kernel/resource.c: remove the unneeded assignment in function __find_resource
[linux-2.6.git] / mm / nommu.c
blobe44e6e0a125cb7148913f42fb8ff3e1587a49be9
1 /*
2 * linux/mm/nommu.c
4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
7 * See Documentation/nommu-mmap.txt
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mount.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/audit.h>
32 #include <linux/sched/sysctl.h>
34 #include <asm/uaccess.h>
35 #include <asm/tlb.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mmu_context.h>
38 #include "internal.h"
40 #if 0
41 #define kenter(FMT, ...) \
42 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
43 #define kleave(FMT, ...) \
44 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
45 #define kdebug(FMT, ...) \
46 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
47 #else
48 #define kenter(FMT, ...) \
49 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
50 #define kleave(FMT, ...) \
51 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
52 #define kdebug(FMT, ...) \
53 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
54 #endif
56 void *high_memory;
57 struct page *mem_map;
58 unsigned long max_mapnr;
59 unsigned long highest_memmap_pfn;
60 struct percpu_counter vm_committed_as;
61 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
62 int sysctl_overcommit_ratio = 50; /* default is 50% */
63 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
64 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
65 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
66 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
67 int heap_stack_gap = 0;
69 atomic_long_t mmap_pages_allocated;
72 * The global memory commitment made in the system can be a metric
73 * that can be used to drive ballooning decisions when Linux is hosted
74 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
75 * balancing memory across competing virtual machines that are hosted.
76 * Several metrics drive this policy engine including the guest reported
77 * memory commitment.
79 unsigned long vm_memory_committed(void)
81 return percpu_counter_read_positive(&vm_committed_as);
84 EXPORT_SYMBOL_GPL(vm_memory_committed);
86 EXPORT_SYMBOL(mem_map);
88 /* list of mapped, potentially shareable regions */
89 static struct kmem_cache *vm_region_jar;
90 struct rb_root nommu_region_tree = RB_ROOT;
91 DECLARE_RWSEM(nommu_region_sem);
93 const struct vm_operations_struct generic_file_vm_ops = {
97 * Return the total memory allocated for this pointer, not
98 * just what the caller asked for.
100 * Doesn't have to be accurate, i.e. may have races.
102 unsigned int kobjsize(const void *objp)
104 struct page *page;
107 * If the object we have should not have ksize performed on it,
108 * return size of 0
110 if (!objp || !virt_addr_valid(objp))
111 return 0;
113 page = virt_to_head_page(objp);
116 * If the allocator sets PageSlab, we know the pointer came from
117 * kmalloc().
119 if (PageSlab(page))
120 return ksize(objp);
123 * If it's not a compound page, see if we have a matching VMA
124 * region. This test is intentionally done in reverse order,
125 * so if there's no VMA, we still fall through and hand back
126 * PAGE_SIZE for 0-order pages.
128 if (!PageCompound(page)) {
129 struct vm_area_struct *vma;
131 vma = find_vma(current->mm, (unsigned long)objp);
132 if (vma)
133 return vma->vm_end - vma->vm_start;
137 * The ksize() function is only guaranteed to work for pointers
138 * returned by kmalloc(). So handle arbitrary pointers here.
140 return PAGE_SIZE << compound_order(page);
143 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
144 unsigned long start, unsigned long nr_pages,
145 unsigned int foll_flags, struct page **pages,
146 struct vm_area_struct **vmas, int *nonblocking)
148 struct vm_area_struct *vma;
149 unsigned long vm_flags;
150 int i;
152 /* calculate required read or write permissions.
153 * If FOLL_FORCE is set, we only require the "MAY" flags.
155 vm_flags = (foll_flags & FOLL_WRITE) ?
156 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
157 vm_flags &= (foll_flags & FOLL_FORCE) ?
158 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
160 for (i = 0; i < nr_pages; i++) {
161 vma = find_vma(mm, start);
162 if (!vma)
163 goto finish_or_fault;
165 /* protect what we can, including chardevs */
166 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
167 !(vm_flags & vma->vm_flags))
168 goto finish_or_fault;
170 if (pages) {
171 pages[i] = virt_to_page(start);
172 if (pages[i])
173 page_cache_get(pages[i]);
175 if (vmas)
176 vmas[i] = vma;
177 start = (start + PAGE_SIZE) & PAGE_MASK;
180 return i;
182 finish_or_fault:
183 return i ? : -EFAULT;
187 * get a list of pages in an address range belonging to the specified process
188 * and indicate the VMA that covers each page
189 * - this is potentially dodgy as we may end incrementing the page count of a
190 * slab page or a secondary page from a compound page
191 * - don't permit access to VMAs that don't support it, such as I/O mappings
193 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
194 unsigned long start, unsigned long nr_pages,
195 int write, int force, struct page **pages,
196 struct vm_area_struct **vmas)
198 int flags = 0;
200 if (write)
201 flags |= FOLL_WRITE;
202 if (force)
203 flags |= FOLL_FORCE;
205 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
206 NULL);
208 EXPORT_SYMBOL(get_user_pages);
211 * follow_pfn - look up PFN at a user virtual address
212 * @vma: memory mapping
213 * @address: user virtual address
214 * @pfn: location to store found PFN
216 * Only IO mappings and raw PFN mappings are allowed.
218 * Returns zero and the pfn at @pfn on success, -ve otherwise.
220 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
221 unsigned long *pfn)
223 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
224 return -EINVAL;
226 *pfn = address >> PAGE_SHIFT;
227 return 0;
229 EXPORT_SYMBOL(follow_pfn);
231 LIST_HEAD(vmap_area_list);
233 void vfree(const void *addr)
235 kfree(addr);
237 EXPORT_SYMBOL(vfree);
239 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
242 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
243 * returns only a logical address.
245 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
247 EXPORT_SYMBOL(__vmalloc);
249 void *vmalloc_user(unsigned long size)
251 void *ret;
253 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
254 PAGE_KERNEL);
255 if (ret) {
256 struct vm_area_struct *vma;
258 down_write(&current->mm->mmap_sem);
259 vma = find_vma(current->mm, (unsigned long)ret);
260 if (vma)
261 vma->vm_flags |= VM_USERMAP;
262 up_write(&current->mm->mmap_sem);
265 return ret;
267 EXPORT_SYMBOL(vmalloc_user);
269 struct page *vmalloc_to_page(const void *addr)
271 return virt_to_page(addr);
273 EXPORT_SYMBOL(vmalloc_to_page);
275 unsigned long vmalloc_to_pfn(const void *addr)
277 return page_to_pfn(virt_to_page(addr));
279 EXPORT_SYMBOL(vmalloc_to_pfn);
281 long vread(char *buf, char *addr, unsigned long count)
283 /* Don't allow overflow */
284 if ((unsigned long) buf + count < count)
285 count = -(unsigned long) buf;
287 memcpy(buf, addr, count);
288 return count;
291 long vwrite(char *buf, char *addr, unsigned long count)
293 /* Don't allow overflow */
294 if ((unsigned long) addr + count < count)
295 count = -(unsigned long) addr;
297 memcpy(addr, buf, count);
298 return(count);
302 * vmalloc - allocate virtually continguos memory
304 * @size: allocation size
306 * Allocate enough pages to cover @size from the page level
307 * allocator and map them into continguos kernel virtual space.
