2 * linux/drivers/block/loop.c
4 * Written by Theodore Ts'o, 3/29/93
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
21 * Loadable modules and other fixes by AK, 1998
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
37 * Jens Axboe <axboe@suse.de>, Nov 2000
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
80 #include <asm/uaccess.h>
82 static DEFINE_IDR(loop_index_idr
);
83 static DEFINE_MUTEX(loop_index_mutex
);
86 static int part_shift
;
91 static int transfer_none(struct loop_device
*lo
, int cmd
,
92 struct page
*raw_page
, unsigned raw_off
,
93 struct page
*loop_page
, unsigned loop_off
,
94 int size
, sector_t real_block
)
96 char *raw_buf
= kmap_atomic(raw_page
) + raw_off
;
97 char *loop_buf
= kmap_atomic(loop_page
) + loop_off
;
100 memcpy(loop_buf
, raw_buf
, size
);
102 memcpy(raw_buf
, loop_buf
, size
);
104 kunmap_atomic(loop_buf
);
105 kunmap_atomic(raw_buf
);
110 static int transfer_xor(struct loop_device
*lo
, int cmd
,
111 struct page
*raw_page
, unsigned raw_off
,
112 struct page
*loop_page
, unsigned loop_off
,
113 int size
, sector_t real_block
)
115 char *raw_buf
= kmap_atomic(raw_page
) + raw_off
;
116 char *loop_buf
= kmap_atomic(loop_page
) + loop_off
;
117 char *in
, *out
, *key
;
128 key
= lo
->lo_encrypt_key
;
129 keysize
= lo
->lo_encrypt_key_size
;
130 for (i
= 0; i
< size
; i
++)
131 *out
++ = *in
++ ^ key
[(i
& 511) % keysize
];
133 kunmap_atomic(loop_buf
);
134 kunmap_atomic(raw_buf
);
139 static int xor_init(struct loop_device
*lo
, const struct loop_info64
*info
)
141 if (unlikely(info
->lo_encrypt_key_size
<= 0))
146 static struct loop_func_table none_funcs
= {
147 .number
= LO_CRYPT_NONE
,
148 .transfer
= transfer_none
,
151 static struct loop_func_table xor_funcs
= {
152 .number
= LO_CRYPT_XOR
,
153 .transfer
= transfer_xor
,
157 /* xfer_funcs[0] is special - its release function is never called */
158 static struct loop_func_table
*xfer_funcs
[MAX_LO_CRYPT
] = {
163 static loff_t
get_size(loff_t offset
, loff_t sizelimit
, struct file
*file
)
167 /* Compute loopsize in bytes */
168 loopsize
= i_size_read(file
->f_mapping
->host
);
171 /* offset is beyond i_size, weird but possible */
175 if (sizelimit
> 0 && sizelimit
< loopsize
)
176 loopsize
= sizelimit
;
178 * Unfortunately, if we want to do I/O on the device,
179 * the number of 512-byte sectors has to fit into a sector_t.
181 return loopsize
>> 9;
184 static loff_t
get_loop_size(struct loop_device
*lo
, struct file
*file
)
186 return get_size(lo
->lo_offset
, lo
->lo_sizelimit
, file
);
190 figure_loop_size(struct loop_device
*lo
, loff_t offset
, loff_t sizelimit
)
192 loff_t size
= get_size(offset
, sizelimit
, lo
->lo_backing_file
);
193 sector_t x
= (sector_t
)size
;
194 struct block_device
*bdev
= lo
->lo_device
;
196 if (unlikely((loff_t
)x
!= size
))
198 if (lo
->lo_offset
!= offset
)
199 lo
->lo_offset
= offset
;
200 if (lo
->lo_sizelimit
!= sizelimit
)
201 lo
->lo_sizelimit
= sizelimit
;
202 set_capacity(lo
->lo_disk
, x
);
203 bd_set_size(bdev
, (loff_t
)get_capacity(bdev
->bd_disk
) << 9);
204 /* let user-space know about the new size */
205 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
210 lo_do_transfer(struct loop_device
*lo
, int cmd
,
211 struct page
*rpage
, unsigned roffs
,
212 struct page
*lpage
, unsigned loffs
,
213 int size
, sector_t rblock
)
215 if (unlikely(!lo
->transfer
))
218 return lo
->transfer(lo
, cmd
, rpage
, roffs
, lpage
, loffs
, size
, rblock
);
222 * __do_lo_send_write - helper for writing data to a loop device
224 * This helper just factors out common code between do_lo_send_direct_write()
225 * and do_lo_send_write().
