4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
7 * See Documentation/nommu-mmap.txt
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
16 #include <linux/export.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mount.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/audit.h>
32 #include <linux/sched/sysctl.h>
34 #include <asm/uaccess.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mmu_context.h>
41 #define kenter(FMT, ...) \
42 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
43 #define kleave(FMT, ...) \
44 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
45 #define kdebug(FMT, ...) \
46 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
48 #define kenter(FMT, ...) \
49 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
50 #define kleave(FMT, ...) \
51 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
52 #define kdebug(FMT, ...) \
53 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
58 unsigned long max_mapnr
;
59 unsigned long highest_memmap_pfn
;
60 struct percpu_counter vm_committed_as
;
61 int sysctl_overcommit_memory
= OVERCOMMIT_GUESS
; /* heuristic overcommit */
62 int sysctl_overcommit_ratio
= 50; /* default is 50% */
63 int sysctl_max_map_count
= DEFAULT_MAX_MAP_COUNT
;
64 int sysctl_nr_trim_pages
= CONFIG_NOMMU_INITIAL_TRIM_EXCESS
;
65 unsigned long sysctl_user_reserve_kbytes __read_mostly
= 1UL << 17; /* 128MB */
66 unsigned long sysctl_admin_reserve_kbytes __read_mostly
= 1UL << 13; /* 8MB */
67 int heap_stack_gap
= 0;
69 atomic_long_t mmap_pages_allocated
;
72 * The global memory commitment made in the system can be a metric
73 * that can be used to drive ballooning decisions when Linux is hosted
74 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
75 * balancing memory across competing virtual machines that are hosted.
76 * Several metrics drive this policy engine including the guest reported
79 unsigned long vm_memory_committed(void)
81 return percpu_counter_read_positive(&vm_committed_as
);
84 EXPORT_SYMBOL_GPL(vm_memory_committed
);
86 EXPORT_SYMBOL(mem_map
);
88 /* list of mapped, potentially shareable regions */
89 static struct kmem_cache
*vm_region_jar
;
90 struct rb_root nommu_region_tree
= RB_ROOT
;
91 DECLARE_RWSEM(nommu_region_sem
);
93 const struct vm_operations_struct generic_file_vm_ops
= {
97 * Return the total memory allocated for this pointer, not
98 * just what the caller asked for.
100 * Doesn't have to be accurate, i.e. may have races.
102 unsigned int kobjsize(const void *objp
)
107 * If the object we have should not have ksize performed on it,
110 if (!objp
|| !virt_addr_valid(objp
))
113 page
= virt_to_head_page(objp
);
116 * If the allocator sets PageSlab, we know the pointer came from
123 * If it's not a compound page, see if we have a matching VMA
124 * region. This test is intentionally done in reverse order,
125 * so if there's no VMA, we still fall through and hand back
126 * PAGE_SIZE for 0-order pages.
128 if (!PageCompound(page
)) {
129 struct vm_area_struct
*vma
;
131 vma
= find_vma(current
->mm
, (unsigned long)objp
);
133 return vma
->vm_end
- vma
->vm_start
;
137 * The ksize() function is only guaranteed to work for pointers
138 * returned by kmalloc(). So handle arbitrary pointers here.
140 return PAGE_SIZE
<< compound_order(page
);
143 long __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
144 unsigned long start
, unsigned long nr_pages
,
145 unsigned int foll_flags
, struct page
**pages
,
146 struct vm_area_struct
**vmas
, int *nonblocking
)
148 struct vm_area_struct
*vma
;
149 unsigned long vm_flags
;
152 /* calculate required read or write permissions.
153 * If FOLL_FORCE is set, we only require the "MAY" flags.
155 vm_flags
= (foll_flags
& FOLL_WRITE
) ?
156 (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
157 vm_flags
&= (foll_flags
& FOLL_FORCE
) ?
158 (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
160 for (i
= 0; i
< nr_pages
; i
++) {
161 vma
= find_vma(mm
, start
);
163 goto finish_or_fault
;
165 /* protect what we can, including chardevs */
166 if ((vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
167 !(vm_flags
& vma
->vm_flags
))
168 goto finish_or_fault
;
171 pages
[i
] = virt_to_page(start
);
173 page_cache_get(pages
[i
]);
177 start
= (start
+ PAGE_SIZE
) & PAGE_MASK
;
183 return i
? : -EFAULT
;
187 * get a list of pages in an address range belonging to the specified process
188 * and indicate the VMA that covers each page
189 * - this is potentially dodgy as we may end incrementing the page count of a
190 * slab page or a secondary page from a compound page
191 * - don't permit access to VMAs that don't support it, such as I/O mappings
193 long get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
194 unsigned long start
, unsigned long nr_pages
,
195 int write
, int force
, struct page
**pages
,
196 struct vm_area_struct
**vmas
)
205 return __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
, vmas
,
208 EXPORT_SYMBOL(get_user_pages
);
211 * follow_pfn - look up PFN at a user virtual address
212 * @vma: memory mapping
213 * @address: user virtual address
214 * @pfn: location to store found PFN
216 * Only IO mappings and raw PFN mappings are allowed.
218 * Returns zero and the pfn at @pfn on success, -ve otherwise.
220 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
223 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
226 *pfn
= address
>> PAGE_SHIFT
;
229 EXPORT_SYMBOL(follow_pfn
);
231 LIST_HEAD(vmap_area_list
);
233 void vfree(const void *addr
)
237 EXPORT_SYMBOL(vfree
);
239 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
242 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
243 * returns only a logical address.
245 return kmalloc(size
, (gfp_mask
| __GFP_COMP
) & ~__GFP_HIGHMEM
);
247 EXPORT_SYMBOL(__vmalloc
);
249 void *vmalloc_user(unsigned long size
)
253 ret
= __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
256 struct vm_area_struct
*vma
;
258 down_write(¤t
->mm
->mmap_sem
);
259 vma
= find_vma(current
->mm
, (unsigned long)ret
);
261 vma
->vm_flags
|= VM_USERMAP
;
262 up_write(¤t
->mm
->mmap_sem
);
267 EXPORT_SYMBOL(vmalloc_user
);
269 struct page
*vmalloc_to_page(const void *addr
)
271 return virt_to_page(addr
);
273 EXPORT_SYMBOL(vmalloc_to_page
);
275 unsigned long vmalloc_to_pfn(const void *addr
)
277 return page_to_pfn(virt_to_page(addr
));
279 EXPORT_SYMBOL(vmalloc_to_pfn
);
281 long vread(char *buf
, char *addr
, unsigned long count
)
283 /* Don't allow overflow */
284 if ((unsigned long) buf
+ count
< count
)
285 count
= -(unsigned long) buf
;
287 memcpy(buf
, addr
, count
);
291 long vwrite(char *buf
, char *addr
, unsigned long count
)
293 /* Don't allow overflow */
294 if ((unsigned long) addr
+ count
< count
)
295 count
= -(unsigned long) addr
;
297 memcpy(addr
, buf
, count
);
302 * vmalloc - allocate virtually continguos memory
304 * @size: allocation size
306 * Allocate enough pages to cover @size from the page level
307 * allocator and map them into continguos kernel virtual space.
