sched: move test_sd_parent() to an SMP section of sched.h
[linux-2.6.git] / kernel / sched.c
blob8fc0d5aa43b1c6127c9d882c5bfa214f10f3c5d6
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
80 #include "sched_cpupri.h"
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101 * Helpers for converting nanosecond timing to jiffy resolution
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109 * These are the 'tuning knobs' of the scheduler:
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
114 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * single value that denotes runtime == period, ie unlimited time.
119 #define RUNTIME_INF ((u64)~0ULL)
121 DEFINE_TRACE(sched_wait_task);
122 DEFINE_TRACE(sched_wakeup);
123 DEFINE_TRACE(sched_wakeup_new);
124 DEFINE_TRACE(sched_switch);
125 DEFINE_TRACE(sched_migrate_task);
127 #ifdef CONFIG_SMP
129 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
130 * Since cpu_power is a 'constant', we can use a reciprocal divide.
132 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
134 return reciprocal_divide(load, sg->reciprocal_cpu_power);
138 * Each time a sched group cpu_power is changed,
139 * we must compute its reciprocal value
141 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
143 sg->__cpu_power += val;
144 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
146 #endif
148 static inline int rt_policy(int policy)
150 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
151 return 1;
152 return 0;
155 static inline int task_has_rt_policy(struct task_struct *p)
157 return rt_policy(p->policy);
161 * This is the priority-queue data structure of the RT scheduling class:
163 struct rt_prio_array {
164 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
165 struct list_head queue[MAX_RT_PRIO];
168 struct rt_bandwidth {
169 /* nests inside the rq lock: */
170 spinlock_t rt_runtime_lock;
171 ktime_t rt_period;
172 u64 rt_runtime;
173 struct hrtimer rt_period_timer;
176 static struct rt_bandwidth def_rt_bandwidth;
178 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
180 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
182 struct rt_bandwidth *rt_b =
183 container_of(timer, struct rt_bandwidth, rt_period_timer);
184 ktime_t now;
185 int overrun;
186 int idle = 0;
188 for (;;) {
189 now = hrtimer_cb_get_time(timer);
190 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
192 if (!overrun)
193 break;
195 idle = do_sched_rt_period_timer(rt_b, overrun);
198 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
201 static
202 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
204 rt_b->rt_period = ns_to_ktime(period);
205 rt_b->rt_runtime = runtime;
207 spin_lock_init(&rt_b->rt_runtime_lock);
209 hrtimer_init(&rt_b->rt_period_timer,
210 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
211 rt_b->rt_period_timer.function = sched_rt_period_timer;
212 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
215 static inline int rt_bandwidth_enabled(void)
217 return sysctl_sched_rt_runtime >= 0;
220 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
222 ktime_t now;
224 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
225 return;
227 if (hrtimer_active(&rt_b->rt_period_timer))
228 return;
230 spin_lock(&rt_b->rt_runtime_lock);
231 for (;;) {
232 if (hrtimer_active(&rt_b->rt_period_timer))
233 break;
235 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
236 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
237 hrtimer_start_expires(&rt_b->rt_period_timer,
238 HRTIMER_MODE_ABS);
240 spin_unlock(&rt_b->rt_runtime_lock);
243 #ifdef CONFIG_RT_GROUP_SCHED
244 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
246 hrtimer_cancel(&rt_b->rt_period_timer);
248 #endif
251 * sched_domains_mutex serializes calls to arch_init_sched_domains,
252 * detach_destroy_domains and partition_sched_domains.
254 static DEFINE_MUTEX(sched_domains_mutex);
256 #ifdef CONFIG_GROUP_SCHED
258 #include <linux/cgroup.h>
260 struct cfs_rq;
262 static LIST_HEAD(task_groups);
264 /* task group related information */
265 struct task_group {
266 #ifdef CONFIG_CGROUP_SCHED
267 struct cgroup_subsys_state css;
268 #endif
270 #ifdef CONFIG_USER_SCHED
271 uid_t uid;
272 #endif
274 #ifdef CONFIG_FAIR_GROUP_SCHED
275 /* schedulable entities of this group on each cpu */
276 struct sched_entity **se;
277 /* runqueue "owned" by this group on each cpu */
278 struct cfs_rq **cfs_rq;
279 unsigned long shares;
280 #endif
282 #ifdef CONFIG_RT_GROUP_SCHED
283 struct sched_rt_entity **rt_se;
284 struct rt_rq **rt_rq;
286 struct rt_bandwidth rt_bandwidth;
287 #endif
289 struct rcu_head rcu;
290 struct list_head list;
292 struct task_group *parent;
293 struct list_head siblings;
294 struct list_head children;
297 #ifdef CONFIG_USER_SCHED
299 /* Helper function to pass uid information to create_sched_user() */
300 void set_tg_uid(struct user_struct *user)
302 user->tg->uid = user->uid;
306 * Root task group.
307 * Every UID task group (including init_task_group aka UID-0) will
308 * be a child to this group.
310 struct task_group root_task_group;
312 #ifdef CONFIG_FAIR_GROUP_SCHED
313 /* Default task group's sched entity on each cpu */
314 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
315 /* Default task group's cfs_rq on each cpu */
316 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
317 #endif /* CONFIG_FAIR_GROUP_SCHED */
319 #ifdef CONFIG_RT_GROUP_SCHED
320 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
321 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
322 #endif /* CONFIG_RT_GROUP_SCHED */
323 #else /* !CONFIG_USER_SCHED */
324 #define root_task_group init_task_group
325 #endif /* CONFIG_USER_SCHED */
327 /* task_group_lock serializes add/remove of task groups and also changes to
328 * a task group's cpu shares.
330 static DEFINE_SPINLOCK(task_group_lock);
332 #ifdef CONFIG_FAIR_GROUP_SCHED
333 #ifdef CONFIG_USER_SCHED
334 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
335 #else /* !CONFIG_USER_SCHED */
336 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
337 #endif /* CONFIG_USER_SCHED */
340 * A weight of 0 or 1 can cause arithmetics problems.
341 * A weight of a cfs_rq is the sum of weights of which entities
342 * are queued on this cfs_rq, so a weight of a entity should not be
343 * too large, so as the shares value of a task group.
344 * (The default weight is 1024 - so there's no practical
345 * limitation from this.)
347 #define MIN_SHARES 2
348 #define MAX_SHARES (1UL << 18)
350 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
351 #endif
353 /* Default task group.
354 * Every task in system belong to this group at bootup.
356 struct task_group init_task_group;
358 /* return group to which a task belongs */
359 static inline struct task_group *task_group(struct task_struct *p)
361 struct task_group *tg;
363 #ifdef CONFIG_USER_SCHED
364 tg = p->user->tg;
365 #elif defined(CONFIG_CGROUP_SCHED)
366 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
367 struct task_group, css);
368 #else
369 tg = &init_task_group;
370 #endif
371 return tg;
374 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
375 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
377 #ifdef CONFIG_FAIR_GROUP_SCHED
378 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
379 p->se.parent = task_group(p)->se[cpu];
380 #endif
382 #ifdef CONFIG_RT_GROUP_SCHED
383 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
384 p->rt.parent = task_group(p)->rt_se[cpu];
385 #endif
388 #else
390 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
391 static inline struct task_group *task_group(struct task_struct *p)
393 return NULL;
396 #endif /* CONFIG_GROUP_SCHED */
398 /* CFS-related fields in a runqueue */
399 struct cfs_rq {
400 struct load_weight load;
401 unsigned long nr_running;
403 u64 exec_clock;
404 u64 min_vruntime;
406 struct rb_root tasks_timeline;
407 struct rb_node *rb_leftmost;
409 struct list_head tasks;
410 struct list_head *balance_iterator;
413 * 'curr' points to currently running entity on this cfs_rq.
414 * It is set to NULL otherwise (i.e when none are currently running).
416 struct sched_entity *curr, *next, *last;
418 unsigned int nr_spread_over;
420 #ifdef CONFIG_FAIR_GROUP_SCHED
421 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
424 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
425 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
426 * (like users, containers etc.)
428 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
429 * list is used during load balance.
431 struct list_head leaf_cfs_rq_list;
432 struct task_group *tg; /* group that "owns" this runqueue */
434 #ifdef CONFIG_SMP
436 * the part of load.weight contributed by tasks
438 unsigned long task_weight;
441 * h_load = weight * f(tg)
443 * Where f(tg) is the recursive weight fraction assigned to
444 * this group.
446 unsigned long h_load;
449 * this cpu's part of tg->shares
451 unsigned long shares;
454 * load.weight at the time we set shares
456 unsigned long rq_weight;
457 #endif
458 #endif
461 /* Real-Time classes' related field in a runqueue: */
462 struct rt_rq {
463 struct rt_prio_array active;
464 unsigned long rt_nr_running;
465 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
466 int highest_prio; /* highest queued rt task prio */
467 #endif
468 #ifdef CONFIG_SMP
469 unsigned long rt_nr_migratory;
470 int overloaded;
471 #endif
472 int rt_throttled;
473 u64 rt_time;
474 u64 rt_runtime;
475 /* Nests inside the rq lock: */
476 spinlock_t rt_runtime_lock;
478 #ifdef CONFIG_RT_GROUP_SCHED
479 unsigned long rt_nr_boosted;
481 struct rq *rq;
482 struct list_head leaf_rt_rq_list;
483 struct task_group *tg;
484 struct sched_rt_entity *rt_se;
485 #endif
488 #ifdef CONFIG_SMP
491 * We add the notion of a root-domain which will be used to define per-domain
492 * variables. Each exclusive cpuset essentially defines an island domain by
493 * fully partitioning the member cpus from any other cpuset. Whenever a new
494 * exclusive cpuset is created, we also create and attach a new root-domain
495 * object.
498 struct root_domain {
499 atomic_t refcount;
500 cpumask_var_t span;
501 cpumask_var_t online;
504 * The "RT overload" flag: it gets set if a CPU has more than
505 * one runnable RT task.
507 cpumask_var_t rto_mask;
508 atomic_t rto_count;
509 #ifdef CONFIG_SMP
510 struct cpupri cpupri;
511 #endif
512 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
514 * Preferred wake up cpu nominated by sched_mc balance that will be
515 * used when most cpus are idle in the system indicating overall very
516 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
518 unsigned int sched_mc_preferred_wakeup_cpu;
519 #endif
523 * By default the system creates a single root-domain with all cpus as
524 * members (mimicking the global state we have today).
526 static struct root_domain def_root_domain;
528 #endif
531 * This is the main, per-CPU runqueue data structure.
533 * Locking rule: those places that want to lock multiple runqueues
534 * (such as the load balancing or the thread migration code), lock
535 * acquire operations must be ordered by ascending &runqueue.
537 struct rq {
538 /* runqueue lock: */
539 spinlock_t lock;
542 * nr_running and cpu_load should be in the same cacheline because
543 * remote CPUs use both these fields when doing load calculation.
545 unsigned long nr_running;
546 #define CPU_LOAD_IDX_MAX 5
547 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
548 unsigned char idle_at_tick;
549 #ifdef CONFIG_NO_HZ
550 unsigned long last_tick_seen;
551 unsigned char in_nohz_recently;
552 #endif
553 /* capture load from *all* tasks on this cpu: */
554 struct load_weight load;
555 unsigned long nr_load_updates;
556 u64 nr_switches;
558 struct cfs_rq cfs;
559 struct rt_rq rt;
561 #ifdef CONFIG_FAIR_GROUP_SCHED
562 /* list of leaf cfs_rq on this cpu: */
563 struct list_head leaf_cfs_rq_list;
564 #endif
565 #ifdef CONFIG_RT_GROUP_SCHED
566 struct list_head leaf_rt_rq_list;
567 #endif
570 * This is part of a global counter where only the total sum
571 * over all CPUs matters. A task can increase this counter on
572 * one CPU and if it got migrated afterwards it may decrease
573 * it on another CPU. Always updated under the runqueue lock:
575 unsigned long nr_uninterruptible;
577 struct task_struct *curr, *idle;
578 unsigned long next_balance;
579 struct mm_struct *prev_mm;
581 u64 clock;
583 atomic_t nr_iowait;
585 #ifdef CONFIG_SMP
586 struct root_domain *rd;
587 struct sched_domain *sd;
589 /* For active balancing */
590 int active_balance;
591 int push_cpu;
592 /* cpu of this runqueue: */
593 int cpu;
594 int online;
596 unsigned long avg_load_per_task;
598 struct task_struct *migration_thread;
599 struct list_head migration_queue;
600 #endif
602 #ifdef CONFIG_SCHED_HRTICK
603 #ifdef CONFIG_SMP
604 int hrtick_csd_pending;
605 struct call_single_data hrtick_csd;
606 #endif
607 struct hrtimer hrtick_timer;
608 #endif
610 #ifdef CONFIG_SCHEDSTATS
611 /* latency stats */
612 struct sched_info rq_sched_info;
614 /* sys_sched_yield() stats */
615 unsigned int yld_exp_empty;
616 unsigned int yld_act_empty;
617 unsigned int yld_both_empty;
618 unsigned int yld_count;
620 /* schedule() stats */
621 unsigned int sched_switch;
622 unsigned int sched_count;
623 unsigned int sched_goidle;
625 /* try_to_wake_up() stats */
626 unsigned int ttwu_count;
627 unsigned int ttwu_local;
629 /* BKL stats */
630 unsigned int bkl_count;
631 #endif
634 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
636 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
638 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
641 static inline int cpu_of(struct rq *rq)
643 #ifdef CONFIG_SMP
644 return rq->cpu;
645 #else
646 return 0;
647 #endif
651 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
652 * See detach_destroy_domains: synchronize_sched for details.
654 * The domain tree of any CPU may only be accessed from within
655 * preempt-disabled sections.
657 #define for_each_domain(cpu, __sd) \
658 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
660 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
661 #define this_rq() (&__get_cpu_var(runqueues))
662 #define task_rq(p) cpu_rq(task_cpu(p))
663 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
665 static inline void update_rq_clock(struct rq *rq)
667 rq->clock = sched_clock_cpu(cpu_of(rq));
671 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
673 #ifdef CONFIG_SCHED_DEBUG
674 # define const_debug __read_mostly
675 #else
676 # define const_debug static const
677 #endif
680 * runqueue_is_locked
682 * Returns true if the current cpu runqueue is locked.
683 * This interface allows printk to be called with the runqueue lock
684 * held and know whether or not it is OK to wake up the klogd.
686 int runqueue_is_locked(void)
688 int cpu = get_cpu();
689 struct rq *rq = cpu_rq(cpu);
690 int ret;
692 ret = spin_is_locked(&rq->lock);
693 put_cpu();
694 return ret;
698 * Debugging: various feature bits
701 #define SCHED_FEAT(name, enabled) \
702 __SCHED_FEAT_##name ,
704 enum {
705 #include "sched_features.h"
708 #undef SCHED_FEAT
710 #define SCHED_FEAT(name, enabled) \
711 (1UL << __SCHED_FEAT_##name) * enabled |
713 const_debug unsigned int sysctl_sched_features =
714 #include "sched_features.h"
717 #undef SCHED_FEAT
719 #ifdef CONFIG_SCHED_DEBUG
720 #define SCHED_FEAT(name, enabled) \
721 #name ,
723 static __read_mostly char *sched_feat_names[] = {
724 #include "sched_features.h"
725 NULL
728 #undef SCHED_FEAT
730 static int sched_feat_show(struct seq_file *m, void *v)
732 int i;
734 for (i = 0; sched_feat_names[i]; i++) {
735 if (!(sysctl_sched_features & (1UL << i)))
736 seq_puts(m, "NO_");
737 seq_printf(m, "%s ", sched_feat_names[i]);
739 seq_puts(m, "\n");
741 return 0;
744 static ssize_t
745 sched_feat_write(struct file *filp, const char __user *ubuf,
746 size_t cnt, loff_t *ppos)
748 char buf[64];
749 char *cmp = buf;
750 int neg = 0;
751 int i;
753 if (cnt > 63)
754 cnt = 63;
756 if (copy_from_user(&buf, ubuf, cnt))
757 return -EFAULT;
759 buf[cnt] = 0;
761 if (strncmp(buf, "NO_", 3) == 0) {
762 neg = 1;
763 cmp += 3;
766 for (i = 0; sched_feat_names[i]; i++) {
767 int len = strlen(sched_feat_names[i]);
769 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
770 if (neg)
771 sysctl_sched_features &= ~(1UL << i);
772 else
773 sysctl_sched_features |= (1UL << i);
774 break;
778 if (!sched_feat_names[i])
779 return -EINVAL;
781 filp->f_pos += cnt;
783 return cnt;
786 static int sched_feat_open(struct inode *inode, struct file *filp)
788 return single_open(filp, sched_feat_show, NULL);
791 static struct file_operations sched_feat_fops = {
792 .open = sched_feat_open,
793 .write = sched_feat_write,
794 .read = seq_read,
795 .llseek = seq_lseek,
796 .release = single_release,
799 static __init int sched_init_debug(void)
801 debugfs_create_file("sched_features", 0644, NULL, NULL,
802 &sched_feat_fops);
804 return 0;
806 late_initcall(sched_init_debug);
808 #endif
810 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
813 * Number of tasks to iterate in a single balance run.
814 * Limited because this is done with IRQs disabled.
816 const_debug unsigned int sysctl_sched_nr_migrate = 32;
819 * ratelimit for updating the group shares.
820 * default: 0.25ms
822 unsigned int sysctl_sched_shares_ratelimit = 250000;
825 * Inject some fuzzyness into changing the per-cpu group shares
826 * this avoids remote rq-locks at the expense of fairness.
827 * default: 4
829 unsigned int sysctl_sched_shares_thresh = 4;
832 * period over which we measure -rt task cpu usage in us.
833 * default: 1s
835 unsigned int sysctl_sched_rt_period = 1000000;
837 static __read_mostly int scheduler_running;
840 * part of the period that we allow rt tasks to run in us.
841 * default: 0.95s
843 int sysctl_sched_rt_runtime = 950000;
845 static inline u64 global_rt_period(void)
847 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
850 static inline u64 global_rt_runtime(void)
852 if (sysctl_sched_rt_runtime < 0)
853 return RUNTIME_INF;
855 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
858 #ifndef prepare_arch_switch
859 # define prepare_arch_switch(next) do { } while (0)
860 #endif
861 #ifndef finish_arch_switch
862 # define finish_arch_switch(prev) do { } while (0)
863 #endif
865 static inline int task_current(struct rq *rq, struct task_struct *p)
867 return rq->curr == p;
870 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
871 static inline int task_running(struct rq *rq, struct task_struct *p)
873 return task_current(rq, p);
876 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
880 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
882 #ifdef CONFIG_DEBUG_SPINLOCK
883 /* this is a valid case when another task releases the spinlock */
884 rq->lock.owner = current;
885 #endif
887 * If we are tracking spinlock dependencies then we have to
888 * fix up the runqueue lock - which gets 'carried over' from
889 * prev into current:
891 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
893 spin_unlock_irq(&rq->lock);
896 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
897 static inline int task_running(struct rq *rq, struct task_struct *p)
899 #ifdef CONFIG_SMP
900 return p->oncpu;
901 #else
902 return task_current(rq, p);
903 #endif
906 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
908 #ifdef CONFIG_SMP
910 * We can optimise this out completely for !SMP, because the
911 * SMP rebalancing from interrupt is the only thing that cares
912 * here.
914 next->oncpu = 1;
915 #endif
916 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
917 spin_unlock_irq(&rq->lock);
918 #else
919 spin_unlock(&rq->lock);
920 #endif
923 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
925 #ifdef CONFIG_SMP
927 * After ->oncpu is cleared, the task can be moved to a different CPU.
928 * We must ensure this doesn't happen until the switch is completely
929 * finished.
931 smp_wmb();
932 prev->oncpu = 0;
933 #endif
934 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
935 local_irq_enable();
936 #endif
938 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
941 * __task_rq_lock - lock the runqueue a given task resides on.
942 * Must be called interrupts disabled.
944 static inline struct rq *__task_rq_lock(struct task_struct *p)
945 __acquires(rq->lock)
947 for (;;) {
948 struct rq *rq = task_rq(p);
949 spin_lock(&rq->lock);
950 if (likely(rq == task_rq(p)))
951 return rq;
952 spin_unlock(&rq->lock);
957 * task_rq_lock - lock the runqueue a given task resides on and disable
958 * interrupts. Note the ordering: we can safely lookup the task_rq without
959 * explicitly disabling preemption.
961 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
962 __acquires(rq->lock)
964 struct rq *rq;
966 for (;;) {
967 local_irq_save(*flags);
968 rq = task_rq(p);
969 spin_lock(&rq->lock);
970 if (likely(rq == task_rq(p)))
971 return rq;
972 spin_unlock_irqrestore(&rq->lock, *flags);
976 void task_rq_unlock_wait(struct task_struct *p)
978 struct rq *rq = task_rq(p);
980 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
981 spin_unlock_wait(&rq->lock);
984 static void __task_rq_unlock(struct rq *rq)
985 __releases(rq->lock)
987 spin_unlock(&rq->lock);
990 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
991 __releases(rq->lock)
993 spin_unlock_irqrestore(&rq->lock, *flags);
997 * this_rq_lock - lock this runqueue and disable interrupts.
999 static struct rq *this_rq_lock(void)
1000 __acquires(rq->lock)
1002 struct rq *rq;
1004 local_irq_disable();
1005 rq = this_rq();
1006 spin_lock(&rq->lock);
1008 return rq;
1011 #ifdef CONFIG_SCHED_HRTICK
1013 * Use HR-timers to deliver accurate preemption points.
1015 * Its all a bit involved since we cannot program an hrt while holding the
1016 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1017 * reschedule event.
1019 * When we get rescheduled we reprogram the hrtick_timer outside of the
1020 * rq->lock.
1024 * Use hrtick when:
1025 * - enabled by features
1026 * - hrtimer is actually high res
1028 static inline int hrtick_enabled(struct rq *rq)
1030 if (!sched_feat(HRTICK))
1031 return 0;
1032 if (!cpu_active(cpu_of(rq)))
1033 return 0;
1034 return hrtimer_is_hres_active(&rq->hrtick_timer);
1037 static void hrtick_clear(struct rq *rq)
1039 if (hrtimer_active(&rq->hrtick_timer))
1040 hrtimer_cancel(&rq->hrtick_timer);
1044 * High-resolution timer tick.
1045 * Runs from hardirq context with interrupts disabled.
1047 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1049 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1051 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1053 spin_lock(&rq->lock);
1054 update_rq_clock(rq);
1055 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1056 spin_unlock(&rq->lock);
1058 return HRTIMER_NORESTART;
1061 #ifdef CONFIG_SMP
1063 * called from hardirq (IPI) context
1065 static void __hrtick_start(void *arg)
1067 struct rq *rq = arg;
1069 spin_lock(&rq->lock);
1070 hrtimer_restart(&rq->hrtick_timer);
1071 rq->hrtick_csd_pending = 0;
1072 spin_unlock(&rq->lock);
1076 * Called to set the hrtick timer state.
1078 * called with rq->lock held and irqs disabled
1080 static void hrtick_start(struct rq *rq, u64 delay)
1082 struct hrtimer *timer = &rq->hrtick_timer;
1083 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1085 hrtimer_set_expires(timer, time);
1087 if (rq == this_rq()) {
1088 hrtimer_restart(timer);
1089 } else if (!rq->hrtick_csd_pending) {
1090 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1091 rq->hrtick_csd_pending = 1;
1095 static int
1096 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1098 int cpu = (int)(long)hcpu;
1100 switch (action) {
1101 case CPU_UP_CANCELED:
1102 case CPU_UP_CANCELED_FROZEN:
1103 case CPU_DOWN_PREPARE:
1104 case CPU_DOWN_PREPARE_FROZEN:
1105 case CPU_DEAD:
1106 case CPU_DEAD_FROZEN:
1107 hrtick_clear(cpu_rq(cpu));
1108 return NOTIFY_OK;
1111 return NOTIFY_DONE;
1114 static __init void init_hrtick(void)
1116 hotcpu_notifier(hotplug_hrtick, 0);
1118 #else
1120 * Called to set the hrtick timer state.
1122 * called with rq->lock held and irqs disabled
1124 static void hrtick_start(struct rq *rq, u64 delay)
1126 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1129 static inline void init_hrtick(void)
1132 #endif /* CONFIG_SMP */
1134 static void init_rq_hrtick(struct rq *rq)
1136 #ifdef CONFIG_SMP
1137 rq->hrtick_csd_pending = 0;
1139 rq->hrtick_csd.flags = 0;
1140 rq->hrtick_csd.func = __hrtick_start;
1141 rq->hrtick_csd.info = rq;
1142 #endif
1144 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1145 rq->hrtick_timer.function = hrtick;
1146 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
1148 #else /* CONFIG_SCHED_HRTICK */
1149 static inline void hrtick_clear(struct rq *rq)
1153 static inline void init_rq_hrtick(struct rq *rq)
1157 static inline void init_hrtick(void)
1160 #endif /* CONFIG_SCHED_HRTICK */
1163 * resched_task - mark a task 'to be rescheduled now'.
1165 * On UP this means the setting of the need_resched flag, on SMP it
1166 * might also involve a cross-CPU call to trigger the scheduler on
1167 * the target CPU.
1169 #ifdef CONFIG_SMP
1171 #ifndef tsk_is_polling
1172 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1173 #endif
1175 static void resched_task(struct task_struct *p)
1177 int cpu;
1179 assert_spin_locked(&task_rq(p)->lock);
1181 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1182 return;
1184 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1186 cpu = task_cpu(p);
1187 if (cpu == smp_processor_id())
1188 return;
1190 /* NEED_RESCHED must be visible before we test polling */
1191 smp_mb();
1192 if (!tsk_is_polling(p))
1193 smp_send_reschedule(cpu);
1196 static void resched_cpu(int cpu)
1198 struct rq *rq = cpu_rq(cpu);
1199 unsigned long flags;
1201 if (!spin_trylock_irqsave(&rq->lock, flags))
1202 return;
1203 resched_task(cpu_curr(cpu));
1204 spin_unlock_irqrestore(&rq->lock, flags);
1207 #ifdef CONFIG_NO_HZ
1209 * When add_timer_on() enqueues a timer into the timer wheel of an
1210 * idle CPU then this timer might expire before the next timer event
1211 * which is scheduled to wake up that CPU. In case of a completely
1212 * idle system the next event might even be infinite time into the
1213 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1214 * leaves the inner idle loop so the newly added timer is taken into
1215 * account when the CPU goes back to idle and evaluates the timer
1216 * wheel for the next timer event.
1218 void wake_up_idle_cpu(int cpu)
1220 struct rq *rq = cpu_rq(cpu);
1222 if (cpu == smp_processor_id())
1223 return;
1226 * This is safe, as this function is called with the timer
1227 * wheel base lock of (cpu) held. When the CPU is on the way
1228 * to idle and has not yet set rq->curr to idle then it will
1229 * be serialized on the timer wheel base lock and take the new
1230 * timer into account automatically.
1232 if (rq->curr != rq->idle)
1233 return;
1236 * We can set TIF_RESCHED on the idle task of the other CPU
1237 * lockless. The worst case is that the other CPU runs the
1238 * idle task through an additional NOOP schedule()
1240 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1242 /* NEED_RESCHED must be visible before we test polling */
1243 smp_mb();
1244 if (!tsk_is_polling(rq->idle))
1245 smp_send_reschedule(cpu);
1247 #endif /* CONFIG_NO_HZ */
1249 #else /* !CONFIG_SMP */
1250 static void resched_task(struct task_struct *p)
1252 assert_spin_locked(&task_rq(p)->lock);
1253 set_tsk_need_resched(p);
1255 #endif /* CONFIG_SMP */
1257 #if BITS_PER_LONG == 32
1258 # define WMULT_CONST (~0UL)
1259 #else
1260 # define WMULT_CONST (1UL << 32)
1261 #endif
1263 #define WMULT_SHIFT 32
1266 * Shift right and round:
1268 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1271 * delta *= weight / lw
1273 static unsigned long
1274 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1275 struct load_weight *lw)
1277 u64 tmp;
1279 if (!lw->inv_weight) {
1280 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1281 lw->inv_weight = 1;
1282 else
1283 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1284 / (lw->weight+1);
1287 tmp = (u64)delta_exec * weight;
1289 * Check whether we'd overflow the 64-bit multiplication:
1291 if (unlikely(tmp > WMULT_CONST))
1292 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1293 WMULT_SHIFT/2);
1294 else
1295 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1297 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1300 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1302 lw->weight += inc;
1303 lw->inv_weight = 0;
1306 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1308 lw->weight -= dec;
1309 lw->inv_weight = 0;
1313 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1314 * of tasks with abnormal "nice" values across CPUs the contribution that
1315 * each task makes to its run queue's load is weighted according to its
1316 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1317 * scaled version of the new time slice allocation that they receive on time
1318 * slice expiry etc.
1321 #define WEIGHT_IDLEPRIO 2
1322 #define WMULT_IDLEPRIO (1 << 31)
1325 * Nice levels are multiplicative, with a gentle 10% change for every
1326 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1327 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1328 * that remained on nice 0.
1330 * The "10% effect" is relative and cumulative: from _any_ nice level,
1331 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1332 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1333 * If a task goes up by ~10% and another task goes down by ~10% then
1334 * the relative distance between them is ~25%.)
1336 static const int prio_to_weight[40] = {
1337 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1338 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1339 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1340 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1341 /* 0 */ 1024, 820, 655, 526, 423,
1342 /* 5 */ 335, 272, 215, 172, 137,
1343 /* 10 */ 110, 87, 70, 56, 45,
1344 /* 15 */ 36, 29, 23, 18, 15,
1348 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1350 * In cases where the weight does not change often, we can use the
1351 * precalculated inverse to speed up arithmetics by turning divisions
1352 * into multiplications:
1354 static const u32 prio_to_wmult[40] = {
1355 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1356 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1357 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1358 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1359 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1360 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1361 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1362 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1365 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1368 * runqueue iterator, to support SMP load-balancing between different
1369 * scheduling classes, without having to expose their internal data
1370 * structures to the load-balancing proper:
1372 struct rq_iterator {
1373 void *arg;
1374 struct task_struct *(*start)(void *);
1375 struct task_struct *(*next)(void *);
1378 #ifdef CONFIG_SMP
1379 static unsigned long
1380 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1381 unsigned long max_load_move, struct sched_domain *sd,
1382 enum cpu_idle_type idle, int *all_pinned,
1383 int *this_best_prio, struct rq_iterator *iterator);
1385 static int
1386 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1387 struct sched_domain *sd, enum cpu_idle_type idle,
1388 struct rq_iterator *iterator);
1389 #endif
1391 #ifdef CONFIG_CGROUP_CPUACCT
1392 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1393 #else
1394 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1395 #endif
1397 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1399 update_load_add(&rq->load, load);
1402 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1404 update_load_sub(&rq->load, load);
1407 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1408 typedef int (*tg_visitor)(struct task_group *, void *);
1411 * Iterate the full tree, calling @down when first entering a node and @up when
1412 * leaving it for the final time.