227 static int __do_lo_send_write(struct file
*file
,
228 u8
*buf
, const int len
, loff_t pos
)
231 mm_segment_t old_fs
= get_fs();
233 file_start_write(file
);
235 bw
= file
->f_op
->write(file
, buf
, len
, &pos
);
237 file_end_write(file
);
238 if (likely(bw
== len
))
240 printk(KERN_ERR
"loop: Write error at byte offset %llu, length %i.\n",
241 (unsigned long long)pos
, len
);
248 * do_lo_send_direct_write - helper for writing data to a loop device
250 * This is the fast, non-transforming version that does not need double
253 static int do_lo_send_direct_write(struct loop_device
*lo
,
254 struct bio_vec
*bvec
, loff_t pos
, struct page
*page
)
256 ssize_t bw
= __do_lo_send_write(lo
->lo_backing_file
,
257 kmap(bvec
->bv_page
) + bvec
->bv_offset
,
259 kunmap(bvec
->bv_page
);
265 * do_lo_send_write - helper for writing data to a loop device
267 * This is the slow, transforming version that needs to double buffer the
268 * data as it cannot do the transformations in place without having direct
269 * access to the destination pages of the backing file.
271 static int do_lo_send_write(struct loop_device
*lo
, struct bio_vec
*bvec
,
272 loff_t pos
, struct page
*page
)
274 int ret
= lo_do_transfer(lo
, WRITE
, page
, 0, bvec
->bv_page
,
275 bvec
->bv_offset
, bvec
->bv_len
, pos
>> 9);
277 return __do_lo_send_write(lo
->lo_backing_file
,
278 page_address(page
), bvec
->bv_len
,
280 printk(KERN_ERR
"loop: Transfer error at byte offset %llu, "
281 "length %i.\n", (unsigned long long)pos
, bvec
->bv_len
);
287 static int lo_send(struct loop_device
*lo
, struct bio
*bio
, loff_t pos
)
289 int (*do_lo_send
)(struct loop_device
*, struct bio_vec
*, loff_t
,
291 struct bio_vec
*bvec
;
292 struct page
*page
= NULL
;
295 if (lo
->transfer
!= transfer_none
) {
296 page
= alloc_page(GFP_NOIO
| __GFP_HIGHMEM
);
300 do_lo_send
= do_lo_send_write
;
302 do_lo_send
= do_lo_send_direct_write
;
305 bio_for_each_segment(bvec
, bio
, i
) {
306 ret
= do_lo_send(lo
, bvec
, pos
, page
);
318 printk(KERN_ERR
"loop: Failed to allocate temporary page for write.\n");
323 struct lo_read_data
{
324 struct loop_device
*lo
;
331 lo_splice_actor(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
,
332 struct splice_desc
*sd
)
334 struct lo_read_data
*p
= sd
->u
.data
;
335 struct loop_device
*lo
= p
->lo
;
336 struct page
*page
= buf
->page
;
340 IV
= ((sector_t
) page
->index
<< (PAGE_CACHE_SHIFT
- 9)) +
346 if (lo_do_transfer(lo
, READ
, page
, buf
->offset
, p
->page
, p
->offset
, size
, IV
)) {
347 printk(KERN_ERR
"loop: transfer error block %ld\n",
352 flush_dcache_page(p
->page
);
361 lo_direct_splice_actor(struct pipe_inode_info
*pipe
, struct splice_desc
*sd
)
363 return __splice_from_pipe(pipe
, sd
, lo_splice_actor
);
367 do_lo_receive(struct loop_device
*lo
,
368 struct bio_vec
*bvec
, int bsize
, loff_t pos
)
370 struct lo_read_data cookie
;
371 struct splice_desc sd
;
376 cookie
.page
= bvec
->bv_page
;
377 cookie
.offset
= bvec
->bv_offset
;
378 cookie
.bsize
= bsize
;
381 sd
.total_len
= bvec
->bv_len
;
386 file
= lo
->lo_backing_file
;
387 retval
= splice_direct_to_actor(file
, &sd
, lo_direct_splice_actor
);
393 lo_receive(struct loop_device
*lo
, struct bio
*bio
, int bsize
, loff_t pos
)
395 struct bio_vec
*bvec
;
399 bio_for_each_segment(bvec
, bio
, i
) {
400 s
= do_lo_receive(lo
, bvec
, bsize
, pos
);
404 if (s
!= bvec
->bv_len
) {
413 static int do_bio_filebacked(struct loop_device
*lo
, struct bio
*bio
)
418 pos
= ((loff_t
) bio
->bi_sector
<< 9) + lo
->lo_offset
;
420 if (bio_rw(bio
) == WRITE
) {
421 struct file
*file
= lo
->lo_backing_file
;
423 if (bio
->bi_rw
& REQ_FLUSH
) {
424 ret
= vfs_fsync(file
, 0);
425 if (unlikely(ret
&& ret
!= -EINVAL
)) {
432 * We use punch hole to reclaim the free space used by the
433 * image a.k.a. discard. However we do not support discard if
434 * encryption is enabled, because it may give an attacker
435 * useful information.