309 * For tight control over page level allocator and protection flags
310 * use __vmalloc() instead.
312 void *vmalloc(unsigned long size)
314 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
316 EXPORT_SYMBOL(vmalloc);
319 * vzalloc - allocate virtually continguos memory with zero fill
321 * @size: allocation size
323 * Allocate enough pages to cover @size from the page level
324 * allocator and map them into continguos kernel virtual space.
325 * The memory allocated is set to zero.
327 * For tight control over page level allocator and protection flags
328 * use __vmalloc() instead.
330 void *vzalloc(unsigned long size)
332 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
333 PAGE_KERNEL);
335 EXPORT_SYMBOL(vzalloc);
338 * vmalloc_node - allocate memory on a specific node
339 * @size: allocation size
340 * @node: numa node
342 * Allocate enough pages to cover @size from the page level
343 * allocator and map them into contiguous kernel virtual space.
345 * For tight control over page level allocator and protection flags
346 * use __vmalloc() instead.
348 void *vmalloc_node(unsigned long size, int node)
350 return vmalloc(size);
352 EXPORT_SYMBOL(vmalloc_node);
355 * vzalloc_node - allocate memory on a specific node with zero fill
356 * @size: allocation size
357 * @node: numa node
359 * Allocate enough pages to cover @size from the page level
360 * allocator and map them into contiguous kernel virtual space.
361 * The memory allocated is set to zero.
363 * For tight control over page level allocator and protection flags
364 * use __vmalloc() instead.
366 void *vzalloc_node(unsigned long size, int node)
368 return vzalloc(size);
370 EXPORT_SYMBOL(vzalloc_node);
372 #ifndef PAGE_KERNEL_EXEC
373 # define PAGE_KERNEL_EXEC PAGE_KERNEL
374 #endif
377 * vmalloc_exec - allocate virtually contiguous, executable memory
378 * @size: allocation size
380 * Kernel-internal function to allocate enough pages to cover @size
381 * the page level allocator and map them into contiguous and
382 * executable kernel virtual space.
384 * For tight control over page level allocator and protection flags
385 * use __vmalloc() instead.
388 void *vmalloc_exec(unsigned long size)
390 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
394 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
395 * @size: allocation size
397 * Allocate enough 32bit PA addressable pages to cover @size from the
398 * page level allocator and map them into continguos kernel virtual space.
400 void *vmalloc_32(unsigned long size)
402 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
404 EXPORT_SYMBOL(vmalloc_32);
407 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
408 * @size: allocation size
410 * The resulting memory area is 32bit addressable and zeroed so it can be
411 * mapped to userspace without leaking data.
413 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
414 * remap_vmalloc_range() are permissible.
416 void *vmalloc_32_user(unsigned long size)
419 * We'll have to sort out the ZONE_DMA bits for 64-bit,
420 * but for now this can simply use vmalloc_user() directly.
422 return vmalloc_user(size);
424 EXPORT_SYMBOL(vmalloc_32_user);
426 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
428 BUG();
429 return NULL;
431 EXPORT_SYMBOL(vmap);
433 void vunmap(const void *addr)
435 BUG();
437 EXPORT_SYMBOL(vunmap);
439 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
441 BUG();
442 return NULL;
444 EXPORT_SYMBOL(vm_map_ram);
446 void vm_unmap_ram(const void *mem, unsigned int count)
448 BUG();
450 EXPORT_SYMBOL(vm_unmap_ram);
452 void vm_unmap_aliases(void)
455 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
458 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
459 * have one.
461 void __attribute__((weak)) vmalloc_sync_all(void)
466 * alloc_vm_area - allocate a range of kernel address space
467 * @size: size of the area
469 * Returns: NULL on failure, vm_struct on success
471 * This function reserves a range of kernel address space, and
472 * allocates pagetables to map that range. No actual mappings
473 * are created. If the kernel address space is not shared
474 * between processes, it syncs the pagetable across all
475 * processes.
477 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
479 BUG();
480 return NULL;
482 EXPORT_SYMBOL_GPL(alloc_vm_area);
484 void free_vm_area(struct vm_struct *area)
486 BUG();
488 EXPORT_SYMBOL_GPL(free_vm_area);
490 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
491 struct page *page)
493 return -EINVAL;
495 EXPORT_SYMBOL(vm_insert_page);
498 * sys_brk() for the most part doesn't need the global kernel
499 * lock, except when an application is doing something nasty
500 * like trying to un-brk an area that has already been mapped
501 * to a regular file. in this case, the unmapping will need
502 * to invoke file system routines that need the global lock.
504 SYSCALL_DEFINE1(brk, unsigned long, brk)
506 struct mm_struct *mm = current->mm;
508 if (brk < mm->start_brk || brk > mm->context.end_brk)
509 return mm->brk;
511 if (mm->brk == brk)
512 return mm->brk;
515 * Always allow shrinking brk
517 if (brk <= mm->brk) {
518 mm->brk = brk;
519 return brk;
523 * Ok, looks good - let it rip.