1414 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1416 struct task_group *parent, *child;
1417 int ret;
1419 rcu_read_lock();
1420 parent = &root_task_group;
1421 down:
1422 ret = (*down)(parent, data);
1423 if (ret)
1424 goto out_unlock;
1425 list_for_each_entry_rcu(child, &parent->children, siblings) {
1426 parent = child;
1427 goto down;
1430 continue;
1432 ret = (*up)(parent, data);
1433 if (ret)
1434 goto out_unlock;
1436 child = parent;
1437 parent = parent->parent;
1438 if (parent)
1439 goto up;
1440 out_unlock:
1441 rcu_read_unlock();
1443 return ret;
1446 static int tg_nop(struct task_group *tg, void *data)
1448 return 0;
1450 #endif
1452 #ifdef CONFIG_SMP
1453 static unsigned long source_load(int cpu, int type);
1454 static unsigned long target_load(int cpu, int type);
1455 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1457 static unsigned long cpu_avg_load_per_task(int cpu)
1459 struct rq *rq = cpu_rq(cpu);
1460 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1462 if (nr_running)
1463 rq->avg_load_per_task = rq->load.weight / nr_running;
1464 else
1465 rq->avg_load_per_task = 0;
1467 return rq->avg_load_per_task;
1470 #ifdef CONFIG_FAIR_GROUP_SCHED
1472 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1475 * Calculate and set the cpu's group shares.
1477 static void
1478 update_group_shares_cpu(struct task_group *tg, int cpu,
1479 unsigned long sd_shares, unsigned long sd_rq_weight)
1481 unsigned long shares;
1482 unsigned long rq_weight;
1484 if (!tg->se[cpu])
1485 return;
1487 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1490 * \Sum shares * rq_weight
1491 * shares = -----------------------
1492 * \Sum rq_weight
1495 shares = (sd_shares * rq_weight) / sd_rq_weight;
1496 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1498 if (abs(shares - tg->se[cpu]->load.weight) >
1499 sysctl_sched_shares_thresh) {
1500 struct rq *rq = cpu_rq(cpu);
1501 unsigned long flags;
1503 spin_lock_irqsave(&rq->lock, flags);
1504 tg->cfs_rq[cpu]->shares = shares;
1506 __set_se_shares(tg->se[cpu], shares);
1507 spin_unlock_irqrestore(&rq->lock, flags);
1512 * Re-compute the task group their per cpu shares over the given domain.
1513 * This needs to be done in a bottom-up fashion because the rq weight of a
1514 * parent group depends on the shares of its child groups.
1516 static int tg_shares_up(struct task_group *tg, void *data)
1518 unsigned long weight, rq_weight = 0;
1519 unsigned long shares = 0;
1520 struct sched_domain *sd = data;
1521 int i;
1523 for_each_cpu(i, sched_domain_span(sd)) {
1525 * If there are currently no tasks on the cpu pretend there
1526 * is one of average load so that when a new task gets to
1527 * run here it will not get delayed by group starvation.
1529 weight = tg->cfs_rq[i]->load.weight;
1530 if (!weight)
1531 weight = NICE_0_LOAD;
1533 tg->cfs_rq[i]->rq_weight = weight;
1534 rq_weight += weight;
1535 shares += tg->cfs_rq[i]->shares;
1538 if ((!shares && rq_weight) || shares > tg->shares)
1539 shares = tg->shares;
1541 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1542 shares = tg->shares;
1544 for_each_cpu(i, sched_domain_span(sd))
1545 update_group_shares_cpu(tg, i, shares, rq_weight);
1547 return 0;
1551 * Compute the cpu's hierarchical load factor for each task group.
1552 * This needs to be done in a top-down fashion because the load of a child
1553 * group is a fraction of its parents load.
1555 static int tg_load_down(struct task_group *tg, void *data)
1557 unsigned long load;
1558 long cpu = (long)data;
1560 if (!tg->parent) {
1561 load = cpu_rq(cpu)->load.weight;
1562 } else {
1563 load = tg->parent->cfs_rq[cpu]->h_load;
1564 load *= tg->cfs_rq[cpu]->shares;
1565 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1568 tg->cfs_rq[cpu]->h_load = load;
1570 return 0;
1573 static void update_shares(struct sched_domain *sd)
1575 u64 now = cpu_clock(raw_smp_processor_id());
1576 s64 elapsed = now - sd->last_update;
1578 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1579 sd->last_update = now;
1580 walk_tg_tree(tg_nop, tg_shares_up, sd);
1584 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1586 spin_unlock(&rq->lock);
1587 update_shares(sd);
1588 spin_lock(&rq->lock);
1591 static void update_h_load(long cpu)
1593 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1596 #else
1598 static inline void update_shares(struct sched_domain *sd)
1602 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1606 #endif
1609 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1611 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1612 __releases(this_rq->lock)
1613 __acquires(busiest->lock)
1614 __acquires(this_rq->lock)
1616 int ret = 0;
1618 if (unlikely(!irqs_disabled())) {
1619 /* printk() doesn't work good under rq->lock */
1620 spin_unlock(&this_rq->lock);
1621 BUG_ON(1);
1623 if (unlikely(!spin_trylock(&busiest->lock))) {
1624 if (busiest < this_rq) {
1625 spin_unlock(&this_rq->lock);
1626 spin_lock(&busiest->lock);
1627 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1628 ret = 1;
1629 } else
1630 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1632 return ret;
1635 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1636 __releases(busiest->lock)
1638 spin_unlock(&busiest->lock);
1639 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1641 #endif
1643 #ifdef CONFIG_FAIR_GROUP_SCHED
1644 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1646 #ifdef CONFIG_SMP
1647 cfs_rq->shares = shares;
1648 #endif
1650 #endif
1652 #include "sched_stats.h"
1653 #include "sched_idletask.c"
1654 #include "sched_fair.c"
1655 #include "sched_rt.c"
1656 #ifdef CONFIG_SCHED_DEBUG
1657 # include "sched_debug.c"
1658 #endif
1660 #define sched_class_highest (&rt_sched_class)
1661 #define for_each_class(class) \
1662 for (class = sched_class_highest; class; class = class->next)
1664 static void inc_nr_running(struct rq *rq)
1666 rq->nr_running++;
1669 static void dec_nr_running(struct rq *rq)
1671 rq->nr_running--;
1674 static void set_load_weight(struct task_struct *p)
1676 if (task_has_rt_policy(p)) {
1677 p->se.load.weight = prio_to_weight[0] * 2;
1678 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1679 return;
1683 * SCHED_IDLE tasks get minimal weight:
1685 if (p->policy == SCHED_IDLE) {
1686 p->se.load.weight = WEIGHT_IDLEPRIO;
1687 p->se.load.inv_weight = WMULT_IDLEPRIO;
1688 return;
1691 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1692 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1695 static void update_avg(u64 *avg, u64 sample)
1697 s64 diff = sample - *avg;
1698 *avg += diff >> 3;
1701 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1703 sched_info_queued(p);
1704 p->sched_class->enqueue_task(rq, p, wakeup);
1705 p->se.on_rq = 1;
1708 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1710 if (sleep && p->se.last_wakeup) {
1711 update_avg(&p->se.avg_overlap,
1712 p->se.sum_exec_runtime - p->se.last_wakeup);
1713 p->se.last_wakeup = 0;
1716 sched_info_dequeued(p);
1717 p->sched_class->dequeue_task(rq, p, sleep);
1718 p->se.on_rq = 0;
1722 * __normal_prio - return the priority that is based on the static prio
1724 static inline int __normal_prio(struct task_struct *p)
1726 return p->static_prio;
1730 * Calculate the expected normal priority: i.e. priority
1731 * without taking RT-inheritance into account. Might be
1732 * boosted by interactivity modifiers. Changes upon fork,
1733 * setprio syscalls, and whenever the interactivity
1734 * estimator recalculates.
1736 static inline int normal_prio(struct task_struct *p)
1738 int prio;
1740 if (task_has_rt_policy(p))
1741 prio = MAX_RT_PRIO-1 - p->rt_priority;
1742 else
1743 prio = __normal_prio(p);
1744 return prio;
1748 * Calculate the current priority, i.e. the priority
1749 * taken into account by the scheduler. This value might
1750 * be boosted by RT tasks, or might be boosted by
1751 * interactivity modifiers. Will be RT if the task got
1752 * RT-boosted. If not then it returns p->normal_prio.
1754 static int effective_prio(struct task_struct *p)
1756 p->normal_prio = normal_prio(p);
1758 * If we are RT tasks or we were boosted to RT priority,
1759 * keep the priority unchanged. Otherwise, update priority
1760 * to the normal priority:
1762 if (!rt_prio(p->prio))
1763 return p->normal_prio;
1764 return p->prio;
1768 * activate_task - move a task to the runqueue.
1770 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1772 if (task_contributes_to_load(p))
1773 rq->nr_uninterruptible--;
1775 enqueue_task(rq, p, wakeup);
1776 inc_nr_running(rq);
1780 * deactivate_task - remove a task from the runqueue.
1782 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1784 if (task_contributes_to_load(p))
1785 rq->nr_uninterruptible++;
1787 dequeue_task(rq, p, sleep);
1788 dec_nr_running(rq);
1792 * task_curr - is this task currently executing on a CPU?
1793 * @p: the task in question.
1795 inline int task_curr(const struct task_struct *p)
1797 return cpu_curr(task_cpu(p)) == p;
1800 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1802 set_task_rq(p, cpu);
1803 #ifdef CONFIG_SMP
1805 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1806 * successfuly executed on another CPU. We must ensure that updates of
1807 * per-task data have been completed by this moment.
1809 smp_wmb();
1810 task_thread_info(p)->cpu = cpu;
1811 #endif
1814 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1815 const struct sched_class *prev_class,
1816 int oldprio, int running)
1818 if (prev_class != p->sched_class) {
1819 if (prev_class->switched_from)
1820 prev_class->switched_from(rq, p, running);
1821 p->sched_class->switched_to(rq, p, running);
1822 } else
1823 p->sched_class->prio_changed(rq, p, oldprio, running);
1826 #ifdef CONFIG_SMP
1828 /* Used instead of source_load when we know the type == 0 */
1829 static unsigned long weighted_cpuload(const int cpu)
1831 return cpu_rq(cpu)->load.weight;
1835 * Is this task likely cache-hot:
1837 static int
1838 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1840 s64 delta;
1843 * Buddy candidates are cache hot:
1845 if (sched_feat(CACHE_HOT_BUDDY) &&
1846 (&p->se == cfs_rq_of(&p->se)->next ||
1847 &p->se == cfs_rq_of(&p->se)->last))
1848 return 1;
1850 if (p->sched_class != &fair_sched_class)
1851 return 0;
1853 if (sysctl_sched_migration_cost == -1)
1854 return 1;
1855 if (sysctl_sched_migration_cost == 0)
1856 return 0;
1858 delta = now - p->se.exec_start;
1860 return delta < (s64)sysctl_sched_migration_cost;
1864 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1866 int old_cpu = task_cpu(p);
1867 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1868 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1869 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1870 u64 clock_offset;
1872 clock_offset = old_rq->clock - new_rq->clock;
1874 #ifdef CONFIG_SCHEDSTATS
1875 if (p->se.wait_start)
1876 p->se.wait_start -= clock_offset;
1877 if (p->se.sleep_start)
1878 p->se.sleep_start -= clock_offset;
1879 if (p->se.block_start)
1880 p->se.block_start -= clock_offset;
1881 if (old_cpu != new_cpu) {
1882 schedstat_inc(p, se.nr_migrations);
1883 if (task_hot(p, old_rq->clock, NULL))
1884 schedstat_inc(p, se.nr_forced2_migrations);
1886 #endif
1887 p->se.vruntime -= old_cfsrq->min_vruntime -
1888 new_cfsrq->min_vruntime;
1890 __set_task_cpu(p, new_cpu);
1893 struct migration_req {
1894 struct list_head list;
1896 struct task_struct *task;
1897 int dest_cpu;
1899 struct completion done;
1903 * The task's runqueue lock must be held.
1904 * Returns true if you have to wait for migration thread.
1906 static int
1907 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1909 struct rq *rq = task_rq(p);
1912 * If the task is not on a runqueue (and not running), then
1913 * it is sufficient to simply update the task's cpu field.
1915 if (!p->se.on_rq && !task_running(rq, p)) {
1916 set_task_cpu(p, dest_cpu);
1917 return 0;
1920 init_completion(&req->done);
1921 req->task = p;
1922 req->dest_cpu = dest_cpu;
1923 list_add(&req->list, &rq->migration_queue);
1925 return 1;
1929 * wait_task_inactive - wait for a thread to unschedule.
1931 * If @match_state is nonzero, it's the @p->state value just checked and
1932 * not expected to change. If it changes, i.e. @p might have woken up,
1933 * then return zero. When we succeed in waiting for @p to be off its CPU,
1934 * we return a positive number (its total switch count). If a second call
1935 * a short while later returns the same number, the caller can be sure that
1936 * @p has remained unscheduled the whole time.
1938 * The caller must ensure that the task *will* unschedule sometime soon,
1939 * else this function might spin for a *long* time. This function can't
1940 * be called with interrupts off, or it may introduce deadlock with
1941 * smp_call_function() if an IPI is sent by the same process we are
1942 * waiting to become inactive.
1944 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1946 unsigned long flags;
1947 int running, on_rq;
1948 unsigned long ncsw;
1949 struct rq *rq;
1951 for (;;) {
1953 * We do the initial early heuristics without holding
1954 * any task-queue locks at all. We'll only try to get
1955 * the runqueue lock when things look like they will
1956 * work out!
1958 rq = task_rq(p);
1961 * If the task is actively running on another CPU
1962 * still, just relax and busy-wait without holding
1963 * any locks.
1965 * NOTE! Since we don't hold any locks, it's not
1966 * even sure that "rq" stays as the right runqueue!
1967 * But we don't care, since "task_running()" will
1968 * return false if the runqueue has changed and p
1969 * is actually now running somewhere else!
1971 while (task_running(rq, p)) {
1972 if (match_state && unlikely(p->state != match_state))
1973 return 0;
1974 cpu_relax();
1978 * Ok, time to look more closely! We need the rq
1979 * lock now, to be *sure*. If we're wrong, we'll
1980 * just go back and repeat.
1982 rq = task_rq_lock(p, &flags);
1983 trace_sched_wait_task(rq, p);
1984 running = task_running(rq, p);
1985 on_rq = p->se.on_rq;
1986 ncsw = 0;
1987 if (!match_state || p->state == match_state)
1988 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1989 task_rq_unlock(rq, &flags);
1992 * If it changed from the expected state, bail out now.
1994 if (unlikely(!ncsw))
1995 break;
1998 * Was it really running after all now that we
1999 * checked with the proper locks actually held?
2001 * Oops. Go back and try again..
2003 if (unlikely(running)) {
2004 cpu_relax();
2005 continue;
2009 * It's not enough that it's not actively running,
2010 * it must be off the runqueue _entirely_, and not
2011 * preempted!
2013 * So if it wa still runnable (but just not actively
2014 * running right now), it's preempted, and we should
2015 * yield - it could be a while.
2017 if (unlikely(on_rq)) {
2018 schedule_timeout_uninterruptible(1);
2019 continue;
2023 * Ahh, all good. It wasn't running, and it wasn't
2024 * runnable, which means that it will never become
2025 * running in the future either. We're all done!
2027 break;
2030 return ncsw;
2033 /***
2034 * kick_process - kick a running thread to enter/exit the kernel
2035 * @p: the to-be-kicked thread
2037 * Cause a process which is running on another CPU to enter
2038 * kernel-mode, without any delay. (to get signals handled.)
2040 * NOTE: this function doesnt have to take the runqueue lock,
2041 * because all it wants to ensure is that the remote task enters
2042 * the kernel. If the IPI races and the task has been migrated
2043 * to another CPU then no harm is done and the purpose has been
2044 * achieved as well.
2046 void kick_process(struct task_struct *p)
2048 int cpu;
2050 preempt_disable();
2051 cpu = task_cpu(p);
2052 if ((cpu != smp_processor_id()) && task_curr(p))
2053 smp_send_reschedule(cpu);
2054 preempt_enable();
2058 * Return a low guess at the load of a migration-source cpu weighted
2059 * according to the scheduling class and "nice" value.
2061 * We want to under-estimate the load of migration sources, to
2062 * balance conservatively.
2064 static unsigned long source_load(int cpu, int type)
2066 struct rq *rq = cpu_rq(cpu);
2067 unsigned long total = weighted_cpuload(cpu);
2069 if (type == 0 || !sched_feat(LB_BIAS))
2070 return total;
2072 return min(rq->cpu_load[type-1], total);
2076 * Return a high guess at the load of a migration-target cpu weighted
2077 * according to the scheduling class and "nice" value.
2079 static unsigned long target_load(int cpu, int type)
2081 struct rq *rq = cpu_rq(cpu);
2082 unsigned long total = weighted_cpuload(cpu);
2084 if (type == 0 || !sched_feat(LB_BIAS))
2085 return total;
2087 return max(rq->cpu_load[type-1], total);
2091 * find_idlest_group finds and returns the least busy CPU group within the
2092 * domain.
2094 static struct sched_group *
2095 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2097 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2098 unsigned long min_load = ULONG_MAX, this_load = 0;
2099 int load_idx = sd->forkexec_idx;
2100 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2102 do {
2103 unsigned long load, avg_load;
2104 int local_group;
2105 int i;
2107 /* Skip over this group if it has no CPUs allowed */
2108 if (!cpumask_intersects(sched_group_cpus(group),
2109 &p->cpus_allowed))
2110 continue;
2112 local_group = cpumask_test_cpu(this_cpu,
2113 sched_group_cpus(group));
2115 /* Tally up the load of all CPUs in the group */
2116 avg_load = 0;
2118 for_each_cpu(i, sched_group_cpus(group)) {
2119 /* Bias balancing toward cpus of our domain */
2120 if (local_group)
2121 load = source_load(i, load_idx);
2122 else
2123 load = target_load(i, load_idx);
2125 avg_load += load;
2128 /* Adjust by relative CPU power of the group */
2129 avg_load = sg_div_cpu_power(group,
2130 avg_load * SCHED_LOAD_SCALE);
2132 if (local_group) {
2133 this_load = avg_load;
2134 this = group;
2135 } else if (avg_load < min_load) {
2136 min_load = avg_load;
2137 idlest = group;
2139 } while (group = group->next, group != sd->groups);
2141 if (!idlest || 100*this_load < imbalance*min_load)
2142 return NULL;
2143 return idlest;
2147 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2149 static int
2150 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2152 unsigned long load, min_load = ULONG_MAX;
2153 int idlest = -1;
2154 int i;
2156 /* Traverse only the allowed CPUs */
2157 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2158 load = weighted_cpuload(i);
2160 if (load < min_load || (load == min_load && i == this_cpu)) {
2161 min_load = load;
2162 idlest = i;
2166 return idlest;
2170 * sched_balance_self: balance the current task (running on cpu) in domains
2171 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2172 * SD_BALANCE_EXEC.
2174 * Balance, ie. select the least loaded group.
2176 * Returns the target CPU number, or the same CPU if no balancing is needed.
2178 * preempt must be disabled.
2180 static int sched_balance_self(int cpu, int flag)
2182 struct task_struct *t = current;
2183 struct sched_domain *tmp, *sd = NULL;
2185 for_each_domain(cpu, tmp) {
2187 * If power savings logic is enabled for a domain, stop there.
2189 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2190 break;
2191 if (tmp->flags & flag)
2192 sd = tmp;
2195 if (sd)
2196 update_shares(sd);
2198 while (sd) {
2199 struct sched_group *group;
2200 int new_cpu, weight;
2202 if (!(sd->flags & flag)) {
2203 sd = sd->child;
2204 continue;
2207 group = find_idlest_group(sd, t, cpu);
2208 if (!group) {
2209 sd = sd->child;
2210 continue;
2213 new_cpu = find_idlest_cpu(group, t, cpu);
2214 if (new_cpu == -1 || new_cpu == cpu) {
2215 /* Now try balancing at a lower domain level of cpu */
2216 sd = sd->child;
2217 continue;
2220 /* Now try balancing at a lower domain level of new_cpu */
2221 cpu = new_cpu;
2222 weight = cpumask_weight(sched_domain_span(sd));
2223 sd = NULL;
2224 for_each_domain(cpu, tmp) {
2225 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2226 break;
2227 if (tmp->flags & flag)
2228 sd = tmp;
2230 /* while loop will break here if sd == NULL */
2233 return cpu;
2236 #endif /* CONFIG_SMP */
2238 /***
2239 * try_to_wake_up - wake up a thread
2240 * @p: the to-be-woken-up thread
2241 * @state: the mask of task states that can be woken
2242 * @sync: do a synchronous wakeup?
2244 * Put it on the run-queue if it's not already there. The "current"
2245 * thread is always on the run-queue (except when the actual
2246 * re-schedule is in progress), and as such you're allowed to do
2247 * the simpler "current->state = TASK_RUNNING" to mark yourself
2248 * runnable without the overhead of this.
2250 * returns failure only if the task is already active.
2252 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2254 int cpu, orig_cpu, this_cpu, success = 0;
2255 unsigned long flags;
2256 long old_state;
2257 struct rq *rq;
2259 if (!sched_feat(SYNC_WAKEUPS))
2260 sync = 0;
2262 #ifdef CONFIG_SMP
2263 if (sched_feat(LB_WAKEUP_UPDATE)) {
2264 struct sched_domain *sd;
2266 this_cpu = raw_smp_processor_id();
2267 cpu = task_cpu(p);
2269 for_each_domain(this_cpu, sd) {
2270 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2271 update_shares(sd);
2272 break;
2276 #endif
2278 smp_wmb();
2279 rq = task_rq_lock(p, &flags);
2280 old_state = p->state;
2281 if (!(old_state & state))
2282 goto out;
2284 if (p->se.on_rq)
2285 goto out_running;
2287 cpu = task_cpu(p);
2288 orig_cpu = cpu;
2289 this_cpu = smp_processor_id();
2291 #ifdef CONFIG_SMP
2292 if (unlikely(task_running(rq, p)))
2293 goto out_activate;
2295 cpu = p->sched_class->select_task_rq(p, sync);
2296 if (cpu != orig_cpu) {
2297 set_task_cpu(p, cpu);
2298 task_rq_unlock(rq, &flags);
2299 /* might preempt at this point */
2300 rq = task_rq_lock(p, &flags);
2301 old_state = p->state;
2302 if (!(old_state & state))
2303 goto out;
2304 if (p->se.on_rq)
2305 goto out_running;
2307 this_cpu = smp_processor_id();
2308 cpu = task_cpu(p);
2311 #ifdef CONFIG_SCHEDSTATS
2312 schedstat_inc(rq, ttwu_count);
2313 if (cpu == this_cpu)
2314 schedstat_inc(rq, ttwu_local);
2315 else {
2316 struct sched_domain *sd;
2317 for_each_domain(this_cpu, sd) {
2318 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2319 schedstat_inc(sd, ttwu_wake_remote);
2320 break;
2324 #endif /* CONFIG_SCHEDSTATS */
2326 out_activate:
2327 #endif /* CONFIG_SMP */
2328 schedstat_inc(p, se.nr_wakeups);
2329 if (sync)
2330 schedstat_inc(p, se.nr_wakeups_sync);
2331 if (orig_cpu != cpu)
2332 schedstat_inc(p, se.nr_wakeups_migrate);
2333 if (cpu == this_cpu)
2334 schedstat_inc(p, se.nr_wakeups_local);
2335 else
2336 schedstat_inc(p, se.nr_wakeups_remote);
2337 update_rq_clock(rq);
2338 activate_task(rq, p, 1);
2339 success = 1;
2341 out_running:
2342 trace_sched_wakeup(rq, p);
2343 check_preempt_curr(rq, p, sync);
2345 p->state = TASK_RUNNING;
2346 #ifdef CONFIG_SMP
2347 if (p->sched_class->task_wake_up)
2348 p->sched_class->task_wake_up(rq, p);
2349 #endif
2350 out:
2351 current->se.last_wakeup = current->se.sum_exec_runtime;
2353 task_rq_unlock(rq, &flags);
2355 return success;
2358 int wake_up_process(struct task_struct *p)
2360 return try_to_wake_up(p, TASK_ALL, 0);
2362 EXPORT_SYMBOL(wake_up_process);
2364 int wake_up_state(struct task_struct *p, unsigned int state)
2366 return try_to_wake_up(p, state, 0);
2370 * Perform scheduler related setup for a newly forked process p.
2371 * p is forked by current.
2373 * __sched_fork() is basic setup used by init_idle() too:
2375 static void __sched_fork(struct task_struct *p)
2377 p->se.exec_start = 0;
2378 p->se.sum_exec_runtime = 0;
2379 p->se.prev_sum_exec_runtime = 0;
2380 p->se.last_wakeup = 0;
2381 p->se.avg_overlap = 0;
2383 #ifdef CONFIG_SCHEDSTATS
2384 p->se.wait_start = 0;
2385 p->se.sum_sleep_runtime = 0;
2386 p->se.sleep_start = 0;
2387 p->se.block_start = 0;
2388 p->se.sleep_max = 0;
2389 p->se.block_max = 0;
2390 p->se.exec_max = 0;
2391 p->se.slice_max = 0;
2392 p->se.wait_max = 0;
2393 #endif
2395 INIT_LIST_HEAD(&p->rt.run_list);
2396 p->se.on_rq = 0;
2397 INIT_LIST_HEAD(&p->se.group_node);
2399 #ifdef CONFIG_PREEMPT_NOTIFIERS
2400 INIT_HLIST_HEAD(&p->preempt_notifiers);
2401 #endif
2404 * We mark the process as running here, but have not actually
2405 * inserted it onto the runqueue yet. This guarantees that
2406 * nobody will actually run it, and a signal or other external
2407 * event cannot wake it up and insert it on the runqueue either.
2409 p->state = TASK_RUNNING;
2413 * fork()/clone()-time setup:
2415 void sched_fork(struct task_struct *p, int clone_flags)
2417 int cpu = get_cpu();
2419 __sched_fork(p);
2421 #ifdef CONFIG_SMP
2422 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2423 #endif
2424 set_task_cpu(p, cpu);
2427 * Make sure we do not leak PI boosting priority to the child:
2429 p->prio = current->normal_prio;
2430 if (!rt_prio(p->prio))
2431 p->sched_class = &fair_sched_class;
2433 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2434 if (likely(sched_info_on()))
2435 memset(&p->sched_info, 0, sizeof(p->sched_info));
2436 #endif
2437 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2438 p->oncpu = 0;
2439 #endif
2440 #ifdef CONFIG_PREEMPT
2441 /* Want to start with kernel preemption disabled. */
2442 task_thread_info(p)->preempt_count = 1;
2443 #endif
2444 put_cpu();
2448 * wake_up_new_task - wake up a newly created task for the first time.
2450 * This function will do some initial scheduler statistics housekeeping
2451 * that must be done for every newly created context, then puts the task
2452 * on the runqueue and wakes it.
2454 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2456 unsigned long flags;
2457 struct rq *rq;
2459 rq = task_rq_lock(p, &flags);
2460 BUG_ON(p->state != TASK_RUNNING);
2461 update_rq_clock(rq);
2463 p->prio = effective_prio(p);
2465 if (!p->sched_class->task_new || !current->se.on_rq) {
2466 activate_task(rq, p, 0);
2467 } else {
2469 * Let the scheduling class do new task startup
2470 * management (if any):
2472 p->sched_class->task_new(rq, p);
2473 inc_nr_running(rq);
2475 trace_sched_wakeup_new(rq, p);
2476 check_preempt_curr(rq, p, 0);
2477 #ifdef CONFIG_SMP
2478 if (p->sched_class->task_wake_up)
2479 p->sched_class->task_wake_up(rq, p);
2480 #endif
2481 task_rq_unlock(rq, &flags);
2484 #ifdef CONFIG_PREEMPT_NOTIFIERS
2487 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2488 * @notifier: notifier struct to register
2490 void preempt_notifier_register(struct preempt_notifier *notifier)
2492 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2494 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2497 * preempt_notifier_unregister - no longer interested in preemption notifications
2498 * @notifier: notifier struct to unregister
2500 * This is safe to call from within a preemption notifier.
2502 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2504 hlist_del(&notifier->link);
2506 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2508 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2510 struct preempt_notifier *notifier;
2511 struct hlist_node *node;
2513 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2514 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2517 static void
2518 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2519 struct task_struct *next)
2521 struct preempt_notifier *notifier;
2522 struct hlist_node *node;
2524 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2525 notifier->ops->sched_out(notifier, next);
2528 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2530 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2534 static void
2535 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2536 struct task_struct *next)
2540 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2543 * prepare_task_switch - prepare to switch tasks
2544 * @rq: the runqueue preparing to switch
2545 * @prev: the current task that is being switched out
2546 * @next: the task we are going to switch to.
2548 * This is called with the rq lock held and interrupts off. It must
2549 * be paired with a subsequent finish_task_switch after the context
2550 * switch.
2552 * prepare_task_switch sets up locking and calls architecture specific
2553 * hooks.
2555 static inline void
2556 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2557 struct task_struct *next)
2559 fire_sched_out_preempt_notifiers(prev, next);
2560 prepare_lock_switch(rq, next);
2561 prepare_arch_switch(next);
2565 * finish_task_switch - clean up after a task-switch
2566 * @rq: runqueue associated with task-switch
2567 * @prev: the thread we just switched away from.
2569 * finish_task_switch must be called after the context switch, paired
2570 * with a prepare_task_switch call before the context switch.
2571 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2572 * and do any other architecture-specific cleanup actions.
2574 * Note that we may have delayed dropping an mm in context_switch(). If
2575 * so, we finish that here outside of the runqueue lock. (Doing it
2576 * with the lock held can cause deadlocks; see schedule() for
2577 * details.)
2579 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2580 __releases(rq->lock)
2582 struct mm_struct *mm = rq->prev_mm;
2583 long prev_state;
2585 rq->prev_mm = NULL;
2588 * A task struct has one reference for the use as "current".
2589 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2590 * schedule one last time. The schedule call will never return, and
2591 * the scheduled task must drop that reference.
2592 * The test for TASK_DEAD must occur while the runqueue locks are
2593 * still held, otherwise prev could be scheduled on another cpu, die
2594 * there before we look at prev->state, and then the reference would
2595 * be dropped twice.