309 * For tight control over page level allocator and protection flags
310 * use __vmalloc() instead.
312 void *vmalloc(unsigned long size
)
314 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
);
316 EXPORT_SYMBOL(vmalloc
);
319 * vzalloc - allocate virtually continguos memory with zero fill
321 * @size: allocation size
323 * Allocate enough pages to cover @size from the page level
324 * allocator and map them into continguos kernel virtual space.
325 * The memory allocated is set to zero.
327 * For tight control over page level allocator and protection flags
328 * use __vmalloc() instead.
330 void *vzalloc(unsigned long size
)
332 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
335 EXPORT_SYMBOL(vzalloc
);
338 * vmalloc_node - allocate memory on a specific node
339 * @size: allocation size
342 * Allocate enough pages to cover @size from the page level
343 * allocator and map them into contiguous kernel virtual space.
345 * For tight control over page level allocator and protection flags
346 * use __vmalloc() instead.
348 void *vmalloc_node(unsigned long size
, int node
)
350 return vmalloc(size
);
352 EXPORT_SYMBOL(vmalloc_node
);
355 * vzalloc_node - allocate memory on a specific node with zero fill
356 * @size: allocation size
359 * Allocate enough pages to cover @size from the page level
360 * allocator and map them into contiguous kernel virtual space.
361 * The memory allocated is set to zero.
363 * For tight control over page level allocator and protection flags
364 * use __vmalloc() instead.
366 void *vzalloc_node(unsigned long size
, int node
)
368 return vzalloc(size
);
370 EXPORT_SYMBOL(vzalloc_node
);
372 #ifndef PAGE_KERNEL_EXEC
373 # define PAGE_KERNEL_EXEC PAGE_KERNEL
377 * vmalloc_exec - allocate virtually contiguous, executable memory
378 * @size: allocation size
380 * Kernel-internal function to allocate enough pages to cover @size
381 * the page level allocator and map them into contiguous and
382 * executable kernel virtual space.
384 * For tight control over page level allocator and protection flags
385 * use __vmalloc() instead.
388 void *vmalloc_exec(unsigned long size
)
390 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
);
394 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
395 * @size: allocation size
397 * Allocate enough 32bit PA addressable pages to cover @size from the
398 * page level allocator and map them into continguos kernel virtual space.
400 void *vmalloc_32(unsigned long size
)
402 return __vmalloc(size
, GFP_KERNEL
, PAGE_KERNEL
);
404 EXPORT_SYMBOL(vmalloc_32
);
407 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
408 * @size: allocation size
410 * The resulting memory area is 32bit addressable and zeroed so it can be
411 * mapped to userspace without leaking data.
413 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
414 * remap_vmalloc_range() are permissible.
416 void *vmalloc_32_user(unsigned long size
)
419 * We'll have to sort out the ZONE_DMA bits for 64-bit,
420 * but for now this can simply use vmalloc_user() directly.
422 return vmalloc_user(size
);
424 EXPORT_SYMBOL(vmalloc_32_user
);
426 void *vmap(struct page
**pages
, unsigned int count
, unsigned long flags
, pgprot_t prot
)
433 void vunmap(const void *addr
)
437 EXPORT_SYMBOL(vunmap
);
439 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
444 EXPORT_SYMBOL(vm_map_ram
);
446 void vm_unmap_ram(const void *mem
, unsigned int count
)
450 EXPORT_SYMBOL(vm_unmap_ram
);
452 void vm_unmap_aliases(void)
455 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
458 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
461 void __attribute__((weak
)) vmalloc_sync_all(void)
466 * alloc_vm_area - allocate a range of kernel address space
467 * @size: size of the area
469 * Returns: NULL on failure, vm_struct on success
471 * This function reserves a range of kernel address space, and
472 * allocates pagetables to map that range. No actual mappings
473 * are created. If the kernel address space is not shared
474 * between processes, it syncs the pagetable across all
477 struct vm_struct
*alloc_vm_area(size_t size
, pte_t
**ptes
)
482 EXPORT_SYMBOL_GPL(alloc_vm_area
);
484 void free_vm_area(struct vm_struct
*area
)
488 EXPORT_SYMBOL_GPL(free_vm_area
);
490 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
495 EXPORT_SYMBOL(vm_insert_page
);
498 * sys_brk() for the most part doesn't need the global kernel
499 * lock, except when an application is doing something nasty
500 * like trying to un-brk an area that has already been mapped
501 * to a regular file. in this case, the unmapping will need
502 * to invoke file system routines that need the global lock.
504 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
506 struct mm_struct
*mm
= current
->mm
;
508 if (brk
< mm
->start_brk
|| brk
> mm
->context
.end_brk
)
515 * Always allow shrinking brk
517 if (brk
<= mm
->brk
) {
523 * Ok, looks good - let it rip.