437 if (bio
->bi_rw
& REQ_DISCARD
) {
438 struct file
*file
= lo
->lo_backing_file
;
439 int mode
= FALLOC_FL_PUNCH_HOLE
| FALLOC_FL_KEEP_SIZE
;
441 if ((!file
->f_op
->fallocate
) ||
442 lo
->lo_encrypt_key_size
) {
446 ret
= file
->f_op
->fallocate(file
, mode
, pos
,
448 if (unlikely(ret
&& ret
!= -EINVAL
&&
454 ret
= lo_send(lo
, bio
, pos
);
456 if ((bio
->bi_rw
& REQ_FUA
) && !ret
) {
457 ret
= vfs_fsync(file
, 0);
458 if (unlikely(ret
&& ret
!= -EINVAL
))
462 ret
= lo_receive(lo
, bio
, lo
->lo_blocksize
, pos
);
469 * Add bio to back of pending list
471 static void loop_add_bio(struct loop_device
*lo
, struct bio
*bio
)
474 bio_list_add(&lo
->lo_bio_list
, bio
);
478 * Grab first pending buffer
480 static struct bio
*loop_get_bio(struct loop_device
*lo
)
483 return bio_list_pop(&lo
->lo_bio_list
);
486 static void loop_make_request(struct request_queue
*q
, struct bio
*old_bio
)
488 struct loop_device
*lo
= q
->queuedata
;
489 int rw
= bio_rw(old_bio
);
494 BUG_ON(!lo
|| (rw
!= READ
&& rw
!= WRITE
));
496 spin_lock_irq(&lo
->lo_lock
);
497 if (lo
->lo_state
!= Lo_bound
)
499 if (unlikely(rw
== WRITE
&& (lo
->lo_flags
& LO_FLAGS_READ_ONLY
)))
501 if (lo
->lo_bio_count
>= q
->nr_congestion_on
)
502 wait_event_lock_irq(lo
->lo_req_wait
,
503 lo
->lo_bio_count
< q
->nr_congestion_off
,
505 loop_add_bio(lo
, old_bio
);
506 wake_up(&lo
->lo_event
);
507 spin_unlock_irq(&lo
->lo_lock
);
511 spin_unlock_irq(&lo
->lo_lock
);
512 bio_io_error(old_bio
);
515 struct switch_request
{
517 struct completion wait
;
520 static void do_loop_switch(struct loop_device
*, struct switch_request
*);
522 static inline void loop_handle_bio(struct loop_device
*lo
, struct bio
*bio
)
524 if (unlikely(!bio
->bi_bdev
)) {
525 do_loop_switch(lo
, bio
->bi_private
);
528 int ret
= do_bio_filebacked(lo
, bio
);
534 * worker thread that handles reads/writes to file backed loop devices,
535 * to avoid blocking in our make_request_fn. it also does loop decrypting
536 * on reads for block backed loop, as that is too heavy to do from
537 * b_end_io context where irqs may be disabled.
539 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
540 * calling kthread_stop(). Therefore once kthread_should_stop() is
541 * true, make_request will not place any more requests. Therefore
542 * once kthread_should_stop() is true and lo_bio is NULL, we are
543 * done with the loop.
