kernel/resource.c: remove the unneeded assignment in function __find_resource
[linux-2.6.git] / mm / migrate.c
blob6f0c24438bbaaf6ffdaa4f840ab8da37cf9e236a
1 /*
2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
40 #include <asm/tlbflush.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/migrate.h>
45 #include "internal.h"
48 * migrate_prep() needs to be called before we start compiling a list of pages
49 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
50 * undesirable, use migrate_prep_local()
52 int migrate_prep(void)
55 * Clear the LRU lists so pages can be isolated.
56 * Note that pages may be moved off the LRU after we have
57 * drained them. Those pages will fail to migrate like other
58 * pages that may be busy.
60 lru_add_drain_all();
62 return 0;
65 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
66 int migrate_prep_local(void)
68 lru_add_drain();
70 return 0;
74 * Add isolated pages on the list back to the LRU under page lock
75 * to avoid leaking evictable pages back onto unevictable list.
77 void putback_lru_pages(struct list_head *l)
79 struct page *page;
80 struct page *page2;
82 list_for_each_entry_safe(page, page2, l, lru) {
83 list_del(&page->lru);
84 dec_zone_page_state(page, NR_ISOLATED_ANON +
85 page_is_file_cache(page));
86 putback_lru_page(page);
91 * Put previously isolated pages back onto the appropriate lists
92 * from where they were once taken off for compaction/migration.
94 * This function shall be used instead of putback_lru_pages(),
95 * whenever the isolated pageset has been built by isolate_migratepages_range()
97 void putback_movable_pages(struct list_head *l)
99 struct page *page;
100 struct page *page2;
102 list_for_each_entry_safe(page, page2, l, lru) {
103 list_del(&page->lru);
104 dec_zone_page_state(page, NR_ISOLATED_ANON +
105 page_is_file_cache(page));
106 if (unlikely(balloon_page_movable(page)))
107 balloon_page_putback(page);
108 else
109 putback_lru_page(page);
114 * Restore a potential migration pte to a working pte entry
116 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
117 unsigned long addr, void *old)
119 struct mm_struct *mm = vma->vm_mm;
120 swp_entry_t entry;
121 pmd_t *pmd;
122 pte_t *ptep, pte;
123 spinlock_t *ptl;
125 if (unlikely(PageHuge(new))) {
126 ptep = huge_pte_offset(mm, addr);
127 if (!ptep)
128 goto out;
129 ptl = &mm->page_table_lock;
130 } else {
131 pmd = mm_find_pmd(mm, addr);
132 if (!pmd)
133 goto out;
134 if (pmd_trans_huge(*pmd))
135 goto out;
137 ptep = pte_offset_map(pmd, addr);
140 * Peek to check is_swap_pte() before taking ptlock? No, we
141 * can race mremap's move_ptes(), which skips anon_vma lock.
144 ptl = pte_lockptr(mm, pmd);
147 spin_lock(ptl);
148 pte = *ptep;
149 if (!is_swap_pte(pte))
150 goto unlock;
152 entry = pte_to_swp_entry(pte);
154 if (!is_migration_entry(entry) ||
155 migration_entry_to_page(entry) != old)
156 goto unlock;
158 get_page(new);
159 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
160 if (is_write_migration_entry(entry))
161 pte = pte_mkwrite(pte);
162 #ifdef CONFIG_HUGETLB_PAGE
163 if (PageHuge(new)) {
164 pte = pte_mkhuge(pte);
165 pte = arch_make_huge_pte(pte, vma, new, 0);
167 #endif
168 flush_dcache_page(new);
169 set_pte_at(mm, addr, ptep, pte);
171 if (PageHuge(new)) {
172 if (PageAnon(new))
173 hugepage_add_anon_rmap(new, vma, addr);
174 else
175 page_dup_rmap(new);
176 } else if (PageAnon(new))
177 page_add_anon_rmap(new, vma, addr);
178 else
179 page_add_file_rmap(new);
181 /* No need to invalidate - it was non-present before */
182 update_mmu_cache(vma, addr, ptep);
183 unlock:
184 pte_unmap_unlock(ptep, ptl);
185 out:
186 return SWAP_AGAIN;
190 * Get rid of all migration entries and replace them by
191 * references to the indicated page.
193 static void remove_migration_ptes(struct page *old, struct page *new)
195 rmap_walk(new, remove_migration_pte, old);
199 * Something used the pte of a page under migration. We need to
200 * get to the page and wait until migration is finished.
201 * When we return from this function the fault will be retried.
203 static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
204 spinlock_t *ptl)
206 pte_t pte;
207 swp_entry_t entry;
208 struct page *page;
210 spin_lock(ptl);
211 pte = *ptep;
212 if (!is_swap_pte(pte))
213 goto out;
215 entry = pte_to_swp_entry(pte);
216 if (!is_migration_entry(entry))
217 goto out;
219 page = migration_entry_to_page(entry);
222 * Once radix-tree replacement of page migration started, page_count
223 * *must* be zero. And, we don't want to call wait_on_page_locked()
224 * against a page without get_page().
225 * So, we use get_page_unless_zero(), here. Even failed, page fault
226 * will occur again.
