
3598 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3599 ql_queue_asic_error(qdev);
3602 static void ql_asic_reset_work(struct work_struct *work)
3604 struct ql_adapter *qdev =
3605 container_of(work, struct ql_adapter, asic_reset_work.work);
3606 int status;
3608 status = ql_adapter_down(qdev);
3609 if (status)
3610 goto error;
3612 status = ql_adapter_up(qdev);
3613 if (status)
3614 goto error;
3616 return;
3617 error:
3618 QPRINTK(qdev, IFUP, ALERT,
3619 "Driver up/down cycle failed, closing device\n");
3620 rtnl_lock();
3621 set_bit(QL_ADAPTER_UP, &qdev->flags);
3622 dev_close(qdev->ndev);
3623 rtnl_unlock();
3626 static struct nic_operations qla8012_nic_ops = {
3627 .get_flash = ql_get_8012_flash_params,
3628 .port_initialize = ql_8012_port_initialize,
3631 static struct nic_operations qla8000_nic_ops = {
3632 .get_flash = ql_get_8000_flash_params,
3633 .port_initialize = ql_8000_port_initialize,
3637 static void ql_get_board_info(struct ql_adapter *qdev)
3639 qdev->func =
3640 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
3641 if (qdev->func) {
3642 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
3643 qdev->port_link_up = STS_PL1;
3644 qdev->port_init = STS_PI1;
3645 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
3646 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
3647 } else {
3648 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
3649 qdev->port_link_up = STS_PL0;
3650 qdev->port_init = STS_PI0;
3651 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
3652 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
3654 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
3655 qdev->device_id = qdev->pdev->device;
3656 if (qdev->device_id == QLGE_DEVICE_ID_8012)
3657 qdev->nic_ops = &qla8012_nic_ops;
3658 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
3659 qdev->nic_ops = &qla8000_nic_ops;
3662 static void ql_release_all(struct pci_dev *pdev)
3664 struct net_device *ndev = pci_get_drvdata(pdev);
3665 struct ql_adapter *qdev = netdev_priv(ndev);
3667 if (qdev->workqueue) {
3668 destroy_workqueue(qdev->workqueue);
3669 qdev->workqueue = NULL;
3671 if (qdev->q_workqueue) {
3672 destroy_workqueue(qdev->q_workqueue);
3673 qdev->q_workqueue = NULL;
3675 if (qdev->reg_base)
3676 iounmap(qdev->reg_base);
3677 if (qdev->doorbell_area)
3678 iounmap(qdev->doorbell_area);
3679 pci_release_regions(pdev);
3680 pci_set_drvdata(pdev, NULL);
3683 static int __devinit ql_init_device(struct pci_dev *pdev,
3684 struct net_device *ndev, int cards_found)
3686 struct ql_adapter *qdev = netdev_priv(ndev);
3687 int pos, err = 0;
3688 u16 val16;
3690 memset((void *)qdev, 0, sizeof(qdev));
3691 err = pci_enable_device(pdev);
3692 if (err) {
3693 dev_err(&pdev->dev, "PCI device enable failed.\n");
3694 return err;
3697 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3698 if (pos <= 0) {
3699 dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
3700 "aborting.\n");
3701 goto err_out;
3702 } else {
3703 pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
3704 val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
3705 val16 |= (PCI_EXP_DEVCTL_CERE |
3706 PCI_EXP_DEVCTL_NFERE |
3707 PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
3708 pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
3711 err = pci_request_regions(pdev, DRV_NAME);
3712 if (err) {
3713 dev_err(&pdev->dev, "PCI region request failed.\n");
3714 goto err_out;
3717 pci_set_master(pdev);
3718 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3719 set_bit(QL_DMA64, &qdev->flags);
3720 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3721 } else {
3722 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3723 if (!err)
3724 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3727 if (err) {
3728 dev_err(&pdev->dev, "No usable DMA configuration.\n");
3729 goto err_out;
3732 pci_set_drvdata(pdev, ndev);
3733 qdev->reg_base =
3734 ioremap_nocache(pci_resource_start(pdev, 1),
3735 pci_resource_len(pdev, 1));
3736 if (!qdev->reg_base) {
3737 dev_err(&pdev->dev, "Register mapping failed.\n");
3738 err = -ENOMEM;
3739 goto err_out;
3742 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
3743 qdev->doorbell_area =
3744 ioremap_nocache(pci_resource_start(pdev, 3),
3745 pci_resource_len(pdev, 3));
3746 if (!qdev->doorbell_area) {
3747 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
3748 err = -ENOMEM;
3749 goto err_out;
3752 qdev->ndev = ndev;
3753 qdev->pdev = pdev;
3754 ql_get_board_info(qdev);
3755 qdev->msg_enable = netif_msg_init(debug, default_msg);
3756 spin_lock_init(&qdev->hw_lock);
3757 spin_lock_init(&qdev->stats_lock);
3759 /* make sure the EEPROM is good */
3760 err = qdev->nic_ops->get_flash(qdev);
3761 if (err) {
3762 dev_err(&pdev->dev, "Invalid FLASH.\n");
3763 goto err_out;
3766 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3768 /* Set up the default ring sizes. */
3769 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
3770 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
3772 /* Set up the coalescing parameters. */
3773 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
3774 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
3775 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3776 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3779 * Set up the operating parameters.