2596 * Manfred Spraul <manfred@colorfullife.com>
2598 prev_state = prev->state;
2599 finish_arch_switch(prev);
2600 finish_lock_switch(rq, prev);
2601 #ifdef CONFIG_SMP
2602 if (current->sched_class->post_schedule)
2603 current->sched_class->post_schedule(rq);
2604 #endif
2606 fire_sched_in_preempt_notifiers(current);
2607 if (mm)
2608 mmdrop(mm);
2609 if (unlikely(prev_state == TASK_DEAD)) {
2611 * Remove function-return probe instances associated with this
2612 * task and put them back on the free list.
2614 kprobe_flush_task(prev);
2615 put_task_struct(prev);
2620 * schedule_tail - first thing a freshly forked thread must call.
2621 * @prev: the thread we just switched away from.
2623 asmlinkage void schedule_tail(struct task_struct *prev)
2624 __releases(rq->lock)
2626 struct rq *rq = this_rq();
2628 finish_task_switch(rq, prev);
2629 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2630 /* In this case, finish_task_switch does not reenable preemption */
2631 preempt_enable();
2632 #endif
2633 if (current->set_child_tid)
2634 put_user(task_pid_vnr(current), current->set_child_tid);
2638 * context_switch - switch to the new MM and the new
2639 * thread's register state.
2641 static inline void
2642 context_switch(struct rq *rq, struct task_struct *prev,
2643 struct task_struct *next)
2645 struct mm_struct *mm, *oldmm;
2647 prepare_task_switch(rq, prev, next);
2648 trace_sched_switch(rq, prev, next);
2649 mm = next->mm;
2650 oldmm = prev->active_mm;
2652 * For paravirt, this is coupled with an exit in switch_to to
2653 * combine the page table reload and the switch backend into
2654 * one hypercall.
2656 arch_enter_lazy_cpu_mode();
2658 if (unlikely(!mm)) {
2659 next->active_mm = oldmm;
2660 atomic_inc(&oldmm->mm_count);
2661 enter_lazy_tlb(oldmm, next);
2662 } else
2663 switch_mm(oldmm, mm, next);
2665 if (unlikely(!prev->mm)) {
2666 prev->active_mm = NULL;
2667 rq->prev_mm = oldmm;
2670 * Since the runqueue lock will be released by the next
2671 * task (which is an invalid locking op but in the case
2672 * of the scheduler it's an obvious special-case), so we
2673 * do an early lockdep release here:
2675 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2676 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2677 #endif
2679 /* Here we just switch the register state and the stack. */
2680 switch_to(prev, next, prev);
2682 barrier();
2684 * this_rq must be evaluated again because prev may have moved
2685 * CPUs since it called schedule(), thus the 'rq' on its stack
2686 * frame will be invalid.
2688 finish_task_switch(this_rq(), prev);
2692 * nr_running, nr_uninterruptible and nr_context_switches:
2694 * externally visible scheduler statistics: current number of runnable
2695 * threads, current number of uninterruptible-sleeping threads, total
2696 * number of context switches performed since bootup.
2698 unsigned long nr_running(void)
2700 unsigned long i, sum = 0;
2702 for_each_online_cpu(i)
2703 sum += cpu_rq(i)->nr_running;
2705 return sum;
2708 unsigned long nr_uninterruptible(void)
2710 unsigned long i, sum = 0;
2712 for_each_possible_cpu(i)
2713 sum += cpu_rq(i)->nr_uninterruptible;
2716 * Since we read the counters lockless, it might be slightly
2717 * inaccurate. Do not allow it to go below zero though:
2719 if (unlikely((long)sum < 0))
2720 sum = 0;
2722 return sum;
2725 unsigned long long nr_context_switches(void)
2727 int i;
2728 unsigned long long sum = 0;
2730 for_each_possible_cpu(i)
2731 sum += cpu_rq(i)->nr_switches;
2733 return sum;
2736 unsigned long nr_iowait(void)
2738 unsigned long i, sum = 0;
2740 for_each_possible_cpu(i)
2741 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2743 return sum;
2746 unsigned long nr_active(void)
2748 unsigned long i, running = 0, uninterruptible = 0;
2750 for_each_online_cpu(i) {
2751 running += cpu_rq(i)->nr_running;
2752 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2755 if (unlikely((long)uninterruptible < 0))
2756 uninterruptible = 0;
2758 return running + uninterruptible;
2762 * Update rq->cpu_load[] statistics. This function is usually called every
2763 * scheduler tick (TICK_NSEC).
2765 static void update_cpu_load(struct rq *this_rq)
2767 unsigned long this_load = this_rq->load.weight;
2768 int i, scale;
2770 this_rq->nr_load_updates++;
2772 /* Update our load: */
2773 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2774 unsigned long old_load, new_load;
2776 /* scale is effectively 1 << i now, and >> i divides by scale */
2778 old_load = this_rq->cpu_load[i];
2779 new_load = this_load;
2781 * Round up the averaging division if load is increasing. This
2782 * prevents us from getting stuck on 9 if the load is 10, for
2783 * example.
2785 if (new_load > old_load)
2786 new_load += scale-1;
2787 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2791 #ifdef CONFIG_SMP
2794 * double_rq_lock - safely lock two runqueues
2796 * Note this does not disable interrupts like task_rq_lock,
2797 * you need to do so manually before calling.
2799 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2800 __acquires(rq1->lock)
2801 __acquires(rq2->lock)
2803 BUG_ON(!irqs_disabled());
2804 if (rq1 == rq2) {
2805 spin_lock(&rq1->lock);
2806 __acquire(rq2->lock); /* Fake it out ;) */
2807 } else {
2808 if (rq1 < rq2) {
2809 spin_lock(&rq1->lock);
2810 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2811 } else {
2812 spin_lock(&rq2->lock);
2813 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2816 update_rq_clock(rq1);
2817 update_rq_clock(rq2);
2821 * double_rq_unlock - safely unlock two runqueues
2823 * Note this does not restore interrupts like task_rq_unlock,
2824 * you need to do so manually after calling.
2826 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2827 __releases(rq1->lock)
2828 __releases(rq2->lock)
2830 spin_unlock(&rq1->lock);
2831 if (rq1 != rq2)
2832 spin_unlock(&rq2->lock);
2833 else
2834 __release(rq2->lock);
2838 * If dest_cpu is allowed for this process, migrate the task to it.
2839 * This is accomplished by forcing the cpu_allowed mask to only
2840 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2841 * the cpu_allowed mask is restored.
2843 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2845 struct migration_req req;
2846 unsigned long flags;
2847 struct rq *rq;
2849 rq = task_rq_lock(p, &flags);
2850 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2851 || unlikely(!cpu_active(dest_cpu)))
2852 goto out;
2854 trace_sched_migrate_task(rq, p, dest_cpu);
2855 /* force the process onto the specified CPU */
2856 if (migrate_task(p, dest_cpu, &req)) {
2857 /* Need to wait for migration thread (might exit: take ref). */
2858 struct task_struct *mt = rq->migration_thread;
2860 get_task_struct(mt);
2861 task_rq_unlock(rq, &flags);
2862 wake_up_process(mt);
2863 put_task_struct(mt);
2864 wait_for_completion(&req.done);
2866 return;
2868 out:
2869 task_rq_unlock(rq, &flags);
2873 * sched_exec - execve() is a valuable balancing opportunity, because at
2874 * this point the task has the smallest effective memory and cache footprint.
2876 void sched_exec(void)
2878 int new_cpu, this_cpu = get_cpu();
2879 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2880 put_cpu();
2881 if (new_cpu != this_cpu)
2882 sched_migrate_task(current, new_cpu);
2886 * pull_task - move a task from a remote runqueue to the local runqueue.
2887 * Both runqueues must be locked.
2889 static void pull_task(struct rq *src_rq, struct task_struct *p,
2890 struct rq *this_rq, int this_cpu)
2892 deactivate_task(src_rq, p, 0);
2893 set_task_cpu(p, this_cpu);
2894 activate_task(this_rq, p, 0);
2896 * Note that idle threads have a prio of MAX_PRIO, for this test
2897 * to be always true for them.
2899 check_preempt_curr(this_rq, p, 0);
2903 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2905 static
2906 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2907 struct sched_domain *sd, enum cpu_idle_type idle,
2908 int *all_pinned)
2911 * We do not migrate tasks that are:
2912 * 1) running (obviously), or
2913 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2914 * 3) are cache-hot on their current CPU.
2916 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
2917 schedstat_inc(p, se.nr_failed_migrations_affine);
2918 return 0;
2920 *all_pinned = 0;
2922 if (task_running(rq, p)) {
2923 schedstat_inc(p, se.nr_failed_migrations_running);
2924 return 0;
2928 * Aggressive migration if:
2929 * 1) task is cache cold, or
2930 * 2) too many balance attempts have failed.
2933 if (!task_hot(p, rq->clock, sd) ||
2934 sd->nr_balance_failed > sd->cache_nice_tries) {
2935 #ifdef CONFIG_SCHEDSTATS
2936 if (task_hot(p, rq->clock, sd)) {
2937 schedstat_inc(sd, lb_hot_gained[idle]);
2938 schedstat_inc(p, se.nr_forced_migrations);
2940 #endif
2941 return 1;
2944 if (task_hot(p, rq->clock, sd)) {
2945 schedstat_inc(p, se.nr_failed_migrations_hot);
2946 return 0;
2948 return 1;
2951 static unsigned long
2952 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2953 unsigned long max_load_move, struct sched_domain *sd,
2954 enum cpu_idle_type idle, int *all_pinned,
2955 int *this_best_prio, struct rq_iterator *iterator)
2957 int loops = 0, pulled = 0, pinned = 0;
2958 struct task_struct *p;
2959 long rem_load_move = max_load_move;
2961 if (max_load_move == 0)
2962 goto out;
2964 pinned = 1;
2967 * Start the load-balancing iterator:
2969 p = iterator->start(iterator->arg);
2970 next:
2971 if (!p || loops++ > sysctl_sched_nr_migrate)
2972 goto out;
2974 if ((p->se.load.weight >> 1) > rem_load_move ||
2975 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2976 p = iterator->next(iterator->arg);
2977 goto next;
2980 pull_task(busiest, p, this_rq, this_cpu);
2981 pulled++;
2982 rem_load_move -= p->se.load.weight;
2985 * We only want to steal up to the prescribed amount of weighted load.
2987 if (rem_load_move > 0) {
2988 if (p->prio < *this_best_prio)
2989 *this_best_prio = p->prio;
2990 p = iterator->next(iterator->arg);
2991 goto next;
2993 out:
2995 * Right now, this is one of only two places pull_task() is called,
2996 * so we can safely collect pull_task() stats here rather than
2997 * inside pull_task().
2999 schedstat_add(sd, lb_gained[idle], pulled);
3001 if (all_pinned)
3002 *all_pinned = pinned;
3004 return max_load_move - rem_load_move;
3008 * move_tasks tries to move up to max_load_move weighted load from busiest to
3009 * this_rq, as part of a balancing operation within domain "sd".
3010 * Returns 1 if successful and 0 otherwise.
3012 * Called with both runqueues locked.
3014 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3015 unsigned long max_load_move,
3016 struct sched_domain *sd, enum cpu_idle_type idle,
3017 int *all_pinned)
3019 const struct sched_class *class = sched_class_highest;
3020 unsigned long total_load_moved = 0;
3021 int this_best_prio = this_rq->curr->prio;
3023 do {
3024 total_load_moved +=
3025 class->load_balance(this_rq, this_cpu, busiest,
3026 max_load_move - total_load_moved,
3027 sd, idle, all_pinned, &this_best_prio);
3028 class = class->next;
3030 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3031 break;
3033 } while (class && max_load_move > total_load_moved);
3035 return total_load_moved > 0;
3038 static int
3039 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3040 struct sched_domain *sd, enum cpu_idle_type idle,
3041 struct rq_iterator *iterator)
3043 struct task_struct *p = iterator->start(iterator->arg);
3044 int pinned = 0;
3046 while (p) {
3047 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3048 pull_task(busiest, p, this_rq, this_cpu);
3050 * Right now, this is only the second place pull_task()
3051 * is called, so we can safely collect pull_task()
3052 * stats here rather than inside pull_task().
3054 schedstat_inc(sd, lb_gained[idle]);
3056 return 1;
3058 p = iterator->next(iterator->arg);
3061 return 0;
3065 * move_one_task tries to move exactly one task from busiest to this_rq, as
3066 * part of active balancing operations within "domain".
3067 * Returns 1 if successful and 0 otherwise.
3069 * Called with both runqueues locked.
3071 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3072 struct sched_domain *sd, enum cpu_idle_type idle)
3074 const struct sched_class *class;
3076 for (class = sched_class_highest; class; class = class->next)
3077 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3078 return 1;
3080 return 0;
3084 * find_busiest_group finds and returns the busiest CPU group within the
3085 * domain. It calculates and returns the amount of weighted load which
3086 * should be moved to restore balance via the imbalance parameter.
3088 static struct sched_group *
3089 find_busiest_group(struct sched_domain *sd, int this_cpu,
3090 unsigned long *imbalance, enum cpu_idle_type idle,
3091 int *sd_idle, const struct cpumask *cpus, int *balance)
3093 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3094 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3095 unsigned long max_pull;
3096 unsigned long busiest_load_per_task, busiest_nr_running;
3097 unsigned long this_load_per_task, this_nr_running;
3098 int load_idx, group_imb = 0;
3099 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3100 int power_savings_balance = 1;
3101 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3102 unsigned long min_nr_running = ULONG_MAX;
3103 struct sched_group *group_min = NULL, *group_leader = NULL;
3104 #endif
3106 max_load = this_load = total_load = total_pwr = 0;
3107 busiest_load_per_task = busiest_nr_running = 0;
3108 this_load_per_task = this_nr_running = 0;
3110 if (idle == CPU_NOT_IDLE)
3111 load_idx = sd->busy_idx;
3112 else if (idle == CPU_NEWLY_IDLE)
3113 load_idx = sd->newidle_idx;
3114 else
3115 load_idx = sd->idle_idx;
3117 do {
3118 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3119 int local_group;
3120 int i;
3121 int __group_imb = 0;
3122 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3123 unsigned long sum_nr_running, sum_weighted_load;
3124 unsigned long sum_avg_load_per_task;
3125 unsigned long avg_load_per_task;
3127 local_group = cpumask_test_cpu(this_cpu,
3128 sched_group_cpus(group));
3130 if (local_group)
3131 balance_cpu = cpumask_first(sched_group_cpus(group));
3133 /* Tally up the load of all CPUs in the group */
3134 sum_weighted_load = sum_nr_running = avg_load = 0;
3135 sum_avg_load_per_task = avg_load_per_task = 0;
3137 max_cpu_load = 0;
3138 min_cpu_load = ~0UL;
3140 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3141 struct rq *rq = cpu_rq(i);
3143 if (*sd_idle && rq->nr_running)
3144 *sd_idle = 0;
3146 /* Bias balancing toward cpus of our domain */
3147 if (local_group) {
3148 if (idle_cpu(i) && !first_idle_cpu) {
3149 first_idle_cpu = 1;
3150 balance_cpu = i;
3153 load = target_load(i, load_idx);
3154 } else {
3155 load = source_load(i, load_idx);
3156 if (load > max_cpu_load)
3157 max_cpu_load = load;
3158 if (min_cpu_load > load)
3159 min_cpu_load = load;
3162 avg_load += load;
3163 sum_nr_running += rq->nr_running;
3164 sum_weighted_load += weighted_cpuload(i);
3166 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3170 * First idle cpu or the first cpu(busiest) in this sched group
3171 * is eligible for doing load balancing at this and above
3172 * domains. In the newly idle case, we will allow all the cpu's
3173 * to do the newly idle load balance.
3175 if (idle != CPU_NEWLY_IDLE && local_group &&
3176 balance_cpu != this_cpu && balance) {
3177 *balance = 0;
3178 goto ret;
3181 total_load += avg_load;
3182 total_pwr += group->__cpu_power;
3184 /* Adjust by relative CPU power of the group */
3185 avg_load = sg_div_cpu_power(group,
3186 avg_load * SCHED_LOAD_SCALE);
3190 * Consider the group unbalanced when the imbalance is larger
3191 * than the average weight of two tasks.
3193 * APZ: with cgroup the avg task weight can vary wildly and
3194 * might not be a suitable number - should we keep a
3195 * normalized nr_running number somewhere that negates
3196 * the hierarchy?
3198 avg_load_per_task = sg_div_cpu_power(group,
3199 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3201 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3202 __group_imb = 1;
3204 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3206 if (local_group) {
3207 this_load = avg_load;
3208 this = group;
3209 this_nr_running = sum_nr_running;
3210 this_load_per_task = sum_weighted_load;
3211 } else if (avg_load > max_load &&
3212 (sum_nr_running > group_capacity || __group_imb)) {
3213 max_load = avg_load;
3214 busiest = group;
3215 busiest_nr_running = sum_nr_running;
3216 busiest_load_per_task = sum_weighted_load;
3217 group_imb = __group_imb;
3220 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3222 * Busy processors will not participate in power savings
3223 * balance.
3225 if (idle == CPU_NOT_IDLE ||
3226 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3227 goto group_next;
3230 * If the local group is idle or completely loaded
3231 * no need to do power savings balance at this domain
3233 if (local_group && (this_nr_running >= group_capacity ||
3234 !this_nr_running))
3235 power_savings_balance = 0;
3238 * If a group is already running at full capacity or idle,
3239 * don't include that group in power savings calculations
3241 if (!power_savings_balance || sum_nr_running >= group_capacity
3242 || !sum_nr_running)
3243 goto group_next;
3246 * Calculate the group which has the least non-idle load.
3247 * This is the group from where we need to pick up the load
3248 * for saving power
3250 if ((sum_nr_running < min_nr_running) ||
3251 (sum_nr_running == min_nr_running &&
3252 cpumask_first(sched_group_cpus(group)) >
3253 cpumask_first(sched_group_cpus(group_min)))) {
3254 group_min = group;
3255 min_nr_running = sum_nr_running;
3256 min_load_per_task = sum_weighted_load /
3257 sum_nr_running;
3261 * Calculate the group which is almost near its
3262 * capacity but still has some space to pick up some load
3263 * from other group and save more power
3265 if (sum_nr_running <= group_capacity - 1) {
3266 if (sum_nr_running > leader_nr_running ||
3267 (sum_nr_running == leader_nr_running &&
3268 cpumask_first(sched_group_cpus(group)) <
3269 cpumask_first(sched_group_cpus(group_leader)))) {
3270 group_leader = group;
3271 leader_nr_running = sum_nr_running;
3274 group_next:
3275 #endif
3276 group = group->next;
3277 } while (group != sd->groups);
3279 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3280 goto out_balanced;
3282 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3284 if (this_load >= avg_load ||
3285 100*max_load <= sd->imbalance_pct*this_load)
3286 goto out_balanced;
3288 busiest_load_per_task /= busiest_nr_running;
3289 if (group_imb)
3290 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3293 * We're trying to get all the cpus to the average_load, so we don't
3294 * want to push ourselves above the average load, nor do we wish to
3295 * reduce the max loaded cpu below the average load, as either of these
3296 * actions would just result in more rebalancing later, and ping-pong
3297 * tasks around. Thus we look for the minimum possible imbalance.
3298 * Negative imbalances (*we* are more loaded than anyone else) will
3299 * be counted as no imbalance for these purposes -- we can't fix that
3300 * by pulling tasks to us. Be careful of negative numbers as they'll
3301 * appear as very large values with unsigned longs.
3303 if (max_load <= busiest_load_per_task)
3304 goto out_balanced;
3307 * In the presence of smp nice balancing, certain scenarios can have
3308 * max load less than avg load(as we skip the groups at or below
3309 * its cpu_power, while calculating max_load..)
3311 if (max_load < avg_load) {
3312 *imbalance = 0;
3313 goto small_imbalance;
3316 /* Don't want to pull so many tasks that a group would go idle */
3317 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3319 /* How much load to actually move to equalise the imbalance */
3320 *imbalance = min(max_pull * busiest->__cpu_power,
3321 (avg_load - this_load) * this->__cpu_power)
3322 / SCHED_LOAD_SCALE;
3325 * if *imbalance is less than the average load per runnable task
3326 * there is no gaurantee that any tasks will be moved so we'll have
3327 * a think about bumping its value to force at least one task to be
3328 * moved
3330 if (*imbalance < busiest_load_per_task) {
3331 unsigned long tmp, pwr_now, pwr_move;
3332 unsigned int imbn;
3334 small_imbalance:
3335 pwr_move = pwr_now = 0;
3336 imbn = 2;
3337 if (this_nr_running) {
3338 this_load_per_task /= this_nr_running;
3339 if (busiest_load_per_task > this_load_per_task)
3340 imbn = 1;
3341 } else
3342 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3344 if (max_load - this_load + busiest_load_per_task >=
3345 busiest_load_per_task * imbn) {
3346 *imbalance = busiest_load_per_task;
3347 return busiest;
3351 * OK, we don't have enough imbalance to justify moving tasks,
3352 * however we may be able to increase total CPU power used by
3353 * moving them.
3356 pwr_now += busiest->__cpu_power *
3357 min(busiest_load_per_task, max_load);
3358 pwr_now += this->__cpu_power *
3359 min(this_load_per_task, this_load);
3360 pwr_now /= SCHED_LOAD_SCALE;
3362 /* Amount of load we'd subtract */
3363 tmp = sg_div_cpu_power(busiest,
3364 busiest_load_per_task * SCHED_LOAD_SCALE);
3365 if (max_load > tmp)
3366 pwr_move += busiest->__cpu_power *
3367 min(busiest_load_per_task, max_load - tmp);
3369 /* Amount of load we'd add */
3370 if (max_load * busiest->__cpu_power <
3371 busiest_load_per_task * SCHED_LOAD_SCALE)
3372 tmp = sg_div_cpu_power(this,
3373 max_load * busiest->__cpu_power);
3374 else
3375 tmp = sg_div_cpu_power(this,
3376 busiest_load_per_task * SCHED_LOAD_SCALE);
3377 pwr_move += this->__cpu_power *
3378 min(this_load_per_task, this_load + tmp);
3379 pwr_move /= SCHED_LOAD_SCALE;
3381 /* Move if we gain throughput */
3382 if (pwr_move > pwr_now)
3383 *imbalance = busiest_load_per_task;
3386 return busiest;
3388 out_balanced:
3389 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3390 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3391 goto ret;
3393 if (this == group_leader && group_leader != group_min) {
3394 *imbalance = min_load_per_task;
3395 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3396 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3397 first_cpu(group_leader->cpumask);
3399 return group_min;
3401 #endif
3402 ret:
3403 *imbalance = 0;
3404 return NULL;
3408 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3410 static struct rq *
3411 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3412 unsigned long imbalance, const struct cpumask *cpus)
3414 struct rq *busiest = NULL, *rq;
3415 unsigned long max_load = 0;
3416 int i;
3418 for_each_cpu(i, sched_group_cpus(group)) {
3419 unsigned long wl;
3421 if (!cpumask_test_cpu(i, cpus))
3422 continue;
3424 rq = cpu_rq(i);
3425 wl = weighted_cpuload(i);
3427 if (rq->nr_running == 1 && wl > imbalance)
3428 continue;
3430 if (wl > max_load) {
3431 max_load = wl;
3432 busiest = rq;
3436 return busiest;
3440 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3441 * so long as it is large enough.
3443 #define MAX_PINNED_INTERVAL 512
3446 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3447 * tasks if there is an imbalance.
3449 static int load_balance(int this_cpu, struct rq *this_rq,
3450 struct sched_domain *sd, enum cpu_idle_type idle,
3451 int *balance, struct cpumask *cpus)
3453 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3454 struct sched_group *group;
3455 unsigned long imbalance;
3456 struct rq *busiest;
3457 unsigned long flags;
3459 cpumask_setall(cpus);
3462 * When power savings policy is enabled for the parent domain, idle
3463 * sibling can pick up load irrespective of busy siblings. In this case,
3464 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3465 * portraying it as CPU_NOT_IDLE.
3467 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3468 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3469 sd_idle = 1;
3471 schedstat_inc(sd, lb_count[idle]);
3473 redo:
3474 update_shares(sd);
3475 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3476 cpus, balance);
3478 if (*balance == 0)
3479 goto out_balanced;
3481 if (!group) {
3482 schedstat_inc(sd, lb_nobusyg[idle]);
3483 goto out_balanced;
3486 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3487 if (!busiest) {
3488 schedstat_inc(sd, lb_nobusyq[idle]);
3489 goto out_balanced;
3492 BUG_ON(busiest == this_rq);
3494 schedstat_add(sd, lb_imbalance[idle], imbalance);
3496 ld_moved = 0;
3497 if (busiest->nr_running > 1) {
3499 * Attempt to move tasks. If find_busiest_group has found
3500 * an imbalance but busiest->nr_running <= 1, the group is
3501 * still unbalanced. ld_moved simply stays zero, so it is
3502 * correctly treated as an imbalance.
3504 local_irq_save(flags);
3505 double_rq_lock(this_rq, busiest);
3506 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3507 imbalance, sd, idle, &all_pinned);
3508 double_rq_unlock(this_rq, busiest);
3509 local_irq_restore(flags);
3512 * some other cpu did the load balance for us.
3514 if (ld_moved && this_cpu != smp_processor_id())
3515 resched_cpu(this_cpu);
3517 /* All tasks on this runqueue were pinned by CPU affinity */
3518 if (unlikely(all_pinned)) {
3519 cpumask_clear_cpu(cpu_of(busiest), cpus);
3520 if (!cpumask_empty(cpus))
3521 goto redo;
3522 goto out_balanced;
3526 if (!ld_moved) {
3527 schedstat_inc(sd, lb_failed[idle]);
3528 sd->nr_balance_failed++;
3530 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3532 spin_lock_irqsave(&busiest->lock, flags);
3534 /* don't kick the migration_thread, if the curr
3535 * task on busiest cpu can't be moved to this_cpu
3537 if (!cpumask_test_cpu(this_cpu,
3538 &busiest->curr->cpus_allowed)) {
3539 spin_unlock_irqrestore(&busiest->lock, flags);
3540 all_pinned = 1;
3541 goto out_one_pinned;
3544 if (!busiest->active_balance) {
3545 busiest->active_balance = 1;
3546 busiest->push_cpu = this_cpu;
3547 active_balance = 1;
3549 spin_unlock_irqrestore(&busiest->lock, flags);
3550 if (active_balance)
3551 wake_up_process(busiest->migration_thread);
3554 * We've kicked active balancing, reset the failure
3555 * counter.
3557 sd->nr_balance_failed = sd->cache_nice_tries+1;
3559 } else
3560 sd->nr_balance_failed = 0;
3562 if (likely(!active_balance)) {
3563 /* We were unbalanced, so reset the balancing interval */
3564 sd->balance_interval = sd->min_interval;
3565 } else {
3567 * If we've begun active balancing, start to back off. This
3568 * case may not be covered by the all_pinned logic if there
3569 * is only 1 task on the busy runqueue (because we don't call
3570 * move_tasks).
3572 if (sd->balance_interval < sd->max_interval)
3573 sd->balance_interval *= 2;
3576 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3577 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3578 ld_moved = -1;
3580 goto out;
3582 out_balanced:
3583 schedstat_inc(sd, lb_balanced[idle]);
3585 sd->nr_balance_failed = 0;
3587 out_one_pinned:
3588 /* tune up the balancing interval */
3589 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3590 (sd->balance_interval < sd->max_interval))
3591 sd->balance_interval *= 2;
3593 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3594 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3595 ld_moved = -1;
3596 else
3597 ld_moved = 0;
3598 out:
3599 if (ld_moved)
3600 update_shares(sd);
3601 return ld_moved;
3605 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3606 * tasks if there is an imbalance.
3608 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3609 * this_rq is locked.
3611 static int
3612 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3613 struct cpumask *cpus)
3615 struct sched_group *group;
3616 struct rq *busiest = NULL;
3617 unsigned long imbalance;
3618 int ld_moved = 0;
3619 int sd_idle = 0;
3620 int all_pinned = 0;
3622 cpumask_setall(cpus);
3625 * When power savings policy is enabled for the parent domain, idle
3626 * sibling can pick up load irrespective of busy siblings. In this case,
3627 * let the state of idle sibling percolate up as IDLE, instead of
3628 * portraying it as CPU_NOT_IDLE.
3630 if (sd->flags & SD_SHARE_CPUPOWER &&
3631 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3632 sd_idle = 1;
3634 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3635 redo:
3636 update_shares_locked(this_rq, sd);
3637 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3638 &sd_idle, cpus, NULL);
3639 if (!group) {
3640 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3641 goto out_balanced;
3644 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3645 if (!busiest) {
3646 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3647 goto out_balanced;
3650 BUG_ON(busiest == this_rq);
3652 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3654 ld_moved = 0;
3655 if (busiest->nr_running > 1) {
3656 /* Attempt to move tasks */
3657 double_lock_balance(this_rq, busiest);
3658 /* this_rq->clock is already updated */
3659 update_rq_clock(busiest);
3660 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3661 imbalance, sd, CPU_NEWLY_IDLE,
3662 &all_pinned);
3663 double_unlock_balance(this_rq, busiest);
3665 if (unlikely(all_pinned)) {
3666 cpumask_clear_cpu(cpu_of(busiest), cpus);
3667 if (!cpumask_empty(cpus))
3668 goto redo;
3672 if (!ld_moved) {
3673 int active_balance;
3675 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3676 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3677 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3678 return -1;
3680 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3681 return -1;
3683 if (sd->nr_balance_failed++ < 2)
3684 return -1;
3687 * The only task running in a non-idle cpu can be moved to this
3688 * cpu in an attempt to completely freeup the other CPU
3689 * package. The same method used to move task in load_balance()
3690 * have been extended for load_balance_newidle() to speedup
3691 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3693 * The package power saving logic comes from
3694 * find_busiest_group(). If there are no imbalance, then
3695 * f_b_g() will return NULL. However when sched_mc={1,2} then
3696 * f_b_g() will select a group from which a running task may be
3697 * pulled to this cpu in order to make the other package idle.
3698 * If there is no opportunity to make a package idle and if
3699 * there are no imbalance, then f_b_g() will return NULL and no
3700 * action will be taken in load_balance_newidle().
3702 * Under normal task pull operation due to imbalance, there
3703 * will be more than one task in the source run queue and
3704 * move_tasks() will succeed. ld_moved will be true and this
3705 * active balance code will not be triggered.