228 if (!get_page_unless_zero(page))
229 goto out;
230 pte_unmap_unlock(ptep, ptl);
231 wait_on_page_locked(page);
232 put_page(page);
233 return;
234 out:
235 pte_unmap_unlock(ptep, ptl);
238 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
239 unsigned long address)
241 spinlock_t *ptl = pte_lockptr(mm, pmd);
242 pte_t *ptep = pte_offset_map(pmd, address);
243 __migration_entry_wait(mm, ptep, ptl);
246 void migration_entry_wait_huge(struct mm_struct *mm, pte_t *pte)
248 spinlock_t *ptl = &(mm)->page_table_lock;
249 __migration_entry_wait(mm, pte, ptl);
252 #ifdef CONFIG_BLOCK
253 /* Returns true if all buffers are successfully locked */
254 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
255 enum migrate_mode mode)
257 struct buffer_head *bh = head;
259 /* Simple case, sync compaction */
260 if (mode != MIGRATE_ASYNC) {
261 do {
262 get_bh(bh);
263 lock_buffer(bh);
264 bh = bh->b_this_page;
266 } while (bh != head);
268 return true;
271 /* async case, we cannot block on lock_buffer so use trylock_buffer */
272 do {
273 get_bh(bh);
274 if (!trylock_buffer(bh)) {
276 * We failed to lock the buffer and cannot stall in
277 * async migration. Release the taken locks
279 struct buffer_head *failed_bh = bh;
280 put_bh(failed_bh);
281 bh = head;
282 while (bh != failed_bh) {
283 unlock_buffer(bh);
284 put_bh(bh);
285 bh = bh->b_this_page;
287 return false;
290 bh = bh->b_this_page;
291 } while (bh != head);
292 return true;
294 #else
295 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
296 enum migrate_mode mode)
298 return true;
300 #endif /* CONFIG_BLOCK */
303 * Replace the page in the mapping.
305 * The number of remaining references must be:
306 * 1 for anonymous pages without a mapping
307 * 2 for pages with a mapping
308 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
310 static int migrate_page_move_mapping(struct address_space *mapping,
311 struct page *newpage, struct page *page,
312 struct buffer_head *head, enum migrate_mode mode)
314 int expected_count = 0;
315 void **pslot;
317 if (!mapping) {
318 /* Anonymous page without mapping */
319 if (page_count(page) != 1)
320 return -EAGAIN;
321 return MIGRATEPAGE_SUCCESS;
324 spin_lock_irq(&mapping->tree_lock);
326 pslot = radix_tree_lookup_slot(&mapping->page_tree,
327 page_index(page));
329 expected_count = 2 + page_has_private(page);
330 if (page_count(page) != expected_count ||
331 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
332 spin_unlock_irq(&mapping->tree_lock);
333 return -EAGAIN;
336 if (!page_freeze_refs(page, expected_count)) {
337 spin_unlock_irq(&mapping->tree_lock);
338 return -EAGAIN;
342 * In the async migration case of moving a page with buffers, lock the
343 * buffers using trylock before the mapping is moved. If the mapping
344 * was moved, we later failed to lock the buffers and could not move
345 * the mapping back due to an elevated page count, we would have to
346 * block waiting on other references to be dropped.
348 if (mode == MIGRATE_ASYNC && head &&
349 !buffer_migrate_lock_buffers(head, mode)) {
350 page_unfreeze_refs(page, expected_count);
351 spin_unlock_irq(&mapping->tree_lock);
352 return -EAGAIN;
356 * Now we know that no one else is looking at the page.
358 get_page(newpage); /* add cache reference */
359 if (PageSwapCache(page)) {
360 SetPageSwapCache(newpage);
361 set_page_private(newpage, page_private(page));
364 radix_tree_replace_slot(pslot, newpage);
367 * Drop cache reference from old page by unfreezing
368 * to one less reference.
369 * We know this isn't the last reference.
371 page_unfreeze_refs(page, expected_count - 1);
374 * If moved to a different zone then also account
375 * the page for that zone. Other VM counters will be
376 * taken care of when we establish references to the
377 * new page and drop references to the old page.
379 * Note that anonymous pages are accounted for
380 * via NR_FILE_PAGES and NR_ANON_PAGES if they
381 * are mapped to swap space.
383 __dec_zone_page_state(page, NR_FILE_PAGES);
384 __inc_zone_page_state(newpage, NR_FILE_PAGES);
385 if (!PageSwapCache(page) && PageSwapBacked(page)) {
386 __dec_zone_page_state(page, NR_SHMEM);
387 __inc_zone_page_state(newpage, NR_SHMEM);
389 spin_unlock_irq(&mapping->tree_lock);
391 return MIGRATEPAGE_SUCCESS;
395 * The expected number of remaining references is the same as that
396 * of migrate_page_move_mapping().
398 int migrate_huge_page_move_mapping(struct address_space *mapping,
399 struct page *newpage, struct page *page)
401 int expected_count;
402 void **pslot;
404 if (!mapping) {
405 if (page_count(page) != 1)
406 return -EAGAIN;
407 return MIGRATEPAGE_SUCCESS;
410 spin_lock_irq(&mapping->tree_lock);
412 pslot = radix_tree_lookup_slot(&mapping->page_tree,
413 page_index(page));
415 expected_count = 2 + page_has_private(page);
416 if (page_count(page) != expected_count ||
417 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
418 spin_unlock_irq(&mapping->tree_lock);
419 return -EAGAIN;
422 if (!page_freeze_refs(page, expected_count)) {
423 spin_unlock_irq(&mapping->tree_lock);
424 return -EAGAIN;
427 get_page(newpage);
429 radix_tree_replace_slot(pslot, newpage);
431 page_unfreeze_refs(page, expected_count - 1);
433 spin_unlock_irq(&mapping->tree_lock);
434 return MIGRATEPAGE_SUCCESS;
438 * Copy the page to its new location
440 void migrate_page_copy(struct page *newpage, struct page *page)
442 if (PageHuge(page) || PageTransHuge(page))
443 copy_huge_page(newpage, page);
444 else
445 copy_highpage(newpage, page);
447 if (PageError(page))
448 SetPageError(newpage);
449 if (PageReferenced(page))
450 SetPageReferenced(newpage);
451 if (PageUptodate(page))
452 SetPageUptodate(newpage);
453 if (TestClearPageActive(page)) {
454 VM_BUG_ON(PageUnevictable(page));
455 SetPageActive(newpage);
456 } else if (TestClearPageUnevictable(page))
457 SetPageUnevictable(newpage);
458 if (PageChecked(page))
459 SetPageChecked(newpage);
460 if (PageMappedToDisk(page))
461 SetPageMappedToDisk(newpage);
463 if (PageDirty(page)) {
464 clear_page_dirty_for_io(page);
466 * Want to mark the page and the radix tree as dirty, and
467 * redo the accounting that clear_page_dirty_for_io undid,
468 * but we can't use set_page_dirty because that function
469 * is actually a signal that all of the page has become dirty.