3781 qdev->rx_csum = 1;
3783 qdev->q_workqueue = create_workqueue(ndev->name);
3784 qdev->workqueue = create_singlethread_workqueue(ndev->name);
3785 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
3786 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
3787 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
3788 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
3789 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
3790 mutex_init(&qdev->mpi_mutex);
3791 init_completion(&qdev->ide_completion);
3793 if (!cards_found) {
3794 dev_info(&pdev->dev, "%s\n", DRV_STRING);
3795 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
3796 DRV_NAME, DRV_VERSION);
3798 return 0;
3799 err_out:
3800 ql_release_all(pdev);
3801 pci_disable_device(pdev);
3802 return err;
3806 static const struct net_device_ops qlge_netdev_ops = {
3807 .ndo_open = qlge_open,
3808 .ndo_stop = qlge_close,
3809 .ndo_start_xmit = qlge_send,
3810 .ndo_change_mtu = qlge_change_mtu,
3811 .ndo_get_stats = qlge_get_stats,
3812 .ndo_set_multicast_list = qlge_set_multicast_list,
3813 .ndo_set_mac_address = qlge_set_mac_address,
3814 .ndo_validate_addr = eth_validate_addr,
3815 .ndo_tx_timeout = qlge_tx_timeout,
3816 .ndo_vlan_rx_register = ql_vlan_rx_register,
3817 .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
3818 .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
3821 static int __devinit qlge_probe(struct pci_dev *pdev,
3822 const struct pci_device_id *pci_entry)
3824 struct net_device *ndev = NULL;
3825 struct ql_adapter *qdev = NULL;
3826 static int cards_found = 0;
3827 int err = 0;
3829 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
3830 min(MAX_CPUS, (int)num_online_cpus()));
3831 if (!ndev)
3832 return -ENOMEM;
3834 err = ql_init_device(pdev, ndev, cards_found);
3835 if (err < 0) {
3836 free_netdev(ndev);
3837 return err;
3840 qdev = netdev_priv(ndev);
3841 SET_NETDEV_DEV(ndev, &pdev->dev);
3842 ndev->features = (0
3843 | NETIF_F_IP_CSUM
3844 | NETIF_F_SG
3845 | NETIF_F_TSO
3846 | NETIF_F_TSO6
3847 | NETIF_F_TSO_ECN
3848 | NETIF_F_HW_VLAN_TX
3849 | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
3850 ndev->features |= NETIF_F_GRO;
3852 if (test_bit(QL_DMA64, &qdev->flags))
3853 ndev->features |= NETIF_F_HIGHDMA;
3856 * Set up net_device structure.
3858 ndev->tx_queue_len = qdev->tx_ring_size;
3859 ndev->irq = pdev->irq;
3861 ndev->netdev_ops = &qlge_netdev_ops;
3862 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
3863 ndev->watchdog_timeo = 10 * HZ;
3865 err = register_netdev(ndev);
3866 if (err) {
3867 dev_err(&pdev->dev, "net device registration failed.\n");
3868 ql_release_all(pdev);
3869 pci_disable_device(pdev);
3870 return err;
3872 netif_carrier_off(ndev);
3873 ql_display_dev_info(ndev);
3874 cards_found++;
3875 return 0;
3878 static void __devexit qlge_remove(struct pci_dev *pdev)
3880 struct net_device *ndev = pci_get_drvdata(pdev);
3881 unregister_netdev(ndev);
3882 ql_release_all(pdev);
3883 pci_disable_device(pdev);
3884 free_netdev(ndev);
3888 * This callback is called by the PCI subsystem whenever
3889 * a PCI bus error is detected.