525 flush_icache_range(mm->brk, brk);
526 return mm->brk = brk;
530 * initialise the VMA and region record slabs
532 void __init mmap_init(void)
534 int ret;
536 ret = percpu_counter_init(&vm_committed_as, 0);
537 VM_BUG_ON(ret);
538 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
542 * validate the region tree
543 * - the caller must hold the region lock
545 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
546 static noinline void validate_nommu_regions(void)
548 struct vm_region *region, *last;
549 struct rb_node *p, *lastp;
551 lastp = rb_first(&nommu_region_tree);
552 if (!lastp)
553 return;
555 last = rb_entry(lastp, struct vm_region, vm_rb);
556 BUG_ON(unlikely(last->vm_end <= last->vm_start));
557 BUG_ON(unlikely(last->vm_top < last->vm_end));
559 while ((p = rb_next(lastp))) {
560 region = rb_entry(p, struct vm_region, vm_rb);
561 last = rb_entry(lastp, struct vm_region, vm_rb);
563 BUG_ON(unlikely(region->vm_end <= region->vm_start));
564 BUG_ON(unlikely(region->vm_top < region->vm_end));
565 BUG_ON(unlikely(region->vm_start < last->vm_top));
567 lastp = p;
570 #else
571 static void validate_nommu_regions(void)
574 #endif
577 * add a region into the global tree
579 static void add_nommu_region(struct vm_region *region)
581 struct vm_region *pregion;
582 struct rb_node **p, *parent;
584 validate_nommu_regions();
586 parent = NULL;
587 p = &nommu_region_tree.rb_node;
588 while (*p) {
589 parent = *p;
590 pregion = rb_entry(parent, struct vm_region, vm_rb);
591 if (region->vm_start < pregion->vm_start)
592 p = &(*p)->rb_left;
593 else if (region->vm_start > pregion->vm_start)
594 p = &(*p)->rb_right;
595 else if (pregion == region)
596 return;
597 else
598 BUG();
601 rb_link_node(&region->vm_rb, parent, p);
602 rb_insert_color(&region->vm_rb, &nommu_region_tree);
604 validate_nommu_regions();
608 * delete a region from the global tree
610 static void delete_nommu_region(struct vm_region *region)
612 BUG_ON(!nommu_region_tree.rb_node);
614 validate_nommu_regions();
615 rb_erase(&region->vm_rb, &nommu_region_tree);
616 validate_nommu_regions();
620 * free a contiguous series of pages
622 static void free_page_series(unsigned long from, unsigned long to)
624 for (; from < to; from += PAGE_SIZE) {
625 struct page *page = virt_to_page(from);
627 kdebug("- free %lx", from);
628 atomic_long_dec(&mmap_pages_allocated);
629 if (page_count(page) != 1)
630 kdebug("free page %p: refcount not one: %d",
631 page, page_count(page));
632 put_page(page);
637 * release a reference to a region
638 * - the caller must hold the region semaphore for writing, which this releases
639 * - the region may not have been added to the tree yet, in which case vm_top
640 * will equal vm_start
642 static void __put_nommu_region(struct vm_region *region)
643 __releases(nommu_region_sem)
645 kenter("%p{%d}", region, region->vm_usage);
647 BUG_ON(!nommu_region_tree.rb_node);
649 if (--region->vm_usage == 0) {
650 if (region->vm_top > region->vm_start)
651 delete_nommu_region(region);
652 up_write(&nommu_region_sem);
654 if (region->vm_file)
655 fput(region->vm_file);
657 /* IO memory and memory shared directly out of the pagecache
658 * from ramfs/tmpfs mustn't be released here */
659 if (region->vm_flags & VM_MAPPED_COPY) {
660 kdebug("free series");
661 free_page_series(region->vm_start, region->vm_top);
663 kmem_cache_free(vm_region_jar, region);
664 } else {
665 up_write(&nommu_region_sem);
670 * release a reference to a region
672 static void put_nommu_region(struct vm_region *region)
674 down_write(&nommu_region_sem);
675 __put_nommu_region(region);
679 * update protection on a vma
681 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
683 #ifdef CONFIG_MPU
684 struct mm_struct *mm = vma->vm_mm;
685 long start = vma->vm_start & PAGE_MASK;
686 while (start < vma->vm_end) {
687 protect_page(mm, start, flags);
688 start += PAGE_SIZE;
690 update_protections(mm);
691 #endif
695 * add a VMA into a process's mm_struct in the appropriate place in the list
696 * and tree and add to the address space's page tree also if not an anonymous
697 * page
698 * - should be called with mm->mmap_sem held writelocked
700 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
702 struct vm_area_struct *pvma, *prev;
703 struct address_space *mapping;
704 struct rb_node **p, *parent, *rb_prev;
706 kenter(",%p", vma);
708 BUG_ON(!vma->vm_region);
710 mm->map_count++;
711 vma->vm_mm = mm;
713 protect_vma(vma, vma->vm_flags);
715 /* add the VMA to the mapping */
716 if (vma->vm_file) {
717 mapping = vma->vm_file->f_mapping;
719 mutex_lock(&mapping->i_mmap_mutex);
720 flush_dcache_mmap_lock(mapping);
721 vma_interval_tree_insert(vma, &mapping->i_mmap);
722 flush_dcache_mmap_unlock(mapping);
723 mutex_unlock(&mapping->i_mmap_mutex);
726 /* add the VMA to the tree */
727 parent = rb_prev = NULL;
728 p = &mm->mm_rb.rb_node;
729 while (*p) {
730 parent = *p;
731 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
733 /* sort by: start addr, end addr, VMA struct addr in that order
734 * (the latter is necessary as we may get identical VMAs) */
735 if (vma->vm_start < pvma->vm_start)
736 p = &(*p)->rb_left;
737 else if (vma->vm_start > pvma->vm_start) {
738 rb_prev = parent;
739 p = &(*p)->rb_right;
740 } else if (vma->vm_end < pvma->vm_end)
741 p = &(*p)->rb_left;
742 else if (vma->vm_end > pvma->vm_end) {
743 rb_prev = parent;
744 p = &(*p)->rb_right;
745 } else if (vma < pvma)
746 p = &(*p)->rb_left;
747 else if (vma > pvma) {
748 rb_prev = parent;
749 p = &(*p)->rb_right;
750 } else
751 BUG();
754 rb_link_node(&vma->vm_rb, parent, p);
755 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
757 /* add VMA to the VMA list also */
758 prev = NULL;
759 if (rb_prev)
760 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
762 __vma_link_list(mm, vma, prev, parent);
766 * delete a VMA from its owning mm_struct and address space
768 static void delete_vma_from_mm(struct vm_area_struct *vma)
770 struct address_space *mapping;
771 struct mm_struct *mm = vma->vm_mm;
773 kenter("%p", vma);
775 protect_vma(vma, 0);
777 mm->map_count--;
778 if (mm->mmap_cache == vma)
779 mm->mmap_cache = NULL;
781 /* remove the VMA from the mapping */
782 if (vma->vm_file) {
783 mapping = vma->vm_file->f_mapping;
785 mutex_lock(&mapping->i_mmap_mutex);
786 flush_dcache_mmap_lock(mapping);
787 vma_interval_tree_remove(vma, &mapping->i_mmap);
788 flush_dcache_mmap_unlock(mapping);
789 mutex_unlock(&mapping->i_mmap_mutex);
792 /* remove from the MM's tree and list */