470 * Whereas only part of our page may be dirty.
472 if (PageSwapBacked(page))
473 SetPageDirty(newpage);
474 else
475 __set_page_dirty_nobuffers(newpage);
478 mlock_migrate_page(newpage, page);
479 ksm_migrate_page(newpage, page);
481 * Please do not reorder this without considering how mm/ksm.c's
482 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
484 ClearPageSwapCache(page);
485 ClearPagePrivate(page);
486 set_page_private(page, 0);
489 * If any waiters have accumulated on the new page then
490 * wake them up.
492 if (PageWriteback(newpage))
493 end_page_writeback(newpage);
496 /************************************************************
497 * Migration functions
498 ***********************************************************/
500 /* Always fail migration. Used for mappings that are not movable */
501 int fail_migrate_page(struct address_space *mapping,
502 struct page *newpage, struct page *page)
504 return -EIO;
506 EXPORT_SYMBOL(fail_migrate_page);
509 * Common logic to directly migrate a single page suitable for
510 * pages that do not use PagePrivate/PagePrivate2.
512 * Pages are locked upon entry and exit.
514 int migrate_page(struct address_space *mapping,
515 struct page *newpage, struct page *page,
516 enum migrate_mode mode)
518 int rc;
520 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
522 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode);
524 if (rc != MIGRATEPAGE_SUCCESS)
525 return rc;
527 migrate_page_copy(newpage, page);
528 return MIGRATEPAGE_SUCCESS;
530 EXPORT_SYMBOL(migrate_page);
532 #ifdef CONFIG_BLOCK
534 * Migration function for pages with buffers. This function can only be used
535 * if the underlying filesystem guarantees that no other references to "page"
536 * exist.
538 int buffer_migrate_page(struct address_space *mapping,
539 struct page *newpage, struct page *page, enum migrate_mode mode)
541 struct buffer_head *bh, *head;
542 int rc;
544 if (!page_has_buffers(page))
545 return migrate_page(mapping, newpage, page, mode);
547 head = page_buffers(page);
549 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode);
551 if (rc != MIGRATEPAGE_SUCCESS)
552 return rc;
555 * In the async case, migrate_page_move_mapping locked the buffers
556 * with an IRQ-safe spinlock held. In the sync case, the buffers
557 * need to be locked now
559 if (mode != MIGRATE_ASYNC)
560 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
562 ClearPagePrivate(page);
563 set_page_private(newpage, page_private(page));
564 set_page_private(page, 0);
565 put_page(page);
566 get_page(newpage);
568 bh = head;
569 do {
570 set_bh_page(bh, newpage, bh_offset(bh));
571 bh = bh->b_this_page;
573 } while (bh != head);
575 SetPagePrivate(newpage);
577 migrate_page_copy(newpage, page);
579 bh = head;
580 do {
581 unlock_buffer(bh);
582 put_bh(bh);
583 bh = bh->b_this_page;
585 } while (bh != head);
587 return MIGRATEPAGE_SUCCESS;
589 EXPORT_SYMBOL(buffer_migrate_page);
590 #endif
593 * Writeback a page to clean the dirty state
595 static int writeout(struct address_space *mapping, struct page *page)
597 struct writeback_control wbc = {
598 .sync_mode = WB_SYNC_NONE,
599 .nr_to_write = 1,
600 .range_start = 0,
601 .range_end = LLONG_MAX,
602 .for_reclaim = 1
604 int rc;
606 if (!mapping->a_ops->writepage)
607 /* No write method for the address space */
608 return -EINVAL;
610 if (!clear_page_dirty_for_io(page))
611 /* Someone else already triggered a write */
612 return -EAGAIN;
615 * A dirty page may imply that the underlying filesystem has
616 * the page on some queue. So the page must be clean for
617 * migration. Writeout may mean we loose the lock and the
618 * page state is no longer what we checked for earlier.
619 * At this point we know that the migration attempt cannot
620 * be successful.
622 remove_migration_ptes(page, page);
624 rc = mapping->a_ops->writepage(page, &wbc);
626 if (rc != AOP_WRITEPAGE_ACTIVATE)
627 /* unlocked. Relock */
628 lock_page(page);
630 return (rc < 0) ? -EIO : -EAGAIN;
634 * Default handling if a filesystem does not provide a migration function.
636 static int fallback_migrate_page(struct address_space *mapping,
637 struct page *newpage, struct page *page, enum migrate_mode mode)
639 if (PageDirty(page)) {
640 /* Only writeback pages in full synchronous migration */
641 if (mode != MIGRATE_SYNC)
642 return -EBUSY;
643 return writeout(mapping, page);
647 * Buffers may be managed in a filesystem specific way.
648 * We must have no buffers or drop them.
650 if (page_has_private(page) &&
651 !try_to_release_page(page, GFP_KERNEL))
652 return -EAGAIN;
654 return migrate_page(mapping, newpage, page, mode);
658 * Move a page to a newly allocated page
659 * The page is locked and all ptes have been successfully removed.
661 * The new page will have replaced the old page if this function
662 * is successful.
664 * Return value:
665 * < 0 - error code
666 * MIGRATEPAGE_SUCCESS - success
668 static int move_to_new_page(struct page *newpage, struct page *page,
669 int remap_swapcache, enum migrate_mode mode)
671 struct address_space *mapping;
672 int rc;
675 * Block others from accessing the page when we get around to
676 * establishing additional references. We are the only one
677 * holding a reference to the new page at this point.
679 if (!trylock_page(newpage))
680 BUG();
682 /* Prepare mapping for the new page.*/
683 newpage->index = page->index;
684 newpage->mapping = page->mapping;
685 if (PageSwapBacked(page))
686 SetPageSwapBacked(newpage);
688 mapping = page_mapping(page);
689 if (!mapping)
690 rc = migrate_page(mapping, newpage, page, mode);
691 else if (mapping->a_ops->migratepage)
693 * Most pages have a mapping and most filesystems provide a
694 * migratepage callback. Anonymous pages are part of swap
695 * space which also has its own migratepage callback. This
696 * is the most common path for page migration.