3708 /* Lock busiest in correct order while this_rq is held */
3709 double_lock_balance(this_rq, busiest);
3712 * don't kick the migration_thread, if the curr
3713 * task on busiest cpu can't be moved to this_cpu
3715 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3716 double_unlock_balance(this_rq, busiest);
3717 all_pinned = 1;
3718 return ld_moved;
3721 if (!busiest->active_balance) {
3722 busiest->active_balance = 1;
3723 busiest->push_cpu = this_cpu;
3724 active_balance = 1;
3727 double_unlock_balance(this_rq, busiest);
3728 if (active_balance)
3729 wake_up_process(busiest->migration_thread);
3731 } else
3732 sd->nr_balance_failed = 0;
3734 update_shares_locked(this_rq, sd);
3735 return ld_moved;
3737 out_balanced:
3738 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3739 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3740 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3741 return -1;
3742 sd->nr_balance_failed = 0;
3744 return 0;
3748 * idle_balance is called by schedule() if this_cpu is about to become
3749 * idle. Attempts to pull tasks from other CPUs.
3751 static void idle_balance(int this_cpu, struct rq *this_rq)
3753 struct sched_domain *sd;
3754 int pulled_task = 0;
3755 unsigned long next_balance = jiffies + HZ;
3756 cpumask_var_t tmpmask;
3758 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
3759 return;
3761 for_each_domain(this_cpu, sd) {
3762 unsigned long interval;
3764 if (!(sd->flags & SD_LOAD_BALANCE))
3765 continue;
3767 if (sd->flags & SD_BALANCE_NEWIDLE)
3768 /* If we've pulled tasks over stop searching: */
3769 pulled_task = load_balance_newidle(this_cpu, this_rq,
3770 sd, tmpmask);
3772 interval = msecs_to_jiffies(sd->balance_interval);
3773 if (time_after(next_balance, sd->last_balance + interval))
3774 next_balance = sd->last_balance + interval;
3775 if (pulled_task)
3776 break;
3778 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3780 * We are going idle. next_balance may be set based on
3781 * a busy processor. So reset next_balance.
3783 this_rq->next_balance = next_balance;
3785 free_cpumask_var(tmpmask);
3789 * active_load_balance is run by migration threads. It pushes running tasks
3790 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3791 * running on each physical CPU where possible, and avoids physical /
3792 * logical imbalances.
3794 * Called with busiest_rq locked.
3796 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3798 int target_cpu = busiest_rq->push_cpu;
3799 struct sched_domain *sd;
3800 struct rq *target_rq;
3802 /* Is there any task to move? */
3803 if (busiest_rq->nr_running <= 1)
3804 return;
3806 target_rq = cpu_rq(target_cpu);
3809 * This condition is "impossible", if it occurs
3810 * we need to fix it. Originally reported by
3811 * Bjorn Helgaas on a 128-cpu setup.
3813 BUG_ON(busiest_rq == target_rq);
3815 /* move a task from busiest_rq to target_rq */
3816 double_lock_balance(busiest_rq, target_rq);
3817 update_rq_clock(busiest_rq);
3818 update_rq_clock(target_rq);
3820 /* Search for an sd spanning us and the target CPU. */
3821 for_each_domain(target_cpu, sd) {
3822 if ((sd->flags & SD_LOAD_BALANCE) &&
3823 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3824 break;
3827 if (likely(sd)) {
3828 schedstat_inc(sd, alb_count);
3830 if (move_one_task(target_rq, target_cpu, busiest_rq,
3831 sd, CPU_IDLE))
3832 schedstat_inc(sd, alb_pushed);
3833 else
3834 schedstat_inc(sd, alb_failed);
3836 double_unlock_balance(busiest_rq, target_rq);
3839 #ifdef CONFIG_NO_HZ
3840 static struct {
3841 atomic_t load_balancer;
3842 cpumask_var_t cpu_mask;
3843 } nohz ____cacheline_aligned = {
3844 .load_balancer = ATOMIC_INIT(-1),
3848 * This routine will try to nominate the ilb (idle load balancing)
3849 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3850 * load balancing on behalf of all those cpus. If all the cpus in the system
3851 * go into this tickless mode, then there will be no ilb owner (as there is
3852 * no need for one) and all the cpus will sleep till the next wakeup event
3853 * arrives...
3855 * For the ilb owner, tick is not stopped. And this tick will be used
3856 * for idle load balancing. ilb owner will still be part of
3857 * nohz.cpu_mask..
3859 * While stopping the tick, this cpu will become the ilb owner if there
3860 * is no other owner. And will be the owner till that cpu becomes busy
3861 * or if all cpus in the system stop their ticks at which point
3862 * there is no need for ilb owner.
3864 * When the ilb owner becomes busy, it nominates another owner, during the
3865 * next busy scheduler_tick()
3867 int select_nohz_load_balancer(int stop_tick)
3869 int cpu = smp_processor_id();
3871 if (stop_tick) {
3872 cpumask_set_cpu(cpu, nohz.cpu_mask);
3873 cpu_rq(cpu)->in_nohz_recently = 1;
3876 * If we are going offline and still the leader, give up!
3878 if (!cpu_active(cpu) &&
3879 atomic_read(&nohz.load_balancer) == cpu) {
3880 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3881 BUG();
3882 return 0;
3885 /* time for ilb owner also to sleep */
3886 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3887 if (atomic_read(&nohz.load_balancer) == cpu)
3888 atomic_set(&nohz.load_balancer, -1);
3889 return 0;
3892 if (atomic_read(&nohz.load_balancer) == -1) {
3893 /* make me the ilb owner */
3894 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3895 return 1;
3896 } else if (atomic_read(&nohz.load_balancer) == cpu)
3897 return 1;
3898 } else {
3899 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3900 return 0;
3902 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3904 if (atomic_read(&nohz.load_balancer) == cpu)
3905 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3906 BUG();
3908 return 0;
3910 #endif
3912 static DEFINE_SPINLOCK(balancing);
3915 * It checks each scheduling domain to see if it is due to be balanced,
3916 * and initiates a balancing operation if so.
3918 * Balancing parameters are set up in arch_init_sched_domains.
3920 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3922 int balance = 1;
3923 struct rq *rq = cpu_rq(cpu);
3924 unsigned long interval;
3925 struct sched_domain *sd;
3926 /* Earliest time when we have to do rebalance again */
3927 unsigned long next_balance = jiffies + 60*HZ;
3928 int update_next_balance = 0;
3929 int need_serialize;
3930 cpumask_var_t tmp;
3932 /* Fails alloc? Rebalancing probably not a priority right now. */
3933 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
3934 return;
3936 for_each_domain(cpu, sd) {
3937 if (!(sd->flags & SD_LOAD_BALANCE))
3938 continue;
3940 interval = sd->balance_interval;
3941 if (idle != CPU_IDLE)
3942 interval *= sd->busy_factor;
3944 /* scale ms to jiffies */
3945 interval = msecs_to_jiffies(interval);
3946 if (unlikely(!interval))
3947 interval = 1;
3948 if (interval > HZ*NR_CPUS/10)
3949 interval = HZ*NR_CPUS/10;
3951 need_serialize = sd->flags & SD_SERIALIZE;
3953 if (need_serialize) {
3954 if (!spin_trylock(&balancing))
3955 goto out;
3958 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3959 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
3961 * We've pulled tasks over so either we're no
3962 * longer idle, or one of our SMT siblings is
3963 * not idle.
3965 idle = CPU_NOT_IDLE;
3967 sd->last_balance = jiffies;
3969 if (need_serialize)
3970 spin_unlock(&balancing);
3971 out:
3972 if (time_after(next_balance, sd->last_balance + interval)) {
3973 next_balance = sd->last_balance + interval;
3974 update_next_balance = 1;
3978 * Stop the load balance at this level. There is another
3979 * CPU in our sched group which is doing load balancing more
3980 * actively.
3982 if (!balance)
3983 break;
3987 * next_balance will be updated only when there is a need.
3988 * When the cpu is attached to null domain for ex, it will not be
3989 * updated.
3991 if (likely(update_next_balance))
3992 rq->next_balance = next_balance;
3994 free_cpumask_var(tmp);
3998 * run_rebalance_domains is triggered when needed from the scheduler tick.
3999 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4000 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4002 static void run_rebalance_domains(struct softirq_action *h)
4004 int this_cpu = smp_processor_id();
4005 struct rq *this_rq = cpu_rq(this_cpu);
4006 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4007 CPU_IDLE : CPU_NOT_IDLE;
4009 rebalance_domains(this_cpu, idle);
4011 #ifdef CONFIG_NO_HZ
4013 * If this cpu is the owner for idle load balancing, then do the
4014 * balancing on behalf of the other idle cpus whose ticks are
4015 * stopped.
4017 if (this_rq->idle_at_tick &&
4018 atomic_read(&nohz.load_balancer) == this_cpu) {
4019 struct rq *rq;
4020 int balance_cpu;
4022 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4023 if (balance_cpu == this_cpu)
4024 continue;
4027 * If this cpu gets work to do, stop the load balancing
4028 * work being done for other cpus. Next load
4029 * balancing owner will pick it up.
4031 if (need_resched())
4032 break;
4034 rebalance_domains(balance_cpu, CPU_IDLE);
4036 rq = cpu_rq(balance_cpu);
4037 if (time_after(this_rq->next_balance, rq->next_balance))
4038 this_rq->next_balance = rq->next_balance;
4041 #endif
4045 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4047 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4048 * idle load balancing owner or decide to stop the periodic load balancing,
4049 * if the whole system is idle.
4051 static inline void trigger_load_balance(struct rq *rq, int cpu)
4053 #ifdef CONFIG_NO_HZ
4055 * If we were in the nohz mode recently and busy at the current
4056 * scheduler tick, then check if we need to nominate new idle
4057 * load balancer.
4059 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4060 rq->in_nohz_recently = 0;
4062 if (atomic_read(&nohz.load_balancer) == cpu) {
4063 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4064 atomic_set(&nohz.load_balancer, -1);
4067 if (atomic_read(&nohz.load_balancer) == -1) {
4069 * simple selection for now: Nominate the
4070 * first cpu in the nohz list to be the next
4071 * ilb owner.
4073 * TBD: Traverse the sched domains and nominate
4074 * the nearest cpu in the nohz.cpu_mask.
4076 int ilb = cpumask_first(nohz.cpu_mask);
4078 if (ilb < nr_cpu_ids)
4079 resched_cpu(ilb);
4084 * If this cpu is idle and doing idle load balancing for all the
4085 * cpus with ticks stopped, is it time for that to stop?
4087 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4088 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4089 resched_cpu(cpu);
4090 return;
4094 * If this cpu is idle and the idle load balancing is done by
4095 * someone else, then no need raise the SCHED_SOFTIRQ
4097 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4098 cpumask_test_cpu(cpu, nohz.cpu_mask))
4099 return;
4100 #endif
4101 if (time_after_eq(jiffies, rq->next_balance))
4102 raise_softirq(SCHED_SOFTIRQ);
4105 #else /* CONFIG_SMP */
4108 * on UP we do not need to balance between CPUs:
4110 static inline void idle_balance(int cpu, struct rq *rq)
4114 #endif
4116 DEFINE_PER_CPU(struct kernel_stat, kstat);
4118 EXPORT_PER_CPU_SYMBOL(kstat);
4121 * Return any ns on the sched_clock that have not yet been banked in
4122 * @p in case that task is currently running.
4124 unsigned long long task_delta_exec(struct task_struct *p)
4126 unsigned long flags;
4127 struct rq *rq;
4128 u64 ns = 0;
4130 rq = task_rq_lock(p, &flags);
4132 if (task_current(rq, p)) {
4133 u64 delta_exec;
4135 update_rq_clock(rq);
4136 delta_exec = rq->clock - p->se.exec_start;
4137 if ((s64)delta_exec > 0)
4138 ns = delta_exec;
4141 task_rq_unlock(rq, &flags);
4143 return ns;
4147 * Account user cpu time to a process.
4148 * @p: the process that the cpu time gets accounted to
4149 * @cputime: the cpu time spent in user space since the last update
4151 void account_user_time(struct task_struct *p, cputime_t cputime)
4153 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4154 cputime64_t tmp;
4156 p->utime = cputime_add(p->utime, cputime);
4157 account_group_user_time(p, cputime);
4159 /* Add user time to cpustat. */
4160 tmp = cputime_to_cputime64(cputime);
4161 if (TASK_NICE(p) > 0)
4162 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4163 else
4164 cpustat->user = cputime64_add(cpustat->user, tmp);
4165 /* Account for user time used */
4166 acct_update_integrals(p);
4170 * Account guest cpu time to a process.
4171 * @p: the process that the cpu time gets accounted to
4172 * @cputime: the cpu time spent in virtual machine since the last update
4174 static void account_guest_time(struct task_struct *p, cputime_t cputime)
4176 cputime64_t tmp;
4177 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4179 tmp = cputime_to_cputime64(cputime);
4181 p->utime = cputime_add(p->utime, cputime);
4182 account_group_user_time(p, cputime);
4183 p->gtime = cputime_add(p->gtime, cputime);
4185 cpustat->user = cputime64_add(cpustat->user, tmp);
4186 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4190 * Account scaled user cpu time to a process.
4191 * @p: the process that the cpu time gets accounted to
4192 * @cputime: the cpu time spent in user space since the last update
4194 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4196 p->utimescaled = cputime_add(p->utimescaled, cputime);
4200 * Account system cpu time to a process.
4201 * @p: the process that the cpu time gets accounted to
4202 * @hardirq_offset: the offset to subtract from hardirq_count()
4203 * @cputime: the cpu time spent in kernel space since the last update
4205 void account_system_time(struct task_struct *p, int hardirq_offset,
4206 cputime_t cputime)
4208 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4209 struct rq *rq = this_rq();
4210 cputime64_t tmp;
4212 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4213 account_guest_time(p, cputime);
4214 return;
4217 p->stime = cputime_add(p->stime, cputime);
4218 account_group_system_time(p, cputime);
4220 /* Add system time to cpustat. */
4221 tmp = cputime_to_cputime64(cputime);
4222 if (hardirq_count() - hardirq_offset)
4223 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4224 else if (softirq_count())
4225 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4226 else if (p != rq->idle)
4227 cpustat->system = cputime64_add(cpustat->system, tmp);
4228 else if (atomic_read(&rq->nr_iowait) > 0)
4229 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4230 else
4231 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4232 /* Account for system time used */
4233 acct_update_integrals(p);
4237 * Account scaled system cpu time to a process.
4238 * @p: the process that the cpu time gets accounted to
4239 * @hardirq_offset: the offset to subtract from hardirq_count()
4240 * @cputime: the cpu time spent in kernel space since the last update
4242 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4244 p->stimescaled = cputime_add(p->stimescaled, cputime);
4248 * Account for involuntary wait time.
4249 * @p: the process from which the cpu time has been stolen
4250 * @steal: the cpu time spent in involuntary wait
4252 void account_steal_time(struct task_struct *p, cputime_t steal)
4254 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4255 cputime64_t tmp = cputime_to_cputime64(steal);
4256 struct rq *rq = this_rq();
4258 if (p == rq->idle) {
4259 p->stime = cputime_add(p->stime, steal);
4260 if (atomic_read(&rq->nr_iowait) > 0)
4261 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4262 else
4263 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4264 } else
4265 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4269 * Use precise platform statistics if available:
4271 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4272 cputime_t task_utime(struct task_struct *p)
4274 return p->utime;
4277 cputime_t task_stime(struct task_struct *p)
4279 return p->stime;
4281 #else
4282 cputime_t task_utime(struct task_struct *p)
4284 clock_t utime = cputime_to_clock_t(p->utime),
4285 total = utime + cputime_to_clock_t(p->stime);
4286 u64 temp;
4289 * Use CFS's precise accounting:
4291 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4293 if (total) {
4294 temp *= utime;
4295 do_div(temp, total);
4297 utime = (clock_t)temp;
4299 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4300 return p->prev_utime;
4303 cputime_t task_stime(struct task_struct *p)
4305 clock_t stime;
4308 * Use CFS's precise accounting. (we subtract utime from
4309 * the total, to make sure the total observed by userspace
4310 * grows monotonically - apps rely on that):
4312 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4313 cputime_to_clock_t(task_utime(p));
4315 if (stime >= 0)
4316 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4318 return p->prev_stime;
4320 #endif
4322 inline cputime_t task_gtime(struct task_struct *p)
4324 return p->gtime;
4328 * This function gets called by the timer code, with HZ frequency.
4329 * We call it with interrupts disabled.
4331 * It also gets called by the fork code, when changing the parent's
4332 * timeslices.
4334 void scheduler_tick(void)
4336 int cpu = smp_processor_id();
4337 struct rq *rq = cpu_rq(cpu);
4338 struct task_struct *curr = rq->curr;
4340 sched_clock_tick();
4342 spin_lock(&rq->lock);
4343 update_rq_clock(rq);
4344 update_cpu_load(rq);
4345 curr->sched_class->task_tick(rq, curr, 0);
4346 spin_unlock(&rq->lock);
4348 #ifdef CONFIG_SMP
4349 rq->idle_at_tick = idle_cpu(cpu);
4350 trigger_load_balance(rq, cpu);
4351 #endif
4354 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4355 defined(CONFIG_PREEMPT_TRACER))
4357 static inline unsigned long get_parent_ip(unsigned long addr)
4359 if (in_lock_functions(addr)) {
4360 addr = CALLER_ADDR2;
4361 if (in_lock_functions(addr))
4362 addr = CALLER_ADDR3;
4364 return addr;
4367 void __kprobes add_preempt_count(int val)
4369 #ifdef CONFIG_DEBUG_PREEMPT
4371 * Underflow?
4373 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4374 return;
4375 #endif
4376 preempt_count() += val;
4377 #ifdef CONFIG_DEBUG_PREEMPT
4379 * Spinlock count overflowing soon?
4381 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4382 PREEMPT_MASK - 10);
4383 #endif
4384 if (preempt_count() == val)
4385 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4387 EXPORT_SYMBOL(add_preempt_count);
4389 void __kprobes sub_preempt_count(int val)
4391 #ifdef CONFIG_DEBUG_PREEMPT
4393 * Underflow?
4395 if (DEBUG_LOCKS_WARN_ON(val > preempt_count() - (!!kernel_locked())))
4396 return;
4398 * Is the spinlock portion underflowing?
4400 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4401 !(preempt_count() & PREEMPT_MASK)))
4402 return;
4403 #endif
4405 if (preempt_count() == val)
4406 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4407 preempt_count() -= val;
4409 EXPORT_SYMBOL(sub_preempt_count);
4411 #endif
4414 * Print scheduling while atomic bug:
4416 static noinline void __schedule_bug(struct task_struct *prev)
4418 struct pt_regs *regs = get_irq_regs();
4420 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4421 prev->comm, prev->pid, preempt_count());
4423 debug_show_held_locks(prev);
4424 print_modules();
4425 if (irqs_disabled())
4426 print_irqtrace_events(prev);
4428 if (regs)
4429 show_regs(regs);
4430 else
4431 dump_stack();
4435 * Various schedule()-time debugging checks and statistics:
4437 static inline void schedule_debug(struct task_struct *prev)
4440 * Test if we are atomic. Since do_exit() needs to call into
4441 * schedule() atomically, we ignore that path for now.
4442 * Otherwise, whine if we are scheduling when we should not be.
4444 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4445 __schedule_bug(prev);
4447 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4449 schedstat_inc(this_rq(), sched_count);
4450 #ifdef CONFIG_SCHEDSTATS
4451 if (unlikely(prev->lock_depth >= 0)) {
4452 schedstat_inc(this_rq(), bkl_count);
4453 schedstat_inc(prev, sched_info.bkl_count);
4455 #endif
4459 * Pick up the highest-prio task:
4461 static inline struct task_struct *
4462 pick_next_task(struct rq *rq, struct task_struct *prev)
4464 const struct sched_class *class;
4465 struct task_struct *p;
4468 * Optimization: we know that if all tasks are in
4469 * the fair class we can call that function directly:
4471 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4472 p = fair_sched_class.pick_next_task(rq);
4473 if (likely(p))
4474 return p;
4477 class = sched_class_highest;
4478 for ( ; ; ) {
4479 p = class->pick_next_task(rq);
4480 if (p)
4481 return p;
4483 * Will never be NULL as the idle class always
4484 * returns a non-NULL p:
4486 class = class->next;
4491 * schedule() is the main scheduler function.
4493 asmlinkage void __sched schedule(void)
4495 struct task_struct *prev, *next;
4496 unsigned long *switch_count;
4497 struct rq *rq;
4498 int cpu;
4500 need_resched:
4501 preempt_disable();
4502 cpu = smp_processor_id();
4503 rq = cpu_rq(cpu);
4504 rcu_qsctr_inc(cpu);
4505 prev = rq->curr;
4506 switch_count = &prev->nivcsw;
4508 release_kernel_lock(prev);
4509 need_resched_nonpreemptible:
4511 schedule_debug(prev);
4513 if (sched_feat(HRTICK))
4514 hrtick_clear(rq);
4516 spin_lock_irq(&rq->lock);
4517 update_rq_clock(rq);
4518 clear_tsk_need_resched(prev);
4520 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4521 if (unlikely(signal_pending_state(prev->state, prev)))
4522 prev->state = TASK_RUNNING;
4523 else
4524 deactivate_task(rq, prev, 1);
4525 switch_count = &prev->nvcsw;
4528 #ifdef CONFIG_SMP
4529 if (prev->sched_class->pre_schedule)
4530 prev->sched_class->pre_schedule(rq, prev);
4531 #endif
4533 if (unlikely(!rq->nr_running))
4534 idle_balance(cpu, rq);
4536 prev->sched_class->put_prev_task(rq, prev);
4537 next = pick_next_task(rq, prev);
4539 if (likely(prev != next)) {
4540 sched_info_switch(prev, next);
4542 rq->nr_switches++;
4543 rq->curr = next;
4544 ++*switch_count;
4546 context_switch(rq, prev, next); /* unlocks the rq */
4548 * the context switch might have flipped the stack from under
4549 * us, hence refresh the local variables.
4551 cpu = smp_processor_id();
4552 rq = cpu_rq(cpu);
4553 } else
4554 spin_unlock_irq(&rq->lock);
4556 if (unlikely(reacquire_kernel_lock(current) < 0))
4557 goto need_resched_nonpreemptible;
4559 preempt_enable_no_resched();
4560 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4561 goto need_resched;
4563 EXPORT_SYMBOL(schedule);
4565 #ifdef CONFIG_PREEMPT
4567 * this is the entry point to schedule() from in-kernel preemption
4568 * off of preempt_enable. Kernel preemptions off return from interrupt
4569 * occur there and call schedule directly.
4571 asmlinkage void __sched preempt_schedule(void)
4573 struct thread_info *ti = current_thread_info();
4576 * If there is a non-zero preempt_count or interrupts are disabled,
4577 * we do not want to preempt the current task. Just return..
4579 if (likely(ti->preempt_count || irqs_disabled()))
4580 return;
4582 do {
4583 add_preempt_count(PREEMPT_ACTIVE);
4584 schedule();
4585 sub_preempt_count(PREEMPT_ACTIVE);
4588 * Check again in case we missed a preemption opportunity
4589 * between schedule and now.
4591 barrier();
4592 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4594 EXPORT_SYMBOL(preempt_schedule);
4597 * this is the entry point to schedule() from kernel preemption
4598 * off of irq context.
4599 * Note, that this is called and return with irqs disabled. This will
4600 * protect us against recursive calling from irq.
4602 asmlinkage void __sched preempt_schedule_irq(void)
4604 struct thread_info *ti = current_thread_info();
4606 /* Catch callers which need to be fixed */
4607 BUG_ON(ti->preempt_count || !irqs_disabled());
4609 do {
4610 add_preempt_count(PREEMPT_ACTIVE);
4611 local_irq_enable();
4612 schedule();
4613 local_irq_disable();
4614 sub_preempt_count(PREEMPT_ACTIVE);
4617 * Check again in case we missed a preemption opportunity
4618 * between schedule and now.
4620 barrier();
4621 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4624 #endif /* CONFIG_PREEMPT */
4626 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4627 void *key)
4629 return try_to_wake_up(curr->private, mode, sync);
4631 EXPORT_SYMBOL(default_wake_function);
4634 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4635 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4636 * number) then we wake all the non-exclusive tasks and one exclusive task.
4638 * There are circumstances in which we can try to wake a task which has already
4639 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4640 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4642 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4643 int nr_exclusive, int sync, void *key)
4645 wait_queue_t *curr, *next;
4647 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4648 unsigned flags = curr->flags;
4650 if (curr->func(curr, mode, sync, key) &&
4651 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4652 break;
4657 * __wake_up - wake up threads blocked on a waitqueue.
4658 * @q: the waitqueue
4659 * @mode: which threads
4660 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4661 * @key: is directly passed to the wakeup function
4663 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4664 int nr_exclusive, void *key)
4666 unsigned long flags;
4668 spin_lock_irqsave(&q->lock, flags);
4669 __wake_up_common(q, mode, nr_exclusive, 0, key);
4670 spin_unlock_irqrestore(&q->lock, flags);
4672 EXPORT_SYMBOL(__wake_up);
4675 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4677 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4679 __wake_up_common(q, mode, 1, 0, NULL);
4683 * __wake_up_sync - wake up threads blocked on a waitqueue.
4684 * @q: the waitqueue
4685 * @mode: which threads
4686 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4688 * The sync wakeup differs that the waker knows that it will schedule
4689 * away soon, so while the target thread will be woken up, it will not
4690 * be migrated to another CPU - ie. the two threads are 'synchronized'
4691 * with each other. This can prevent needless bouncing between CPUs.
4693 * On UP it can prevent extra preemption.
4695 void
4696 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4698 unsigned long flags;
4699 int sync = 1;
4701 if (unlikely(!q))
4702 return;
4704 if (unlikely(!nr_exclusive))
4705 sync = 0;
4707 spin_lock_irqsave(&q->lock, flags);
4708 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4709 spin_unlock_irqrestore(&q->lock, flags);
4711 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4714 * complete: - signals a single thread waiting on this completion
4715 * @x: holds the state of this particular completion
4717 * This will wake up a single thread waiting on this completion. Threads will be
4718 * awakened in the same order in which they were queued.
4720 * See also complete_all(), wait_for_completion() and related routines.
4722 void complete(struct completion *x)
4724 unsigned long flags;
4726 spin_lock_irqsave(&x->wait.lock, flags);
4727 x->done++;
4728 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4729 spin_unlock_irqrestore(&x->wait.lock, flags);
4731 EXPORT_SYMBOL(complete);
4734 * complete_all: - signals all threads waiting on this completion
4735 * @x: holds the state of this particular completion
4737 * This will wake up all threads waiting on this particular completion event.
4739 void complete_all(struct completion *x)
4741 unsigned long flags;
4743 spin_lock_irqsave(&x->wait.lock, flags);
4744 x->done += UINT_MAX/2;
4745 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4746 spin_unlock_irqrestore(&x->wait.lock, flags);
4748 EXPORT_SYMBOL(complete_all);
4750 static inline long __sched
4751 do_wait_for_common(struct completion *x, long timeout, int state)
4753 if (!x->done) {
4754 DECLARE_WAITQUEUE(wait, current);
4756 wait.flags |= WQ_FLAG_EXCLUSIVE;
4757 __add_wait_queue_tail(&x->wait, &wait);
4758 do {
4759 if (signal_pending_state(state, current)) {
4760 timeout = -ERESTARTSYS;
4761 break;
4763 __set_current_state(state);
4764 spin_unlock_irq(&x->wait.lock);
4765 timeout = schedule_timeout(timeout);
4766 spin_lock_irq(&x->wait.lock);
4767 } while (!x->done && timeout);
4768 __remove_wait_queue(&x->wait, &wait);
4769 if (!x->done)
4770 return timeout;
4772 x->done--;
4773 return timeout ?: 1;
4776 static long __sched
4777 wait_for_common(struct completion *x, long timeout, int state)
4779 might_sleep();
4781 spin_lock_irq(&x->wait.lock);
4782 timeout = do_wait_for_common(x, timeout, state);
4783 spin_unlock_irq(&x->wait.lock);
4784 return timeout;
4788 * wait_for_completion: - waits for completion of a task
4789 * @x: holds the state of this particular completion
4791 * This waits to be signaled for completion of a specific task. It is NOT
4792 * interruptible and there is no timeout.
4794 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4795 * and interrupt capability. Also see complete().
4797 void __sched wait_for_completion(struct completion *x)
4799 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4801 EXPORT_SYMBOL(wait_for_completion);
4804 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4805 * @x: holds the state of this particular completion
4806 * @timeout: timeout value in jiffies
4808 * This waits for either a completion of a specific task to be signaled or for a
4809 * specified timeout to expire. The timeout is in jiffies. It is not
4810 * interruptible.
4812 unsigned long __sched
4813 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4815 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4817 EXPORT_SYMBOL(wait_for_completion_timeout);
4820 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4821 * @x: holds the state of this particular completion
4823 * This waits for completion of a specific task to be signaled. It is
4824 * interruptible.
4826 int __sched wait_for_completion_interruptible(struct completion *x)
4828 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4829 if (t == -ERESTARTSYS)
4830 return t;
4831 return 0;
4833 EXPORT_SYMBOL(wait_for_completion_interruptible);
4836 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4837 * @x: holds the state of this particular completion
4838 * @timeout: timeout value in jiffies
4840 * This waits for either a completion of a specific task to be signaled or for a
4841 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4843 unsigned long __sched
4844 wait_for_completion_interruptible_timeout(struct completion *x,
4845 unsigned long timeout)
4847 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4849 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4852 * wait_for_completion_killable: - waits for completion of a task (killable)
4853 * @x: holds the state of this particular completion
4855 * This waits to be signaled for completion of a specific task. It can be
4856 * interrupted by a kill signal.
4858 int __sched wait_for_completion_killable(struct completion *x)
4860 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4861 if (t == -ERESTARTSYS)
4862 return t;
4863 return 0;
4865 EXPORT_SYMBOL(wait_for_completion_killable);
4868 * try_wait_for_completion - try to decrement a completion without blocking
4869 * @x: completion structure
4871 * Returns: 0 if a decrement cannot be done without blocking
4872 * 1 if a decrement succeeded.
4874 * If a completion is being used as a counting completion,
4875 * attempt to decrement the counter without blocking. This
4876 * enables us to avoid waiting if the resource the completion
4877 * is protecting is not available.
4879 bool try_wait_for_completion(struct completion *x)
4881 int ret = 1;
4883 spin_lock_irq(&x->wait.lock);
4884 if (!x->done)
4885 ret = 0;
4886 else
4887 x->done--;
4888 spin_unlock_irq(&x->wait.lock);
4889 return ret;
4891 EXPORT_SYMBOL(try_wait_for_completion);
4894 * completion_done - Test to see if a completion has any waiters
4895 * @x: completion structure
4897 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4898 * 1 if there are no waiters.