525 flush_icache_range(mm
->brk
, brk
);
526 return mm
->brk
= brk
;
530 * initialise the VMA and region record slabs
532 void __init
mmap_init(void)
536 ret
= percpu_counter_init(&vm_committed_as
, 0);
538 vm_region_jar
= KMEM_CACHE(vm_region
, SLAB_PANIC
);
542 * validate the region tree
543 * - the caller must hold the region lock
545 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
546 static noinline
void validate_nommu_regions(void)
548 struct vm_region
*region
, *last
;
549 struct rb_node
*p
, *lastp
;
551 lastp
= rb_first(&nommu_region_tree
);
555 last
= rb_entry(lastp
, struct vm_region
, vm_rb
);
556 BUG_ON(unlikely(last
->vm_end
<= last
->vm_start
));
557 BUG_ON(unlikely(last
->vm_top
< last
->vm_end
));
559 while ((p
= rb_next(lastp
))) {
560 region
= rb_entry(p
, struct vm_region
, vm_rb
);
561 last
= rb_entry(lastp
, struct vm_region
, vm_rb
);
563 BUG_ON(unlikely(region
->vm_end
<= region
->vm_start
));
564 BUG_ON(unlikely(region
->vm_top
< region
->vm_end
));
565 BUG_ON(unlikely(region
->vm_start
< last
->vm_top
));
571 static void validate_nommu_regions(void)
577 * add a region into the global tree
579 static void add_nommu_region(struct vm_region
*region
)
581 struct vm_region
*pregion
;
582 struct rb_node
**p
, *parent
;
584 validate_nommu_regions();
587 p
= &nommu_region_tree
.rb_node
;
590 pregion
= rb_entry(parent
, struct vm_region
, vm_rb
);
591 if (region
->vm_start
< pregion
->vm_start
)
593 else if (region
->vm_start
> pregion
->vm_start
)
595 else if (pregion
== region
)
601 rb_link_node(®ion
->vm_rb
, parent
, p
);
602 rb_insert_color(®ion
->vm_rb
, &nommu_region_tree
);
604 validate_nommu_regions();
608 * delete a region from the global tree
610 static void delete_nommu_region(struct vm_region
*region
)
612 BUG_ON(!nommu_region_tree
.rb_node
);
614 validate_nommu_regions();
615 rb_erase(®ion
->vm_rb
, &nommu_region_tree
);
616 validate_nommu_regions();
620 * free a contiguous series of pages
622 static void free_page_series(unsigned long from
, unsigned long to
)
624 for (; from
< to
; from
+= PAGE_SIZE
) {
625 struct page
*page
= virt_to_page(from
);
627 kdebug("- free %lx", from
);
628 atomic_long_dec(&mmap_pages_allocated
);
629 if (page_count(page
) != 1)
630 kdebug("free page %p: refcount not one: %d",
631 page
, page_count(page
));
637 * release a reference to a region
638 * - the caller must hold the region semaphore for writing, which this releases
639 * - the region may not have been added to the tree yet, in which case vm_top
640 * will equal vm_start
642 static void __put_nommu_region(struct vm_region
*region
)
643 __releases(nommu_region_sem
)
645 kenter("%p{%d}", region
, region
->vm_usage
);
647 BUG_ON(!nommu_region_tree
.rb_node
);
649 if (--region
->vm_usage
== 0) {
650 if (region
->vm_top
> region
->vm_start
)
651 delete_nommu_region(region
);
652 up_write(&nommu_region_sem
);
655 fput(region
->vm_file
);
657 /* IO memory and memory shared directly out of the pagecache
658 * from ramfs/tmpfs mustn't be released here */
659 if (region
->vm_flags
& VM_MAPPED_COPY
) {
660 kdebug("free series");
661 free_page_series(region
->vm_start
, region
->vm_top
);
663 kmem_cache_free(vm_region_jar
, region
);
665 up_write(&nommu_region_sem
);
670 * release a reference to a region
672 static void put_nommu_region(struct vm_region
*region
)
674 down_write(&nommu_region_sem
);
675 __put_nommu_region(region
);
679 * update protection on a vma
681 static void protect_vma(struct vm_area_struct
*vma
, unsigned long flags
)
684 struct mm_struct
*mm
= vma
->vm_mm
;
685 long start
= vma
->vm_start
& PAGE_MASK
;
686 while (start
< vma
->vm_end
) {
687 protect_page(mm
, start
, flags
);
690 update_protections(mm
);
695 * add a VMA into a process's mm_struct in the appropriate place in the list
696 * and tree and add to the address space's page tree also if not an anonymous
698 * - should be called with mm->mmap_sem held writelocked
700 static void add_vma_to_mm(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
702 struct vm_area_struct
*pvma
, *prev
;
703 struct address_space
*mapping
;
704 struct rb_node
**p
, *parent
, *rb_prev
;
708 BUG_ON(!vma
->vm_region
);
713 protect_vma(vma
, vma
->vm_flags
);
715 /* add the VMA to the mapping */
717 mapping
= vma
->vm_file
->f_mapping
;
719 mutex_lock(&mapping
->i_mmap_mutex
);
720 flush_dcache_mmap_lock(mapping
);
721 vma_interval_tree_insert(vma
, &mapping
->i_mmap
);
722 flush_dcache_mmap_unlock(mapping
);
723 mutex_unlock(&mapping
->i_mmap_mutex
);
726 /* add the VMA to the tree */
727 parent
= rb_prev
= NULL
;
728 p
= &mm
->mm_rb
.rb_node
;
731 pvma
= rb_entry(parent
, struct vm_area_struct
, vm_rb
);
733 /* sort by: start addr, end addr, VMA struct addr in that order
734 * (the latter is necessary as we may get identical VMAs) */
735 if (vma
->vm_start
< pvma
->vm_start
)
737 else if (vma
->vm_start
> pvma
->vm_start
) {
740 } else if (vma
->vm_end
< pvma
->vm_end
)
742 else if (vma
->vm_end
> pvma
->vm_end
) {
745 } else if (vma
< pvma
)
747 else if (vma
> pvma
) {
754 rb_link_node(&vma
->vm_rb
, parent
, p
);
755 rb_insert_color(&vma
->vm_rb
, &mm
->mm_rb
);
757 /* add VMA to the VMA list also */
760 prev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
762 __vma_link_list(mm
, vma
, prev
, parent
);
766 * delete a VMA from its owning mm_struct and address space
768 static void delete_vma_from_mm(struct vm_area_struct
*vma
)
770 struct address_space
*mapping
;
771 struct mm_struct
*mm
= vma
->vm_mm
;
778 if (mm
->mmap_cache
== vma
)
779 mm
->mmap_cache
= NULL
;
781 /* remove the VMA from the mapping */
783 mapping
= vma
->vm_file
->f_mapping
;
785 mutex_lock(&mapping
->i_mmap_mutex
);
786 flush_dcache_mmap_lock(mapping
);
787 vma_interval_tree_remove(vma
, &mapping
->i_mmap
);
788 flush_dcache_mmap_unlock(mapping
);
789 mutex_unlock(&mapping
->i_mmap_mutex
);
792 /* remove from the MM's tree and list */
793 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
796 vma
->vm_prev
->vm_next
= vma
->vm_next
;
798 mm
->mmap
= vma
->vm_next
;
801 vma
->vm_next
->vm_prev
= vma
->vm_prev
;
805 * destroy a VMA record