698 rc = mapping->a_ops->migratepage(mapping,
699 newpage, page, mode);
700 else
701 rc = fallback_migrate_page(mapping, newpage, page, mode);
703 if (rc != MIGRATEPAGE_SUCCESS) {
704 newpage->mapping = NULL;
705 } else {
706 if (remap_swapcache)
707 remove_migration_ptes(page, newpage);
708 page->mapping = NULL;
711 unlock_page(newpage);
713 return rc;
716 static int __unmap_and_move(struct page *page, struct page *newpage,
717 int force, enum migrate_mode mode)
719 int rc = -EAGAIN;
720 int remap_swapcache = 1;
721 struct mem_cgroup *mem;
722 struct anon_vma *anon_vma = NULL;
724 if (!trylock_page(page)) {
725 if (!force || mode == MIGRATE_ASYNC)
726 goto out;
729 * It's not safe for direct compaction to call lock_page.
730 * For example, during page readahead pages are added locked
731 * to the LRU. Later, when the IO completes the pages are
732 * marked uptodate and unlocked. However, the queueing
733 * could be merging multiple pages for one bio (e.g.
734 * mpage_readpages). If an allocation happens for the
735 * second or third page, the process can end up locking
736 * the same page twice and deadlocking. Rather than
737 * trying to be clever about what pages can be locked,
738 * avoid the use of lock_page for direct compaction
739 * altogether.
741 if (current->flags & PF_MEMALLOC)
742 goto out;
744 lock_page(page);
747 /* charge against new page */
748 mem_cgroup_prepare_migration(page, newpage, &mem);
750 if (PageWriteback(page)) {
752 * Only in the case of a full synchronous migration is it
753 * necessary to wait for PageWriteback. In the async case,
754 * the retry loop is too short and in the sync-light case,
755 * the overhead of stalling is too much
757 if (mode != MIGRATE_SYNC) {
758 rc = -EBUSY;
759 goto uncharge;
761 if (!force)
762 goto uncharge;
763 wait_on_page_writeback(page);
766 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
767 * we cannot notice that anon_vma is freed while we migrates a page.
768 * This get_anon_vma() delays freeing anon_vma pointer until the end
769 * of migration. File cache pages are no problem because of page_lock()
770 * File Caches may use write_page() or lock_page() in migration, then,
771 * just care Anon page here.
773 if (PageAnon(page) && !PageKsm(page)) {
775 * Only page_lock_anon_vma_read() understands the subtleties of
776 * getting a hold on an anon_vma from outside one of its mms.
778 anon_vma = page_get_anon_vma(page);
779 if (anon_vma) {
781 * Anon page
783 } else if (PageSwapCache(page)) {
785 * We cannot be sure that the anon_vma of an unmapped
786 * swapcache page is safe to use because we don't
787 * know in advance if the VMA that this page belonged
788 * to still exists. If the VMA and others sharing the
789 * data have been freed, then the anon_vma could
790 * already be invalid.
792 * To avoid this possibility, swapcache pages get
793 * migrated but are not remapped when migration
794 * completes
796 remap_swapcache = 0;
797 } else {
798 goto uncharge;
802 if (unlikely(balloon_page_movable(page))) {
804 * A ballooned page does not need any special attention from
805 * physical to virtual reverse mapping procedures.
806 * Skip any attempt to unmap PTEs or to remap swap cache,
807 * in order to avoid burning cycles at rmap level, and perform
808 * the page migration right away (proteced by page lock).
810 rc = balloon_page_migrate(newpage, page, mode);
811 goto uncharge;
815 * Corner case handling:
816 * 1. When a new swap-cache page is read into, it is added to the LRU
817 * and treated as swapcache but it has no rmap yet.
818 * Calling try_to_unmap() against a page->mapping==NULL page will
819 * trigger a BUG. So handle it here.
820 * 2. An orphaned page (see truncate_complete_page) might have
821 * fs-private metadata. The page can be picked up due to memory
822 * offlining. Everywhere else except page reclaim, the page is
823 * invisible to the vm, so the page can not be migrated. So try to
824 * free the metadata, so the page can be freed.
826 if (!page->mapping) {
827 VM_BUG_ON(PageAnon(page));
828 if (page_has_private(page)) {
829 try_to_free_buffers(page);
830 goto uncharge;
832 goto skip_unmap;
835 /* Establish migration ptes or remove ptes */
836 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
838 skip_unmap:
839 if (!page_mapped(page))
840 rc = move_to_new_page(newpage, page, remap_swapcache, mode);
842 if (rc && remap_swapcache)
843 remove_migration_ptes(page, page);
845 /* Drop an anon_vma reference if we took one */
846 if (anon_vma)
847 put_anon_vma(anon_vma);
849 uncharge:
850 mem_cgroup_end_migration(mem, page, newpage,
851 (rc == MIGRATEPAGE_SUCCESS ||
852 rc == MIGRATEPAGE_BALLOON_SUCCESS));
853 unlock_page(page);
854 out:
855 return rc;
859 * Obtain the lock on page, remove all ptes and migrate the page
860 * to the newly allocated page in newpage.
862 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
863 struct page *page, int force, enum migrate_mode mode)
865 int rc = 0;
866 int *result = NULL;
867 struct page *newpage = get_new_page(page, private, &result);
869 if (!newpage)
870 return -ENOMEM;
872 if (page_count(page) == 1) {
873 /* page was freed from under us. So we are done. */
874 goto out;
877 if (unlikely(PageTransHuge(page)))
878 if (unlikely(split_huge_page(page)))
879 goto out;
881 rc = __unmap_and_move(page, newpage, force, mode);
883 if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
885 * A ballooned page has been migrated already.
886 * Now, it's the time to wrap-up counters,
887 * handle the page back to Buddy and return.