4901 bool completion_done(struct completion *x)
4903 int ret = 1;
4905 spin_lock_irq(&x->wait.lock);
4906 if (!x->done)
4907 ret = 0;
4908 spin_unlock_irq(&x->wait.lock);
4909 return ret;
4911 EXPORT_SYMBOL(completion_done);
4913 static long __sched
4914 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4916 unsigned long flags;
4917 wait_queue_t wait;
4919 init_waitqueue_entry(&wait, current);
4921 __set_current_state(state);
4923 spin_lock_irqsave(&q->lock, flags);
4924 __add_wait_queue(q, &wait);
4925 spin_unlock(&q->lock);
4926 timeout = schedule_timeout(timeout);
4927 spin_lock_irq(&q->lock);
4928 __remove_wait_queue(q, &wait);
4929 spin_unlock_irqrestore(&q->lock, flags);
4931 return timeout;
4934 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4936 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4938 EXPORT_SYMBOL(interruptible_sleep_on);
4940 long __sched
4941 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4943 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4945 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4947 void __sched sleep_on(wait_queue_head_t *q)
4949 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4951 EXPORT_SYMBOL(sleep_on);
4953 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4955 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4957 EXPORT_SYMBOL(sleep_on_timeout);
4959 #ifdef CONFIG_RT_MUTEXES
4962 * rt_mutex_setprio - set the current priority of a task
4963 * @p: task
4964 * @prio: prio value (kernel-internal form)
4966 * This function changes the 'effective' priority of a task. It does
4967 * not touch ->normal_prio like __setscheduler().
4969 * Used by the rt_mutex code to implement priority inheritance logic.
4971 void rt_mutex_setprio(struct task_struct *p, int prio)
4973 unsigned long flags;
4974 int oldprio, on_rq, running;
4975 struct rq *rq;
4976 const struct sched_class *prev_class = p->sched_class;
4978 BUG_ON(prio < 0 || prio > MAX_PRIO);
4980 rq = task_rq_lock(p, &flags);
4981 update_rq_clock(rq);
4983 oldprio = p->prio;
4984 on_rq = p->se.on_rq;
4985 running = task_current(rq, p);
4986 if (on_rq)
4987 dequeue_task(rq, p, 0);
4988 if (running)
4989 p->sched_class->put_prev_task(rq, p);
4991 if (rt_prio(prio))
4992 p->sched_class = &rt_sched_class;
4993 else
4994 p->sched_class = &fair_sched_class;
4996 p->prio = prio;
4998 if (running)
4999 p->sched_class->set_curr_task(rq);
5000 if (on_rq) {
5001 enqueue_task(rq, p, 0);
5003 check_class_changed(rq, p, prev_class, oldprio, running);
5005 task_rq_unlock(rq, &flags);
5008 #endif
5010 void set_user_nice(struct task_struct *p, long nice)
5012 int old_prio, delta, on_rq;
5013 unsigned long flags;
5014 struct rq *rq;
5016 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5017 return;
5019 * We have to be careful, if called from sys_setpriority(),
5020 * the task might be in the middle of scheduling on another CPU.
5022 rq = task_rq_lock(p, &flags);
5023 update_rq_clock(rq);
5025 * The RT priorities are set via sched_setscheduler(), but we still
5026 * allow the 'normal' nice value to be set - but as expected
5027 * it wont have any effect on scheduling until the task is
5028 * SCHED_FIFO/SCHED_RR:
5030 if (task_has_rt_policy(p)) {
5031 p->static_prio = NICE_TO_PRIO(nice);
5032 goto out_unlock;
5034 on_rq = p->se.on_rq;
5035 if (on_rq)
5036 dequeue_task(rq, p, 0);
5038 p->static_prio = NICE_TO_PRIO(nice);
5039 set_load_weight(p);
5040 old_prio = p->prio;
5041 p->prio = effective_prio(p);
5042 delta = p->prio - old_prio;
5044 if (on_rq) {
5045 enqueue_task(rq, p, 0);
5047 * If the task increased its priority or is running and
5048 * lowered its priority, then reschedule its CPU:
5050 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5051 resched_task(rq->curr);
5053 out_unlock:
5054 task_rq_unlock(rq, &flags);
5056 EXPORT_SYMBOL(set_user_nice);
5059 * can_nice - check if a task can reduce its nice value
5060 * @p: task
5061 * @nice: nice value
5063 int can_nice(const struct task_struct *p, const int nice)
5065 /* convert nice value [19,-20] to rlimit style value [1,40] */
5066 int nice_rlim = 20 - nice;
5068 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5069 capable(CAP_SYS_NICE));
5072 #ifdef __ARCH_WANT_SYS_NICE
5075 * sys_nice - change the priority of the current process.
5076 * @increment: priority increment
5078 * sys_setpriority is a more generic, but much slower function that
5079 * does similar things.
5081 asmlinkage long sys_nice(int increment)
5083 long nice, retval;
5086 * Setpriority might change our priority at the same moment.
5087 * We don't have to worry. Conceptually one call occurs first
5088 * and we have a single winner.
5090 if (increment < -40)
5091 increment = -40;
5092 if (increment > 40)
5093 increment = 40;
5095 nice = PRIO_TO_NICE(current->static_prio) + increment;
5096 if (nice < -20)
5097 nice = -20;
5098 if (nice > 19)
5099 nice = 19;
5101 if (increment < 0 && !can_nice(current, nice))
5102 return -EPERM;
5104 retval = security_task_setnice(current, nice);
5105 if (retval)
5106 return retval;
5108 set_user_nice(current, nice);
5109 return 0;
5112 #endif
5115 * task_prio - return the priority value of a given task.
5116 * @p: the task in question.
5118 * This is the priority value as seen by users in /proc.
5119 * RT tasks are offset by -200. Normal tasks are centered
5120 * around 0, value goes from -16 to +15.
5122 int task_prio(const struct task_struct *p)
5124 return p->prio - MAX_RT_PRIO;
5128 * task_nice - return the nice value of a given task.
5129 * @p: the task in question.
5131 int task_nice(const struct task_struct *p)
5133 return TASK_NICE(p);
5135 EXPORT_SYMBOL(task_nice);
5138 * idle_cpu - is a given cpu idle currently?
5139 * @cpu: the processor in question.
5141 int idle_cpu(int cpu)
5143 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5147 * idle_task - return the idle task for a given cpu.
5148 * @cpu: the processor in question.
5150 struct task_struct *idle_task(int cpu)
5152 return cpu_rq(cpu)->idle;
5156 * find_process_by_pid - find a process with a matching PID value.
5157 * @pid: the pid in question.
5159 static struct task_struct *find_process_by_pid(pid_t pid)
5161 return pid ? find_task_by_vpid(pid) : current;
5164 /* Actually do priority change: must hold rq lock. */
5165 static void
5166 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5168 BUG_ON(p->se.on_rq);
5170 p->policy = policy;
5171 switch (p->policy) {
5172 case SCHED_NORMAL:
5173 case SCHED_BATCH:
5174 case SCHED_IDLE:
5175 p->sched_class = &fair_sched_class;
5176 break;
5177 case SCHED_FIFO:
5178 case SCHED_RR:
5179 p->sched_class = &rt_sched_class;
5180 break;
5183 p->rt_priority = prio;
5184 p->normal_prio = normal_prio(p);
5185 /* we are holding p->pi_lock already */
5186 p->prio = rt_mutex_getprio(p);
5187 set_load_weight(p);
5190 static int __sched_setscheduler(struct task_struct *p, int policy,
5191 struct sched_param *param, bool user)
5193 int retval, oldprio, oldpolicy = -1, on_rq, running;
5194 unsigned long flags;
5195 const struct sched_class *prev_class = p->sched_class;
5196 struct rq *rq;
5198 /* may grab non-irq protected spin_locks */
5199 BUG_ON(in_interrupt());
5200 recheck:
5201 /* double check policy once rq lock held */
5202 if (policy < 0)
5203 policy = oldpolicy = p->policy;
5204 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5205 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5206 policy != SCHED_IDLE)
5207 return -EINVAL;
5209 * Valid priorities for SCHED_FIFO and SCHED_RR are
5210 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5211 * SCHED_BATCH and SCHED_IDLE is 0.
5213 if (param->sched_priority < 0 ||
5214 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5215 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5216 return -EINVAL;
5217 if (rt_policy(policy) != (param->sched_priority != 0))
5218 return -EINVAL;
5221 * Allow unprivileged RT tasks to decrease priority:
5223 if (user && !capable(CAP_SYS_NICE)) {
5224 if (rt_policy(policy)) {
5225 unsigned long rlim_rtprio;
5227 if (!lock_task_sighand(p, &flags))
5228 return -ESRCH;
5229 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5230 unlock_task_sighand(p, &flags);
5232 /* can't set/change the rt policy */
5233 if (policy != p->policy && !rlim_rtprio)
5234 return -EPERM;
5236 /* can't increase priority */
5237 if (param->sched_priority > p->rt_priority &&
5238 param->sched_priority > rlim_rtprio)
5239 return -EPERM;
5242 * Like positive nice levels, dont allow tasks to
5243 * move out of SCHED_IDLE either:
5245 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5246 return -EPERM;
5248 /* can't change other user's priorities */
5249 if ((current->euid != p->euid) &&
5250 (current->euid != p->uid))
5251 return -EPERM;
5254 if (user) {
5255 #ifdef CONFIG_RT_GROUP_SCHED
5257 * Do not allow realtime tasks into groups that have no runtime
5258 * assigned.
5260 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5261 task_group(p)->rt_bandwidth.rt_runtime == 0)
5262 return -EPERM;
5263 #endif
5265 retval = security_task_setscheduler(p, policy, param);
5266 if (retval)
5267 return retval;
5271 * make sure no PI-waiters arrive (or leave) while we are
5272 * changing the priority of the task:
5274 spin_lock_irqsave(&p->pi_lock, flags);
5276 * To be able to change p->policy safely, the apropriate
5277 * runqueue lock must be held.
5279 rq = __task_rq_lock(p);
5280 /* recheck policy now with rq lock held */
5281 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5282 policy = oldpolicy = -1;
5283 __task_rq_unlock(rq);
5284 spin_unlock_irqrestore(&p->pi_lock, flags);
5285 goto recheck;
5287 update_rq_clock(rq);
5288 on_rq = p->se.on_rq;
5289 running = task_current(rq, p);
5290 if (on_rq)
5291 deactivate_task(rq, p, 0);
5292 if (running)
5293 p->sched_class->put_prev_task(rq, p);
5295 oldprio = p->prio;
5296 __setscheduler(rq, p, policy, param->sched_priority);
5298 if (running)
5299 p->sched_class->set_curr_task(rq);
5300 if (on_rq) {
5301 activate_task(rq, p, 0);
5303 check_class_changed(rq, p, prev_class, oldprio, running);
5305 __task_rq_unlock(rq);
5306 spin_unlock_irqrestore(&p->pi_lock, flags);
5308 rt_mutex_adjust_pi(p);
5310 return 0;
5314 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5315 * @p: the task in question.
5316 * @policy: new policy.
5317 * @param: structure containing the new RT priority.
5319 * NOTE that the task may be already dead.
5321 int sched_setscheduler(struct task_struct *p, int policy,
5322 struct sched_param *param)
5324 return __sched_setscheduler(p, policy, param, true);
5326 EXPORT_SYMBOL_GPL(sched_setscheduler);
5329 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5330 * @p: the task in question.
5331 * @policy: new policy.
5332 * @param: structure containing the new RT priority.
5334 * Just like sched_setscheduler, only don't bother checking if the
5335 * current context has permission. For example, this is needed in
5336 * stop_machine(): we create temporary high priority worker threads,
5337 * but our caller might not have that capability.
5339 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5340 struct sched_param *param)
5342 return __sched_setscheduler(p, policy, param, false);
5345 static int
5346 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5348 struct sched_param lparam;
5349 struct task_struct *p;
5350 int retval;
5352 if (!param || pid < 0)
5353 return -EINVAL;
5354 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5355 return -EFAULT;
5357 rcu_read_lock();
5358 retval = -ESRCH;
5359 p = find_process_by_pid(pid);
5360 if (p != NULL)
5361 retval = sched_setscheduler(p, policy, &lparam);
5362 rcu_read_unlock();
5364 return retval;
5368 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5369 * @pid: the pid in question.
5370 * @policy: new policy.
5371 * @param: structure containing the new RT priority.
5373 asmlinkage long
5374 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5376 /* negative values for policy are not valid */
5377 if (policy < 0)
5378 return -EINVAL;
5380 return do_sched_setscheduler(pid, policy, param);
5384 * sys_sched_setparam - set/change the RT priority of a thread
5385 * @pid: the pid in question.
5386 * @param: structure containing the new RT priority.
5388 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5390 return do_sched_setscheduler(pid, -1, param);
5394 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5395 * @pid: the pid in question.
5397 asmlinkage long sys_sched_getscheduler(pid_t pid)
5399 struct task_struct *p;
5400 int retval;
5402 if (pid < 0)
5403 return -EINVAL;
5405 retval = -ESRCH;
5406 read_lock(&tasklist_lock);
5407 p = find_process_by_pid(pid);
5408 if (p) {
5409 retval = security_task_getscheduler(p);
5410 if (!retval)
5411 retval = p->policy;
5413 read_unlock(&tasklist_lock);
5414 return retval;
5418 * sys_sched_getscheduler - get the RT priority of a thread
5419 * @pid: the pid in question.
5420 * @param: structure containing the RT priority.
5422 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5424 struct sched_param lp;
5425 struct task_struct *p;
5426 int retval;
5428 if (!param || pid < 0)
5429 return -EINVAL;
5431 read_lock(&tasklist_lock);
5432 p = find_process_by_pid(pid);
5433 retval = -ESRCH;
5434 if (!p)
5435 goto out_unlock;
5437 retval = security_task_getscheduler(p);
5438 if (retval)
5439 goto out_unlock;
5441 lp.sched_priority = p->rt_priority;
5442 read_unlock(&tasklist_lock);
5445 * This one might sleep, we cannot do it with a spinlock held ...
5447 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5449 return retval;
5451 out_unlock:
5452 read_unlock(&tasklist_lock);
5453 return retval;
5456 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5458 cpumask_var_t cpus_allowed, new_mask;
5459 struct task_struct *p;
5460 int retval;
5462 get_online_cpus();
5463 read_lock(&tasklist_lock);
5465 p = find_process_by_pid(pid);
5466 if (!p) {
5467 read_unlock(&tasklist_lock);
5468 put_online_cpus();
5469 return -ESRCH;
5473 * It is not safe to call set_cpus_allowed with the
5474 * tasklist_lock held. We will bump the task_struct's
5475 * usage count and then drop tasklist_lock.
5477 get_task_struct(p);
5478 read_unlock(&tasklist_lock);
5480 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5481 retval = -ENOMEM;
5482 goto out_put_task;
5484 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5485 retval = -ENOMEM;
5486 goto out_free_cpus_allowed;
5488 retval = -EPERM;
5489 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5490 !capable(CAP_SYS_NICE))
5491 goto out_unlock;
5493 retval = security_task_setscheduler(p, 0, NULL);
5494 if (retval)
5495 goto out_unlock;
5497 cpuset_cpus_allowed(p, cpus_allowed);
5498 cpumask_and(new_mask, in_mask, cpus_allowed);
5499 again:
5500 retval = set_cpus_allowed_ptr(p, new_mask);
5502 if (!retval) {
5503 cpuset_cpus_allowed(p, cpus_allowed);
5504 if (!cpumask_subset(new_mask, cpus_allowed)) {
5506 * We must have raced with a concurrent cpuset
5507 * update. Just reset the cpus_allowed to the
5508 * cpuset's cpus_allowed
5510 cpumask_copy(new_mask, cpus_allowed);
5511 goto again;
5514 out_unlock:
5515 free_cpumask_var(new_mask);
5516 out_free_cpus_allowed:
5517 free_cpumask_var(cpus_allowed);
5518 out_put_task:
5519 put_task_struct(p);
5520 put_online_cpus();
5521 return retval;
5524 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5525 struct cpumask *new_mask)
5527 if (len < cpumask_size())
5528 cpumask_clear(new_mask);
5529 else if (len > cpumask_size())
5530 len = cpumask_size();
5532 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5536 * sys_sched_setaffinity - set the cpu affinity of a process
5537 * @pid: pid of the process
5538 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5539 * @user_mask_ptr: user-space pointer to the new cpu mask
5541 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5542 unsigned long __user *user_mask_ptr)
5544 cpumask_var_t new_mask;
5545 int retval;
5547 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5548 return -ENOMEM;
5550 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5551 if (retval == 0)
5552 retval = sched_setaffinity(pid, new_mask);
5553 free_cpumask_var(new_mask);
5554 return retval;
5557 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5559 struct task_struct *p;
5560 int retval;
5562 get_online_cpus();
5563 read_lock(&tasklist_lock);
5565 retval = -ESRCH;
5566 p = find_process_by_pid(pid);
5567 if (!p)
5568 goto out_unlock;
5570 retval = security_task_getscheduler(p);
5571 if (retval)
5572 goto out_unlock;
5574 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5576 out_unlock:
5577 read_unlock(&tasklist_lock);
5578 put_online_cpus();
5580 return retval;
5584 * sys_sched_getaffinity - get the cpu affinity of a process
5585 * @pid: pid of the process
5586 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5587 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5589 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5590 unsigned long __user *user_mask_ptr)
5592 int ret;
5593 cpumask_var_t mask;
5595 if (len < cpumask_size())
5596 return -EINVAL;
5598 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5599 return -ENOMEM;
5601 ret = sched_getaffinity(pid, mask);
5602 if (ret == 0) {
5603 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
5604 ret = -EFAULT;
5605 else
5606 ret = cpumask_size();
5608 free_cpumask_var(mask);
5610 return ret;
5614 * sys_sched_yield - yield the current processor to other threads.
5616 * This function yields the current CPU to other tasks. If there are no
5617 * other threads running on this CPU then this function will return.
5619 asmlinkage long sys_sched_yield(void)
5621 struct rq *rq = this_rq_lock();
5623 schedstat_inc(rq, yld_count);
5624 current->sched_class->yield_task(rq);
5627 * Since we are going to call schedule() anyway, there's
5628 * no need to preempt or enable interrupts:
5630 __release(rq->lock);
5631 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5632 _raw_spin_unlock(&rq->lock);
5633 preempt_enable_no_resched();
5635 schedule();
5637 return 0;
5640 static void __cond_resched(void)
5642 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5643 __might_sleep(__FILE__, __LINE__);
5644 #endif
5646 * The BKS might be reacquired before we have dropped
5647 * PREEMPT_ACTIVE, which could trigger a second
5648 * cond_resched() call.
5650 do {
5651 add_preempt_count(PREEMPT_ACTIVE);
5652 schedule();
5653 sub_preempt_count(PREEMPT_ACTIVE);
5654 } while (need_resched());
5657 int __sched _cond_resched(void)
5659 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5660 system_state == SYSTEM_RUNNING) {
5661 __cond_resched();
5662 return 1;
5664 return 0;
5666 EXPORT_SYMBOL(_cond_resched);
5669 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5670 * call schedule, and on return reacquire the lock.
5672 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5673 * operations here to prevent schedule() from being called twice (once via
5674 * spin_unlock(), once by hand).
5676 int cond_resched_lock(spinlock_t *lock)
5678 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5679 int ret = 0;
5681 if (spin_needbreak(lock) || resched) {
5682 spin_unlock(lock);
5683 if (resched && need_resched())
5684 __cond_resched();
5685 else
5686 cpu_relax();
5687 ret = 1;
5688 spin_lock(lock);
5690 return ret;
5692 EXPORT_SYMBOL(cond_resched_lock);
5694 int __sched cond_resched_softirq(void)
5696 BUG_ON(!in_softirq());
5698 if (need_resched() && system_state == SYSTEM_RUNNING) {
5699 local_bh_enable();
5700 __cond_resched();
5701 local_bh_disable();
5702 return 1;
5704 return 0;
5706 EXPORT_SYMBOL(cond_resched_softirq);
5709 * yield - yield the current processor to other threads.
5711 * This is a shortcut for kernel-space yielding - it marks the
5712 * thread runnable and calls sys_sched_yield().
5714 void __sched yield(void)
5716 set_current_state(TASK_RUNNING);
5717 sys_sched_yield();
5719 EXPORT_SYMBOL(yield);
5722 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5723 * that process accounting knows that this is a task in IO wait state.
5725 * But don't do that if it is a deliberate, throttling IO wait (this task
5726 * has set its backing_dev_info: the queue against which it should throttle)
5728 void __sched io_schedule(void)
5730 struct rq *rq = &__raw_get_cpu_var(runqueues);
5732 delayacct_blkio_start();
5733 atomic_inc(&rq->nr_iowait);
5734 schedule();
5735 atomic_dec(&rq->nr_iowait);
5736 delayacct_blkio_end();
5738 EXPORT_SYMBOL(io_schedule);
5740 long __sched io_schedule_timeout(long timeout)
5742 struct rq *rq = &__raw_get_cpu_var(runqueues);
5743 long ret;
5745 delayacct_blkio_start();
5746 atomic_inc(&rq->nr_iowait);
5747 ret = schedule_timeout(timeout);
5748 atomic_dec(&rq->nr_iowait);
5749 delayacct_blkio_end();
5750 return ret;
5754 * sys_sched_get_priority_max - return maximum RT priority.
5755 * @policy: scheduling class.
5757 * this syscall returns the maximum rt_priority that can be used
5758 * by a given scheduling class.
5760 asmlinkage long sys_sched_get_priority_max(int policy)
5762 int ret = -EINVAL;
5764 switch (policy) {
5765 case SCHED_FIFO:
5766 case SCHED_RR:
5767 ret = MAX_USER_RT_PRIO-1;
5768 break;
5769 case SCHED_NORMAL:
5770 case SCHED_BATCH:
5771 case SCHED_IDLE:
5772 ret = 0;
5773 break;
5775 return ret;
5779 * sys_sched_get_priority_min - return minimum RT priority.
5780 * @policy: scheduling class.
5782 * this syscall returns the minimum rt_priority that can be used
5783 * by a given scheduling class.
5785 asmlinkage long sys_sched_get_priority_min(int policy)
5787 int ret = -EINVAL;
5789 switch (policy) {
5790 case SCHED_FIFO:
5791 case SCHED_RR:
5792 ret = 1;
5793 break;
5794 case SCHED_NORMAL:
5795 case SCHED_BATCH:
5796 case SCHED_IDLE:
5797 ret = 0;
5799 return ret;
5803 * sys_sched_rr_get_interval - return the default timeslice of a process.
5804 * @pid: pid of the process.
5805 * @interval: userspace pointer to the timeslice value.
5807 * this syscall writes the default timeslice value of a given process
5808 * into the user-space timespec buffer. A value of '0' means infinity.
5810 asmlinkage
5811 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5813 struct task_struct *p;
5814 unsigned int time_slice;
5815 int retval;
5816 struct timespec t;
5818 if (pid < 0)
5819 return -EINVAL;
5821 retval = -ESRCH;
5822 read_lock(&tasklist_lock);
5823 p = find_process_by_pid(pid);
5824 if (!p)
5825 goto out_unlock;
5827 retval = security_task_getscheduler(p);
5828 if (retval)
5829 goto out_unlock;
5832 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5833 * tasks that are on an otherwise idle runqueue:
5835 time_slice = 0;
5836 if (p->policy == SCHED_RR) {
5837 time_slice = DEF_TIMESLICE;
5838 } else if (p->policy != SCHED_FIFO) {
5839 struct sched_entity *se = &p->se;
5840 unsigned long flags;
5841 struct rq *rq;
5843 rq = task_rq_lock(p, &flags);
5844 if (rq->cfs.load.weight)
5845 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5846 task_rq_unlock(rq, &flags);
5848 read_unlock(&tasklist_lock);
5849 jiffies_to_timespec(time_slice, &t);
5850 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5851 return retval;
5853 out_unlock:
5854 read_unlock(&tasklist_lock);
5855 return retval;
5858 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5860 void sched_show_task(struct task_struct *p)
5862 unsigned long free = 0;
5863 unsigned state;
5865 state = p->state ? __ffs(p->state) + 1 : 0;
5866 printk(KERN_INFO "%-13.13s %c", p->comm,
5867 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5868 #if BITS_PER_LONG == 32
5869 if (state == TASK_RUNNING)
5870 printk(KERN_CONT " running ");
5871 else
5872 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5873 #else
5874 if (state == TASK_RUNNING)
5875 printk(KERN_CONT " running task ");
5876 else
5877 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5878 #endif
5879 #ifdef CONFIG_DEBUG_STACK_USAGE
5881 unsigned long *n = end_of_stack(p);
5882 while (!*n)
5883 n++;
5884 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5886 #endif
5887 printk(KERN_CONT "%5lu %5d %6d\n", free,
5888 task_pid_nr(p), task_pid_nr(p->real_parent));
5890 show_stack(p, NULL);
5893 void show_state_filter(unsigned long state_filter)
5895 struct task_struct *g, *p;
5897 #if BITS_PER_LONG == 32
5898 printk(KERN_INFO
5899 " task PC stack pid father\n");
5900 #else
5901 printk(KERN_INFO
5902 " task PC stack pid father\n");
5903 #endif
5904 read_lock(&tasklist_lock);
5905 do_each_thread(g, p) {
5907 * reset the NMI-timeout, listing all files on a slow
5908 * console might take alot of time:
5910 touch_nmi_watchdog();
5911 if (!state_filter || (p->state & state_filter))
5912 sched_show_task(p);
5913 } while_each_thread(g, p);
5915 touch_all_softlockup_watchdogs();
5917 #ifdef CONFIG_SCHED_DEBUG
5918 sysrq_sched_debug_show();
5919 #endif
5920 read_unlock(&tasklist_lock);
5922 * Only show locks if all tasks are dumped:
5924 if (state_filter == -1)
5925 debug_show_all_locks();
5928 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5930 idle->sched_class = &idle_sched_class;
5934 * init_idle - set up an idle thread for a given CPU
5935 * @idle: task in question
5936 * @cpu: cpu the idle task belongs to
5938 * NOTE: this function does not set the idle thread's NEED_RESCHED
5939 * flag, to make booting more robust.
5941 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5943 struct rq *rq = cpu_rq(cpu);
5944 unsigned long flags;
5946 spin_lock_irqsave(&rq->lock, flags);
5948 __sched_fork(idle);
5949 idle->se.exec_start = sched_clock();
5951 idle->prio = idle->normal_prio = MAX_PRIO;
5952 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5953 __set_task_cpu(idle, cpu);
5955 rq->curr = rq->idle = idle;
5956 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5957 idle->oncpu = 1;
5958 #endif
5959 spin_unlock_irqrestore(&rq->lock, flags);
5961 /* Set the preempt count _outside_ the spinlocks! */
5962 #if defined(CONFIG_PREEMPT)
5963 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5964 #else
5965 task_thread_info(idle)->preempt_count = 0;
5966 #endif
5968 * The idle tasks have their own, simple scheduling class:
5970 idle->sched_class = &idle_sched_class;
5971 ftrace_graph_init_task(idle);
5975 * In a system that switches off the HZ timer nohz_cpu_mask
5976 * indicates which cpus entered this state. This is used
5977 * in the rcu update to wait only for active cpus. For system
5978 * which do not switch off the HZ timer nohz_cpu_mask should
5979 * always be CPU_BITS_NONE.
5981 cpumask_var_t nohz_cpu_mask;
5984 * Increase the granularity value when there are more CPUs,
5985 * because with more CPUs the 'effective latency' as visible
5986 * to users decreases. But the relationship is not linear,
5987 * so pick a second-best guess by going with the log2 of the
5988 * number of CPUs.
5990 * This idea comes from the SD scheduler of Con Kolivas:
5992 static inline void sched_init_granularity(void)
5994 unsigned int factor = 1 + ilog2(num_online_cpus());
5995 const unsigned long limit = 200000000;
5997 sysctl_sched_min_granularity *= factor;
5998 if (sysctl_sched_min_granularity > limit)
5999 sysctl_sched_min_granularity = limit;
6001 sysctl_sched_latency *= factor;
6002 if (sysctl_sched_latency > limit)
6003 sysctl_sched_latency = limit;
6005 sysctl_sched_wakeup_granularity *= factor;
6007 sysctl_sched_shares_ratelimit *= factor;
6010 #ifdef CONFIG_SMP
6012 * This is how migration works:
6014 * 1) we queue a struct migration_req structure in the source CPU's
6015 * runqueue and wake up that CPU's migration thread.
6016 * 2) we down() the locked semaphore => thread blocks.
6017 * 3) migration thread wakes up (implicitly it forces the migrated
6018 * thread off the CPU)
6019 * 4) it gets the migration request and checks whether the migrated
6020 * task is still in the wrong runqueue.
6021 * 5) if it's in the wrong runqueue then the migration thread removes
6022 * it and puts it into the right queue.
6023 * 6) migration thread up()s the semaphore.
6024 * 7) we wake up and the migration is done.
6028 * Change a given task's CPU affinity. Migrate the thread to a
6029 * proper CPU and schedule it away if the CPU it's executing on
6030 * is removed from the allowed bitmask.
6032 * NOTE: the caller must have a valid reference to the task, the
6033 * task must not exit() & deallocate itself prematurely. The
6034 * call is not atomic; no spinlocks may be held.
6036 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6038 struct migration_req req;
6039 unsigned long flags;
6040 struct rq *rq;
6041 int ret = 0;
6043 rq = task_rq_lock(p, &flags);
6044 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
6045 ret = -EINVAL;
6046 goto out;
6049 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6050 !cpumask_equal(&p->cpus_allowed, new_mask))) {
6051 ret = -EINVAL;
6052 goto out;
6055 if (p->sched_class->set_cpus_allowed)
6056 p->sched_class->set_cpus_allowed(p, new_mask);
6057 else {
6058 cpumask_copy(&p->cpus_allowed, new_mask);
6059 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6062 /* Can the task run on the task's current CPU? If so, we're done */
6063 if (cpumask_test_cpu(task_cpu(p), new_mask))
6064 goto out;
6066 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
6067 /* Need help from migration thread: drop lock and wait. */
6068 task_rq_unlock(rq, &flags);
6069 wake_up_process(rq->migration_thread);
6070 wait_for_completion(&req.done);
6071 tlb_migrate_finish(p->mm);
6072 return 0;
6074 out:
6075 task_rq_unlock(rq, &flags);
6077 return ret;
6079 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6082 * Move (not current) task off this cpu, onto dest cpu. We're doing
6083 * this because either it can't run here any more (set_cpus_allowed()
6084 * away from this CPU, or CPU going down), or because we're
6085 * attempting to rebalance this task on exec (sched_exec).