807 static void delete_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
810 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
811 vma
->vm_ops
->close(vma
);
814 put_nommu_region(vma
->vm_region
);
815 kmem_cache_free(vm_area_cachep
, vma
);
819 * look up the first VMA in which addr resides, NULL if none
820 * - should be called with mm->mmap_sem at least held readlocked
822 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
824 struct vm_area_struct
*vma
;
826 /* check the cache first */
827 vma
= ACCESS_ONCE(mm
->mmap_cache
);
828 if (vma
&& vma
->vm_start
<= addr
&& vma
->vm_end
> addr
)
831 /* trawl the list (there may be multiple mappings in which addr
833 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
834 if (vma
->vm_start
> addr
)
836 if (vma
->vm_end
> addr
) {
837 mm
->mmap_cache
= vma
;
844 EXPORT_SYMBOL(find_vma
);
848 * - we don't extend stack VMAs under NOMMU conditions
850 struct vm_area_struct
*find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
852 return find_vma(mm
, addr
);
856 * expand a stack to a given address
857 * - not supported under NOMMU conditions
859 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
865 * look up the first VMA exactly that exactly matches addr
866 * - should be called with mm->mmap_sem at least held readlocked
868 static struct vm_area_struct
*find_vma_exact(struct mm_struct
*mm
,
872 struct vm_area_struct
*vma
;
873 unsigned long end
= addr
+ len
;
875 /* check the cache first */
876 vma
= mm
->mmap_cache
;
877 if (vma
&& vma
->vm_start
== addr
&& vma
->vm_end
== end
)
880 /* trawl the list (there may be multiple mappings in which addr
882 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
883 if (vma
->vm_start
< addr
)
885 if (vma
->vm_start
> addr
)
887 if (vma
->vm_end
== end
) {
888 mm
->mmap_cache
= vma
;
897 * determine whether a mapping should be permitted and, if so, what sort of
898 * mapping we're capable of supporting
900 static int validate_mmap_request(struct file
*file
,
906 unsigned long *_capabilities
)
908 unsigned long capabilities
, rlen
;
911 /* do the simple checks first */
912 if (flags
& MAP_FIXED
) {
914 "%d: Can't do fixed-address/overlay mmap of RAM\n",
919 if ((flags
& MAP_TYPE
) != MAP_PRIVATE
&&
920 (flags
& MAP_TYPE
) != MAP_SHARED
)
926 /* Careful about overflows.. */
927 rlen
= PAGE_ALIGN(len
);
928 if (!rlen
|| rlen
> TASK_SIZE
)
931 /* offset overflow? */
932 if ((pgoff
+ (rlen
>> PAGE_SHIFT
)) < pgoff
)
936 /* validate file mapping requests */
937 struct address_space
*mapping
;
939 /* files must support mmap */
940 if (!file
->f_op
|| !file
->f_op
->mmap
)
943 /* work out if what we've got could possibly be shared
944 * - we support chardevs that provide their own "memory"
945 * - we support files/blockdevs that are memory backed
947 mapping
= file
->f_mapping
;
949 mapping
= file_inode(file
)->i_mapping
;
952 if (mapping
&& mapping
->backing_dev_info
)
953 capabilities
= mapping
->backing_dev_info
->capabilities
;
956 /* no explicit capabilities set, so assume some
958 switch (file_inode(file
)->i_mode
& S_IFMT
) {
961 capabilities
= BDI_CAP_MAP_COPY
;
976 /* eliminate any capabilities that we can't support on this
978 if (!file
->f_op
->get_unmapped_area
)
979 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
980 if (!file
->f_op
->read
)
981 capabilities
&= ~BDI_CAP_MAP_COPY
;
983 /* The file shall have been opened with read permission. */
984 if (!(file
->f_mode
& FMODE_READ
))
987 if (flags
& MAP_SHARED
) {
988 /* do checks for writing, appending and locking */
989 if ((prot
& PROT_WRITE
) &&
990 !(file
->f_mode
& FMODE_WRITE
))
993 if (IS_APPEND(file_inode(file
)) &&
994 (file
->f_mode
& FMODE_WRITE
))
997 if (locks_verify_locked(file_inode(file
)))
1000 if (!(capabilities
& BDI_CAP_MAP_DIRECT
))
1003 /* we mustn't privatise shared mappings */
1004 capabilities
&= ~BDI_CAP_MAP_COPY
;
1007 /* we're going to read the file into private memory we
1009 if (!(capabilities
& BDI_CAP_MAP_COPY
))
1012 /* we don't permit a private writable mapping to be
1013 * shared with the backing device */
1014 if (prot
& PROT_WRITE
)
1015 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
1018 if (capabilities
& BDI_CAP_MAP_DIRECT
) {
1019 if (((prot
& PROT_READ
) && !(capabilities
& BDI_CAP_READ_MAP
)) ||
1020 ((prot
& PROT_WRITE
) && !(capabilities
& BDI_CAP_WRITE_MAP
)) ||
1021 ((prot
& PROT_EXEC
) && !(capabilities
& BDI_CAP_EXEC_MAP
))
1023 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
1024 if (flags
& MAP_SHARED
) {
1026 "MAP_SHARED not completely supported on !MMU\n");
1032 /* handle executable mappings and implied executable
1034 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
) {
1035 if (prot
& PROT_EXEC
)
1038 else if ((prot
& PROT_READ
) && !(prot
& PROT_EXEC
)) {
1039 /* handle implication of PROT_EXEC by PROT_READ */
1040 if (current
->personality
& READ_IMPLIES_EXEC
) {
1041 if (capabilities
& BDI_CAP_EXEC_MAP
)
1045 else if ((prot
& PROT_READ
) &&
1046 (prot
& PROT_EXEC
) &&
1047 !(capabilities
& BDI_CAP_EXEC_MAP
)
1049 /* backing file is not executable, try to copy */
1050 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
1054 /* anonymous mappings are always memory backed and can be
1057 capabilities
= BDI_CAP_MAP_COPY
;
1059 /* handle PROT_EXEC implication by PROT_READ */
1060 if ((prot
& PROT_READ
) &&
1061 (current
->personality
& READ_IMPLIES_EXEC
))
1065 /* allow the security API to have its say */
1066 ret
= security_mmap_addr(addr
);
1071 *_capabilities
= capabilities
;
1076 * we've determined that we can make the mapping, now translate what we
1077 * now know into VMA flags
1079 static unsigned long determine_vm_flags(struct file
*file
,
1081 unsigned long flags
,
1082 unsigned long capabilities
)
1084 unsigned long vm_flags
;
1086 vm_flags
= calc_vm_prot_bits(prot
) | calc_vm_flag_bits(flags
);
1087 /* vm_flags |= mm->def_flags; */
1089 if (!(capabilities
& BDI_CAP_MAP_DIRECT
)) {
1090 /* attempt to share read-only copies of mapped file chunks */
1091 vm_flags
|= VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
1092 if (file
&& !(prot
& PROT_WRITE
))
1093 vm_flags
|= VM_MAYSHARE
;