545 static int loop_thread(void *data
)
547 struct loop_device
*lo
= data
;
550 set_user_nice(current
, -20);
552 while (!kthread_should_stop() || !bio_list_empty(&lo
->lo_bio_list
)) {
554 wait_event_interruptible(lo
->lo_event
,
555 !bio_list_empty(&lo
->lo_bio_list
) ||
556 kthread_should_stop());
558 if (bio_list_empty(&lo
->lo_bio_list
))
560 spin_lock_irq(&lo
->lo_lock
);
561 bio
= loop_get_bio(lo
);
562 if (lo
->lo_bio_count
< lo
->lo_queue
->nr_congestion_off
)
563 wake_up(&lo
->lo_req_wait
);
564 spin_unlock_irq(&lo
->lo_lock
);
567 loop_handle_bio(lo
, bio
);
574 * loop_switch performs the hard work of switching a backing store.
575 * First it needs to flush existing IO, it does this by sending a magic
576 * BIO down the pipe. The completion of this BIO does the actual switch.
578 static int loop_switch(struct loop_device
*lo
, struct file
*file
)
580 struct switch_request w
;
581 struct bio
*bio
= bio_alloc(GFP_KERNEL
, 0);
584 init_completion(&w
.wait
);
586 bio
->bi_private
= &w
;
588 loop_make_request(lo
->lo_queue
, bio
);
589 wait_for_completion(&w
.wait
);
594 * Helper to flush the IOs in loop, but keeping loop thread running
596 static int loop_flush(struct loop_device
*lo
)
598 /* loop not yet configured, no running thread, nothing to flush */
602 return loop_switch(lo
, NULL
);
606 * Do the actual switch; called from the BIO completion routine
608 static void do_loop_switch(struct loop_device
*lo
, struct switch_request
*p
)
610 struct file
*file
= p
->file
;
611 struct file
*old_file
= lo
->lo_backing_file
;
612 struct address_space
*mapping
;
614 /* if no new file, only flush of queued bios requested */
618 mapping
= file
->f_mapping
;
619 mapping_set_gfp_mask(old_file
->f_mapping
, lo
->old_gfp_mask
);
620 lo
->lo_backing_file
= file
;
621 lo
->lo_blocksize
= S_ISBLK(mapping
->host
->i_mode
) ?
622 mapping
->host
->i_bdev
->bd_block_size
: PAGE_SIZE
;
623 lo
->old_gfp_mask
= mapping_gfp_mask(mapping
);
624 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
631 * loop_change_fd switched the backing store of a loopback device to
632 * a new file. This is useful for operating system installers to free up
633 * the original file and in High Availability environments to switch to
634 * an alternative location for the content in case of server meltdown.
635 * This can only work if the loop device is used read-only, and if the
636 * new backing store is the same size and type as the old backing store.
638 static int loop_change_fd(struct loop_device
*lo
, struct block_device
*bdev
,
641 struct file
*file
, *old_file
;
646 if (lo
->lo_state
!= Lo_bound
)
649 /* the loop device has to be read-only */
651 if (!(lo
->lo_flags
& LO_FLAGS_READ_ONLY
))
659 inode
= file
->f_mapping
->host
;
660 old_file
= lo
->lo_backing_file
;
664 if (!S_ISREG(inode
->i_mode
) && !S_ISBLK(inode
->i_mode
))
667 /* size of the new backing store needs to be the same */
668 if (get_loop_size(lo
, file
) != get_loop_size(lo
, old_file
))
672 error
= loop_switch(lo
, file
);
677 if (lo
->lo_flags
& LO_FLAGS_PARTSCAN