6087 * So we race with normal scheduler movements, but that's OK, as long
6088 * as the task is no longer on this CPU.
6090 * Returns non-zero if task was successfully migrated.
6092 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6094 struct rq *rq_dest, *rq_src;
6095 int ret = 0, on_rq;
6097 if (unlikely(!cpu_active(dest_cpu)))
6098 return ret;
6100 rq_src = cpu_rq(src_cpu);
6101 rq_dest = cpu_rq(dest_cpu);
6103 double_rq_lock(rq_src, rq_dest);
6104 /* Already moved. */
6105 if (task_cpu(p) != src_cpu)
6106 goto done;
6107 /* Affinity changed (again). */
6108 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6109 goto fail;
6111 on_rq = p->se.on_rq;
6112 if (on_rq)
6113 deactivate_task(rq_src, p, 0);
6115 set_task_cpu(p, dest_cpu);
6116 if (on_rq) {
6117 activate_task(rq_dest, p, 0);
6118 check_preempt_curr(rq_dest, p, 0);
6120 done:
6121 ret = 1;
6122 fail:
6123 double_rq_unlock(rq_src, rq_dest);
6124 return ret;
6128 * migration_thread - this is a highprio system thread that performs
6129 * thread migration by bumping thread off CPU then 'pushing' onto
6130 * another runqueue.
6132 static int migration_thread(void *data)
6134 int cpu = (long)data;
6135 struct rq *rq;
6137 rq = cpu_rq(cpu);
6138 BUG_ON(rq->migration_thread != current);
6140 set_current_state(TASK_INTERRUPTIBLE);
6141 while (!kthread_should_stop()) {
6142 struct migration_req *req;
6143 struct list_head *head;
6145 spin_lock_irq(&rq->lock);
6147 if (cpu_is_offline(cpu)) {
6148 spin_unlock_irq(&rq->lock);
6149 goto wait_to_die;
6152 if (rq->active_balance) {
6153 active_load_balance(rq, cpu);
6154 rq->active_balance = 0;
6157 head = &rq->migration_queue;
6159 if (list_empty(head)) {
6160 spin_unlock_irq(&rq->lock);
6161 schedule();
6162 set_current_state(TASK_INTERRUPTIBLE);
6163 continue;
6165 req = list_entry(head->next, struct migration_req, list);
6166 list_del_init(head->next);
6168 spin_unlock(&rq->lock);
6169 __migrate_task(req->task, cpu, req->dest_cpu);
6170 local_irq_enable();
6172 complete(&req->done);
6174 __set_current_state(TASK_RUNNING);
6175 return 0;
6177 wait_to_die:
6178 /* Wait for kthread_stop */
6179 set_current_state(TASK_INTERRUPTIBLE);
6180 while (!kthread_should_stop()) {
6181 schedule();
6182 set_current_state(TASK_INTERRUPTIBLE);
6184 __set_current_state(TASK_RUNNING);
6185 return 0;
6188 #ifdef CONFIG_HOTPLUG_CPU
6190 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6192 int ret;
6194 local_irq_disable();
6195 ret = __migrate_task(p, src_cpu, dest_cpu);
6196 local_irq_enable();
6197 return ret;
6201 * Figure out where task on dead CPU should go, use force if necessary.
6203 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6205 int dest_cpu;
6206 /* FIXME: Use cpumask_of_node here. */
6207 cpumask_t _nodemask = node_to_cpumask(cpu_to_node(dead_cpu));
6208 const struct cpumask *nodemask = &_nodemask;
6210 again:
6211 /* Look for allowed, online CPU in same node. */
6212 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6213 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6214 goto move;
6216 /* Any allowed, online CPU? */
6217 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6218 if (dest_cpu < nr_cpu_ids)
6219 goto move;
6221 /* No more Mr. Nice Guy. */
6222 if (dest_cpu >= nr_cpu_ids) {
6223 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6224 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
6227 * Don't tell them about moving exiting tasks or
6228 * kernel threads (both mm NULL), since they never
6229 * leave kernel.
6231 if (p->mm && printk_ratelimit()) {
6232 printk(KERN_INFO "process %d (%s) no "
6233 "longer affine to cpu%d\n",
6234 task_pid_nr(p), p->comm, dead_cpu);
6238 move:
6239 /* It can have affinity changed while we were choosing. */
6240 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6241 goto again;
6245 * While a dead CPU has no uninterruptible tasks queued at this point,
6246 * it might still have a nonzero ->nr_uninterruptible counter, because
6247 * for performance reasons the counter is not stricly tracking tasks to
6248 * their home CPUs. So we just add the counter to another CPU's counter,
6249 * to keep the global sum constant after CPU-down:
6251 static void migrate_nr_uninterruptible(struct rq *rq_src)
6253 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
6254 unsigned long flags;
6256 local_irq_save(flags);
6257 double_rq_lock(rq_src, rq_dest);
6258 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6259 rq_src->nr_uninterruptible = 0;
6260 double_rq_unlock(rq_src, rq_dest);
6261 local_irq_restore(flags);
6264 /* Run through task list and migrate tasks from the dead cpu. */
6265 static void migrate_live_tasks(int src_cpu)
6267 struct task_struct *p, *t;
6269 read_lock(&tasklist_lock);
6271 do_each_thread(t, p) {
6272 if (p == current)
6273 continue;
6275 if (task_cpu(p) == src_cpu)
6276 move_task_off_dead_cpu(src_cpu, p);
6277 } while_each_thread(t, p);
6279 read_unlock(&tasklist_lock);
6283 * Schedules idle task to be the next runnable task on current CPU.
6284 * It does so by boosting its priority to highest possible.
6285 * Used by CPU offline code.
6287 void sched_idle_next(void)
6289 int this_cpu = smp_processor_id();
6290 struct rq *rq = cpu_rq(this_cpu);
6291 struct task_struct *p = rq->idle;
6292 unsigned long flags;
6294 /* cpu has to be offline */
6295 BUG_ON(cpu_online(this_cpu));
6298 * Strictly not necessary since rest of the CPUs are stopped by now
6299 * and interrupts disabled on the current cpu.
6301 spin_lock_irqsave(&rq->lock, flags);
6303 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6305 update_rq_clock(rq);
6306 activate_task(rq, p, 0);
6308 spin_unlock_irqrestore(&rq->lock, flags);
6312 * Ensures that the idle task is using init_mm right before its cpu goes
6313 * offline.
6315 void idle_task_exit(void)
6317 struct mm_struct *mm = current->active_mm;
6319 BUG_ON(cpu_online(smp_processor_id()));
6321 if (mm != &init_mm)
6322 switch_mm(mm, &init_mm, current);
6323 mmdrop(mm);
6326 /* called under rq->lock with disabled interrupts */
6327 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6329 struct rq *rq = cpu_rq(dead_cpu);
6331 /* Must be exiting, otherwise would be on tasklist. */
6332 BUG_ON(!p->exit_state);
6334 /* Cannot have done final schedule yet: would have vanished. */
6335 BUG_ON(p->state == TASK_DEAD);
6337 get_task_struct(p);
6340 * Drop lock around migration; if someone else moves it,
6341 * that's OK. No task can be added to this CPU, so iteration is
6342 * fine.
6344 spin_unlock_irq(&rq->lock);
6345 move_task_off_dead_cpu(dead_cpu, p);
6346 spin_lock_irq(&rq->lock);
6348 put_task_struct(p);
6351 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6352 static void migrate_dead_tasks(unsigned int dead_cpu)
6354 struct rq *rq = cpu_rq(dead_cpu);
6355 struct task_struct *next;
6357 for ( ; ; ) {
6358 if (!rq->nr_running)
6359 break;
6360 update_rq_clock(rq);
6361 next = pick_next_task(rq, rq->curr);
6362 if (!next)
6363 break;
6364 next->sched_class->put_prev_task(rq, next);
6365 migrate_dead(dead_cpu, next);
6369 #endif /* CONFIG_HOTPLUG_CPU */
6371 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6373 static struct ctl_table sd_ctl_dir[] = {
6375 .procname = "sched_domain",
6376 .mode = 0555,
6378 {0, },
6381 static struct ctl_table sd_ctl_root[] = {
6383 .ctl_name = CTL_KERN,
6384 .procname = "kernel",
6385 .mode = 0555,
6386 .child = sd_ctl_dir,
6388 {0, },
6391 static struct ctl_table *sd_alloc_ctl_entry(int n)
6393 struct ctl_table *entry =
6394 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6396 return entry;
6399 static void sd_free_ctl_entry(struct ctl_table **tablep)
6401 struct ctl_table *entry;
6404 * In the intermediate directories, both the child directory and
6405 * procname are dynamically allocated and could fail but the mode
6406 * will always be set. In the lowest directory the names are
6407 * static strings and all have proc handlers.
6409 for (entry = *tablep; entry->mode; entry++) {
6410 if (entry->child)
6411 sd_free_ctl_entry(&entry->child);
6412 if (entry->proc_handler == NULL)
6413 kfree(entry->procname);
6416 kfree(*tablep);
6417 *tablep = NULL;
6420 static void
6421 set_table_entry(struct ctl_table *entry,
6422 const char *procname, void *data, int maxlen,
6423 mode_t mode, proc_handler *proc_handler)
6425 entry->procname = procname;
6426 entry->data = data;
6427 entry->maxlen = maxlen;
6428 entry->mode = mode;
6429 entry->proc_handler = proc_handler;
6432 static struct ctl_table *
6433 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6435 struct ctl_table *table = sd_alloc_ctl_entry(13);
6437 if (table == NULL)
6438 return NULL;
6440 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6441 sizeof(long), 0644, proc_doulongvec_minmax);
6442 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6443 sizeof(long), 0644, proc_doulongvec_minmax);
6444 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6445 sizeof(int), 0644, proc_dointvec_minmax);
6446 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6447 sizeof(int), 0644, proc_dointvec_minmax);
6448 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6449 sizeof(int), 0644, proc_dointvec_minmax);
6450 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6451 sizeof(int), 0644, proc_dointvec_minmax);
6452 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6453 sizeof(int), 0644, proc_dointvec_minmax);
6454 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6455 sizeof(int), 0644, proc_dointvec_minmax);
6456 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6457 sizeof(int), 0644, proc_dointvec_minmax);
6458 set_table_entry(&table[9], "cache_nice_tries",
6459 &sd->cache_nice_tries,
6460 sizeof(int), 0644, proc_dointvec_minmax);
6461 set_table_entry(&table[10], "flags", &sd->flags,
6462 sizeof(int), 0644, proc_dointvec_minmax);
6463 set_table_entry(&table[11], "name", sd->name,
6464 CORENAME_MAX_SIZE, 0444, proc_dostring);
6465 /* &table[12] is terminator */
6467 return table;
6470 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6472 struct ctl_table *entry, *table;
6473 struct sched_domain *sd;
6474 int domain_num = 0, i;
6475 char buf[32];
6477 for_each_domain(cpu, sd)
6478 domain_num++;
6479 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6480 if (table == NULL)
6481 return NULL;
6483 i = 0;
6484 for_each_domain(cpu, sd) {
6485 snprintf(buf, 32, "domain%d", i);
6486 entry->procname = kstrdup(buf, GFP_KERNEL);
6487 entry->mode = 0555;
6488 entry->child = sd_alloc_ctl_domain_table(sd);
6489 entry++;
6490 i++;
6492 return table;
6495 static struct ctl_table_header *sd_sysctl_header;
6496 static void register_sched_domain_sysctl(void)
6498 int i, cpu_num = num_online_cpus();
6499 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6500 char buf[32];
6502 WARN_ON(sd_ctl_dir[0].child);
6503 sd_ctl_dir[0].child = entry;
6505 if (entry == NULL)
6506 return;
6508 for_each_online_cpu(i) {
6509 snprintf(buf, 32, "cpu%d", i);
6510 entry->procname = kstrdup(buf, GFP_KERNEL);
6511 entry->mode = 0555;
6512 entry->child = sd_alloc_ctl_cpu_table(i);
6513 entry++;
6516 WARN_ON(sd_sysctl_header);
6517 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6520 /* may be called multiple times per register */
6521 static void unregister_sched_domain_sysctl(void)
6523 if (sd_sysctl_header)
6524 unregister_sysctl_table(sd_sysctl_header);
6525 sd_sysctl_header = NULL;
6526 if (sd_ctl_dir[0].child)
6527 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6529 #else
6530 static void register_sched_domain_sysctl(void)
6533 static void unregister_sched_domain_sysctl(void)
6536 #endif
6538 static void set_rq_online(struct rq *rq)
6540 if (!rq->online) {
6541 const struct sched_class *class;
6543 cpumask_set_cpu(rq->cpu, rq->rd->online);
6544 rq->online = 1;
6546 for_each_class(class) {
6547 if (class->rq_online)
6548 class->rq_online(rq);
6553 static void set_rq_offline(struct rq *rq)
6555 if (rq->online) {
6556 const struct sched_class *class;
6558 for_each_class(class) {
6559 if (class->rq_offline)
6560 class->rq_offline(rq);
6563 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6564 rq->online = 0;
6569 * migration_call - callback that gets triggered when a CPU is added.
6570 * Here we can start up the necessary migration thread for the new CPU.
6572 static int __cpuinit
6573 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6575 struct task_struct *p;
6576 int cpu = (long)hcpu;
6577 unsigned long flags;
6578 struct rq *rq;
6580 switch (action) {
6582 case CPU_UP_PREPARE:
6583 case CPU_UP_PREPARE_FROZEN:
6584 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6585 if (IS_ERR(p))
6586 return NOTIFY_BAD;
6587 kthread_bind(p, cpu);
6588 /* Must be high prio: stop_machine expects to yield to it. */
6589 rq = task_rq_lock(p, &flags);
6590 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6591 task_rq_unlock(rq, &flags);
6592 cpu_rq(cpu)->migration_thread = p;
6593 break;
6595 case CPU_ONLINE:
6596 case CPU_ONLINE_FROZEN:
6597 /* Strictly unnecessary, as first user will wake it. */
6598 wake_up_process(cpu_rq(cpu)->migration_thread);
6600 /* Update our root-domain */
6601 rq = cpu_rq(cpu);
6602 spin_lock_irqsave(&rq->lock, flags);
6603 if (rq->rd) {
6604 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6606 set_rq_online(rq);
6608 spin_unlock_irqrestore(&rq->lock, flags);
6609 break;
6611 #ifdef CONFIG_HOTPLUG_CPU
6612 case CPU_UP_CANCELED:
6613 case CPU_UP_CANCELED_FROZEN:
6614 if (!cpu_rq(cpu)->migration_thread)
6615 break;
6616 /* Unbind it from offline cpu so it can run. Fall thru. */
6617 kthread_bind(cpu_rq(cpu)->migration_thread,
6618 cpumask_any(cpu_online_mask));
6619 kthread_stop(cpu_rq(cpu)->migration_thread);
6620 cpu_rq(cpu)->migration_thread = NULL;
6621 break;
6623 case CPU_DEAD:
6624 case CPU_DEAD_FROZEN:
6625 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6626 migrate_live_tasks(cpu);
6627 rq = cpu_rq(cpu);
6628 kthread_stop(rq->migration_thread);
6629 rq->migration_thread = NULL;
6630 /* Idle task back to normal (off runqueue, low prio) */
6631 spin_lock_irq(&rq->lock);
6632 update_rq_clock(rq);
6633 deactivate_task(rq, rq->idle, 0);
6634 rq->idle->static_prio = MAX_PRIO;
6635 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6636 rq->idle->sched_class = &idle_sched_class;
6637 migrate_dead_tasks(cpu);
6638 spin_unlock_irq(&rq->lock);
6639 cpuset_unlock();
6640 migrate_nr_uninterruptible(rq);
6641 BUG_ON(rq->nr_running != 0);
6644 * No need to migrate the tasks: it was best-effort if
6645 * they didn't take sched_hotcpu_mutex. Just wake up
6646 * the requestors.
6648 spin_lock_irq(&rq->lock);
6649 while (!list_empty(&rq->migration_queue)) {
6650 struct migration_req *req;
6652 req = list_entry(rq->migration_queue.next,
6653 struct migration_req, list);
6654 list_del_init(&req->list);
6655 spin_unlock_irq(&rq->lock);
6656 complete(&req->done);
6657 spin_lock_irq(&rq->lock);
6659 spin_unlock_irq(&rq->lock);
6660 break;
6662 case CPU_DYING:
6663 case CPU_DYING_FROZEN:
6664 /* Update our root-domain */
6665 rq = cpu_rq(cpu);
6666 spin_lock_irqsave(&rq->lock, flags);
6667 if (rq->rd) {
6668 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6669 set_rq_offline(rq);
6671 spin_unlock_irqrestore(&rq->lock, flags);
6672 break;
6673 #endif
6675 return NOTIFY_OK;
6678 /* Register at highest priority so that task migration (migrate_all_tasks)
6679 * happens before everything else.
6681 static struct notifier_block __cpuinitdata migration_notifier = {
6682 .notifier_call = migration_call,
6683 .priority = 10
6686 static int __init migration_init(void)
6688 void *cpu = (void *)(long)smp_processor_id();
6689 int err;
6691 /* Start one for the boot CPU: */
6692 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6693 BUG_ON(err == NOTIFY_BAD);
6694 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6695 register_cpu_notifier(&migration_notifier);
6697 return err;
6699 early_initcall(migration_init);
6700 #endif
6702 #ifdef CONFIG_SMP
6704 #ifdef CONFIG_SCHED_DEBUG
6706 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6707 struct cpumask *groupmask)
6709 struct sched_group *group = sd->groups;
6710 char str[256];
6712 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6713 cpumask_clear(groupmask);
6715 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6717 if (!(sd->flags & SD_LOAD_BALANCE)) {
6718 printk("does not load-balance\n");
6719 if (sd->parent)
6720 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6721 " has parent");
6722 return -1;
6725 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6727 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6728 printk(KERN_ERR "ERROR: domain->span does not contain "
6729 "CPU%d\n", cpu);
6731 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6732 printk(KERN_ERR "ERROR: domain->groups does not contain"
6733 " CPU%d\n", cpu);
6736 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6737 do {
6738 if (!group) {
6739 printk("\n");
6740 printk(KERN_ERR "ERROR: group is NULL\n");
6741 break;
6744 if (!group->__cpu_power) {
6745 printk(KERN_CONT "\n");
6746 printk(KERN_ERR "ERROR: domain->cpu_power not "
6747 "set\n");
6748 break;
6751 if (!cpumask_weight(sched_group_cpus(group))) {
6752 printk(KERN_CONT "\n");
6753 printk(KERN_ERR "ERROR: empty group\n");
6754 break;
6757 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6758 printk(KERN_CONT "\n");
6759 printk(KERN_ERR "ERROR: repeated CPUs\n");
6760 break;
6763 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6765 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6766 printk(KERN_CONT " %s", str);
6768 group = group->next;
6769 } while (group != sd->groups);
6770 printk(KERN_CONT "\n");
6772 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6773 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6775 if (sd->parent &&
6776 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6777 printk(KERN_ERR "ERROR: parent span is not a superset "
6778 "of domain->span\n");
6779 return 0;
6782 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6784 cpumask_var_t groupmask;
6785 int level = 0;
6787 if (!sd) {
6788 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6789 return;
6792 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6794 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6795 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6796 return;
6799 for (;;) {
6800 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6801 break;
6802 level++;
6803 sd = sd->parent;
6804 if (!sd)
6805 break;
6807 free_cpumask_var(groupmask);
6809 #else /* !CONFIG_SCHED_DEBUG */
6810 # define sched_domain_debug(sd, cpu) do { } while (0)
6811 #endif /* CONFIG_SCHED_DEBUG */
6813 static int sd_degenerate(struct sched_domain *sd)
6815 if (cpumask_weight(sched_domain_span(sd)) == 1)
6816 return 1;
6818 /* Following flags need at least 2 groups */
6819 if (sd->flags & (SD_LOAD_BALANCE |
6820 SD_BALANCE_NEWIDLE |
6821 SD_BALANCE_FORK |
6822 SD_BALANCE_EXEC |
6823 SD_SHARE_CPUPOWER |
6824 SD_SHARE_PKG_RESOURCES)) {
6825 if (sd->groups != sd->groups->next)
6826 return 0;
6829 /* Following flags don't use groups */
6830 if (sd->flags & (SD_WAKE_IDLE |
6831 SD_WAKE_AFFINE |
6832 SD_WAKE_BALANCE))
6833 return 0;
6835 return 1;
6838 static int
6839 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6841 unsigned long cflags = sd->flags, pflags = parent->flags;
6843 if (sd_degenerate(parent))
6844 return 1;
6846 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6847 return 0;
6849 /* Does parent contain flags not in child? */
6850 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6851 if (cflags & SD_WAKE_AFFINE)
6852 pflags &= ~SD_WAKE_BALANCE;
6853 /* Flags needing groups don't count if only 1 group in parent */
6854 if (parent->groups == parent->groups->next) {
6855 pflags &= ~(SD_LOAD_BALANCE |
6856 SD_BALANCE_NEWIDLE |
6857 SD_BALANCE_FORK |
6858 SD_BALANCE_EXEC |
6859 SD_SHARE_CPUPOWER |
6860 SD_SHARE_PKG_RESOURCES);
6861 if (nr_node_ids == 1)
6862 pflags &= ~SD_SERIALIZE;
6864 if (~cflags & pflags)
6865 return 0;
6867 return 1;
6870 static void free_rootdomain(struct root_domain *rd)
6872 cpupri_cleanup(&rd->cpupri);
6874 free_cpumask_var(rd->rto_mask);
6875 free_cpumask_var(rd->online);
6876 free_cpumask_var(rd->span);
6877 kfree(rd);
6880 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6882 unsigned long flags;
6884 spin_lock_irqsave(&rq->lock, flags);
6886 if (rq->rd) {
6887 struct root_domain *old_rd = rq->rd;
6889 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6890 set_rq_offline(rq);
6892 cpumask_clear_cpu(rq->cpu, old_rd->span);
6894 if (atomic_dec_and_test(&old_rd->refcount))
6895 free_rootdomain(old_rd);
6898 atomic_inc(&rd->refcount);
6899 rq->rd = rd;
6901 cpumask_set_cpu(rq->cpu, rd->span);
6902 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
6903 set_rq_online(rq);
6905 spin_unlock_irqrestore(&rq->lock, flags);
6908 static int init_rootdomain(struct root_domain *rd, bool bootmem)
6910 memset(rd, 0, sizeof(*rd));
6912 if (bootmem) {
6913 alloc_bootmem_cpumask_var(&def_root_domain.span);
6914 alloc_bootmem_cpumask_var(&def_root_domain.online);
6915 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
6916 cpupri_init(&rd->cpupri, true);
6917 return 0;
6920 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6921 goto free_rd;
6922 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6923 goto free_span;
6924 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6925 goto free_online;
6927 if (cpupri_init(&rd->cpupri, false) != 0)
6928 goto free_rto_mask;
6929 return 0;
6931 free_rto_mask:
6932 free_cpumask_var(rd->rto_mask);
6933 free_online:
6934 free_cpumask_var(rd->online);
6935 free_span:
6936 free_cpumask_var(rd->span);
6937 free_rd:
6938 kfree(rd);
6939 return -ENOMEM;
6942 static void init_defrootdomain(void)
6944 init_rootdomain(&def_root_domain, true);
6946 atomic_set(&def_root_domain.refcount, 1);
6949 static struct root_domain *alloc_rootdomain(void)
6951 struct root_domain *rd;
6953 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6954 if (!rd)
6955 return NULL;
6957 if (init_rootdomain(rd, false) != 0) {
6958 kfree(rd);
6959 return NULL;
6962 return rd;
6966 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6967 * hold the hotplug lock.
6969 static void
6970 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6972 struct rq *rq = cpu_rq(cpu);
6973 struct sched_domain *tmp;
6975 /* Remove the sched domains which do not contribute to scheduling. */
6976 for (tmp = sd; tmp; ) {
6977 struct sched_domain *parent = tmp->parent;
6978 if (!parent)
6979 break;
6981 if (sd_parent_degenerate(tmp, parent)) {
6982 tmp->parent = parent->parent;
6983 if (parent->parent)
6984 parent->parent->child = tmp;
6985 } else
6986 tmp = tmp->parent;
6989 if (sd && sd_degenerate(sd)) {
6990 sd = sd->parent;
6991 if (sd)
6992 sd->child = NULL;
6995 sched_domain_debug(sd, cpu);
6997 rq_attach_root(rq, rd);
6998 rcu_assign_pointer(rq->sd, sd);
7001 /* cpus with isolated domains */
7002 static cpumask_var_t cpu_isolated_map;
7004 /* Setup the mask of cpus configured for isolated domains */
7005 static int __init isolated_cpu_setup(char *str)
7007 cpulist_parse(str, cpu_isolated_map);
7008 return 1;
7011 __setup("isolcpus=", isolated_cpu_setup);
7014 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7015 * to a function which identifies what group(along with sched group) a CPU
7016 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7017 * (due to the fact that we keep track of groups covered with a struct cpumask).
7019 * init_sched_build_groups will build a circular linked list of the groups
7020 * covered by the given span, and will set each group's ->cpumask correctly,
7021 * and ->cpu_power to 0.
7023 static void
7024 init_sched_build_groups(const struct cpumask *span,
7025 const struct cpumask *cpu_map,
7026 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7027 struct sched_group **sg,
7028 struct cpumask *tmpmask),
7029 struct cpumask *covered, struct cpumask *tmpmask)
7031 struct sched_group *first = NULL, *last = NULL;
7032 int i;
7034 cpumask_clear(covered);
7036 for_each_cpu(i, span) {
7037 struct sched_group *sg;
7038 int group = group_fn(i, cpu_map, &sg, tmpmask);
7039 int j;
7041 if (cpumask_test_cpu(i, covered))
7042 continue;
7044 cpumask_clear(sched_group_cpus(sg));
7045 sg->__cpu_power = 0;
7047 for_each_cpu(j, span) {
7048 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
7049 continue;
7051 cpumask_set_cpu(j, covered);
7052 cpumask_set_cpu(j, sched_group_cpus(sg));
7054 if (!first)
7055 first = sg;
7056 if (last)
7057 last->next = sg;
7058 last = sg;
7060 last->next = first;
7063 #define SD_NODES_PER_DOMAIN 16
7065 #ifdef CONFIG_NUMA
7068 * find_next_best_node - find the next node to include in a sched_domain
7069 * @node: node whose sched_domain we're building
7070 * @used_nodes: nodes already in the sched_domain
7072 * Find the next node to include in a given scheduling domain. Simply
7073 * finds the closest node not already in the @used_nodes map.
7075 * Should use nodemask_t.
7077 static int find_next_best_node(int node, nodemask_t *used_nodes)
7079 int i, n, val, min_val, best_node = 0;
7081 min_val = INT_MAX;
7083 for (i = 0; i < nr_node_ids; i++) {
7084 /* Start at @node */
7085 n = (node + i) % nr_node_ids;
7087 if (!nr_cpus_node(n))
7088 continue;
7090 /* Skip already used nodes */
7091 if (node_isset(n, *used_nodes))
7092 continue;
7094 /* Simple min distance search */
7095 val = node_distance(node, n);
7097 if (val < min_val) {
7098 min_val = val;
7099 best_node = n;
7103 node_set(best_node, *used_nodes);
7104 return best_node;
7108 * sched_domain_node_span - get a cpumask for a node's sched_domain
7109 * @node: node whose cpumask we're constructing
7110 * @span: resulting cpumask
7112 * Given a node, construct a good cpumask for its sched_domain to span. It
7113 * should be one that prevents unnecessary balancing, but also spreads tasks
7114 * out optimally.
7116 static void sched_domain_node_span(int node, struct cpumask *span)
7118 nodemask_t used_nodes;
7119 /* FIXME: use cpumask_of_node() */
7120 node_to_cpumask_ptr(nodemask, node);
7121 int i;
7123 cpus_clear(*span);
7124 nodes_clear(used_nodes);
7126 cpus_or(*span, *span, *nodemask);
7127 node_set(node, used_nodes);
7129 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7130 int next_node = find_next_best_node(node, &used_nodes);
7132 node_to_cpumask_ptr_next(nodemask, next_node);
7133 cpus_or(*span, *span, *nodemask);
7136 #endif /* CONFIG_NUMA */
7138 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7141 * The cpus mask in sched_group and sched_domain hangs off the end.
7142 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7143 * for nr_cpu_ids < CONFIG_NR_CPUS.
7145 struct static_sched_group {
7146 struct sched_group sg;
7147 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7150 struct static_sched_domain {
7151 struct sched_domain sd;
7152 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7156 * SMT sched-domains:
7158 #ifdef CONFIG_SCHED_SMT
7159 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7160 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7162 static int
7163 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7164 struct sched_group **sg, struct cpumask *unused)
7166 if (sg)
7167 *sg = &per_cpu(sched_group_cpus, cpu).sg;
7168 return cpu;
7170 #endif /* CONFIG_SCHED_SMT */
7173 * multi-core sched-domains:
7175 #ifdef CONFIG_SCHED_MC
7176 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7177 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7178 #endif /* CONFIG_SCHED_MC */
7180 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7181 static int
7182 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7183 struct sched_group **sg, struct cpumask *mask)
7185 int group;
7187 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7188 group = cpumask_first(mask);
7189 if (sg)
7190 *sg = &per_cpu(sched_group_core, group).sg;
7191 return group;
7193 #elif defined(CONFIG_SCHED_MC)
7194 static int
7195 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7196 struct sched_group **sg, struct cpumask *unused)
7198 if (sg)
7199 *sg = &per_cpu(sched_group_core, cpu).sg;
7200 return cpu;
7202 #endif
7204 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7205 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7207 static int
7208 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7209 struct sched_group **sg, struct cpumask *mask)
7211 int group;
7212 #ifdef CONFIG_SCHED_MC
7213 /* FIXME: Use cpu_coregroup_mask. */
7214 *mask = cpu_coregroup_map(cpu);
7215 cpus_and(*mask, *mask, *cpu_map);
7216 group = cpumask_first(mask);
7217 #elif defined(CONFIG_SCHED_SMT)
7218 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7219 group = cpumask_first(mask);
7220 #else
7221 group = cpu;
7222 #endif
7223 if (sg)
7224 *sg = &per_cpu(sched_group_phys, group).sg;
7225 return group;
7228 #ifdef CONFIG_NUMA
7230 * The init_sched_build_groups can't handle what we want to do with node
7231 * groups, so roll our own. Now each node has its own list of groups which
7232 * gets dynamically allocated.