889 dec_zone_page_state(page, NR_ISOLATED_ANON +
890 page_is_file_cache(page));
891 balloon_page_free(page);
892 return MIGRATEPAGE_SUCCESS;
894 out:
895 if (rc != -EAGAIN) {
897 * A page that has been migrated has all references
898 * removed and will be freed. A page that has not been
899 * migrated will have kepts its references and be
900 * restored.
902 list_del(&page->lru);
903 dec_zone_page_state(page, NR_ISOLATED_ANON +
904 page_is_file_cache(page));
905 putback_lru_page(page);
908 * Move the new page to the LRU. If migration was not successful
909 * then this will free the page.
911 putback_lru_page(newpage);
912 if (result) {
913 if (rc)
914 *result = rc;
915 else
916 *result = page_to_nid(newpage);
918 return rc;
922 * Counterpart of unmap_and_move_page() for hugepage migration.
924 * This function doesn't wait the completion of hugepage I/O
925 * because there is no race between I/O and migration for hugepage.
926 * Note that currently hugepage I/O occurs only in direct I/O
927 * where no lock is held and PG_writeback is irrelevant,
928 * and writeback status of all subpages are counted in the reference
929 * count of the head page (i.e. if all subpages of a 2MB hugepage are
930 * under direct I/O, the reference of the head page is 512 and a bit more.)
931 * This means that when we try to migrate hugepage whose subpages are
932 * doing direct I/O, some references remain after try_to_unmap() and
933 * hugepage migration fails without data corruption.
935 * There is also no race when direct I/O is issued on the page under migration,
936 * because then pte is replaced with migration swap entry and direct I/O code
937 * will wait in the page fault for migration to complete.
939 static int unmap_and_move_huge_page(new_page_t get_new_page,
940 unsigned long private, struct page *hpage,
941 int force, enum migrate_mode mode)
943 int rc = 0;
944 int *result = NULL;
945 struct page *new_hpage = get_new_page(hpage, private, &result);
946 struct anon_vma *anon_vma = NULL;
948 if (!new_hpage)
949 return -ENOMEM;
951 rc = -EAGAIN;
953 if (!trylock_page(hpage)) {
954 if (!force || mode != MIGRATE_SYNC)
955 goto out;
956 lock_page(hpage);
959 if (PageAnon(hpage))
960 anon_vma = page_get_anon_vma(hpage);
962 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
964 if (!page_mapped(hpage))
965 rc = move_to_new_page(new_hpage, hpage, 1, mode);
967 if (rc)
968 remove_migration_ptes(hpage, hpage);
970 if (anon_vma)
971 put_anon_vma(anon_vma);
973 if (!rc)
974 hugetlb_cgroup_migrate(hpage, new_hpage);
976 unlock_page(hpage);
977 out:
978 put_page(new_hpage);
979 if (result) {
980 if (rc)
981 *result = rc;
982 else
983 *result = page_to_nid(new_hpage);
985 return rc;
989 * migrate_pages - migrate the pages specified in a list, to the free pages
990 * supplied as the target for the page migration
992 * @from: The list of pages to be migrated.
993 * @get_new_page: The function used to allocate free pages to be used
994 * as the target of the page migration.
995 * @private: Private data to be passed on to get_new_page()
996 * @mode: The migration mode that specifies the constraints for
997 * page migration, if any.
998 * @reason: The reason for page migration.
1000 * The function returns after 10 attempts or if no pages are movable any more
1001 * because the list has become empty or no retryable pages exist any more.
1002 * The caller should call putback_lru_pages() to return pages to the LRU
1003 * or free list only if ret != 0.
1005 * Returns the number of pages that were not migrated, or an error code.
1007 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1008 unsigned long private, enum migrate_mode mode, int reason)
1010 int retry = 1;
1011 int nr_failed = 0;
1012 int nr_succeeded = 0;
1013 int pass = 0;
1014 struct page *page;
1015 struct page *page2;
1016 int swapwrite = current->flags & PF_SWAPWRITE;
1017 int rc;
1019 if (!swapwrite)
1020 current->flags |= PF_SWAPWRITE;
1022 for(pass = 0; pass < 10 && retry; pass++) {
1023 retry = 0;
1025 list_for_each_entry_safe(page, page2, from, lru) {
1026 cond_resched();
1028 rc = unmap_and_move(get_new_page, private,
1029 page, pass > 2, mode);
1031 switch(rc) {
1032 case -ENOMEM:
1033 goto out;
1034 case -EAGAIN:
1035 retry++;
1036 break;
1037 case MIGRATEPAGE_SUCCESS:
1038 nr_succeeded++;
1039 break;
1040 default:
1041 /* Permanent failure */
1042 nr_failed++;
1043 break;
1047 rc = nr_failed + retry;
1048 out:
1049 if (nr_succeeded)
1050 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1051 if (nr_failed)
1052 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1053 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1055 if (!swapwrite)
1056 current->flags &= ~PF_SWAPWRITE;
1058 return rc;
1061 int migrate_huge_page(struct page *hpage, new_page_t get_new_page,
1062 unsigned long private, enum migrate_mode mode)
1064 int pass, rc;
1066 for (pass = 0; pass < 10; pass++) {
1067 rc = unmap_and_move_huge_page(get_new_page, private,
1068 hpage, pass > 2, mode);
1069 switch (rc) {
1070 case -ENOMEM:
1071 goto out;
1072 case -EAGAIN:
1073 /* try again */
1074 cond_resched();
1075 break;
1076 case MIGRATEPAGE_SUCCESS:
1077 goto out;
1078 default:
1079 rc = -EIO;
1080 goto out;
1083 out:
1084 return rc;
1087 #ifdef CONFIG_NUMA
1089 * Move a list of individual pages
1091 struct page_to_node {
1092 unsigned long addr;
1093 struct page *page;
1094 int node;
1095 int status;
1098 static struct page *new_page_node(struct page *p, unsigned long private,
1099 int **result)
1101 struct page_to_node *pm = (struct page_to_node *)private;
1103 while (pm->node != MAX_NUMNODES && pm->page != p)
1104 pm++;
1106 if (pm->node == MAX_NUMNODES)
1107 return NULL;
1109 *result = &pm->status;
1111 return alloc_pages_exact_node(pm->node,
1112 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1116 * Move a set of pages as indicated in the pm array. The addr
1117 * field must be set to the virtual address of the page to be moved
1118 * and the node number must contain a valid target node.