)
678 ioctl_by_bdev(bdev
, BLKRRPART
, 0);
687 static inline int is_loop_device(struct file
*file
)
689 struct inode
*i
= file
->f_mapping
->host
;
691 return i
&& S_ISBLK(i
->i_mode
) && MAJOR(i
->i_rdev
) == LOOP_MAJOR
;
694 /* loop sysfs attributes */
696 static ssize_t
loop_attr_show(struct device
*dev
, char *page
,
697 ssize_t (*callback
)(struct loop_device
*, char *))
699 struct gendisk
*disk
= dev_to_disk(dev
);
700 struct loop_device
*lo
= disk
->private_data
;
702 return callback(lo
, page
);
705 #define LOOP_ATTR_RO(_name) \
706 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
707 static ssize_t loop_attr_do_show_##_name(struct device *d, \
708 struct device_attribute *attr, char *b) \
710 return loop_attr_show(d, b, loop_attr_##_name##_show); \
712 static struct device_attribute loop_attr_##_name = \
713 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
715 static ssize_t
loop_attr_backing_file_show(struct loop_device
*lo
, char *buf
)
720 spin_lock_irq(&lo
->lo_lock
);
721 if (lo
->lo_backing_file
)
722 p
= d_path(&lo
->lo_backing_file
->f_path
, buf
, PAGE_SIZE
- 1);
723 spin_unlock_irq(&lo
->lo_lock
);
725 if (IS_ERR_OR_NULL(p
))
729 memmove(buf
, p
, ret
);
737 static ssize_t
loop_attr_offset_show(struct loop_device
*lo
, char *buf
)
739 return sprintf(buf
, "%llu\n", (unsigned long long)lo
->lo_offset
);
742 static ssize_t
loop_attr_sizelimit_show(struct loop_device
*lo
, char *buf
)
744 return sprintf(buf
, "%llu\n", (unsigned long long)lo
->lo_sizelimit
);
747 static ssize_t
loop_attr_autoclear_show(struct loop_device
*lo
, char *buf
)
749 int autoclear
= (lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
);
751 return sprintf(buf
, "%s\n", autoclear
? "1" : "0");
754 static ssize_t
loop_attr_partscan_show(struct loop_device
*lo
, char *buf
)
756 int partscan
= (lo
->lo_flags
& LO_FLAGS_PARTSCAN
);
758 return sprintf(buf
, "%s\n", partscan
? "1" : "0");
761 LOOP_ATTR_RO(backing_file
);
762 LOOP_ATTR_RO(offset
);
763 LOOP_ATTR_RO(sizelimit
);
764 LOOP_ATTR_RO(autoclear
);
765 LOOP_ATTR_RO(partscan
);
767 static struct attribute
*loop_attrs
[] = {
768 &loop_attr_backing_file
.attr
,
769 &loop_attr_offset
.attr
,
770 &loop_attr_sizelimit
.attr
,
771 &loop_attr_autoclear
.attr
,
772 &loop_attr_partscan
.attr
,
776 static struct attribute_group loop_attribute_group
= {
781 static int loop_sysfs_init(struct loop_device
*lo
)
783 return sysfs_create_group(&disk_to_dev(lo
->lo_disk
)->kobj
,
784 &loop_attribute_group
);
787 static void loop_sysfs_exit(struct loop_device
*lo
)
789 sysfs_remove_group(&disk_to_dev(lo
->lo_disk
)->kobj
,
790 &loop_attribute_group
);
793 static void loop_config_discard(struct loop_device
*lo
)
795 struct file
*file
= lo
->lo_backing_file
;
796 struct inode
*inode
= file
->f_mapping
->host
;
797 struct request_queue
*q
= lo
->lo_queue
;
800 * We use punch hole to reclaim the free space used by the
801 * image a.k.a. discard. However we do support discard if
802 * encryption is enabled, because it may give an attacker
803 * useful information.