793 rb_erase(&vma->vm_rb, &mm->mm_rb);
795 if (vma->vm_prev)
796 vma->vm_prev->vm_next = vma->vm_next;
797 else
798 mm->mmap = vma->vm_next;
800 if (vma->vm_next)
801 vma->vm_next->vm_prev = vma->vm_prev;
805 * destroy a VMA record
807 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
809 kenter("%p", vma);
810 if (vma->vm_ops && vma->vm_ops->close)
811 vma->vm_ops->close(vma);
812 if (vma->vm_file)
813 fput(vma->vm_file);
814 put_nommu_region(vma->vm_region);
815 kmem_cache_free(vm_area_cachep, vma);
819 * look up the first VMA in which addr resides, NULL if none
820 * - should be called with mm->mmap_sem at least held readlocked
822 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
824 struct vm_area_struct *vma;
826 /* check the cache first */
827 vma = ACCESS_ONCE(mm->mmap_cache);
828 if (vma && vma->vm_start <= addr && vma->vm_end > addr)
829 return vma;
831 /* trawl the list (there may be multiple mappings in which addr
832 * resides) */
833 for (vma = mm->mmap; vma; vma = vma->vm_next) {
834 if (vma->vm_start > addr)
835 return NULL;
836 if (vma->vm_end > addr) {
837 mm->mmap_cache = vma;
838 return vma;
842 return NULL;
844 EXPORT_SYMBOL(find_vma);
847 * find a VMA
848 * - we don't extend stack VMAs under NOMMU conditions
850 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
852 return find_vma(mm, addr);
856 * expand a stack to a given address
857 * - not supported under NOMMU conditions
859 int expand_stack(struct vm_area_struct *vma, unsigned long address)
861 return -ENOMEM;
865 * look up the first VMA exactly that exactly matches addr
866 * - should be called with mm->mmap_sem at least held readlocked
868 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
869 unsigned long addr,
870 unsigned long len)
872 struct vm_area_struct *vma;
873 unsigned long end = addr + len;
875 /* check the cache first */
876 vma = mm->mmap_cache;
877 if (vma && vma->vm_start == addr && vma->vm_end == end)
878 return vma;
880 /* trawl the list (there may be multiple mappings in which addr
881 * resides) */
882 for (vma = mm->mmap; vma; vma = vma->vm_next) {
883 if (vma->vm_start < addr)
884 continue;
885 if (vma->vm_start > addr)
886 return NULL;
887 if (vma->vm_end == end) {
888 mm->mmap_cache = vma;
889 return vma;
893 return NULL;
897 * determine whether a mapping should be permitted and, if so, what sort of
898 * mapping we're capable of supporting
900 static int validate_mmap_request(struct file *file,
901 unsigned long addr,
902 unsigned long len,
903 unsigned long prot,
904 unsigned long flags,
905 unsigned long pgoff,
906 unsigned long *_capabilities)
908 unsigned long capabilities, rlen;
909 int ret;
911 /* do the simple checks first */
912 if (flags & MAP_FIXED) {
913 printk(KERN_DEBUG
914 "%d: Can't do fixed-address/overlay mmap of RAM\n",
915 current->pid);
916 return -EINVAL;
919 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
920 (flags & MAP_TYPE) != MAP_SHARED)
921 return -EINVAL;
923 if (!len)
924 return -EINVAL;
926 /* Careful about overflows.. */
927 rlen = PAGE_ALIGN(len);
928 if (!rlen || rlen > TASK_SIZE)
929 return -ENOMEM;
931 /* offset overflow? */
932 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
933 return -EOVERFLOW;
935 if (file) {
936 /* validate file mapping requests */
937 struct address_space *mapping;
939 /* files must support mmap */
940 if (!file->f_op || !file->f_op->mmap)
941 return -ENODEV;
943 /* work out if what we've got could possibly be shared
944 * - we support chardevs that provide their own "memory"
945 * - we support files/blockdevs that are memory backed
947 mapping = file->f_mapping;
948 if (!mapping)
949 mapping = file_inode(file)->i_mapping;
951 capabilities = 0;
952 if (mapping && mapping->backing_dev_info)
953 capabilities = mapping->backing_dev_info->capabilities;
955 if (!capabilities) {
956 /* no explicit capabilities set, so assume some
957 * defaults */
958 switch (file_inode(file)->i_mode & S_IFMT) {
959 case S_IFREG:
960 case S_IFBLK:
961 capabilities = BDI_CAP_MAP_COPY;
962 break;
964 case S_IFCHR:
965 capabilities =
966 BDI_CAP_MAP_DIRECT |
967 BDI_CAP_READ_MAP |
968 BDI_CAP_WRITE_MAP;
969 break;
971 default:
972 return -EINVAL;
976 /* eliminate any capabilities that we can't support on this
977 * device */
978 if (!file->f_op->get_unmapped_area)
979 capabilities &= ~BDI_CAP_MAP_DIRECT;
980 if (!file->f_op->read)
981 capabilities &= ~BDI_CAP_MAP_COPY;
983 /* The file shall have been opened with read permission. */
984 if (!(file->f_mode & FMODE_READ))
985 return -EACCES;
987 if (flags & MAP_SHARED) {
988 /* do checks for writing, appending and locking */
989 if ((prot & PROT_WRITE) &&
990 !(file->f_mode & FMODE_WRITE))
991 return -EACCES;
993 if (IS_APPEND(file_inode(file)) &&
994 (file->f_mode & FMODE_WRITE))
995 return -EACCES;
997 if (locks_verify_locked(file_inode(file)))
998 return -EAGAIN;
1000 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1001 return -ENODEV;
1003 /* we mustn't privatise shared mappings */
1004 capabilities &= ~BDI_CAP_MAP_COPY;
1006 else {
1007 /* we're going to read the file into private memory we
1008 * allocate */
1009 if (!(capabilities & BDI_CAP_MAP_COPY))
1010 return -ENODEV;
1012 /* we don't permit a private writable mapping to be
1013 * shared with the backing device */
1014 if (prot & PROT_WRITE)
1015 capabilities &= ~BDI_CAP_MAP_DIRECT;
1018 if (capabilities & BDI_CAP_MAP_DIRECT) {
1019 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) ||
1020 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1021 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP))
1023 capabilities &= ~BDI_CAP_MAP_DIRECT;
1024 if (flags & MAP_SHARED) {
1025 printk(KERN_WARNING
1026 "MAP_SHARED not completely supported on !MMU\n");
1027 return -EINVAL;
1032 /* handle executable mappings and implied executable
1033 * mappings */
1034 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1035 if (prot & PROT_EXEC)
1036 return -EPERM;
1038 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1039 /* handle implication of PROT_EXEC by PROT_READ */
1040 if (current->personality & READ_IMPLIES_EXEC) {
1041 if (capabilities & BDI_CAP_EXEC_MAP)
1042 prot |= PROT_EXEC;
1045 else if ((prot & PROT_READ) &&
1046 (prot & PROT_EXEC) &&
1047 !(capabilities & BDI_CAP_EXEC_MAP)
1049 /* backing file is not executable, try to copy */
1050 capabilities &= ~BDI_CAP_MAP_DIRECT;
1053 else {
1054 /* anonymous mappings are always memory backed and can be
1055 * privately mapped
1057 capabilities = BDI_CAP_MAP_COPY;
1059 /* handle PROT_EXEC implication by PROT_READ */