1119 * The pm array ends with node = MAX_NUMNODES.
1121 static int do_move_page_to_node_array(struct mm_struct *mm,
1122 struct page_to_node *pm,
1123 int migrate_all)
1125 int err;
1126 struct page_to_node *pp;
1127 LIST_HEAD(pagelist);
1129 down_read(&mm->mmap_sem);
1132 * Build a list of pages to migrate
1134 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1135 struct vm_area_struct *vma;
1136 struct page *page;
1138 err = -EFAULT;
1139 vma = find_vma(mm, pp->addr);
1140 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1141 goto set_status;
1143 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1145 err = PTR_ERR(page);
1146 if (IS_ERR(page))
1147 goto set_status;
1149 err = -ENOENT;
1150 if (!page)
1151 goto set_status;
1153 /* Use PageReserved to check for zero page */
1154 if (PageReserved(page))
1155 goto put_and_set;
1157 pp->page = page;
1158 err = page_to_nid(page);
1160 if (err == pp->node)
1162 * Node already in the right place
1164 goto put_and_set;
1166 err = -EACCES;
1167 if (page_mapcount(page) > 1 &&
1168 !migrate_all)
1169 goto put_and_set;
1171 err = isolate_lru_page(page);
1172 if (!err) {
1173 list_add_tail(&page->lru, &pagelist);
1174 inc_zone_page_state(page, NR_ISOLATED_ANON +
1175 page_is_file_cache(page));
1177 put_and_set:
1179 * Either remove the duplicate refcount from
1180 * isolate_lru_page() or drop the page ref if it was
1181 * not isolated.
1183 put_page(page);
1184 set_status:
1185 pp->status = err;
1188 err = 0;
1189 if (!list_empty(&pagelist)) {
1190 err = migrate_pages(&pagelist, new_page_node,
1191 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1192 if (err)
1193 putback_lru_pages(&pagelist);
1196 up_read(&mm->mmap_sem);
1197 return err;
1201 * Migrate an array of page address onto an array of nodes and fill
1202 * the corresponding array of status.
1204 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1205 unsigned long nr_pages,
1206 const void __user * __user *pages,
1207 const int __user *nodes,
1208 int __user *status, int flags)
1210 struct page_to_node *pm;
1211 unsigned long chunk_nr_pages;
1212 unsigned long chunk_start;
1213 int err;
1215 err = -ENOMEM;
1216 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1217 if (!pm)
1218 goto out;
1220 migrate_prep();
1223 * Store a chunk of page_to_node array in a page,
1224 * but keep the last one as a marker
1226 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1228 for (chunk_start = 0;
1229 chunk_start < nr_pages;
1230 chunk_start += chunk_nr_pages) {
1231 int j;
1233 if (chunk_start + chunk_nr_pages > nr_pages)
1234 chunk_nr_pages = nr_pages - chunk_start;
1236 /* fill the chunk pm with addrs and nodes from user-space */
1237 for (j = 0; j < chunk_nr_pages; j++) {
1238 const void __user *p;
1239 int node;
1241 err = -EFAULT;
1242 if (get_user(p, pages + j + chunk_start))
1243 goto out_pm;
1244 pm[j].addr = (unsigned long) p;
1246 if (get_user(node, nodes + j + chunk_start))
1247 goto out_pm;
1249 err = -ENODEV;
1250 if (node < 0 || node >= MAX_NUMNODES)
1251 goto out_pm;
1253 if (!node_state(node, N_MEMORY))
1254 goto out_pm;
1256 err = -EACCES;
1257 if (!node_isset(node, task_nodes))
1258 goto out_pm;
1260 pm[j].node = node;
1263 /* End marker for this chunk */
1264 pm[chunk_nr_pages].node = MAX_NUMNODES;
1266 /* Migrate this chunk */
1267 err = do_move_page_to_node_array(mm, pm,
1268 flags & MPOL_MF_MOVE_ALL);
1269 if (err < 0)
1270 goto out_pm;
1272 /* Return status information */
1273 for (j = 0; j < chunk_nr_pages; j++)
1274 if (put_user(pm[j].status, status + j + chunk_start)) {
1275 err = -EFAULT;
1276 goto out_pm;
1279 err = 0;
1281 out_pm:
1282 free_page((unsigned long)pm);
1283 out:
1284 return err;
1288 * Determine the nodes of an array of pages and store it in an array of status.
1290 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1291 const void __user **pages, int *status)
1293 unsigned long i;
1295 down_read(&mm->mmap_sem);
1297 for (i = 0; i < nr_pages; i++) {
1298 unsigned long addr = (unsigned long)(*pages);
1299 struct vm_area_struct *vma;
1300 struct page *page;
1301 int err = -EFAULT;
1303 vma = find_vma(mm, addr);
1304 if (!vma || addr < vma->vm_start)
1305 goto set_status;
1307 page = follow_page(vma, addr, 0);
1309 err = PTR_ERR(page);
1310 if (IS_ERR(page))
1311 goto set_status;
1313 err = -ENOENT;
1314 /* Use PageReserved to check for zero page */
1315 if (!page || PageReserved(page))
1316 goto set_status;
1318 err = page_to_nid(page);
1319 set_status:
1320 *status = err;
1322 pages++;
1323 status++;
1326 up_read(&mm->mmap_sem);
1330 * Determine the nodes of a user array of pages and store it in
1331 * a user array of status.