7234 static DEFINE_PER_CPU(struct sched_domain, node_domains);
7235 static struct sched_group ***sched_group_nodes_bycpu;
7237 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7238 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7240 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7241 struct sched_group **sg,
7242 struct cpumask *nodemask)
7244 int group;
7245 /* FIXME: use cpumask_of_node */
7246 node_to_cpumask_ptr(pnodemask, cpu_to_node(cpu));
7248 cpumask_and(nodemask, pnodemask, cpu_map);
7249 group = cpumask_first(nodemask);
7251 if (sg)
7252 *sg = &per_cpu(sched_group_allnodes, group).sg;
7253 return group;
7256 static void init_numa_sched_groups_power(struct sched_group *group_head)
7258 struct sched_group *sg = group_head;
7259 int j;
7261 if (!sg)
7262 return;
7263 do {
7264 for_each_cpu(j, sched_group_cpus(sg)) {
7265 struct sched_domain *sd;
7267 sd = &per_cpu(phys_domains, j).sd;
7268 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7270 * Only add "power" once for each
7271 * physical package.
7273 continue;
7276 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7278 sg = sg->next;
7279 } while (sg != group_head);
7281 #endif /* CONFIG_NUMA */
7283 #ifdef CONFIG_NUMA
7284 /* Free memory allocated for various sched_group structures */
7285 static void free_sched_groups(const struct cpumask *cpu_map,
7286 struct cpumask *nodemask)
7288 int cpu, i;
7290 for_each_cpu(cpu, cpu_map) {
7291 struct sched_group **sched_group_nodes
7292 = sched_group_nodes_bycpu[cpu];
7294 if (!sched_group_nodes)
7295 continue;
7297 for (i = 0; i < nr_node_ids; i++) {
7298 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7299 /* FIXME: Use cpumask_of_node */
7300 node_to_cpumask_ptr(pnodemask, i);
7302 cpus_and(*nodemask, *pnodemask, *cpu_map);
7303 if (cpumask_empty(nodemask))
7304 continue;
7306 if (sg == NULL)
7307 continue;
7308 sg = sg->next;
7309 next_sg:
7310 oldsg = sg;
7311 sg = sg->next;
7312 kfree(oldsg);
7313 if (oldsg != sched_group_nodes[i])
7314 goto next_sg;
7316 kfree(sched_group_nodes);
7317 sched_group_nodes_bycpu[cpu] = NULL;
7320 #else /* !CONFIG_NUMA */
7321 static void free_sched_groups(const struct cpumask *cpu_map,
7322 struct cpumask *nodemask)
7325 #endif /* CONFIG_NUMA */
7328 * Initialize sched groups cpu_power.
7330 * cpu_power indicates the capacity of sched group, which is used while
7331 * distributing the load between different sched groups in a sched domain.
7332 * Typically cpu_power for all the groups in a sched domain will be same unless
7333 * there are asymmetries in the topology. If there are asymmetries, group
7334 * having more cpu_power will pickup more load compared to the group having
7335 * less cpu_power.
7337 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7338 * the maximum number of tasks a group can handle in the presence of other idle
7339 * or lightly loaded groups in the same sched domain.
7341 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7343 struct sched_domain *child;
7344 struct sched_group *group;
7346 WARN_ON(!sd || !sd->groups);
7348 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7349 return;
7351 child = sd->child;
7353 sd->groups->__cpu_power = 0;
7356 * For perf policy, if the groups in child domain share resources
7357 * (for example cores sharing some portions of the cache hierarchy
7358 * or SMT), then set this domain groups cpu_power such that each group
7359 * can handle only one task, when there are other idle groups in the
7360 * same sched domain.
7362 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7363 (child->flags &
7364 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7365 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7366 return;
7370 * add cpu_power of each child group to this groups cpu_power
7372 group = child->groups;
7373 do {
7374 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7375 group = group->next;
7376 } while (group != child->groups);
7380 * Initializers for schedule domains
7381 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7384 #ifdef CONFIG_SCHED_DEBUG
7385 # define SD_INIT_NAME(sd, type) sd->name = #type
7386 #else
7387 # define SD_INIT_NAME(sd, type) do { } while (0)
7388 #endif
7390 #define SD_INIT(sd, type) sd_init_##type(sd)
7392 #define SD_INIT_FUNC(type) \
7393 static noinline void sd_init_##type(struct sched_domain *sd) \
7395 memset(sd, 0, sizeof(*sd)); \
7396 *sd = SD_##type##_INIT; \
7397 sd->level = SD_LV_##type; \
7398 SD_INIT_NAME(sd, type); \
7401 SD_INIT_FUNC(CPU)
7402 #ifdef CONFIG_NUMA
7403 SD_INIT_FUNC(ALLNODES)
7404 SD_INIT_FUNC(NODE)
7405 #endif
7406 #ifdef CONFIG_SCHED_SMT
7407 SD_INIT_FUNC(SIBLING)
7408 #endif
7409 #ifdef CONFIG_SCHED_MC
7410 SD_INIT_FUNC(MC)
7411 #endif
7413 static int default_relax_domain_level = -1;
7415 static int __init setup_relax_domain_level(char *str)
7417 unsigned long val;
7419 val = simple_strtoul(str, NULL, 0);
7420 if (val < SD_LV_MAX)
7421 default_relax_domain_level = val;
7423 return 1;
7425 __setup("relax_domain_level=", setup_relax_domain_level);
7427 static void set_domain_attribute(struct sched_domain *sd,
7428 struct sched_domain_attr *attr)
7430 int request;
7432 if (!attr || attr->relax_domain_level < 0) {
7433 if (default_relax_domain_level < 0)
7434 return;
7435 else
7436 request = default_relax_domain_level;
7437 } else
7438 request = attr->relax_domain_level;
7439 if (request < sd->level) {
7440 /* turn off idle balance on this domain */
7441 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7442 } else {
7443 /* turn on idle balance on this domain */
7444 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7449 * Build sched domains for a given set of cpus and attach the sched domains
7450 * to the individual cpus
7452 static int __build_sched_domains(const struct cpumask *cpu_map,
7453 struct sched_domain_attr *attr)
7455 int i, err = -ENOMEM;
7456 struct root_domain *rd;
7457 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7458 tmpmask;
7459 #ifdef CONFIG_NUMA
7460 cpumask_var_t domainspan, covered, notcovered;
7461 struct sched_group **sched_group_nodes = NULL;
7462 int sd_allnodes = 0;
7464 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7465 goto out;
7466 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7467 goto free_domainspan;
7468 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7469 goto free_covered;
7470 #endif
7472 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7473 goto free_notcovered;
7474 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7475 goto free_nodemask;
7476 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7477 goto free_this_sibling_map;
7478 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7479 goto free_this_core_map;
7480 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7481 goto free_send_covered;
7483 #ifdef CONFIG_NUMA
7485 * Allocate the per-node list of sched groups
7487 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7488 GFP_KERNEL);
7489 if (!sched_group_nodes) {
7490 printk(KERN_WARNING "Can not alloc sched group node list\n");
7491 goto free_tmpmask;
7493 #endif
7495 rd = alloc_rootdomain();
7496 if (!rd) {
7497 printk(KERN_WARNING "Cannot alloc root domain\n");
7498 goto free_sched_groups;
7501 #ifdef CONFIG_NUMA
7502 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7503 #endif
7506 * Set up domains for cpus specified by the cpu_map.
7508 for_each_cpu(i, cpu_map) {
7509 struct sched_domain *sd = NULL, *p;
7511 /* FIXME: use cpumask_of_node */
7512 *nodemask = node_to_cpumask(cpu_to_node(i));
7513 cpus_and(*nodemask, *nodemask, *cpu_map);
7515 #ifdef CONFIG_NUMA
7516 if (cpumask_weight(cpu_map) >
7517 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
7518 sd = &per_cpu(allnodes_domains, i);
7519 SD_INIT(sd, ALLNODES);
7520 set_domain_attribute(sd, attr);
7521 cpumask_copy(sched_domain_span(sd), cpu_map);
7522 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7523 p = sd;
7524 sd_allnodes = 1;
7525 } else
7526 p = NULL;
7528 sd = &per_cpu(node_domains, i);
7529 SD_INIT(sd, NODE);
7530 set_domain_attribute(sd, attr);
7531 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7532 sd->parent = p;
7533 if (p)
7534 p->child = sd;
7535 cpumask_and(sched_domain_span(sd),
7536 sched_domain_span(sd), cpu_map);
7537 #endif
7539 p = sd;
7540 sd = &per_cpu(phys_domains, i).sd;
7541 SD_INIT(sd, CPU);
7542 set_domain_attribute(sd, attr);
7543 cpumask_copy(sched_domain_span(sd), nodemask);
7544 sd->parent = p;
7545 if (p)
7546 p->child = sd;
7547 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7549 #ifdef CONFIG_SCHED_MC
7550 p = sd;
7551 sd = &per_cpu(core_domains, i).sd;
7552 SD_INIT(sd, MC);
7553 set_domain_attribute(sd, attr);
7554 *sched_domain_span(sd) = cpu_coregroup_map(i);
7555 cpumask_and(sched_domain_span(sd),
7556 sched_domain_span(sd), cpu_map);
7557 sd->parent = p;
7558 p->child = sd;
7559 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7560 #endif
7562 #ifdef CONFIG_SCHED_SMT
7563 p = sd;
7564 sd = &per_cpu(cpu_domains, i).sd;
7565 SD_INIT(sd, SIBLING);
7566 set_domain_attribute(sd, attr);
7567 cpumask_and(sched_domain_span(sd),
7568 &per_cpu(cpu_sibling_map, i), cpu_map);
7569 sd->parent = p;
7570 p->child = sd;
7571 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7572 #endif
7575 #ifdef CONFIG_SCHED_SMT
7576 /* Set up CPU (sibling) groups */
7577 for_each_cpu(i, cpu_map) {
7578 cpumask_and(this_sibling_map,
7579 &per_cpu(cpu_sibling_map, i), cpu_map);
7580 if (i != cpumask_first(this_sibling_map))
7581 continue;
7583 init_sched_build_groups(this_sibling_map, cpu_map,
7584 &cpu_to_cpu_group,
7585 send_covered, tmpmask);
7587 #endif
7589 #ifdef CONFIG_SCHED_MC
7590 /* Set up multi-core groups */
7591 for_each_cpu(i, cpu_map) {
7592 /* FIXME: Use cpu_coregroup_mask */
7593 *this_core_map = cpu_coregroup_map(i);
7594 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7595 if (i != cpumask_first(this_core_map))
7596 continue;
7598 init_sched_build_groups(this_core_map, cpu_map,
7599 &cpu_to_core_group,
7600 send_covered, tmpmask);
7602 #endif
7604 /* Set up physical groups */
7605 for (i = 0; i < nr_node_ids; i++) {
7606 /* FIXME: Use cpumask_of_node */
7607 *nodemask = node_to_cpumask(i);
7608 cpus_and(*nodemask, *nodemask, *cpu_map);
7609 if (cpumask_empty(nodemask))
7610 continue;
7612 init_sched_build_groups(nodemask, cpu_map,
7613 &cpu_to_phys_group,
7614 send_covered, tmpmask);
7617 #ifdef CONFIG_NUMA
7618 /* Set up node groups */
7619 if (sd_allnodes) {
7620 init_sched_build_groups(cpu_map, cpu_map,
7621 &cpu_to_allnodes_group,
7622 send_covered, tmpmask);
7625 for (i = 0; i < nr_node_ids; i++) {
7626 /* Set up node groups */
7627 struct sched_group *sg, *prev;
7628 int j;
7630 /* FIXME: Use cpumask_of_node */
7631 *nodemask = node_to_cpumask(i);
7632 cpumask_clear(covered);
7634 cpus_and(*nodemask, *nodemask, *cpu_map);
7635 if (cpumask_empty(nodemask)) {
7636 sched_group_nodes[i] = NULL;
7637 continue;
7640 sched_domain_node_span(i, domainspan);
7641 cpumask_and(domainspan, domainspan, cpu_map);
7643 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7644 GFP_KERNEL, i);
7645 if (!sg) {
7646 printk(KERN_WARNING "Can not alloc domain group for "
7647 "node %d\n", i);
7648 goto error;
7650 sched_group_nodes[i] = sg;
7651 for_each_cpu(j, nodemask) {
7652 struct sched_domain *sd;
7654 sd = &per_cpu(node_domains, j);
7655 sd->groups = sg;
7657 sg->__cpu_power = 0;
7658 cpumask_copy(sched_group_cpus(sg), nodemask);
7659 sg->next = sg;
7660 cpumask_or(covered, covered, nodemask);
7661 prev = sg;
7663 for (j = 0; j < nr_node_ids; j++) {
7664 int n = (i + j) % nr_node_ids;
7665 /* FIXME: Use cpumask_of_node */
7666 node_to_cpumask_ptr(pnodemask, n);
7668 cpumask_complement(notcovered, covered);
7669 cpumask_and(tmpmask, notcovered, cpu_map);
7670 cpumask_and(tmpmask, tmpmask, domainspan);
7671 if (cpumask_empty(tmpmask))
7672 break;
7674 cpumask_and(tmpmask, tmpmask, pnodemask);
7675 if (cpumask_empty(tmpmask))
7676 continue;
7678 sg = kmalloc_node(sizeof(struct sched_group) +
7679 cpumask_size(),
7680 GFP_KERNEL, i);
7681 if (!sg) {
7682 printk(KERN_WARNING
7683 "Can not alloc domain group for node %d\n", j);
7684 goto error;
7686 sg->__cpu_power = 0;
7687 cpumask_copy(sched_group_cpus(sg), tmpmask);
7688 sg->next = prev->next;
7689 cpumask_or(covered, covered, tmpmask);
7690 prev->next = sg;
7691 prev = sg;
7694 #endif
7696 /* Calculate CPU power for physical packages and nodes */
7697 #ifdef CONFIG_SCHED_SMT
7698 for_each_cpu(i, cpu_map) {
7699 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
7701 init_sched_groups_power(i, sd);
7703 #endif
7704 #ifdef CONFIG_SCHED_MC
7705 for_each_cpu(i, cpu_map) {
7706 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
7708 init_sched_groups_power(i, sd);
7710 #endif
7712 for_each_cpu(i, cpu_map) {
7713 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
7715 init_sched_groups_power(i, sd);
7718 #ifdef CONFIG_NUMA
7719 for (i = 0; i < nr_node_ids; i++)
7720 init_numa_sched_groups_power(sched_group_nodes[i]);
7722 if (sd_allnodes) {
7723 struct sched_group *sg;
7725 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7726 tmpmask);
7727 init_numa_sched_groups_power(sg);
7729 #endif
7731 /* Attach the domains */
7732 for_each_cpu(i, cpu_map) {
7733 struct sched_domain *sd;
7734 #ifdef CONFIG_SCHED_SMT
7735 sd = &per_cpu(cpu_domains, i).sd;
7736 #elif defined(CONFIG_SCHED_MC)
7737 sd = &per_cpu(core_domains, i).sd;
7738 #else
7739 sd = &per_cpu(phys_domains, i).sd;
7740 #endif
7741 cpu_attach_domain(sd, rd, i);
7744 err = 0;
7746 free_tmpmask:
7747 free_cpumask_var(tmpmask);
7748 free_send_covered:
7749 free_cpumask_var(send_covered);
7750 free_this_core_map:
7751 free_cpumask_var(this_core_map);
7752 free_this_sibling_map:
7753 free_cpumask_var(this_sibling_map);
7754 free_nodemask:
7755 free_cpumask_var(nodemask);
7756 free_notcovered:
7757 #ifdef CONFIG_NUMA
7758 free_cpumask_var(notcovered);
7759 free_covered:
7760 free_cpumask_var(covered);
7761 free_domainspan:
7762 free_cpumask_var(domainspan);
7763 out:
7764 #endif
7765 return err;
7767 free_sched_groups:
7768 #ifdef CONFIG_NUMA
7769 kfree(sched_group_nodes);
7770 #endif
7771 goto free_tmpmask;
7773 #ifdef CONFIG_NUMA
7774 error:
7775 free_sched_groups(cpu_map, tmpmask);
7776 free_rootdomain(rd);
7777 goto free_tmpmask;
7778 #endif
7781 static int build_sched_domains(const struct cpumask *cpu_map)
7783 return __build_sched_domains(cpu_map, NULL);
7786 static struct cpumask *doms_cur; /* current sched domains */
7787 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7788 static struct sched_domain_attr *dattr_cur;
7789 /* attribues of custom domains in 'doms_cur' */
7792 * Special case: If a kmalloc of a doms_cur partition (array of
7793 * cpumask) fails, then fallback to a single sched domain,
7794 * as determined by the single cpumask fallback_doms.
7796 static cpumask_var_t fallback_doms;
7799 * arch_update_cpu_topology lets virtualized architectures update the
7800 * cpu core maps. It is supposed to return 1 if the topology changed
7801 * or 0 if it stayed the same.
7803 int __attribute__((weak)) arch_update_cpu_topology(void)
7805 return 0;
7809 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7810 * For now this just excludes isolated cpus, but could be used to
7811 * exclude other special cases in the future.
7813 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7815 int err;
7817 arch_update_cpu_topology();
7818 ndoms_cur = 1;
7819 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
7820 if (!doms_cur)
7821 doms_cur = fallback_doms;
7822 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
7823 dattr_cur = NULL;
7824 err = build_sched_domains(doms_cur);
7825 register_sched_domain_sysctl();
7827 return err;
7830 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7831 struct cpumask *tmpmask)
7833 free_sched_groups(cpu_map, tmpmask);
7837 * Detach sched domains from a group of cpus specified in cpu_map
7838 * These cpus will now be attached to the NULL domain
7840 static void detach_destroy_domains(const struct cpumask *cpu_map)
7842 /* Save because hotplug lock held. */
7843 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7844 int i;
7846 for_each_cpu(i, cpu_map)
7847 cpu_attach_domain(NULL, &def_root_domain, i);
7848 synchronize_sched();
7849 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7852 /* handle null as "default" */
7853 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7854 struct sched_domain_attr *new, int idx_new)
7856 struct sched_domain_attr tmp;
7858 /* fast path */
7859 if (!new && !cur)
7860 return 1;
7862 tmp = SD_ATTR_INIT;
7863 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7864 new ? (new + idx_new) : &tmp,
7865 sizeof(struct sched_domain_attr));
7869 * Partition sched domains as specified by the 'ndoms_new'
7870 * cpumasks in the array doms_new[] of cpumasks. This compares
7871 * doms_new[] to the current sched domain partitioning, doms_cur[].
7872 * It destroys each deleted domain and builds each new domain.
7874 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
7875 * The masks don't intersect (don't overlap.) We should setup one
7876 * sched domain for each mask. CPUs not in any of the cpumasks will
7877 * not be load balanced. If the same cpumask appears both in the
7878 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7879 * it as it is.
7881 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7882 * ownership of it and will kfree it when done with it. If the caller
7883 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7884 * ndoms_new == 1, and partition_sched_domains() will fallback to
7885 * the single partition 'fallback_doms', it also forces the domains
7886 * to be rebuilt.
7888 * If doms_new == NULL it will be replaced with cpu_online_mask.
7889 * ndoms_new == 0 is a special case for destroying existing domains,
7890 * and it will not create the default domain.
7892 * Call with hotplug lock held
7894 /* FIXME: Change to struct cpumask *doms_new[] */
7895 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
7896 struct sched_domain_attr *dattr_new)
7898 int i, j, n;
7899 int new_topology;
7901 mutex_lock(&sched_domains_mutex);
7903 /* always unregister in case we don't destroy any domains */
7904 unregister_sched_domain_sysctl();
7906 /* Let architecture update cpu core mappings. */
7907 new_topology = arch_update_cpu_topology();
7909 n = doms_new ? ndoms_new : 0;
7911 /* Destroy deleted domains */
7912 for (i = 0; i < ndoms_cur; i++) {
7913 for (j = 0; j < n && !new_topology; j++) {
7914 if (cpumask_equal(&doms_cur[i], &doms_new[j])
7915 && dattrs_equal(dattr_cur, i, dattr_new, j))
7916 goto match1;
7918 /* no match - a current sched domain not in new doms_new[] */
7919 detach_destroy_domains(doms_cur + i);
7920 match1:
7924 if (doms_new == NULL) {
7925 ndoms_cur = 0;
7926 doms_new = fallback_doms;
7927 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
7928 WARN_ON_ONCE(dattr_new);
7931 /* Build new domains */
7932 for (i = 0; i < ndoms_new; i++) {
7933 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7934 if (cpumask_equal(&doms_new[i], &doms_cur[j])
7935 && dattrs_equal(dattr_new, i, dattr_cur, j))
7936 goto match2;
7938 /* no match - add a new doms_new */
7939 __build_sched_domains(doms_new + i,
7940 dattr_new ? dattr_new + i : NULL);
7941 match2:
7945 /* Remember the new sched domains */
7946 if (doms_cur != fallback_doms)
7947 kfree(doms_cur);
7948 kfree(dattr_cur); /* kfree(NULL) is safe */
7949 doms_cur = doms_new;
7950 dattr_cur = dattr_new;
7951 ndoms_cur = ndoms_new;
7953 register_sched_domain_sysctl();
7955 mutex_unlock(&sched_domains_mutex);
7958 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7959 int arch_reinit_sched_domains(void)
7961 get_online_cpus();
7963 /* Destroy domains first to force the rebuild */
7964 partition_sched_domains(0, NULL, NULL);
7966 rebuild_sched_domains();
7967 put_online_cpus();
7969 return 0;
7972 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7974 int ret;
7975 unsigned int level = 0;
7977 if (sscanf(buf, "%u", &level) != 1)
7978 return -EINVAL;
7981 * level is always be positive so don't check for
7982 * level < POWERSAVINGS_BALANCE_NONE which is 0
7983 * What happens on 0 or 1 byte write,
7984 * need to check for count as well?
7987 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7988 return -EINVAL;
7990 if (smt)
7991 sched_smt_power_savings = level;
7992 else
7993 sched_mc_power_savings = level;
7995 ret = arch_reinit_sched_domains();
7997 return ret ? ret : count;
8000 #ifdef CONFIG_SCHED_MC
8001 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8002 char *page)
8004 return sprintf(page, "%u\n", sched_mc_power_savings);
8006 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8007 const char *buf, size_t count)
8009 return sched_power_savings_store(buf, count, 0);
8011 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8012 sched_mc_power_savings_show,
8013 sched_mc_power_savings_store);
8014 #endif
8016 #ifdef CONFIG_SCHED_SMT
8017 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8018 char *page)
8020 return sprintf(page, "%u\n", sched_smt_power_savings);
8022 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8023 const char *buf, size_t count)
8025 return sched_power_savings_store(buf, count, 1);
8027 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8028 sched_smt_power_savings_show,
8029 sched_smt_power_savings_store);
8030 #endif
8032 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8034 int err = 0;
8036 #ifdef CONFIG_SCHED_SMT
8037 if (smt_capable())
8038 err = sysfs_create_file(&cls->kset.kobj,
8039 &attr_sched_smt_power_savings.attr);
8040 #endif
8041 #ifdef CONFIG_SCHED_MC
8042 if (!err && mc_capable())
8043 err = sysfs_create_file(&cls->kset.kobj,
8044 &attr_sched_mc_power_savings.attr);
8045 #endif
8046 return err;
8048 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8050 #ifndef CONFIG_CPUSETS
8052 * Add online and remove offline CPUs from the scheduler domains.
8053 * When cpusets are enabled they take over this function.
8055 static int update_sched_domains(struct notifier_block *nfb,
8056 unsigned long action, void *hcpu)
8058 switch (action) {
8059 case CPU_ONLINE:
8060 case CPU_ONLINE_FROZEN:
8061 case CPU_DEAD:
8062 case CPU_DEAD_FROZEN:
8063 partition_sched_domains(1, NULL, NULL);
8064 return NOTIFY_OK;
8066 default:
8067 return NOTIFY_DONE;
8070 #endif
8072 static int update_runtime(struct notifier_block *nfb,
8073 unsigned long action, void *hcpu)
8075 int cpu = (int)(long)hcpu;
8077 switch (action) {
8078 case CPU_DOWN_PREPARE:
8079 case CPU_DOWN_PREPARE_FROZEN:
8080 disable_runtime(cpu_rq(cpu));
8081 return NOTIFY_OK;
8083 case CPU_DOWN_FAILED:
8084 case CPU_DOWN_FAILED_FROZEN:
8085 case CPU_ONLINE:
8086 case CPU_ONLINE_FROZEN:
8087 enable_runtime(cpu_rq(cpu));
8088 return NOTIFY_OK;
8090 default:
8091 return NOTIFY_DONE;
8095 void __init sched_init_smp(void)
8097 cpumask_var_t non_isolated_cpus;
8099 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8101 #if defined(CONFIG_NUMA)
8102 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8103 GFP_KERNEL);
8104 BUG_ON(sched_group_nodes_bycpu == NULL);
8105 #endif
8106 get_online_cpus();
8107 mutex_lock(&sched_domains_mutex);
8108 arch_init_sched_domains(cpu_online_mask);
8109 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8110 if (cpumask_empty(non_isolated_cpus))
8111 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8112 mutex_unlock(&sched_domains_mutex);
8113 put_online_cpus();
8115 #ifndef CONFIG_CPUSETS
8116 /* XXX: Theoretical race here - CPU may be hotplugged now */
8117 hotcpu_notifier(update_sched_domains, 0);
8118 #endif
8120 /* RT runtime code needs to handle some hotplug events */
8121 hotcpu_notifier(update_runtime, 0);
8123 init_hrtick();
8125 /* Move init over to a non-isolated CPU */
8126 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8127 BUG();
8128 sched_init_granularity();
8129 free_cpumask_var(non_isolated_cpus);
8131 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8132 init_sched_rt_class();
8134 #else
8135 void __init sched_init_smp(void)
8137 sched_init_granularity();
8139 #endif /* CONFIG_SMP */
8141 int in_sched_functions(unsigned long addr)
8143 return in_lock_functions(addr) ||
8144 (addr >= (unsigned long)__sched_text_start
8145 && addr < (unsigned long)__sched_text_end);
8148 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8150 cfs_rq->tasks_timeline = RB_ROOT;
8151 INIT_LIST_HEAD(&cfs_rq->tasks);
8152 #ifdef CONFIG_FAIR_GROUP_SCHED
8153 cfs_rq->rq = rq;
8154 #endif
8155 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8158 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8160 struct rt_prio_array *array;
8161 int i;
8163 array = &rt_rq->active;
8164 for (i = 0; i < MAX_RT_PRIO; i++) {
8165 INIT_LIST_HEAD(array->queue + i);
8166 __clear_bit(i, array->bitmap);
8168 /* delimiter for bitsearch: */
8169 __set_bit(MAX_RT_PRIO, array->bitmap);
8171 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8172 rt_rq->highest_prio = MAX_RT_PRIO;
8173 #endif
8174 #ifdef CONFIG_SMP
8175 rt_rq->rt_nr_migratory = 0;
8176 rt_rq->overloaded = 0;
8177 #endif
8179 rt_rq->rt_time = 0;
8180 rt_rq->rt_throttled = 0;
8181 rt_rq->rt_runtime = 0;
8182 spin_lock_init(&rt_rq->rt_runtime_lock);
8184 #ifdef CONFIG_RT_GROUP_SCHED
8185 rt_rq->rt_nr_boosted = 0;
8186 rt_rq->rq = rq;
8187 #endif
8190 #ifdef CONFIG_FAIR_GROUP_SCHED
8191 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8192 struct sched_entity *se, int cpu, int add,
8193 struct sched_entity *parent)
8195 struct rq *rq = cpu_rq(cpu);
8196 tg->cfs_rq[cpu] = cfs_rq;
8197 init_cfs_rq(cfs_rq, rq);
8198 cfs_rq->tg = tg;
8199 if (add)
8200 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8202 tg->se[cpu] = se;
8203 /* se could be NULL for init_task_group */
8204 if (!se)
8205 return;
8207 if (!parent)
8208 se->cfs_rq = &rq->cfs;
8209 else
8210 se->cfs_rq = parent->my_q;
8212 se->my_q = cfs_rq;
8213 se->load.weight = tg->shares;
8214 se->load.inv_weight = 0;
8215 se->parent = parent;
8217 #endif
8219 #ifdef CONFIG_RT_GROUP_SCHED
8220 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8221 struct sched_rt_entity *rt_se, int cpu, int add,
8222 struct sched_rt_entity *parent)
8224 struct rq *rq = cpu_rq(cpu);
8226 tg->rt_rq[cpu] = rt_rq;
8227 init_rt_rq(rt_rq, rq);
8228 rt_rq->tg = tg;
8229 rt_rq->rt_se = rt_se;
8230 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8231 if (add)
8232 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8234 tg->rt_se[cpu] = rt_se;
8235 if (!rt_se)
8236 return;
8238 if (!parent)
8239 rt_se->rt_rq = &rq->rt;
8240 else
8241 rt_se->rt_rq = parent->my_q;
8243 rt_se->my_q = rt_rq;
8244 rt_se->parent = parent;
8245 INIT_LIST_HEAD(&rt_se->run_list);
8247 #endif
8249 void __init sched_init(void)
8251 int i, j;
8252 unsigned long alloc_size = 0, ptr;
8254 #ifdef CONFIG_FAIR_GROUP_SCHED
8255 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8256 #endif
8257 #ifdef CONFIG_RT_GROUP_SCHED
8258 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8259 #endif
8260 #ifdef CONFIG_USER_SCHED
8261 alloc_size *= 2;
8262 #endif
8264 * As sched_init() is called before page_alloc is setup,
8265 * we use alloc_bootmem().