1060 if ((prot & PROT_READ) &&
1061 (current->personality & READ_IMPLIES_EXEC))
1062 prot |= PROT_EXEC;
1065 /* allow the security API to have its say */
1066 ret = security_mmap_addr(addr);
1067 if (ret < 0)
1068 return ret;
1070 /* looks okay */
1071 *_capabilities = capabilities;
1072 return 0;
1076 * we've determined that we can make the mapping, now translate what we
1077 * now know into VMA flags
1079 static unsigned long determine_vm_flags(struct file *file,
1080 unsigned long prot,
1081 unsigned long flags,
1082 unsigned long capabilities)
1084 unsigned long vm_flags;
1086 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1087 /* vm_flags |= mm->def_flags; */
1089 if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1090 /* attempt to share read-only copies of mapped file chunks */
1091 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1092 if (file && !(prot & PROT_WRITE))
1093 vm_flags |= VM_MAYSHARE;
1094 } else {
1095 /* overlay a shareable mapping on the backing device or inode
1096 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1097 * romfs/cramfs */
1098 vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1099 if (flags & MAP_SHARED)
1100 vm_flags |= VM_SHARED;
1103 /* refuse to let anyone share private mappings with this process if
1104 * it's being traced - otherwise breakpoints set in it may interfere
1105 * with another untraced process
1107 if ((flags & MAP_PRIVATE) && current->ptrace)
1108 vm_flags &= ~VM_MAYSHARE;
1110 return vm_flags;
1114 * set up a shared mapping on a file (the driver or filesystem provides and
1115 * pins the storage)
1117 static int do_mmap_shared_file(struct vm_area_struct *vma)
1119 int ret;
1121 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1122 if (ret == 0) {
1123 vma->vm_region->vm_top = vma->vm_region->vm_end;
1124 return 0;
1126 if (ret != -ENOSYS)
1127 return ret;
1129 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1130 * opposed to tried but failed) so we can only give a suitable error as
1131 * it's not possible to make a private copy if MAP_SHARED was given */
1132 return -ENODEV;
1136 * set up a private mapping or an anonymous shared mapping
1138 static int do_mmap_private(struct vm_area_struct *vma,
1139 struct vm_region *region,
1140 unsigned long len,
1141 unsigned long capabilities)
1143 struct page *pages;
1144 unsigned long total, point, n;
1145 void *base;
1146 int ret, order;
1148 /* invoke the file's mapping function so that it can keep track of
1149 * shared mappings on devices or memory
1150 * - VM_MAYSHARE will be set if it may attempt to share
1152 if (capabilities & BDI_CAP_MAP_DIRECT) {
1153 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1154 if (ret == 0) {
1155 /* shouldn't return success if we're not sharing */
1156 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1157 vma->vm_region->vm_top = vma->vm_region->vm_end;
1158 return 0;
1160 if (ret != -ENOSYS)
1161 return ret;
1163 /* getting an ENOSYS error indicates that direct mmap isn't
1164 * possible (as opposed to tried but failed) so we'll try to
1165 * make a private copy of the data and map that instead */
1169 /* allocate some memory to hold the mapping
1170 * - note that this may not return a page-aligned address if the object
1171 * we're allocating is smaller than a page
1173 order = get_order(len);
1174 kdebug("alloc order %d for %lx", order, len);
1176 pages = alloc_pages(GFP_KERNEL, order);
1177 if (!pages)
1178 goto enomem;
1180 total = 1 << order;
1181 atomic_long_add(total, &mmap_pages_allocated);
1183 point = len >> PAGE_SHIFT;
1185 /* we allocated a power-of-2 sized page set, so we may want to trim off
1186 * the excess */
1187 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1188 while (total > point) {
1189 order = ilog2(total - point);
1190 n = 1 << order;
1191 kdebug("shave %lu/%lu @%lu", n, total - point, total);
1192 atomic_long_sub(n, &mmap_pages_allocated);
1193 total -= n;
1194 set_page_refcounted(pages + total);
1195 __free_pages(pages + total, order);
1199 for (point = 1; point < total; point++)
1200 set_page_refcounted(&pages[point]);
1202 base = page_address(pages);
1203 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1204 region->vm_start = (unsigned long) base;
1205 region->vm_end = region->vm_start + len;
1206 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1208 vma->vm_start = region->vm_start;
1209 vma->vm_end = region->vm_start + len;
1211 if (vma->vm_file) {
1212 /* read the contents of a file into the copy */
1213 mm_segment_t old_fs;
1214 loff_t fpos;
1216 fpos = vma->vm_pgoff;
1217 fpos <<= PAGE_SHIFT;
1219 old_fs = get_fs();
1220 set_fs(KERNEL_DS);
1221 ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1222 set_fs(old_fs);
1224 if (ret < 0)
1225 goto error_free;
1227 /* clear the last little bit */
1228 if (ret < len)
1229 memset(base + ret, 0, len - ret);
1233 return 0;
1235 error_free:
1236 free_page_series(region->vm_start, region->vm_top);
1237 region->vm_start = vma->vm_start = 0;
1238 region->vm_end = vma->vm_end = 0;
1239 region->vm_top = 0;
1240 return ret;
1242 enomem:
1243 printk("Allocation of length %lu from process %d (%s) failed\n",
1244 len, current->pid, current->comm);
1245 show_free_areas(0);
1246 return -ENOMEM;
1250 * handle mapping creation for uClinux
1252 unsigned long do_mmap_pgoff(struct file *file,
1253 unsigned long addr,
1254 unsigned long len,
1255 unsigned long prot,
1256 unsigned long flags,
1257 unsigned long pgoff,
1258 unsigned long *populate)
1260 struct vm_area_struct *vma;
1261 struct vm_region *region;
1262 struct rb_node *rb;
1263 unsigned long capabilities, vm_flags, result;
1264 int ret;
1266 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1268 *populate = 0;
1270 /* decide whether we should attempt the mapping, and if so what sort of
1271 * mapping */
1272 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1273 &capabilities);
1274 if (ret < 0) {
1275 kleave(" = %d [val]", ret);
1276 return ret;
1279 /* we ignore the address hint */
1280 addr = 0;
1281 len = PAGE_ALIGN(len);
1283 /* we've determined that we can make the mapping, now translate what we
1284 * now know into VMA flags */
1285 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1287 /* we're going to need to record the mapping */
1288 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1289 if (!region)
1290 goto error_getting_region;
1292 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1293 if (!vma)
1294 goto error_getting_vma;
1296 region->vm_usage = 1;
1297 region->vm_flags = vm_flags;