1333 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1334 const void __user * __user *pages,
1335 int __user *status)
1337 #define DO_PAGES_STAT_CHUNK_NR 16
1338 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1339 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1341 while (nr_pages) {
1342 unsigned long chunk_nr;
1344 chunk_nr = nr_pages;
1345 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1346 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1348 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1349 break;
1351 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1353 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1354 break;
1356 pages += chunk_nr;
1357 status += chunk_nr;
1358 nr_pages -= chunk_nr;
1360 return nr_pages ? -EFAULT : 0;
1364 * Move a list of pages in the address space of the currently executing
1365 * process.
1367 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1368 const void __user * __user *, pages,
1369 const int __user *, nodes,
1370 int __user *, status, int, flags)
1372 const struct cred *cred = current_cred(), *tcred;
1373 struct task_struct *task;
1374 struct mm_struct *mm;
1375 int err;
1376 nodemask_t task_nodes;
1378 /* Check flags */
1379 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1380 return -EINVAL;
1382 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1383 return -EPERM;
1385 /* Find the mm_struct */
1386 rcu_read_lock();
1387 task = pid ? find_task_by_vpid(pid) : current;
1388 if (!task) {
1389 rcu_read_unlock();
1390 return -ESRCH;
1392 get_task_struct(task);
1395 * Check if this process has the right to modify the specified
1396 * process. The right exists if the process has administrative
1397 * capabilities, superuser privileges or the same
1398 * userid as the target process.
1400 tcred = __task_cred(task);
1401 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1402 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1403 !capable(CAP_SYS_NICE)) {
1404 rcu_read_unlock();
1405 err = -EPERM;
1406 goto out;
1408 rcu_read_unlock();
1410 err = security_task_movememory(task);
1411 if (err)
1412 goto out;
1414 task_nodes = cpuset_mems_allowed(task);
1415 mm = get_task_mm(task);
1416 put_task_struct(task);
1418 if (!mm)
1419 return -EINVAL;
1421 if (nodes)
1422 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1423 nodes, status, flags);
1424 else
1425 err = do_pages_stat(mm, nr_pages, pages, status);
1427 mmput(mm);
1428 return err;
1430 out:
1431 put_task_struct(task);
1432 return err;
1436 * Call migration functions in the vma_ops that may prepare
1437 * memory in a vm for migration. migration functions may perform
1438 * the migration for vmas that do not have an underlying page struct.
1440 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1441 const nodemask_t *from, unsigned long flags)
1443 struct vm_area_struct *vma;
1444 int err = 0;
1446 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1447 if (vma->vm_ops && vma->vm_ops->migrate) {
1448 err = vma->vm_ops->migrate(vma, to, from, flags);
1449 if (err)
1450 break;
1453 return err;
1456 #ifdef CONFIG_NUMA_BALANCING
1458 * Returns true if this is a safe migration target node for misplaced NUMA
1459 * pages. Currently it only checks the watermarks which crude
1461 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1462 unsigned long nr_migrate_pages)
1464 int z;
1465 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1466 struct zone *zone = pgdat->node_zones + z;
1468 if (!populated_zone(zone))
1469 continue;
1471 if (zone->all_unreclaimable)
1472 continue;
1474 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1475 if (!zone_watermark_ok(zone, 0,
1476 high_wmark_pages(zone) +
1477 nr_migrate_pages,
1478 0, 0))
1479 continue;
1480 return true;
1482 return false;
1485 static struct page *alloc_misplaced_dst_page(struct page *page,
1486 unsigned long data,
1487 int **result)
1489 int nid = (int) data;
1490 struct page *newpage;
1492 newpage = alloc_pages_exact_node(nid,
1493 (GFP_HIGHUSER_MOVABLE | GFP_THISNODE |
1494 __GFP_NOMEMALLOC | __GFP_NORETRY |
1495 __GFP_NOWARN) &
1496 ~GFP_IOFS, 0);
1497 if (newpage)
1498 page_nid_xchg_last(newpage, page_nid_last(page));
1500 return newpage;
1504 * page migration rate limiting control.
1505 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1506 * window of time. Default here says do not migrate more than 1280M per second.
1507 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1508 * as it is faults that reset the window, pte updates will happen unconditionally
1509 * if there has not been a fault since @pteupdate_interval_millisecs after the
1510 * throttle window closed.
1512 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1513 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1514 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1516 /* Returns true if NUMA migration is currently rate limited */
1517 bool migrate_ratelimited(int node)
1519 pg_data_t *pgdat = NODE_DATA(node);
1521 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1522 msecs_to_jiffies(pteupdate_interval_millisecs)))
1523 return false;
1525 if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1526 return false;
1528 return true;
1531 /* Returns true if the node is migrate rate-limited after the update */
1532 bool numamigrate_update_ratelimit(pg_data_t *pgdat, unsigned long nr_pages)
1534 bool rate_limited = false;
1537 * Rate-limit the amount of data that is being migrated to a node.
1538 * Optimal placement is no good if the memory bus is saturated and
1539 * all the time is being spent migrating!
1541 spin_lock(&pgdat->numabalancing_migrate_lock);
1542 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1543 pgdat->numabalancing_migrate_nr_pages = 0;
1544 pgdat->numabalancing_migrate_next_window = jiffies +
1545 msecs_to_jiffies(migrate_interval_millisecs);
1547 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages)
1548 rate_limited = true;
1549 else
1550 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1551 spin_unlock(&pgdat->numabalancing_migrate_lock);
1553 return rate_limited;
1556 int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1558 int page_lru;
1560 VM_BUG_ON(compound_order(page) && !PageTransHuge(page));
1562 /* Avoid migrating to a node that is nearly full */
1563 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1564 return 0;
1566 if (isolate_lru_page(page))
1567 return 0;
1570 * migrate_misplaced_transhuge_page() skips page migration's usual
1571 * check on page_count(), so we must do it here, now that the page
1572 * has been isolated: a GUP pin, or any other pin, prevents migration.
1573 * The expected page count is 3: 1 for page's mapcount and 1 for the
1574 * caller's pin and 1 for the reference taken by isolate_lru_page().