8267 if (alloc_size) {
8268 ptr = (unsigned long)alloc_bootmem(alloc_size);
8270 #ifdef CONFIG_FAIR_GROUP_SCHED
8271 init_task_group.se = (struct sched_entity **)ptr;
8272 ptr += nr_cpu_ids * sizeof(void **);
8274 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8275 ptr += nr_cpu_ids * sizeof(void **);
8277 #ifdef CONFIG_USER_SCHED
8278 root_task_group.se = (struct sched_entity **)ptr;
8279 ptr += nr_cpu_ids * sizeof(void **);
8281 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8282 ptr += nr_cpu_ids * sizeof(void **);
8283 #endif /* CONFIG_USER_SCHED */
8284 #endif /* CONFIG_FAIR_GROUP_SCHED */
8285 #ifdef CONFIG_RT_GROUP_SCHED
8286 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8287 ptr += nr_cpu_ids * sizeof(void **);
8289 init_task_group.rt_rq = (struct rt_rq **)ptr;
8290 ptr += nr_cpu_ids * sizeof(void **);
8292 #ifdef CONFIG_USER_SCHED
8293 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8294 ptr += nr_cpu_ids * sizeof(void **);
8296 root_task_group.rt_rq = (struct rt_rq **)ptr;
8297 ptr += nr_cpu_ids * sizeof(void **);
8298 #endif /* CONFIG_USER_SCHED */
8299 #endif /* CONFIG_RT_GROUP_SCHED */
8302 #ifdef CONFIG_SMP
8303 init_defrootdomain();
8304 #endif
8306 init_rt_bandwidth(&def_rt_bandwidth,
8307 global_rt_period(), global_rt_runtime());
8309 #ifdef CONFIG_RT_GROUP_SCHED
8310 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8311 global_rt_period(), global_rt_runtime());
8312 #ifdef CONFIG_USER_SCHED
8313 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8314 global_rt_period(), RUNTIME_INF);
8315 #endif /* CONFIG_USER_SCHED */
8316 #endif /* CONFIG_RT_GROUP_SCHED */
8318 #ifdef CONFIG_GROUP_SCHED
8319 list_add(&init_task_group.list, &task_groups);
8320 INIT_LIST_HEAD(&init_task_group.children);
8322 #ifdef CONFIG_USER_SCHED
8323 INIT_LIST_HEAD(&root_task_group.children);
8324 init_task_group.parent = &root_task_group;
8325 list_add(&init_task_group.siblings, &root_task_group.children);
8326 #endif /* CONFIG_USER_SCHED */
8327 #endif /* CONFIG_GROUP_SCHED */
8329 for_each_possible_cpu(i) {
8330 struct rq *rq;
8332 rq = cpu_rq(i);
8333 spin_lock_init(&rq->lock);
8334 rq->nr_running = 0;
8335 init_cfs_rq(&rq->cfs, rq);
8336 init_rt_rq(&rq->rt, rq);
8337 #ifdef CONFIG_FAIR_GROUP_SCHED
8338 init_task_group.shares = init_task_group_load;
8339 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8340 #ifdef CONFIG_CGROUP_SCHED
8342 * How much cpu bandwidth does init_task_group get?
8344 * In case of task-groups formed thr' the cgroup filesystem, it
8345 * gets 100% of the cpu resources in the system. This overall
8346 * system cpu resource is divided among the tasks of
8347 * init_task_group and its child task-groups in a fair manner,
8348 * based on each entity's (task or task-group's) weight
8349 * (se->load.weight).
8351 * In other words, if init_task_group has 10 tasks of weight
8352 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8353 * then A0's share of the cpu resource is:
8355 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8357 * We achieve this by letting init_task_group's tasks sit
8358 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8360 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8361 #elif defined CONFIG_USER_SCHED
8362 root_task_group.shares = NICE_0_LOAD;
8363 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8365 * In case of task-groups formed thr' the user id of tasks,
8366 * init_task_group represents tasks belonging to root user.
8367 * Hence it forms a sibling of all subsequent groups formed.
8368 * In this case, init_task_group gets only a fraction of overall
8369 * system cpu resource, based on the weight assigned to root
8370 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8371 * by letting tasks of init_task_group sit in a separate cfs_rq
8372 * (init_cfs_rq) and having one entity represent this group of
8373 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8375 init_tg_cfs_entry(&init_task_group,
8376 &per_cpu(init_cfs_rq, i),
8377 &per_cpu(init_sched_entity, i), i, 1,
8378 root_task_group.se[i]);
8380 #endif
8381 #endif /* CONFIG_FAIR_GROUP_SCHED */
8383 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8384 #ifdef CONFIG_RT_GROUP_SCHED
8385 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8386 #ifdef CONFIG_CGROUP_SCHED
8387 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8388 #elif defined CONFIG_USER_SCHED
8389 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8390 init_tg_rt_entry(&init_task_group,
8391 &per_cpu(init_rt_rq, i),
8392 &per_cpu(init_sched_rt_entity, i), i, 1,
8393 root_task_group.rt_se[i]);
8394 #endif
8395 #endif
8397 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8398 rq->cpu_load[j] = 0;
8399 #ifdef CONFIG_SMP
8400 rq->sd = NULL;
8401 rq->rd = NULL;
8402 rq->active_balance = 0;
8403 rq->next_balance = jiffies;
8404 rq->push_cpu = 0;
8405 rq->cpu = i;
8406 rq->online = 0;
8407 rq->migration_thread = NULL;
8408 INIT_LIST_HEAD(&rq->migration_queue);
8409 rq_attach_root(rq, &def_root_domain);
8410 #endif
8411 init_rq_hrtick(rq);
8412 atomic_set(&rq->nr_iowait, 0);
8415 set_load_weight(&init_task);
8417 #ifdef CONFIG_PREEMPT_NOTIFIERS
8418 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8419 #endif
8421 #ifdef CONFIG_SMP
8422 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8423 #endif
8425 #ifdef CONFIG_RT_MUTEXES
8426 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8427 #endif
8430 * The boot idle thread does lazy MMU switching as well:
8432 atomic_inc(&init_mm.mm_count);
8433 enter_lazy_tlb(&init_mm, current);
8436 * Make us the idle thread. Technically, schedule() should not be
8437 * called from this thread, however somewhere below it might be,
8438 * but because we are the idle thread, we just pick up running again
8439 * when this runqueue becomes "idle".
8441 init_idle(current, smp_processor_id());
8443 * During early bootup we pretend to be a normal task:
8445 current->sched_class = &fair_sched_class;
8447 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8448 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
8449 #ifdef CONFIG_SMP
8450 #ifdef CONFIG_NO_HZ
8451 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8452 #endif
8453 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8454 #endif /* SMP */
8456 scheduler_running = 1;
8459 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8460 void __might_sleep(char *file, int line)
8462 #ifdef in_atomic
8463 static unsigned long prev_jiffy; /* ratelimiting */
8465 if ((!in_atomic() && !irqs_disabled()) ||
8466 system_state != SYSTEM_RUNNING || oops_in_progress)
8467 return;
8468 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8469 return;
8470 prev_jiffy = jiffies;
8472 printk(KERN_ERR
8473 "BUG: sleeping function called from invalid context at %s:%d\n",
8474 file, line);
8475 printk(KERN_ERR
8476 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8477 in_atomic(), irqs_disabled(),
8478 current->pid, current->comm);
8480 debug_show_held_locks(current);
8481 if (irqs_disabled())
8482 print_irqtrace_events(current);
8483 dump_stack();
8484 #endif
8486 EXPORT_SYMBOL(__might_sleep);
8487 #endif
8489 #ifdef CONFIG_MAGIC_SYSRQ
8490 static void normalize_task(struct rq *rq, struct task_struct *p)
8492 int on_rq;
8494 update_rq_clock(rq);
8495 on_rq = p->se.on_rq;
8496 if (on_rq)
8497 deactivate_task(rq, p, 0);
8498 __setscheduler(rq, p, SCHED_NORMAL, 0);
8499 if (on_rq) {
8500 activate_task(rq, p, 0);
8501 resched_task(rq->curr);
8505 void normalize_rt_tasks(void)
8507 struct task_struct *g, *p;
8508 unsigned long flags;
8509 struct rq *rq;
8511 read_lock_irqsave(&tasklist_lock, flags);
8512 do_each_thread(g, p) {
8514 * Only normalize user tasks:
8516 if (!p->mm)
8517 continue;
8519 p->se.exec_start = 0;
8520 #ifdef CONFIG_SCHEDSTATS
8521 p->se.wait_start = 0;
8522 p->se.sleep_start = 0;
8523 p->se.block_start = 0;
8524 #endif
8526 if (!rt_task(p)) {
8528 * Renice negative nice level userspace
8529 * tasks back to 0:
8531 if (TASK_NICE(p) < 0 && p->mm)
8532 set_user_nice(p, 0);
8533 continue;
8536 spin_lock(&p->pi_lock);
8537 rq = __task_rq_lock(p);
8539 normalize_task(rq, p);
8541 __task_rq_unlock(rq);
8542 spin_unlock(&p->pi_lock);
8543 } while_each_thread(g, p);
8545 read_unlock_irqrestore(&tasklist_lock, flags);
8548 #endif /* CONFIG_MAGIC_SYSRQ */
8550 #ifdef CONFIG_IA64
8552 * These functions are only useful for the IA64 MCA handling.
8554 * They can only be called when the whole system has been
8555 * stopped - every CPU needs to be quiescent, and no scheduling
8556 * activity can take place. Using them for anything else would
8557 * be a serious bug, and as a result, they aren't even visible
8558 * under any other configuration.
8562 * curr_task - return the current task for a given cpu.
8563 * @cpu: the processor in question.
8565 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8567 struct task_struct *curr_task(int cpu)
8569 return cpu_curr(cpu);
8573 * set_curr_task - set the current task for a given cpu.
8574 * @cpu: the processor in question.
8575 * @p: the task pointer to set.
8577 * Description: This function must only be used when non-maskable interrupts
8578 * are serviced on a separate stack. It allows the architecture to switch the
8579 * notion of the current task on a cpu in a non-blocking manner. This function
8580 * must be called with all CPU's synchronized, and interrupts disabled, the
8581 * and caller must save the original value of the current task (see
8582 * curr_task() above) and restore that value before reenabling interrupts and
8583 * re-starting the system.
8585 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8587 void set_curr_task(int cpu, struct task_struct *p)
8589 cpu_curr(cpu) = p;
8592 #endif
8594 #ifdef CONFIG_FAIR_GROUP_SCHED
8595 static void free_fair_sched_group(struct task_group *tg)
8597 int i;
8599 for_each_possible_cpu(i) {
8600 if (tg->cfs_rq)
8601 kfree(tg->cfs_rq[i]);
8602 if (tg->se)
8603 kfree(tg->se[i]);
8606 kfree(tg->cfs_rq);
8607 kfree(tg->se);
8610 static
8611 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8613 struct cfs_rq *cfs_rq;
8614 struct sched_entity *se;
8615 struct rq *rq;
8616 int i;
8618 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8619 if (!tg->cfs_rq)
8620 goto err;
8621 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8622 if (!tg->se)
8623 goto err;
8625 tg->shares = NICE_0_LOAD;
8627 for_each_possible_cpu(i) {
8628 rq = cpu_rq(i);
8630 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8631 GFP_KERNEL, cpu_to_node(i));
8632 if (!cfs_rq)
8633 goto err;
8635 se = kzalloc_node(sizeof(struct sched_entity),
8636 GFP_KERNEL, cpu_to_node(i));
8637 if (!se)
8638 goto err;
8640 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8643 return 1;
8645 err:
8646 return 0;
8649 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8651 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8652 &cpu_rq(cpu)->leaf_cfs_rq_list);
8655 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8657 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8659 #else /* !CONFG_FAIR_GROUP_SCHED */
8660 static inline void free_fair_sched_group(struct task_group *tg)
8664 static inline
8665 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8667 return 1;
8670 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8674 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8677 #endif /* CONFIG_FAIR_GROUP_SCHED */
8679 #ifdef CONFIG_RT_GROUP_SCHED
8680 static void free_rt_sched_group(struct task_group *tg)
8682 int i;
8684 destroy_rt_bandwidth(&tg->rt_bandwidth);
8686 for_each_possible_cpu(i) {
8687 if (tg->rt_rq)
8688 kfree(tg->rt_rq[i]);
8689 if (tg->rt_se)
8690 kfree(tg->rt_se[i]);
8693 kfree(tg->rt_rq);
8694 kfree(tg->rt_se);
8697 static
8698 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8700 struct rt_rq *rt_rq;
8701 struct sched_rt_entity *rt_se;
8702 struct rq *rq;
8703 int i;
8705 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8706 if (!tg->rt_rq)
8707 goto err;
8708 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8709 if (!tg->rt_se)
8710 goto err;
8712 init_rt_bandwidth(&tg->rt_bandwidth,
8713 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8715 for_each_possible_cpu(i) {
8716 rq = cpu_rq(i);
8718 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8719 GFP_KERNEL, cpu_to_node(i));
8720 if (!rt_rq)
8721 goto err;
8723 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8724 GFP_KERNEL, cpu_to_node(i));
8725 if (!rt_se)
8726 goto err;
8728 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8731 return 1;
8733 err:
8734 return 0;
8737 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8739 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8740 &cpu_rq(cpu)->leaf_rt_rq_list);
8743 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8745 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8747 #else /* !CONFIG_RT_GROUP_SCHED */
8748 static inline void free_rt_sched_group(struct task_group *tg)
8752 static inline
8753 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8755 return 1;
8758 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8762 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8765 #endif /* CONFIG_RT_GROUP_SCHED */
8767 #ifdef CONFIG_GROUP_SCHED
8768 static void free_sched_group(struct task_group *tg)
8770 free_fair_sched_group(tg);
8771 free_rt_sched_group(tg);
8772 kfree(tg);
8775 /* allocate runqueue etc for a new task group */
8776 struct task_group *sched_create_group(struct task_group *parent)
8778 struct task_group *tg;
8779 unsigned long flags;
8780 int i;
8782 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8783 if (!tg)
8784 return ERR_PTR(-ENOMEM);
8786 if (!alloc_fair_sched_group(tg, parent))
8787 goto err;
8789 if (!alloc_rt_sched_group(tg, parent))
8790 goto err;
8792 spin_lock_irqsave(&task_group_lock, flags);
8793 for_each_possible_cpu(i) {
8794 register_fair_sched_group(tg, i);
8795 register_rt_sched_group(tg, i);
8797 list_add_rcu(&tg->list, &task_groups);
8799 WARN_ON(!parent); /* root should already exist */
8801 tg->parent = parent;
8802 INIT_LIST_HEAD(&tg->children);
8803 list_add_rcu(&tg->siblings, &parent->children);
8804 spin_unlock_irqrestore(&task_group_lock, flags);
8806 return tg;
8808 err:
8809 free_sched_group(tg);
8810 return ERR_PTR(-ENOMEM);
8813 /* rcu callback to free various structures associated with a task group */
8814 static void free_sched_group_rcu(struct rcu_head *rhp)
8816 /* now it should be safe to free those cfs_rqs */
8817 free_sched_group(container_of(rhp, struct task_group, rcu));
8820 /* Destroy runqueue etc associated with a task group */
8821 void sched_destroy_group(struct task_group *tg)
8823 unsigned long flags;
8824 int i;
8826 spin_lock_irqsave(&task_group_lock, flags);
8827 for_each_possible_cpu(i) {
8828 unregister_fair_sched_group(tg, i);
8829 unregister_rt_sched_group(tg, i);
8831 list_del_rcu(&tg->list);
8832 list_del_rcu(&tg->siblings);
8833 spin_unlock_irqrestore(&task_group_lock, flags);
8835 /* wait for possible concurrent references to cfs_rqs complete */
8836 call_rcu(&tg->rcu, free_sched_group_rcu);
8839 /* change task's runqueue when it moves between groups.
8840 * The caller of this function should have put the task in its new group
8841 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8842 * reflect its new group.
8844 void sched_move_task(struct task_struct *tsk)
8846 int on_rq, running;
8847 unsigned long flags;
8848 struct rq *rq;
8850 rq = task_rq_lock(tsk, &flags);
8852 update_rq_clock(rq);
8854 running = task_current(rq, tsk);
8855 on_rq = tsk->se.on_rq;
8857 if (on_rq)
8858 dequeue_task(rq, tsk, 0);
8859 if (unlikely(running))
8860 tsk->sched_class->put_prev_task(rq, tsk);
8862 set_task_rq(tsk, task_cpu(tsk));
8864 #ifdef CONFIG_FAIR_GROUP_SCHED
8865 if (tsk->sched_class->moved_group)
8866 tsk->sched_class->moved_group(tsk);
8867 #endif
8869 if (unlikely(running))
8870 tsk->sched_class->set_curr_task(rq);
8871 if (on_rq)
8872 enqueue_task(rq, tsk, 0);
8874 task_rq_unlock(rq, &flags);
8876 #endif /* CONFIG_GROUP_SCHED */
8878 #ifdef CONFIG_FAIR_GROUP_SCHED
8879 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8881 struct cfs_rq *cfs_rq = se->cfs_rq;
8882 int on_rq;
8884 on_rq = se->on_rq;
8885 if (on_rq)
8886 dequeue_entity(cfs_rq, se, 0);
8888 se->load.weight = shares;
8889 se->load.inv_weight = 0;
8891 if (on_rq)
8892 enqueue_entity(cfs_rq, se, 0);
8895 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8897 struct cfs_rq *cfs_rq = se->cfs_rq;
8898 struct rq *rq = cfs_rq->rq;
8899 unsigned long flags;
8901 spin_lock_irqsave(&rq->lock, flags);
8902 __set_se_shares(se, shares);
8903 spin_unlock_irqrestore(&rq->lock, flags);
8906 static DEFINE_MUTEX(shares_mutex);
8908 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8910 int i;
8911 unsigned long flags;
8914 * We can't change the weight of the root cgroup.
8916 if (!tg->se[0])
8917 return -EINVAL;
8919 if (shares < MIN_SHARES)
8920 shares = MIN_SHARES;
8921 else if (shares > MAX_SHARES)
8922 shares = MAX_SHARES;
8924 mutex_lock(&shares_mutex);
8925 if (tg->shares == shares)
8926 goto done;
8928 spin_lock_irqsave(&task_group_lock, flags);
8929 for_each_possible_cpu(i)
8930 unregister_fair_sched_group(tg, i);
8931 list_del_rcu(&tg->siblings);
8932 spin_unlock_irqrestore(&task_group_lock, flags);
8934 /* wait for any ongoing reference to this group to finish */
8935 synchronize_sched();
8938 * Now we are free to modify the group's share on each cpu
8939 * w/o tripping rebalance_share or load_balance_fair.
8941 tg->shares = shares;
8942 for_each_possible_cpu(i) {
8944 * force a rebalance
8946 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8947 set_se_shares(tg->se[i], shares);
8951 * Enable load balance activity on this group, by inserting it back on
8952 * each cpu's rq->leaf_cfs_rq_list.
8954 spin_lock_irqsave(&task_group_lock, flags);
8955 for_each_possible_cpu(i)
8956 register_fair_sched_group(tg, i);
8957 list_add_rcu(&tg->siblings, &tg->parent->children);
8958 spin_unlock_irqrestore(&task_group_lock, flags);
8959 done:
8960 mutex_unlock(&shares_mutex);
8961 return 0;
8964 unsigned long sched_group_shares(struct task_group *tg)
8966 return tg->shares;
8968 #endif
8970 #ifdef CONFIG_RT_GROUP_SCHED
8972 * Ensure that the real time constraints are schedulable.
8974 static DEFINE_MUTEX(rt_constraints_mutex);
8976 static unsigned long to_ratio(u64 period, u64 runtime)
8978 if (runtime == RUNTIME_INF)
8979 return 1ULL << 20;
8981 return div64_u64(runtime << 20, period);
8984 /* Must be called with tasklist_lock held */
8985 static inline int tg_has_rt_tasks(struct task_group *tg)
8987 struct task_struct *g, *p;
8989 do_each_thread(g, p) {
8990 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8991 return 1;
8992 } while_each_thread(g, p);
8994 return 0;
8997 struct rt_schedulable_data {
8998 struct task_group *tg;
8999 u64 rt_period;
9000 u64 rt_runtime;
9003 static int tg_schedulable(struct task_group *tg, void *data)
9005 struct rt_schedulable_data *d = data;
9006 struct task_group *child;
9007 unsigned long total, sum = 0;
9008 u64 period, runtime;
9010 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9011 runtime = tg->rt_bandwidth.rt_runtime;
9013 if (tg == d->tg) {
9014 period = d->rt_period;
9015 runtime = d->rt_runtime;
9019 * Cannot have more runtime than the period.
9021 if (runtime > period && runtime != RUNTIME_INF)
9022 return -EINVAL;
9025 * Ensure we don't starve existing RT tasks.
9027 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9028 return -EBUSY;
9030 total = to_ratio(period, runtime);
9033 * Nobody can have more than the global setting allows.
9035 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9036 return -EINVAL;
9039 * The sum of our children's runtime should not exceed our own.
9041 list_for_each_entry_rcu(child, &tg->children, siblings) {
9042 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9043 runtime = child->rt_bandwidth.rt_runtime;
9045 if (child == d->tg) {
9046 period = d->rt_period;
9047 runtime = d->rt_runtime;
9050 sum += to_ratio(period, runtime);
9053 if (sum > total)
9054 return -EINVAL;
9056 return 0;
9059 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9061 struct rt_schedulable_data data = {
9062 .tg = tg,
9063 .rt_period = period,
9064 .rt_runtime = runtime,
9067 return walk_tg_tree(tg_schedulable, tg_nop, &data);
9070 static int tg_set_bandwidth(struct task_group *tg,
9071 u64 rt_period, u64 rt_runtime)
9073 int i, err = 0;
9075 mutex_lock(&rt_constraints_mutex);
9076 read_lock(&tasklist_lock);
9077 err = __rt_schedulable(tg, rt_period, rt_runtime);
9078 if (err)
9079 goto unlock;
9081 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9082 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9083 tg->rt_bandwidth.rt_runtime = rt_runtime;
9085 for_each_possible_cpu(i) {
9086 struct rt_rq *rt_rq = tg->rt_rq[i];
9088 spin_lock(&rt_rq->rt_runtime_lock);
9089 rt_rq->rt_runtime = rt_runtime;
9090 spin_unlock(&rt_rq->rt_runtime_lock);
9092 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9093 unlock:
9094 read_unlock(&tasklist_lock);
9095 mutex_unlock(&rt_constraints_mutex);
9097 return err;
9100 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9102 u64 rt_runtime, rt_period;
9104 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9105 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9106 if (rt_runtime_us < 0)
9107 rt_runtime = RUNTIME_INF;
9109 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9112 long sched_group_rt_runtime(struct task_group *tg)
9114 u64 rt_runtime_us;
9116 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9117 return -1;
9119 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9120 do_div(rt_runtime_us, NSEC_PER_USEC);
9121 return rt_runtime_us;
9124 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9126 u64 rt_runtime, rt_period;
9128 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9129 rt_runtime = tg->rt_bandwidth.rt_runtime;
9131 if (rt_period == 0)
9132 return -EINVAL;
9134 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9137 long sched_group_rt_period(struct task_group *tg)
9139 u64 rt_period_us;
9141 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9142 do_div(rt_period_us, NSEC_PER_USEC);
9143 return rt_period_us;
9146 static int sched_rt_global_constraints(void)
9148 u64 runtime, period;
9149 int ret = 0;
9151 if (sysctl_sched_rt_period <= 0)
9152 return -EINVAL;
9154 runtime = global_rt_runtime();
9155 period = global_rt_period();
9158 * Sanity check on the sysctl variables.
9160 if (runtime > period && runtime != RUNTIME_INF)
9161 return -EINVAL;
9163 mutex_lock(&rt_constraints_mutex);
9164 read_lock(&tasklist_lock);
9165 ret = __rt_schedulable(NULL, 0, 0);
9166 read_unlock(&tasklist_lock);
9167 mutex_unlock(&rt_constraints_mutex);
9169 return ret;
9171 #else /* !CONFIG_RT_GROUP_SCHED */
9172 static int sched_rt_global_constraints(void)
9174 unsigned long flags;
9175 int i;
9177 if (sysctl_sched_rt_period <= 0)
9178 return -EINVAL;
9180 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9181 for_each_possible_cpu(i) {
9182 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9184 spin_lock(&rt_rq->rt_runtime_lock);
9185 rt_rq->rt_runtime = global_rt_runtime();
9186 spin_unlock(&rt_rq->rt_runtime_lock);
9188 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9190 return 0;
9192 #endif /* CONFIG_RT_GROUP_SCHED */
9194 int sched_rt_handler(struct ctl_table *table, int write,
9195 struct file *filp, void __user *buffer, size_t *lenp,
9196 loff_t *ppos)
9198 int ret;
9199 int old_period, old_runtime;
9200 static DEFINE_MUTEX(mutex);
9202 mutex_lock(&mutex);
9203 old_period = sysctl_sched_rt_period;
9204 old_runtime = sysctl_sched_rt_runtime;
9206 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9208 if (!ret && write) {
9209 ret = sched_rt_global_constraints();
9210 if (ret) {
9211 sysctl_sched_rt_period = old_period;
9212 sysctl_sched_rt_runtime = old_runtime;
9213 } else {
9214 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9215 def_rt_bandwidth.rt_period =
9216 ns_to_ktime(global_rt_period());
9219 mutex_unlock(&mutex);
9221 return ret;
9224 #ifdef CONFIG_CGROUP_SCHED
9226 /* return corresponding task_group object of a cgroup */
9227 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9229 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9230 struct task_group, css);
9233 static struct cgroup_subsys_state *
9234 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9236 struct task_group *tg, *parent;
9238 if (!cgrp->parent) {
9239 /* This is early initialization for the top cgroup */
9240 return &init_task_group.css;
9243 parent = cgroup_tg(cgrp->parent);
9244 tg = sched_create_group(parent);
9245 if (IS_ERR(tg))
9246 return ERR_PTR(-ENOMEM);
9248 return &tg->css;
9251 static void
9252 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9254 struct task_group *tg = cgroup_tg(cgrp);
9256 sched_destroy_group(tg);
9259 static int
9260 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9261 struct task_struct *tsk)
9263 #ifdef CONFIG_RT_GROUP_SCHED
9264 /* Don't accept realtime tasks when there is no way for them to run */
9265 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9266 return -EINVAL;
9267 #else
9268 /* We don't support RT-tasks being in separate groups */
9269 if (tsk->sched_class != &fair_sched_class)
9270 return -EINVAL;
9271 #endif
9273 return 0;
9276 static void
9277 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9278 struct cgroup *old_cont, struct task_struct *tsk)
9280 sched_move_task(tsk);
9283 #ifdef CONFIG_FAIR_GROUP_SCHED
9284 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9285 u64 shareval)
9287 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9290 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9292 struct task_group *tg = cgroup_tg(cgrp);
9294 return (u64) tg->shares;
9296 #endif /* CONFIG_FAIR_GROUP_SCHED */
9298 #ifdef CONFIG_RT_GROUP_SCHED
9299 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9300 s64 val)
9302 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9305 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9307 return sched_group_rt_runtime(cgroup_tg(cgrp));
9310 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9311 u64 rt_period_us)
9313 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9316 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9318 return sched_group_rt_period(cgroup_tg(cgrp));
9320 #endif /* CONFIG_RT_GROUP_SCHED */
9322 static struct cftype cpu_files[] = {
9323 #ifdef CONFIG_FAIR_GROUP_SCHED
9325 .name = "shares",
9326 .read_u64 = cpu_shares_read_u64,
9327 .write_u64 = cpu_shares_write_u64,
9329 #endif
9330 #ifdef CONFIG_RT_GROUP_SCHED
9332 .name = "rt_runtime_us",
9333 .read_s64 = cpu_rt_runtime_read,
9334 .write_s64 = cpu_rt_runtime_write,
9337 .name = "rt_period_us",
9338 .read_u64 = cpu_rt_period_read_uint,
9339 .write_u64 = cpu_rt_period_write_uint,
9341 #endif
9344 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9346 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9349 struct cgroup_subsys cpu_cgroup_subsys = {
9350 .name = "cpu",
9351 .create = cpu_cgroup_create,
9352 .destroy = cpu_cgroup_destroy,
9353 .can_attach = cpu_cgroup_can_attach,
9354 .attach = cpu_cgroup_attach,
9355 .populate = cpu_cgroup_populate,
9356 .subsys_id = cpu_cgroup_subsys_id,
9357 .early_init = 1,
9360 #endif /* CONFIG_CGROUP_SCHED */
9362 #ifdef CONFIG_CGROUP_CPUACCT
9365 * CPU accounting code for task groups.
9367 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9368 * (balbir@in.ibm.com).
9371 /* track cpu usage of a group of tasks and its child groups */
9372 struct cpuacct {
9373 struct cgroup_subsys_state css;
9374 /* cpuusage holds pointer to a u64-type object on every cpu */
9375 u64 *cpuusage;
9376 struct cpuacct *parent;
9379 struct cgroup_subsys cpuacct_subsys;
9381 /* return cpu accounting group corresponding to this container */
9382 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9384 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9385 struct cpuacct, css);
9388 /* return cpu accounting group to which this task belongs */
9389 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9391 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9392 struct cpuacct, css);
9395 /* create a new cpu accounting group */
9396 static struct cgroup_subsys_state *cpuacct_create(
9397 struct cgroup_subsys *ss, struct cgroup *cgrp)
9399 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9401 if (!ca)
9402 return ERR_PTR(-ENOMEM);
9404 ca->cpuusage = alloc_percpu(u64);
9405 if (!ca->cpuusage) {
9406 kfree(ca);
9407 return ERR_PTR(-ENOMEM);
9410 if (cgrp->parent)
9411 ca->parent = cgroup_ca(cgrp->parent);
9413 return &ca->css;
9416 /* destroy an existing cpu accounting group */
9417 static void
9418 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9420 struct cpuacct *ca = cgroup_ca(cgrp);
9422 free_percpu(ca->cpuusage);
9423 kfree(ca);
9426 /* return total cpu usage (in nanoseconds) of a group */
9427 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9429 struct cpuacct *ca = cgroup_ca(cgrp);
9430 u64 totalcpuusage = 0;
9431 int i;
9433 for_each_possible_cpu(i) {
9434 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9437 * Take rq->lock to make 64-bit addition safe on 32-bit
9438 * platforms.
9440 spin_lock_irq(&cpu_rq(i)->lock);
9441 totalcpuusage += *cpuusage;
9442 spin_unlock_irq(&cpu_rq(i)->lock);
9445 return totalcpuusage;
9448 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9449 u64 reset)
9451 struct cpuacct *ca = cgroup_ca(cgrp);
9452 int err = 0;
9453 int i;
9455 if (reset) {
9456 err = -EINVAL;
9457 goto out;
9460 for_each_possible_cpu(i) {
9461 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9463 spin_lock_irq(&cpu_rq(i)->lock);
9464 *cpuusage = 0;
9465 spin_unlock_irq(&cpu_rq(i)->lock);
9467 out:
9468 return err;
9471 static struct cftype files[] = {
9473 .name = "usage",
9474 .read_u64 = cpuusage_read,
9475 .write_u64 = cpuusage_write,
9479 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9481 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9485 * charge this task's execution time to its accounting group.
9487 * called with rq->lock held.
9489 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9491 struct cpuacct *ca;
9492 int cpu;
9494 if (!cpuacct_subsys.active)
9495 return;
9497 cpu = task_cpu(tsk);
9498 ca = task_ca(tsk);
9500 for (; ca; ca = ca->parent) {
9501 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9502 *cpuusage += cputime;
9506 struct cgroup_subsys cpuacct_subsys = {
9507 .name = "cpuacct",
9508 .create = cpuacct_create,
9509 .destroy = cpuacct_destroy,
9510 .populate = cpuacct_populate,
9511 .subsys_id = cpuacct_subsys_id,
9513 #endif /* CONFIG_CGROUP_CPUACCT */