1095 /* overlay a shareable mapping on the backing device or inode
1096 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1098 vm_flags
|= VM_MAYSHARE
| (capabilities
& BDI_CAP_VMFLAGS
);
1099 if (flags
& MAP_SHARED
)
1100 vm_flags
|= VM_SHARED
;
1103 /* refuse to let anyone share private mappings with this process if
1104 * it's being traced - otherwise breakpoints set in it may interfere
1105 * with another untraced process
1107 if ((flags
& MAP_PRIVATE
) && current
->ptrace
)
1108 vm_flags
&= ~VM_MAYSHARE
;
1114 * set up a shared mapping on a file (the driver or filesystem provides and
1117 static int do_mmap_shared_file(struct vm_area_struct
*vma
)
1121 ret
= vma
->vm_file
->f_op
->mmap(vma
->vm_file
, vma
);
1123 vma
->vm_region
->vm_top
= vma
->vm_region
->vm_end
;
1129 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1130 * opposed to tried but failed) so we can only give a suitable error as
1131 * it's not possible to make a private copy if MAP_SHARED was given */
1136 * set up a private mapping or an anonymous shared mapping
1138 static int do_mmap_private(struct vm_area_struct
*vma
,
1139 struct vm_region
*region
,
1141 unsigned long capabilities
)
1144 unsigned long total
, point
, n
;
1148 /* invoke the file's mapping function so that it can keep track of
1149 * shared mappings on devices or memory
1150 * - VM_MAYSHARE will be set if it may attempt to share
1152 if (capabilities
& BDI_CAP_MAP_DIRECT
) {
1153 ret
= vma
->vm_file
->f_op
->mmap(vma
->vm_file
, vma
);
1155 /* shouldn't return success if we're not sharing */
1156 BUG_ON(!(vma
->vm_flags
& VM_MAYSHARE
));
1157 vma
->vm_region
->vm_top
= vma
->vm_region
->vm_end
;
1163 /* getting an ENOSYS error indicates that direct mmap isn't
1164 * possible (as opposed to tried but failed) so we'll try to
1165 * make a private copy of the data and map that instead */
1169 /* allocate some memory to hold the mapping
1170 * - note that this may not return a page-aligned address if the object
1171 * we're allocating is smaller than a page
1173 order
= get_order(len
);
1174 kdebug("alloc order %d for %lx", order
, len
);
1176 pages
= alloc_pages(GFP_KERNEL
, order
);
1181 atomic_long_add(total
, &mmap_pages_allocated
);
1183 point
= len
>> PAGE_SHIFT
;
1185 /* we allocated a power-of-2 sized page set, so we may want to trim off
1187 if (sysctl_nr_trim_pages
&& total
- point
>= sysctl_nr_trim_pages
) {
1188 while (total
> point
) {
1189 order
= ilog2(total
- point
);
1191 kdebug("shave %lu/%lu @%lu", n
, total
- point
, total
);
1192 atomic_long_sub(n
, &mmap_pages_allocated
);
1194 set_page_refcounted(pages
+ total
);
1195 __free_pages(pages
+ total
, order
);
1199 for (point
= 1; point
< total
; point
++)
1200 set_page_refcounted(&pages
[point
]);
1202 base
= page_address(pages
);
1203 region
->vm_flags
= vma
->vm_flags
|= VM_MAPPED_COPY
;
1204 region
->vm_start
= (unsigned long) base
;
1205 region
->vm_end
= region
->vm_start
+ len
;
1206 region
->vm_top
= region
->vm_start
+ (total
<< PAGE_SHIFT
);
1208 vma
->vm_start
= region
->vm_start
;
1209 vma
->vm_end
= region
->vm_start
+ len
;
1212 /* read the contents of a file into the copy */
1213 mm_segment_t old_fs
;
1216 fpos
= vma
->vm_pgoff
;
1217 fpos
<<= PAGE_SHIFT
;
1221 ret
= vma
->vm_file
->f_op
->read(vma
->vm_file
, base
, len
, &fpos
);
1227 /* clear the last little bit */
1229 memset(base
+ ret
, 0, len
- ret
);
1236 free_page_series(region
->vm_start
, region
->vm_top
);
1237 region
->vm_start
= vma
->vm_start
= 0;
1238 region
->vm_end
= vma
->vm_end
= 0;
1243 printk("Allocation of length %lu from process %d (%s) failed\n",
1244 len
, current
->pid
, current
->comm
);
1250 * handle mapping creation for uClinux
1252 unsigned long do_mmap_pgoff(struct file
*file
,
1256 unsigned long flags
,
1257 unsigned long pgoff
,
1258 unsigned long *populate
)
1260 struct vm_area_struct
*vma
;
1261 struct vm_region
*region
;
1263 unsigned long capabilities
, vm_flags
, result
;
1266 kenter(",%lx,%lx,%lx,%lx,%lx", addr
, len
, prot
, flags
, pgoff
);
1270 /* decide whether we should attempt the mapping, and if so what sort of
1272 ret
= validate_mmap_request(file
, addr
, len
, prot
, flags
, pgoff
,
1275 kleave(" = %d [val]", ret
);
1279 /* we ignore the address hint */
1281 len
= PAGE_ALIGN(len
);
1283 /* we've determined that we can make the mapping, now translate what we
1284 * now know into VMA flags */
1285 vm_flags
= determine_vm_flags(file
, prot
, flags
, capabilities
);
1287 /* we're going to need to record the mapping */
1288 region
= kmem_cache_zalloc(vm_region_jar
, GFP_KERNEL
);
1290 goto error_getting_region
;
1292 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1294 goto error_getting_vma
;
1296 region
->vm_usage
= 1;
1297 region
->vm_flags
= vm_flags
;
1298 region
->vm_pgoff
= pgoff
;
1300 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
1301 vma
->vm_flags
= vm_flags
;
1302 vma
->vm_pgoff
= pgoff
;
1305 region
->vm_file
= get_file(file
);
1306 vma
->vm_file
= get_file(file
);
1309 down_write(&nommu_region_sem
);
1311 /* if we want to share, we need to check for regions created by other
1312 * mmap() calls that overlap with our proposed mapping
1313 * - we can only share with a superset match on most regular files
1314 * - shared mappings on character devices and memory backed files are
1315 * permitted to overlap inexactly as far as we are concerned for in
1316 * these cases, sharing is handled in the driver or filesystem rather
1319 if (vm_flags
& VM_MAYSHARE
) {
1320 struct vm_region
*pregion
;
1321 unsigned long pglen
, rpglen
, pgend
, rpgend
, start
;
1323 pglen
= (len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1324 pgend
= pgoff
+ pglen
;
1326 for (rb
= rb_first(&nommu_region_tree
); rb
; rb
= rb_next(rb
)) {
1327 pregion
= rb_entry(rb
, struct vm_region
, vm_rb
);
1329 if (!(pregion
->vm_flags
& VM_MAYSHARE
))
1332 /* search for overlapping mappings on the same file */
1333 if (file_inode(pregion
->vm_file
) !=
1337 if (pregion
->vm_pgoff
>= pgend
)
1340 rpglen
= pregion
->vm_end
- pregion
->vm_start
;
1341 rpglen
= (rpglen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1342 rpgend
= pregion