1576 if (PageTransHuge(page) && page_count(page) != 3) {
1577 putback_lru_page(page);
1578 return 0;
1581 page_lru = page_is_file_cache(page);
1582 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1583 hpage_nr_pages(page));
1586 * Isolating the page has taken another reference, so the
1587 * caller's reference can be safely dropped without the page
1588 * disappearing underneath us during migration.
1590 put_page(page);
1591 return 1;
1595 * Attempt to migrate a misplaced page to the specified destination
1596 * node. Caller is expected to have an elevated reference count on
1597 * the page that will be dropped by this function before returning.
1599 int migrate_misplaced_page(struct page *page, int node)
1601 pg_data_t *pgdat = NODE_DATA(node);
1602 int isolated;
1603 int nr_remaining;
1604 LIST_HEAD(migratepages);
1607 * Don't migrate pages that are mapped in multiple processes.
1608 * TODO: Handle false sharing detection instead of this hammer
1610 if (page_mapcount(page) != 1)
1611 goto out;
1614 * Rate-limit the amount of data that is being migrated to a node.
1615 * Optimal placement is no good if the memory bus is saturated and
1616 * all the time is being spent migrating!
1618 if (numamigrate_update_ratelimit(pgdat, 1))
1619 goto out;
1621 isolated = numamigrate_isolate_page(pgdat, page);
1622 if (!isolated)
1623 goto out;
1625 list_add(&page->lru, &migratepages);
1626 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1627 node, MIGRATE_ASYNC, MR_NUMA_MISPLACED);
1628 if (nr_remaining) {
1629 putback_lru_pages(&migratepages);
1630 isolated = 0;
1631 } else
1632 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1633 BUG_ON(!list_empty(&migratepages));
1634 return isolated;
1636 out:
1637 put_page(page);
1638 return 0;
1640 #endif /* CONFIG_NUMA_BALANCING */
1642 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1644 * Migrates a THP to a given target node. page must be locked and is unlocked
1645 * before returning.
1647 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1648 struct vm_area_struct *vma,
1649 pmd_t *pmd, pmd_t entry,
1650 unsigned long address,
1651 struct page *page, int node)
1653 unsigned long haddr = address & HPAGE_PMD_MASK;
1654 pg_data_t *pgdat = NODE_DATA(node);
1655 int isolated = 0;
1656 struct page *new_page = NULL;
1657 struct mem_cgroup *memcg = NULL;
1658 int page_lru = page_is_file_cache(page);
1661 * Don't migrate pages that are mapped in multiple processes.
1662 * TODO: Handle false sharing detection instead of this hammer
1664 if (page_mapcount(page) != 1)
1665 goto out_dropref;
1668 * Rate-limit the amount of data that is being migrated to a node.
1669 * Optimal placement is no good if the memory bus is saturated and
1670 * all the time is being spent migrating!
1672 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1673 goto out_dropref;
1675 new_page = alloc_pages_node(node,
1676 (GFP_TRANSHUGE | GFP_THISNODE) & ~__GFP_WAIT, HPAGE_PMD_ORDER);
1677 if (!new_page)
1678 goto out_fail;
1680 page_nid_xchg_last(new_page, page_nid_last(page));
1682 isolated = numamigrate_isolate_page(pgdat, page);
1683 if (!isolated) {
1684 put_page(new_page);
1685 goto out_fail;
1688 /* Prepare a page as a migration target */
1689 __set_page_locked(new_page);
1690 SetPageSwapBacked(new_page);
1692 /* anon mapping, we can simply copy page->mapping to the new page: */
1693 new_page->mapping = page->mapping;
1694 new_page->index = page->index;
1695 migrate_page_copy(new_page, page);
1696 WARN_ON(PageLRU(new_page));
1698 /* Recheck the target PMD */
1699 spin_lock(&mm->page_table_lock);
1700 if (unlikely(!pmd_same(*pmd, entry))) {
1701 spin_unlock(&mm->page_table_lock);
1703 /* Reverse changes made by migrate_page_copy() */
1704 if (TestClearPageActive(new_page))
1705 SetPageActive(page);
1706 if (TestClearPageUnevictable(new_page))
1707 SetPageUnevictable(page);
1708 mlock_migrate_page(page, new_page);
1710 unlock_page(new_page);
1711 put_page(new_page); /* Free it */
1713 unlock_page(page);
1714 putback_lru_page(page);
1716 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1717 isolated = 0;
1718 goto out;
1722 * Traditional migration needs to prepare the memcg charge
1723 * transaction early to prevent the old page from being
1724 * uncharged when installing migration entries. Here we can
1725 * save the potential rollback and start the charge transfer
1726 * only when migration is already known to end successfully.
1728 mem_cgroup_prepare_migration(page, new_page, &memcg);
1730 entry = mk_pmd(new_page, vma->vm_page_prot);
1731 entry = pmd_mknonnuma(entry);
1732 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1733 entry = pmd_mkhuge(entry);
1735 page_add_new_anon_rmap(new_page, vma, haddr);
1737 set_pmd_at(mm, haddr, pmd, entry);
1738 update_mmu_cache_pmd(vma, address, &entry);
1739 page_remove_rmap(page);
1741 * Finish the charge transaction under the page table lock to
1742 * prevent split_huge_page() from dividing up the charge
1743 * before it's fully transferred to the new page.
1745 mem_cgroup_end_migration(memcg, page, new_page, true);
1746 spin_unlock(&mm->page_table_lock);
1748 unlock_page(new_page);
1749 unlock_page(page);
1750 put_page(page); /* Drop the rmap reference */
1751 put_page(page); /* Drop the LRU isolation reference */
1753 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1754 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1756 out:
1757 mod_zone_page_state(page_zone(page),
1758 NR_ISOLATED_ANON + page_lru,
1759 -HPAGE_PMD_NR);
1760 return isolated;
1762 out_fail:
1763 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1764 out_dropref:
1765 unlock_page(page);
1766 put_page(page);
1767 return 0;
1769 #endif /* CONFIG_NUMA_BALANCING */
1771 #endif /* CONFIG_NUMA */