1298 region->vm_pgoff = pgoff;
1300 INIT_LIST_HEAD(&vma->anon_vma_chain);
1301 vma->vm_flags = vm_flags;
1302 vma->vm_pgoff = pgoff;
1304 if (file) {
1305 region->vm_file = get_file(file);
1306 vma->vm_file = get_file(file);
1309 down_write(&nommu_region_sem);
1311 /* if we want to share, we need to check for regions created by other
1312 * mmap() calls that overlap with our proposed mapping
1313 * - we can only share with a superset match on most regular files
1314 * - shared mappings on character devices and memory backed files are
1315 * permitted to overlap inexactly as far as we are concerned for in
1316 * these cases, sharing is handled in the driver or filesystem rather
1317 * than here
1319 if (vm_flags & VM_MAYSHARE) {
1320 struct vm_region *pregion;
1321 unsigned long pglen, rpglen, pgend, rpgend, start;
1323 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1324 pgend = pgoff + pglen;
1326 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1327 pregion = rb_entry(rb, struct vm_region, vm_rb);
1329 if (!(pregion->vm_flags & VM_MAYSHARE))
1330 continue;
1332 /* search for overlapping mappings on the same file */
1333 if (file_inode(pregion->vm_file) !=
1334 file_inode(file))
1335 continue;
1337 if (pregion->vm_pgoff >= pgend)
1338 continue;
1340 rpglen = pregion->vm_end - pregion->vm_start;
1341 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1342 rpgend = pregion->vm_pgoff + rpglen;
1343 if (pgoff >= rpgend)
1344 continue;
1346 /* handle inexactly overlapping matches between
1347 * mappings */
1348 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1349 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1350 /* new mapping is not a subset of the region */
1351 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1352 goto sharing_violation;
1353 continue;
1356 /* we've found a region we can share */
1357 pregion->vm_usage++;
1358 vma->vm_region = pregion;
1359 start = pregion->vm_start;
1360 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1361 vma->vm_start = start;
1362 vma->vm_end = start + len;
1364 if (pregion->vm_flags & VM_MAPPED_COPY) {
1365 kdebug("share copy");
1366 vma->vm_flags |= VM_MAPPED_COPY;
1367 } else {
1368 kdebug("share mmap");
1369 ret = do_mmap_shared_file(vma);
1370 if (ret < 0) {
1371 vma->vm_region = NULL;
1372 vma->vm_start = 0;
1373 vma->vm_end = 0;
1374 pregion->vm_usage--;
1375 pregion = NULL;
1376 goto error_just_free;
1379 fput(region->vm_file);
1380 kmem_cache_free(vm_region_jar, region);
1381 region = pregion;
1382 result = start;
1383 goto share;
1386 /* obtain the address at which to make a shared mapping
1387 * - this is the hook for quasi-memory character devices to
1388 * tell us the location of a shared mapping
1390 if (capabilities & BDI_CAP_MAP_DIRECT) {
1391 addr = file->f_op->get_unmapped_area(file, addr, len,
1392 pgoff, flags);
1393 if (IS_ERR_VALUE(addr)) {
1394 ret = addr;
1395 if (ret != -ENOSYS)
1396 goto error_just_free;
1398 /* the driver refused to tell us where to site
1399 * the mapping so we'll have to attempt to copy
1400 * it */
1401 ret = -ENODEV;
1402 if (!(capabilities & BDI_CAP_MAP_COPY))
1403 goto error_just_free;
1405 capabilities &= ~BDI_CAP_MAP_DIRECT;
1406 } else {
1407 vma->vm_start = region->vm_start = addr;
1408 vma->vm_end = region->vm_end = addr + len;
1413 vma->vm_region = region;
1415 /* set up the mapping
1416 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1418 if (file && vma->vm_flags & VM_SHARED)
1419 ret = do_mmap_shared_file(vma);
1420 else
1421 ret = do_mmap_private(vma, region, len, capabilities);
1422 if (ret < 0)
1423 goto error_just_free;
1424 add_nommu_region(region);
1426 /* clear anonymous mappings that don't ask for uninitialized data */
1427 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1428 memset((void *)region->vm_start, 0,
1429 region->vm_end - region->vm_start);
1431 /* okay... we have a mapping; now we have to register it */
1432 result = vma->vm_start;
1434 current->mm->total_vm += len >> PAGE_SHIFT;
1436 share:
1437 add_vma_to_mm(current->mm, vma);
1439 /* we flush the region from the icache only when the first executable
1440 * mapping of it is made */
1441 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1442 flush_icache_range(region->vm_start, region->vm_end);
1443 region->vm_icache_flushed = true;
1446 up_write(&nommu_region_sem);
1448 kleave(" = %lx", result);
1449 return result;
1451 error_just_free:
1452 up_write(&nommu_region_sem);
1453 error:
1454 if (region->vm_file)
1455 fput(region->vm_file);
1456 kmem_cache_free(vm_region_jar, region);
1457 if (vma->vm_file)
1458 fput(vma->vm_file);
1459 kmem_cache_free(vm_area_cachep, vma);
1460 kleave(" = %d", ret);
1461 return ret;
1463 sharing_violation:
1464 up_write(&nommu_region_sem);
1465 printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1466 ret = -EINVAL;
1467 goto error;
1469 error_getting_vma:
1470 kmem_cache_free(vm_region_jar, region);
1471 printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1472 " from process %d failed\n",
1473 len, current->pid);
1474 show_free_areas(0);
1475 return -ENOMEM;
1477 error_getting_region:
1478 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1479 " from process %d failed\n",
1480 len, current->pid);
1481 show_free_areas(0);
1482 return -ENOMEM;
1485 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1486 unsigned long, prot, unsigned long, flags,
1487 unsigned long, fd, unsigned long, pgoff)
1489 struct file *file = NULL;
1490 unsigned long retval = -EBADF;
1492 audit_mmap_fd(fd, flags);
1493 if (!(flags & MAP_ANONYMOUS)) {
1494 file = fget(fd);
1495 if (!file)
1496 goto out;
1499 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1501 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1503 if (file)
1504 fput(file);
1505 out:
1506 return retval;
1509 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1510 struct mmap_arg_struct {
1511 unsigned long addr;
1512 unsigned long len;
1513 unsigned long prot;
1514 unsigned long flags;
1515 unsigned long fd;
1516 unsigned long offset;
1519 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1521 struct mmap_arg_struct a;
1523 if (copy_from_user(&a, arg, sizeof(a)))
1524 return -EFAULT;
1525 if (a.offset & ~PAGE_MASK)
1526 return -EINVAL;
1528 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1529 a.offset >> PAGE_SHIFT);
1531 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1534 * split a vma into two pieces at address 'addr', a new vma is allocated either
1535 * for the first part or the tail.