->vm_pgoff
+ rpglen
;
1343 if (pgoff
>= rpgend
)
1346 /* handle inexactly overlapping matches between
1348 if ((pregion
->vm_pgoff
!= pgoff
|| rpglen
!= pglen
) &&
1349 !(pgoff
>= pregion
->vm_pgoff
&& pgend
<= rpgend
)) {
1350 /* new mapping is not a subset of the region */
1351 if (!(capabilities
& BDI_CAP_MAP_DIRECT
))
1352 goto sharing_violation
;
1356 /* we've found a region we can share */
1357 pregion
->vm_usage
++;
1358 vma
->vm_region
= pregion
;
1359 start
= pregion
->vm_start
;
1360 start
+= (pgoff
- pregion
->vm_pgoff
) << PAGE_SHIFT
;
1361 vma
->vm_start
= start
;
1362 vma
->vm_end
= start
+ len
;
1364 if (pregion
->vm_flags
& VM_MAPPED_COPY
) {
1365 kdebug("share copy");
1366 vma
->vm_flags
|= VM_MAPPED_COPY
;
1368 kdebug("share mmap");
1369 ret
= do_mmap_shared_file(vma
);
1371 vma
->vm_region
= NULL
;
1374 pregion
->vm_usage
--;
1376 goto error_just_free
;
1379 fput(region
->vm_file
);
1380 kmem_cache_free(vm_region_jar
, region
);
1386 /* obtain the address at which to make a shared mapping
1387 * - this is the hook for quasi-memory character devices to
1388 * tell us the location of a shared mapping
1390 if (capabilities
& BDI_CAP_MAP_DIRECT
) {
1391 addr
= file
->f_op
->get_unmapped_area(file
, addr
, len
,
1393 if (IS_ERR_VALUE(addr
)) {
1396 goto error_just_free
;
1398 /* the driver refused to tell us where to site
1399 * the mapping so we'll have to attempt to copy
1402 if (!(capabilities
& BDI_CAP_MAP_COPY
))
1403 goto error_just_free
;
1405 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
1407 vma
->vm_start
= region
->vm_start
= addr
;
1408 vma
->vm_end
= region
->vm_end
= addr
+ len
;
1413 vma
->vm_region
= region
;
1415 /* set up the mapping
1416 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1418 if (file
&& vma
->vm_flags
& VM_SHARED
)
1419 ret
= do_mmap_shared_file(vma
);
1421 ret
= do_mmap_private(vma
, region
, len
, capabilities
);
1423 goto error_just_free
;
1424 add_nommu_region(region
);
1426 /* clear anonymous mappings that don't ask for uninitialized data */
1427 if (!vma
->vm_file
&& !(flags
& MAP_UNINITIALIZED
))
1428 memset((void *)region
->vm_start
, 0,
1429 region
->vm_end
- region
->vm_start
);
1431 /* okay... we have a mapping; now we have to register it */
1432 result
= vma
->vm_start
;
1434 current
->mm
->total_vm
+= len
>> PAGE_SHIFT
;
1437 add_vma_to_mm(current
->mm
, vma
);
1439 /* we flush the region from the icache only when the first executable
1440 * mapping of it is made */
1441 if (vma
->vm_flags
& VM_EXEC
&& !region
->vm_icache_flushed
) {
1442 flush_icache_range(region
->vm_start
, region
->vm_end
);
1443 region
->vm_icache_flushed
= true;
1446 up_write(&nommu_region_sem
);
1448 kleave(" = %lx", result
);
1452 up_write(&nommu_region_sem
);
1454 if (region
->vm_file
)
1455 fput(region
->vm_file
);
1456 kmem_cache_free(vm_region_jar
, region
);
1459 kmem_cache_free(vm_area_cachep
, vma
);
1460 kleave(" = %d", ret
);
1464 up_write(&nommu_region_sem
);
1465 printk(KERN_WARNING
"Attempt to share mismatched mappings\n");
1470 kmem_cache_free(vm_region_jar
, region
);
1471 printk(KERN_WARNING
"Allocation of vma for %lu byte allocation"
1472 " from process %d failed\n",
1477 error_getting_region
:
1478 printk(KERN_WARNING
"Allocation of vm region for %lu byte allocation"
1479 " from process %d failed\n",
1485 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1486 unsigned long, prot
, unsigned long, flags
,
1487 unsigned long, fd
, unsigned long, pgoff
)
1489 struct file
*file
= NULL
;
1490 unsigned long retval
= -EBADF
;
1492 audit_mmap_fd(fd
, flags
);
1493 if (!(flags
& MAP_ANONYMOUS
)) {
1499 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1501 retval
= vm_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1509 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1510 struct mmap_arg_struct
{
1514 unsigned long flags
;
1516 unsigned long offset
;
1519 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1521 struct mmap_arg_struct a
;
1523 if (copy_from_user(&a
, arg
, sizeof(a
)))
1525 if (a
.offset
& ~PAGE_MASK
)
1528 return sys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1529 a
.offset
>> PAGE_SHIFT
);
1531 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1534 * split a vma into two pieces at address 'addr', a new vma is allocated either
1535 * for the first part or the tail.
1537 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1538 unsigned long addr
, int new_below
)
1540 struct vm_area_struct
*new;
1541 struct vm_region
*region
;
1542 unsigned long npages
;
1546 /* we're only permitted to split anonymous regions (these should have
1547 * only a single usage on the region) */
1551 if (mm
->map_count
>= sysctl_max_map_count
)
1554 region
= kmem_cache_alloc(vm_region_jar
, GFP_KERNEL
);
1558 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
1560 kmem_cache_free(vm_region_jar
, region
);
1564 /* most fields are the same, copy all, and then fixup */
1566 *region
= *vma
->vm_region
;
1567 new->vm_region
= region
;
1569 npages
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
1572 region
->vm_top
= region
->vm_end
= new->vm_end
= addr
;
1574 region
->vm_start
= new->vm_start
= addr
;
1575 region
->vm_pgoff
= new->vm_pgoff
+= npages
;
1578 if (new->vm_ops
&& new->vm_ops
->open
)
1579 new->vm_ops
->open(new);
1581 delete_vma_from_mm(vma
);
1582 down_write(&nommu_region_sem
);
1583 delete_nommu_region(vma
->vm_region
);
1585 vma
->vm_region
->vm_start
= vma
->vm_start
= addr
;
1586 vma
->vm_region
->vm_pgoff
= vma
->vm_pgoff
+= npages
;
1588 vma
->vm_region
->vm_end
= vma
->vm_end
= addr
;
1589 vma
->vm_region
->vm_top
= addr
;
1591 add_nommu_region(vma
->vm_region
);
1592 add_nommu_region(new->vm_region
);
1593 up_write(&nommu_region_sem
);
1594 add_vma_to_mm(mm
, vma
);
1595 add_vma_to_mm(mm
, new);
1600 * shrink a VMA by removing the specified chunk from either the beginning or
1603 static int shrink_vma(struct mm_struct
*mm
,
1604 struct vm_area_struct
*vma
,
1605 unsigned long from
, unsigned long to
)
1607 struct vm_region
*region
;
1611 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1613 delete_vma_from_mm(vma
);
1614 if (from