805 if ((!file
->f_op
->fallocate
) ||
806 lo
->lo_encrypt_key_size
) {
807 q
->limits
.discard_granularity
= 0;
808 q
->limits
.discard_alignment
= 0;
809 q
->limits
.max_discard_sectors
= 0;
810 q
->limits
.discard_zeroes_data
= 0;
811 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
, q
);
815 q
->limits
.discard_granularity
= inode
->i_sb
->s_blocksize
;
816 q
->limits
.discard_alignment
= 0;
817 q
->limits
.max_discard_sectors
= UINT_MAX
>> 9;
818 q
->limits
.discard_zeroes_data
= 1;
819 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, q
);
822 static int loop_set_fd(struct loop_device
*lo
, fmode_t mode
,
823 struct block_device
*bdev
, unsigned int arg
)
825 struct file
*file
, *f
;
827 struct address_space
*mapping
;
828 unsigned lo_blocksize
;
833 /* This is safe, since we have a reference from open(). */
834 __module_get(THIS_MODULE
);
842 if (lo
->lo_state
!= Lo_unbound
)
845 /* Avoid recursion */
847 while (is_loop_device(f
)) {
848 struct loop_device
*l
;
850 if (f
->f_mapping
->host
->i_bdev
== bdev
)
853 l
= f
->f_mapping
->host
->i_bdev
->bd_disk
->private_data
;
854 if (l
->lo_state
== Lo_unbound
) {
858 f
= l
->lo_backing_file
;
861 mapping
= file
->f_mapping
;
862 inode
= mapping
->host
;
865 if (!S_ISREG(inode
->i_mode
) && !S_ISBLK(inode
->i_mode
))
868 if (!(file
->f_mode
& FMODE_WRITE
) || !(mode
& FMODE_WRITE
) ||
870 lo_flags
|= LO_FLAGS_READ_ONLY
;
872 lo_blocksize
= S_ISBLK(inode
->i_mode
) ?
873 inode
->i_bdev
->bd_block_size
: PAGE_SIZE
;
876 size
= get_loop_size(lo
, file
);
877 if ((loff_t
)(sector_t
)size
!= size
)
882 set_device_ro(bdev
, (lo_flags
& LO_FLAGS_READ_ONLY
) != 0);
884 lo
->lo_blocksize
= lo_blocksize
;
885 lo
->lo_device
= bdev
;
886 lo
->lo_flags
= lo_flags
;
887 lo
->lo_backing_file
= file
;
888 lo
->transfer
= transfer_none
;
890 lo
->lo_sizelimit
= 0;
891 lo
->lo_bio_count
= 0;
892 lo
->old_gfp_mask
= mapping_gfp_mask(mapping
);
893 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
895 bio_list_init(&lo
->lo_bio_list
);
898 * set queue make_request_fn, and add limits based on lower level
901 blk_queue_make_request(lo
->lo_queue
, loop_make_request
);
902 lo
->lo_queue
->queuedata
= lo
;
904 if (!(lo_flags
& LO_FLAGS_READ_ONLY
) && file
->f_op
->fsync
)
905 blk_queue_flush(lo
->lo_queue
, REQ_FLUSH
);
907 set_capacity(lo
->lo_disk
, size
);
908 bd_set_size(bdev
, size
<< 9);
910 /* let user-space know about the new size */
911 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
913 set_blocksize(bdev
, lo_blocksize
);
915 lo
->lo_thread
= kthread_create(loop_thread
, lo
, "loop%d",
917 if (IS_ERR(lo
->lo_thread
)) {
918 error
= PTR_ERR(lo
->lo_thread
);
921 lo
->lo_state
= Lo_bound
;
922 wake_up_process(lo
->lo_thread
);
924 lo
->lo_flags
|= LO_FLAGS_PARTSCAN
;
925 if (lo
->lo_flags
& LO_FLAGS_PARTSCAN
)
926 ioctl_by_bdev(bdev
, BLKRRPART
, 0);
928 /* Grab the block_device to prevent its destruction after we
929 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
936 lo
->lo_thread
= NULL
;
937 lo
->lo_device
= NULL
;
938 lo
->lo_backing_file
= NULL
;
940 set_capacity(lo
->lo_disk
, 0);
941 invalidate_bdev(bdev
);
942 bd_set_size(bdev
, 0);
943 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
944 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
);
945 lo
->lo_state
= Lo_unbound
;
949 /* This is safe: open() is still holding a reference. */
950 module_put(THIS_MODULE
);
955 loop_release_xfer(struct loop_device
*lo
)
958 struct loop_func_table
*xfer
= lo
->lo_encryption
;
962 err
= xfer
->release(lo
);
964 lo
->lo_encryption
= NULL
;
965 module_put(xfer
->owner
);
971 loop_init_xfer(struct loop_device
*lo
, struct loop_func_table
*xfer
,
972 const struct loop_info64
*i
)
977 struct module
*owner
= xfer
->owner
;
979 if (!try_module_get(owner
))
982 err
= xfer
->init(lo
, i
);
986 lo
->lo_encryption
= xfer
;
991 static int loop_clr_fd(struct loop_device
*lo
)
993 struct file
*filp
= lo
->lo_backing_file
;
994 gfp_t gfp
= lo
->old_gfp_mask
;
995 struct block_device
*bdev
= lo
->lo_device
;
997 if (lo
->lo_state
!= Lo_bound
)
1001 * If we've explicitly asked to tear down the loop device,
1002 * and it has an elevated reference count, set it for auto-teardown when
1003 * the last reference goes away. This stops $!~#$@ udev from
1004 * preventing teardown because it decided that it needs to run blkid on
1005 * the loopback device whenever they appear. xfstests is notorious for
1006 * failing tests because blkid via udev races with a losetup
1007 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1008 * command to fail with EBUSY.