1537 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1538 unsigned long addr, int new_below)
1540 struct vm_area_struct *new;
1541 struct vm_region *region;
1542 unsigned long npages;
1544 kenter("");
1546 /* we're only permitted to split anonymous regions (these should have
1547 * only a single usage on the region) */
1548 if (vma->vm_file)
1549 return -ENOMEM;
1551 if (mm->map_count >= sysctl_max_map_count)
1552 return -ENOMEM;
1554 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1555 if (!region)
1556 return -ENOMEM;
1558 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1559 if (!new) {
1560 kmem_cache_free(vm_region_jar, region);
1561 return -ENOMEM;
1564 /* most fields are the same, copy all, and then fixup */
1565 *new = *vma;
1566 *region = *vma->vm_region;
1567 new->vm_region = region;
1569 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1571 if (new_below) {
1572 region->vm_top = region->vm_end = new->vm_end = addr;
1573 } else {
1574 region->vm_start = new->vm_start = addr;
1575 region->vm_pgoff = new->vm_pgoff += npages;
1578 if (new->vm_ops && new->vm_ops->open)
1579 new->vm_ops->open(new);
1581 delete_vma_from_mm(vma);
1582 down_write(&nommu_region_sem);
1583 delete_nommu_region(vma->vm_region);
1584 if (new_below) {
1585 vma->vm_region->vm_start = vma->vm_start = addr;
1586 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1587 } else {
1588 vma->vm_region->vm_end = vma->vm_end = addr;
1589 vma->vm_region->vm_top = addr;
1591 add_nommu_region(vma->vm_region);
1592 add_nommu_region(new->vm_region);
1593 up_write(&nommu_region_sem);
1594 add_vma_to_mm(mm, vma);
1595 add_vma_to_mm(mm, new);
1596 return 0;
1600 * shrink a VMA by removing the specified chunk from either the beginning or
1601 * the end
1603 static int shrink_vma(struct mm_struct *mm,
1604 struct vm_area_struct *vma,
1605 unsigned long from, unsigned long to)
1607 struct vm_region *region;
1609 kenter("");
1611 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1612 * and list */
1613 delete_vma_from_mm(vma);
1614 if (from > vma->vm_start)
1615 vma->vm_end = from;
1616 else
1617 vma->vm_start = to;
1618 add_vma_to_mm(mm, vma);
1620 /* cut the backing region down to size */
1621 region = vma->vm_region;
1622 BUG_ON(region->vm_usage != 1);
1624 down_write(&nommu_region_sem);
1625 delete_nommu_region(region);
1626 if (from > region->vm_start) {
1627 to = region->vm_top;
1628 region->vm_top = region->vm_end = from;
1629 } else {
1630 region->vm_start = to;
1632 add_nommu_region(region);
1633 up_write(&nommu_region_sem);
1635 free_page_series(from, to);
1636 return 0;
1640 * release a mapping
1641 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1642 * VMA, though it need not cover the whole VMA
1644 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1646 struct vm_area_struct *vma;
1647 unsigned long end;
1648 int ret;
1650 kenter(",%lx,%zx", start, len);
1652 len = PAGE_ALIGN(len);
1653 if (len == 0)
1654 return -EINVAL;
1656 end = start + len;
1658 /* find the first potentially overlapping VMA */
1659 vma = find_vma(mm, start);
1660 if (!vma) {
1661 static int limit = 0;
1662 if (limit < 5) {
1663 printk(KERN_WARNING
1664 "munmap of memory not mmapped by process %d"
1665 " (%s): 0x%lx-0x%lx\n",
1666 current->pid, current->comm,
1667 start, start + len - 1);
1668 limit++;
1670 return -EINVAL;
1673 /* we're allowed to split an anonymous VMA but not a file-backed one */
1674 if (vma->vm_file) {
1675 do {
1676 if (start > vma->vm_start) {
1677 kleave(" = -EINVAL [miss]");
1678 return -EINVAL;
1680 if (end == vma->vm_end)
1681 goto erase_whole_vma;
1682 vma = vma->vm_next;
1683 } while (vma);
1684 kleave(" = -EINVAL [split file]");
1685 return -EINVAL;
1686 } else {
1687 /* the chunk must be a subset of the VMA found */
1688 if (start == vma->vm_start && end == vma->vm_end)
1689 goto erase_whole_vma;
1690 if (start < vma->vm_start || end > vma->vm_end) {
1691 kleave(" = -EINVAL [superset]");
1692 return -EINVAL;
1694 if (start & ~PAGE_MASK) {
1695 kleave(" = -EINVAL [unaligned start]");
1696 return -EINVAL;
1698 if (end != vma->vm_end && end & ~PAGE_MASK) {
1699 kleave(" = -EINVAL [unaligned split]");
1700 return -EINVAL;
1702 if (start != vma->vm_start && end != vma->vm_end) {
1703 ret = split_vma(mm, vma, start, 1);
1704 if (ret < 0) {
1705 kleave(" = %d [split]", ret);
1706 return ret;
1709 return shrink_vma(mm, vma, start, end);
1712 erase_whole_vma:
1713 delete_vma_from_mm(vma);
1714 delete_vma(mm, vma);
1715 kleave(" = 0");
1716 return 0;
1718 EXPORT_SYMBOL(do_munmap);
1720 int vm_munmap(unsigned long addr, size_t len)
1722 struct mm_struct *mm = current->mm;
1723 int ret;
1725 down_write(&mm->mmap_sem);
1726 ret = do_munmap(mm, addr, len);
1727 up_write(&mm->mmap_sem);
1728 return ret;
1730 EXPORT_SYMBOL(vm_munmap);
1732 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1734 return vm_munmap(addr, len);
1738 * release all the mappings made in a process's VM space
1740 void exit_mmap(struct mm_struct *mm)
1742 struct vm_area_struct *vma;
1744 if (!mm)
1745 return;
1747 kenter("");
1749 mm->total_vm = 0;
1751 while ((vma = mm->mmap)) {
1752 mm->mmap = vma->vm_next;
1753 delete_vma_from_mm(vma);
1754 delete_vma(mm, vma);
1755 cond_resched();
1758 kleave("");
1761 unsigned long vm_brk(unsigned long addr, unsigned long len)
1763 return -ENOMEM;
1767 * expand (or shrink) an existing mapping, potentially moving it at the same
1768 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1770 * under NOMMU conditions, we only permit changing a mapping's size, and only
1771 * as long as it stays within the region allocated by do_mmap_private() and the
1772 * block is not shareable
1774 * MREMAP_FIXED is not supported under NOMMU conditions
1776 static unsigned long do_mremap(unsigned long addr,
1777 unsigned long old_len, unsigned long new_len,
1778 unsigned long flags, unsigned long new_addr)
1780 struct vm_area_struct *vma;
1782 /* insanity checks first */
1783 old_len = PAGE_ALIGN(old_len);
1784 new_len = PAGE_ALIGN(new_len);
1785 if (old_len == 0 || new_len == 0)
1786 return (unsigned long) -EINVAL;
1788 if (addr & ~PAGE_MASK)
1789 return -EINVAL;
1791 if (flags & MREMAP_FIXED && new_addr != addr)
1792 return (unsigned long) -EINVAL;
1794 vma = find_vma_exact(current->mm, addr, old_len);
1795 if (!vma)
1796 return (unsigned long) -EINVAL;
1798 if (vma->vm_end != vma->vm_start + old_len)
1799 return (unsigned long) -EFAULT;
1801 if (vma->vm_flags & VM_MAYSHARE)
1802 return (unsigned long) -EPERM;
1804 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1805 return (unsigned long) -ENOMEM;
1807 /* all checks complete - do it */
1808 vma->vm_end = vma->vm_start + new_len;
1809 return vma->vm_start;
1812 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1813 unsigned long, new_len, unsigned long, flags,
1814 unsigned long, new_addr)
1816 unsigned long ret;
1818 down_write(&current->mm->mmap_sem);
1819 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1820 up_write(&current->mm->mmap_sem);
1821 return ret;
1824 struct page *follow_page_mask(struct vm_area_struct *vma,
1825 unsigned long address, unsigned int flags,
1826 unsigned int *page_mask)
1828 *page_mask = 0;
1829 return NULL;
1832 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1833 unsigned long pfn, unsigned long size, pgprot_t prot)
1835 if (addr != (pfn << PAGE_SHIFT))
1836 return -EINVAL;
1838 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1839 return 0;
1841 EXPORT_SYMBOL(remap_pfn_range);
1843 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1845 unsigned long pfn = start >> PAGE_SHIFT;
1846 unsigned long vm_len = vma->vm_end - vma->vm_start;
1848 pfn += vma->vm_pgoff;
1849 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1851 EXPORT_SYMBOL(vm_iomap_memory);
1853 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1854 unsigned long pgoff)
1856 unsigned int size = vma->vm_end - vma->vm_start;
1858 if (!(vma->vm_flags & VM_USERMAP))
1859 return -EINVAL;
1861 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1862 vma->vm_end = vma->vm_start + size;
1864 return 0;
1866 EXPORT_SYMBOL(remap_vmalloc_range);
1868 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1869 unsigned long len, unsigned long pgoff, unsigned long flags)
1871 return -ENOMEM;
1874 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1878 void unmap_mapping_range(struct address_space *mapping,
1879 loff_t const holebegin, loff_t const holelen,
1880 int even_cows)
1883 EXPORT_SYMBOL(unmap_mapping_range);
1886 * Check that a process has enough memory to allocate a new virtual
1887 * mapping. 0 means there is enough memory for the allocation to
1888 * succeed and -ENOMEM implies there is not.