> vma
->vm_start
)
1618 add_vma_to_mm(mm
, vma
);
1620 /* cut the backing region down to size */
1621 region
= vma
->vm_region
;
1622 BUG_ON(region
->vm_usage
!= 1);
1624 down_write(&nommu_region_sem
);
1625 delete_nommu_region(region
);
1626 if (from
> region
->vm_start
) {
1627 to
= region
->vm_top
;
1628 region
->vm_top
= region
->vm_end
= from
;
1630 region
->vm_start
= to
;
1632 add_nommu_region(region
);
1633 up_write(&nommu_region_sem
);
1635 free_page_series(from
, to
);
1641 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1642 * VMA, though it need not cover the whole VMA
1644 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
1646 struct vm_area_struct
*vma
;
1650 kenter(",%lx,%zx", start
, len
);
1652 len
= PAGE_ALIGN(len
);
1658 /* find the first potentially overlapping VMA */
1659 vma
= find_vma(mm
, start
);
1661 static int limit
= 0;
1664 "munmap of memory not mmapped by process %d"
1665 " (%s): 0x%lx-0x%lx\n",
1666 current
->pid
, current
->comm
,
1667 start
, start
+ len
- 1);
1673 /* we're allowed to split an anonymous VMA but not a file-backed one */
1676 if (start
> vma
->vm_start
) {
1677 kleave(" = -EINVAL [miss]");
1680 if (end
== vma
->vm_end
)
1681 goto erase_whole_vma
;
1684 kleave(" = -EINVAL [split file]");
1687 /* the chunk must be a subset of the VMA found */
1688 if (start
== vma
->vm_start
&& end
== vma
->vm_end
)
1689 goto erase_whole_vma
;
1690 if (start
< vma
->vm_start
|| end
> vma
->vm_end
) {
1691 kleave(" = -EINVAL [superset]");
1694 if (start
& ~PAGE_MASK
) {
1695 kleave(" = -EINVAL [unaligned start]");
1698 if (end
!= vma
->vm_end
&& end
& ~PAGE_MASK
) {
1699 kleave(" = -EINVAL [unaligned split]");
1702 if (start
!= vma
->vm_start
&& end
!= vma
->vm_end
) {
1703 ret
= split_vma(mm
, vma
, start
, 1);
1705 kleave(" = %d [split]", ret
);
1709 return shrink_vma(mm
, vma
, start
, end
);
1713 delete_vma_from_mm(vma
);
1714 delete_vma(mm
, vma
);
1718 EXPORT_SYMBOL(do_munmap
);
1720 int vm_munmap(unsigned long addr
, size_t len
)
1722 struct mm_struct
*mm
= current
->mm
;
1725 down_write(&mm
->mmap_sem
);
1726 ret
= do_munmap(mm
, addr
, len
);
1727 up_write(&mm
->mmap_sem
);
1730 EXPORT_SYMBOL(vm_munmap
);
1732 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
1734 return vm_munmap(addr
, len
);
1738 * release all the mappings made in a process's VM space
1740 void exit_mmap(struct mm_struct
*mm
)
1742 struct vm_area_struct
*vma
;
1751 while ((vma
= mm
->mmap
)) {
1752 mm
->mmap
= vma
->vm_next
;
1753 delete_vma_from_mm(vma
);
1754 delete_vma(mm
, vma
);
1761 unsigned long vm_brk(unsigned long addr
, unsigned long len
)
1767 * expand (or shrink) an existing mapping, potentially moving it at the same
1768 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1770 * under NOMMU conditions, we only permit changing a mapping's size, and only
1771 * as long as it stays within the region allocated by do_mmap_private() and the
1772 * block is not shareable
1774 * MREMAP_FIXED is not supported under NOMMU conditions
1776 static unsigned long do_mremap(unsigned long addr
,
1777 unsigned long old_len
, unsigned long new_len
,
1778 unsigned long flags
, unsigned long new_addr
)
1780 struct vm_area_struct
*vma
;
1782 /* insanity checks first */
1783 old_len
= PAGE_ALIGN(old_len
);
1784 new_len
= PAGE_ALIGN(new_len
);
1785 if (old_len
== 0 || new_len
== 0)
1786 return (unsigned long) -EINVAL
;
1788 if (addr
& ~PAGE_MASK
)
1791 if (flags
& MREMAP_FIXED
&& new_addr
!= addr
)
1792 return (unsigned long) -EINVAL
;
1794 vma
= find_vma_exact(current
->mm
, addr
, old_len
);
1796 return (unsigned long) -EINVAL
;
1798 if (vma
->vm_end
!= vma
->vm_start
+ old_len
)
1799 return (unsigned long) -EFAULT
;
1801 if (vma
->vm_flags
& VM_MAYSHARE
)
1802 return (unsigned long) -EPERM
;
1804 if (new_len
> vma
->vm_region
->vm_end
- vma
->vm_region
->vm_start
)
1805 return (unsigned long) -ENOMEM
;
1807 /* all checks complete - do it */
1808 vma
->vm_end
= vma
->vm_start
+ new_len
;
1809 return vma
->vm_start
;
1812 SYSCALL_DEFINE5(mremap
, unsigned long, addr
, unsigned long, old_len
,
1813 unsigned long, new_len
, unsigned long, flags
,
1814 unsigned long, new_addr
)
1818 down_write(¤t
->mm
->mmap_sem
);
1819 ret
= do_mremap(addr
, old_len
, new_len
, flags
, new_addr
);
1820 up_write(¤t
->mm
->mmap_sem
);
1824 struct page
*follow_page_mask(struct vm_area_struct
*vma
,
1825 unsigned long address
, unsigned int flags
,
1826 unsigned int *page_mask
)
1832 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1833 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1835 if (addr
!= (pfn
<< PAGE_SHIFT
))
1838 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
1841 EXPORT_SYMBOL(remap_pfn_range
);
1843 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
1845 unsigned long pfn
= start
>> PAGE_SHIFT
;
1846 unsigned long vm_len
= vma
->vm_end
- vma
->vm_start
;
1848 pfn
+= vma
->vm_pgoff
;
1849 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
1851 EXPORT_SYMBOL(vm_iomap_memory
);
1853 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
1854 unsigned long pgoff
)
1856 unsigned int size
= vma
->vm_end
- vma
->vm_start
;
1858 if (!(vma
->vm_flags
& VM_USERMAP
))
1861 vma
->vm_start
= (unsigned long)(addr
+ (pgoff
<< PAGE_SHIFT
));
1862 vma
->vm_end
= vma
->vm_start
+ size
;
1866 EXPORT_SYMBOL(remap_vmalloc_range
);
1868 unsigned long arch_get_unmapped_area(struct file
*file
, unsigned long addr
,
1869 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1874 void arch_unmap_area(struct mm_struct
*mm
, unsigned long addr
)
1878 void unmap_mapping_range(struct address_space
*mapping
,
1879 loff_t
const holebegin
, loff_t
const holelen
,
1883 EXPORT_SYMBOL(unmap_mapping_range
);
1886 * Check that a process has enough memory to allocate a new virtual
1887 * mapping. 0 means there is enough memory for the allocation to
1888 * succeed and -ENOMEM implies there is not.
1890 * We currently support three overcommit policies, which are set via the
1891 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1893 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1894 * Additional code 2002 Jul 20 by Robert Love.