3891 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
3892 enum pci_channel_state state)
3894 struct net_device *ndev = pci_get_drvdata(pdev);
3895 struct ql_adapter *qdev = netdev_priv(ndev);
3897 if (netif_running(ndev))
3898 ql_adapter_down(qdev);
3900 pci_disable_device(pdev);
3902 /* Request a slot reset. */
3903 return PCI_ERS_RESULT_NEED_RESET;
3907 * This callback is called after the PCI buss has been reset.
3908 * Basically, this tries to restart the card from scratch.
3909 * This is a shortened version of the device probe/discovery code,
3910 * it resembles the first-half of the () routine.
3912 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
3914 struct net_device *ndev = pci_get_drvdata(pdev);
3915 struct ql_adapter *qdev = netdev_priv(ndev);
3917 if (pci_enable_device(pdev)) {
3918 QPRINTK(qdev, IFUP, ERR,
3919 "Cannot re-enable PCI device after reset.\n");
3920 return PCI_ERS_RESULT_DISCONNECT;
3923 pci_set_master(pdev);
3925 netif_carrier_off(ndev);
3926 ql_adapter_reset(qdev);
3928 /* Make sure the EEPROM is good */
3929 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3931 if (!is_valid_ether_addr(ndev->perm_addr)) {
3932 QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
3933 return PCI_ERS_RESULT_DISCONNECT;
3936 return PCI_ERS_RESULT_RECOVERED;
3939 static void qlge_io_resume(struct pci_dev *pdev)
3941 struct net_device *ndev = pci_get_drvdata(pdev);
3942 struct ql_adapter *qdev = netdev_priv(ndev);
3944 pci_set_master(pdev);
3946 if (netif_running(ndev)) {
3947 if (ql_adapter_up(qdev)) {
3948 QPRINTK(qdev, IFUP, ERR,
3949 "Device initialization failed after reset.\n");
3950 return;
3954 netif_device_attach(ndev);
3957 static struct pci_error_handlers qlge_err_handler = {
3958 .error_detected = qlge_io_error_detected,
3959 .slot_reset = qlge_io_slot_reset,
3960 .resume = qlge_io_resume,
3963 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
3965 struct net_device *ndev = pci_get_drvdata(pdev);
3966 struct ql_adapter *qdev = netdev_priv(ndev);
3967 int err, i;
3969 netif_device_detach(ndev);
3971 if (netif_running(ndev)) {
3972 err = ql_adapter_down(qdev);
3973 if (!err)
3974 return err;
3977 for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++)
3978 netif_napi_del(&qdev->rx_ring[i].napi);
3980 err = pci_save_state(pdev);
3981 if (err)
3982 return err;
3984 pci_disable_device(pdev);
3986 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3988 return 0;
3991 #ifdef CONFIG_PM
3992 static int qlge_resume(struct pci_dev *pdev)
3994 struct net_device *ndev = pci_get_drvdata(pdev);
3995 struct ql_adapter *qdev = netdev_priv(ndev);
3996 int err;
3998 pci_set_power_state(pdev, PCI_D0);
3999 pci_restore_state(pdev);
4000 err = pci_enable_device(pdev);
4001 if (err) {
4002 QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
4003 return err;
4005 pci_set_master(pdev);
4007 pci_enable_wake(pdev, PCI_D3hot, 0);
4008 pci_enable_wake(pdev, PCI_D3cold, 0);
4010 if (netif_running(ndev)) {
4011 err = ql_adapter_up(qdev);
4012 if (err)
4013 return err;
4016 netif_device_attach(ndev);
4018 return 0;
4020 #endif /* CONFIG_PM */
4022 static void qlge_shutdown(struct pci_dev *pdev)
4024 qlge_suspend(pdev, PMSG_SUSPEND);
4027 static struct pci_driver qlge_driver = {
4028 .name = DRV_NAME,
4029 .id_table = qlge_pci_tbl,
4030 .probe = qlge_probe,
4031 .remove = __devexit_p(qlge_remove),
4032 #ifdef CONFIG_PM
4033 .suspend = qlge_suspend,
4034 .resume = qlge_resume,
4035 #endif
4036 .shutdown = qlge_shutdown,
4037 .err_handler = &qlge_err_handler
4040 static int __init qlge_init_module(void)
4042 return pci_register_driver(&qlge_driver);
4045 static void __exit qlge_exit(void)
4047 pci_unregister_driver(&qlge_driver);
4050 module_init(qlge_init_module);
4051 module_exit(qlge_exit);