1890 * We currently support three overcommit policies, which are set via the
1891 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1893 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1894 * Additional code 2002 Jul 20 by Robert Love.
1896 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1898 * Note this is a helper function intended to be used by LSMs which
1899 * wish to use this logic.
1901 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1903 unsigned long free, allowed, reserve;
1905 vm_acct_memory(pages);
1908 * Sometimes we want to use more memory than we have
1910 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1911 return 0;
1913 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1914 free = global_page_state(NR_FREE_PAGES);
1915 free += global_page_state(NR_FILE_PAGES);
1918 * shmem pages shouldn't be counted as free in this
1919 * case, they can't be purged, only swapped out, and
1920 * that won't affect the overall amount of available
1921 * memory in the system.
1923 free -= global_page_state(NR_SHMEM);
1925 free += get_nr_swap_pages();
1928 * Any slabs which are created with the
1929 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1930 * which are reclaimable, under pressure. The dentry
1931 * cache and most inode caches should fall into this
1933 free += global_page_state(NR_SLAB_RECLAIMABLE);
1936 * Leave reserved pages. The pages are not for anonymous pages.
1938 if (free <= totalreserve_pages)
1939 goto error;
1940 else
1941 free -= totalreserve_pages;
1944 * Reserve some for root
1946 if (!cap_sys_admin)
1947 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1949 if (free > pages)
1950 return 0;
1952 goto error;
1955 allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1957 * Reserve some 3% for root
1959 if (!cap_sys_admin)
1960 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1961 allowed += total_swap_pages;
1964 * Don't let a single process grow so big a user can't recover
1966 if (mm) {
1967 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1968 allowed -= min(mm->total_vm / 32, reserve);
1971 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1972 return 0;
1974 error:
1975 vm_unacct_memory(pages);
1977 return -ENOMEM;
1980 int in_gate_area_no_mm(unsigned long addr)
1982 return 0;
1985 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1987 BUG();
1988 return 0;
1990 EXPORT_SYMBOL(filemap_fault);
1992 int generic_file_remap_pages(struct vm_area_struct *vma, unsigned long addr,
1993 unsigned long size, pgoff_t pgoff)
1995 BUG();
1996 return 0;
1998 EXPORT_SYMBOL(generic_file_remap_pages);
2000 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
2001 unsigned long addr, void *buf, int len, int write)
2003 struct vm_area_struct *vma;
2005 down_read(&mm->mmap_sem);
2007 /* the access must start within one of the target process's mappings */
2008 vma = find_vma(mm, addr);
2009 if (vma) {
2010 /* don't overrun this mapping */
2011 if (addr + len >= vma->vm_end)
2012 len = vma->vm_end - addr;
2014 /* only read or write mappings where it is permitted */
2015 if (write && vma->vm_flags & VM_MAYWRITE)
2016 copy_to_user_page(vma, NULL, addr,
2017 (void *) addr, buf, len);
2018 else if (!write && vma->vm_flags & VM_MAYREAD)
2019 copy_from_user_page(vma, NULL, addr,
2020 buf, (void *) addr, len);
2021 else
2022 len = 0;
2023 } else {
2024 len = 0;
2027 up_read(&mm->mmap_sem);
2029 return len;
2033 * @access_remote_vm - access another process' address space
2034 * @mm: the mm_struct of the target address space
2035 * @addr: start address to access
2036 * @buf: source or destination buffer
2037 * @len: number of bytes to transfer
2038 * @write: whether the access is a write
2040 * The caller must hold a reference on @mm.
2042 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2043 void *buf, int len, int write)
2045 return __access_remote_vm(NULL, mm, addr, buf, len, write);
2049 * Access another process' address space.
2050 * - source/target buffer must be kernel space
2052 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2054 struct mm_struct *mm;
2056 if (addr + len < addr)
2057 return 0;
2059 mm = get_task_mm(tsk);
2060 if (!mm)
2061 return 0;
2063 len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2065 mmput(mm);
2066 return len;
2070 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2071 * @inode: The inode to check
2072 * @size: The current filesize of the inode
2073 * @newsize: The proposed filesize of the inode
2075 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2076 * make sure that that any outstanding VMAs aren't broken and then shrink the
2077 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2078 * automatically grant mappings that are too large.
2080 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2081 size_t newsize)
2083 struct vm_area_struct *vma;
2084 struct vm_region *region;
2085 pgoff_t low, high;
2086 size_t r_size, r_top;
2088 low = newsize >> PAGE_SHIFT;
2089 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2091 down_write(&nommu_region_sem);
2092 mutex_lock(&inode->i_mapping->i_mmap_mutex);
2094 /* search for VMAs that fall within the dead zone */
2095 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2096 /* found one - only interested if it's shared out of the page
2097 * cache */
2098 if (vma->vm_flags & VM_SHARED) {
2099 mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2100 up_write(&nommu_region_sem);
2101 return -ETXTBSY; /* not quite true, but near enough */
2105 /* reduce any regions that overlap the dead zone - if in existence,
2106 * these will be pointed to by VMAs that don't overlap the dead zone
2108 * we don't check for any regions that start beyond the EOF as there
2109 * shouldn't be any
2111 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap,
2112 0, ULONG_MAX) {
2113 if (!(vma->vm_flags & VM_SHARED))
2114 continue;
2116 region = vma->vm_region;
2117 r_size = region->vm_top - region->vm_start;
2118 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2120 if (r_top > newsize) {
2121 region->vm_top -= r_top - newsize;
2122 if (region->vm_end > region->vm_top)
2123 region->vm_end = region->vm_top;
2127 mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2128 up_write(&nommu_region_sem);
2129 return 0;
2133 * Initialise sysctl_user_reserve_kbytes.
2135 * This is intended to prevent a user from starting a single memory hogging
2136 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2137 * mode.
2139 * The default value is min(3% of free memory, 128MB)
2140 * 128MB is enough to recover with sshd/login, bash, and top/kill.
2142 static int __meminit init_user_reserve(void)
2144 unsigned long free_kbytes;
2146 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2148 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
2149 return 0;
2151 module_init(init_user_reserve)
2154 * Initialise sysctl_admin_reserve_kbytes.
2156 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2157 * to log in and kill a memory hogging process.
2159 * Systems with more than 256MB will reserve 8MB, enough to recover
2160 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2161 * only reserve 3% of free pages by default.
2163 static int __meminit init_admin_reserve(void)
2165 unsigned long free_kbytes;
2167 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2169 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
2170 return 0;
2172 module_init(init_admin_reserve)