1896 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1898 * Note this is a helper function intended to be used by LSMs which
1899 * wish to use this logic.
1901 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
1903 unsigned long free
, allowed
, reserve
;
1905 vm_acct_memory(pages
);
1908 * Sometimes we want to use more memory than we have
1910 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
1913 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
1914 free
= global_page_state(NR_FREE_PAGES
);
1915 free
+= global_page_state(NR_FILE_PAGES
);
1918 * shmem pages shouldn't be counted as free in this
1919 * case, they can't be purged, only swapped out, and
1920 * that won't affect the overall amount of available
1921 * memory in the system.
1923 free
-= global_page_state(NR_SHMEM
);
1925 free
+= get_nr_swap_pages();
1928 * Any slabs which are created with the
1929 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1930 * which are reclaimable, under pressure. The dentry
1931 * cache and most inode caches should fall into this
1933 free
+= global_page_state(NR_SLAB_RECLAIMABLE
);
1936 * Leave reserved pages. The pages are not for anonymous pages.
1938 if (free
<= totalreserve_pages
)
1941 free
-= totalreserve_pages
;
1944 * Reserve some for root
1947 free
-= sysctl_admin_reserve_kbytes
>> (PAGE_SHIFT
- 10);
1955 allowed
= totalram_pages
* sysctl_overcommit_ratio
/ 100;
1957 * Reserve some 3% for root
1960 allowed
-= sysctl_admin_reserve_kbytes
>> (PAGE_SHIFT
- 10);
1961 allowed
+= total_swap_pages
;
1964 * Don't let a single process grow so big a user can't recover
1967 reserve
= sysctl_user_reserve_kbytes
>> (PAGE_SHIFT
- 10);
1968 allowed
-= min(mm
->total_vm
/ 32, reserve
);
1971 if (percpu_counter_read_positive(&vm_committed_as
) < allowed
)
1975 vm_unacct_memory(pages
);
1980 int in_gate_area_no_mm(unsigned long addr
)
1985 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1990 EXPORT_SYMBOL(filemap_fault
);
1992 int generic_file_remap_pages(struct vm_area_struct
*vma
, unsigned long addr
,
1993 unsigned long size
, pgoff_t pgoff
)
1998 EXPORT_SYMBOL(generic_file_remap_pages
);
2000 static int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
2001 unsigned long addr
, void *buf
, int len
, int write
)
2003 struct vm_area_struct
*vma
;
2005 down_read(&mm
->mmap_sem
);
2007 /* the access must start within one of the target process's mappings */
2008 vma
= find_vma(mm
, addr
);
2010 /* don't overrun this mapping */
2011 if (addr
+ len
>= vma
->vm_end
)
2012 len
= vma
->vm_end
- addr
;
2014 /* only read or write mappings where it is permitted */
2015 if (write
&& vma
->vm_flags
& VM_MAYWRITE
)
2016 copy_to_user_page(vma
, NULL
, addr
,
2017 (void *) addr
, buf
, len
);
2018 else if (!write
&& vma
->vm_flags
& VM_MAYREAD
)
2019 copy_from_user_page(vma
, NULL
, addr
,
2020 buf
, (void *) addr
, len
);
2027 up_read(&mm
->mmap_sem
);
2033 * @access_remote_vm - access another process' address space
2034 * @mm: the mm_struct of the target address space
2035 * @addr: start address to access
2036 * @buf: source or destination buffer
2037 * @len: number of bytes to transfer
2038 * @write: whether the access is a write
2040 * The caller must hold a reference on @mm.
2042 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
2043 void *buf
, int len
, int write
)
2045 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, write
);
2049 * Access another process' address space.
2050 * - source/target buffer must be kernel space
2052 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
)
2054 struct mm_struct
*mm
;
2056 if (addr
+ len
< addr
)
2059 mm
= get_task_mm(tsk
);
2063 len
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, write
);
2070 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2071 * @inode: The inode to check
2072 * @size: The current filesize of the inode
2073 * @newsize: The proposed filesize of the inode
2075 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2076 * make sure that that any outstanding VMAs aren't broken and then shrink the
2077 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2078 * automatically grant mappings that are too large.
2080 int nommu_shrink_inode_mappings(struct inode
*inode
, size_t size
,
2083 struct vm_area_struct
*vma
;
2084 struct vm_region
*region
;
2086 size_t r_size
, r_top
;
2088 low
= newsize
>> PAGE_SHIFT
;
2089 high
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2091 down_write(&nommu_region_sem
);
2092 mutex_lock(&inode
->i_mapping
->i_mmap_mutex
);
2094 /* search for VMAs that fall within the dead zone */
2095 vma_interval_tree_foreach(vma
, &inode
->i_mapping
->i_mmap
, low
, high
) {
2096 /* found one - only interested if it's shared out of the page
2098 if (vma
->vm_flags
& VM_SHARED
) {
2099 mutex_unlock(&inode
->i_mapping
->i_mmap_mutex
);
2100 up_write(&nommu_region_sem
);
2101 return -ETXTBSY
; /* not quite true, but near enough */
2105 /* reduce any regions that overlap the dead zone - if in existence,
2106 * these will be pointed to by VMAs that don't overlap the dead zone
2108 * we don't check for any regions that start beyond the EOF as there
2111 vma_interval_tree_foreach(vma
, &inode
->i_mapping
->i_mmap
,
2113 if (!(vma
->vm_flags
& VM_SHARED
))
2116 region
= vma
->vm_region
;
2117 r_size
= region
->vm_top
- region
->vm_start
;
2118 r_top
= (region
->vm_pgoff
<< PAGE_SHIFT
) + r_size
;
2120 if (r_top
> newsize
) {
2121 region
->vm_top
-= r_top
- newsize
;
2122 if (region
->vm_end
> region
->vm_top
)
2123 region
->vm_end
= region
->vm_top
;
2127 mutex_unlock(&inode
->i_mapping
->i_mmap_mutex
);
2128 up_write(&nommu_region_sem
);
2133 * Initialise sysctl_user_reserve_kbytes.
2135 * This is intended to prevent a user from starting a single memory hogging
2136 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2139 * The default value is min(3% of free memory, 128MB)
2140 * 128MB is enough to recover with sshd/login, bash, and top/kill.
2142 static int __meminit
init_user_reserve(void)
2144 unsigned long free_kbytes
;
2146 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
2148 sysctl_user_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 17);
2151 module_init(init_user_reserve
)
2154 * Initialise sysctl_admin_reserve_kbytes.
2156 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2157 * to log in and kill a memory hogging process.
2159 * Systems with more than 256MB will reserve 8MB, enough to recover
2160 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2161 * only reserve 3% of free pages by default.
2163 static int __meminit
init_admin_reserve(void)
2165 unsigned long free_kbytes
;
2167 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
2169 sysctl_admin_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 13);
2172 module_init(init_admin_reserve
)