1010 if (lo
->lo_refcnt
> 1) {
1011 lo
->lo_flags
|= LO_FLAGS_AUTOCLEAR
;
1012 mutex_unlock(&lo
->lo_ctl_mutex
);
1019 spin_lock_irq(&lo
->lo_lock
);
1020 lo
->lo_state
= Lo_rundown
;
1021 spin_unlock_irq(&lo
->lo_lock
);
1023 kthread_stop(lo
->lo_thread
);
1025 spin_lock_irq(&lo
->lo_lock
);
1026 lo
->lo_backing_file
= NULL
;
1027 spin_unlock_irq(&lo
->lo_lock
);
1029 loop_release_xfer(lo
);
1030 lo
->transfer
= NULL
;
1032 lo
->lo_device
= NULL
;
1033 lo
->lo_encryption
= NULL
;
1035 lo
->lo_sizelimit
= 0;
1036 lo
->lo_encrypt_key_size
= 0;
1037 lo
->lo_thread
= NULL
;
1038 memset(lo
->lo_encrypt_key
, 0, LO_KEY_SIZE
);
1039 memset(lo
->lo_crypt_name
, 0, LO_NAME_SIZE
);
1040 memset(lo
->lo_file_name
, 0, LO_NAME_SIZE
);
1043 invalidate_bdev(bdev
);
1045 set_capacity(lo
->lo_disk
, 0);
1046 loop_sysfs_exit(lo
);
1048 bd_set_size(bdev
, 0);
1049 /* let user-space know about this change */
1050 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
1052 mapping_set_gfp_mask(filp
->f_mapping
, gfp
);
1053 lo
->lo_state
= Lo_unbound
;
1054 /* This is safe: open() is still holding a reference. */
1055 module_put(THIS_MODULE
);
1056 if (lo
->lo_flags
& LO_FLAGS_PARTSCAN
&& bdev
)
1057 ioctl_by_bdev(bdev
, BLKRRPART
, 0);
1060 lo
->lo_disk
->flags
|= GENHD_FL_NO_PART_SCAN
;
1061 mutex_unlock(&lo
->lo_ctl_mutex
);
1063 * Need not hold lo_ctl_mutex to fput backing file.
1064 * Calling fput holding lo_ctl_mutex triggers a circular
1065 * lock dependency possibility warning as fput can take
1066 * bd_mutex which is usually taken before lo_ctl_mutex.
1073 loop_set_status(struct loop_device
*lo
, const struct loop_info64
*info
)
1076 struct loop_func_table
*xfer
;
1077 kuid_t uid
= current_uid();
1079 if (lo
->lo_encrypt_key_size
&&
1080 !uid_eq(lo
->lo_key_owner
, uid
) &&
1081 !capable(CAP_SYS_ADMIN
))
1083 if (lo
->lo_state
!= Lo_bound
)
1085 if ((unsigned int) info
->lo_encrypt_key_size
> LO_KEY_SIZE
)
1088 err
= loop_release_xfer(lo
);
1092 if (info
->lo_encrypt_type
) {
1093 unsigned int type
= info
->lo_encrypt_type
;
1095 if (type
>= MAX_LO_CRYPT
)
1097 xfer
= xfer_funcs
[type
];
1103 err
= loop_init_xfer(lo
, xfer
, info
);
1107 if (lo
->lo_offset
!= info
->lo_offset
||
1108 lo
->lo_sizelimit
!= info
->lo_sizelimit
)
1109 if (figure_loop_size(lo
, info
->lo_offset
, info
->lo_sizelimit
))
1112 loop_config_discard(lo
);
1114 memcpy(lo
->lo_file_name
, info
->lo_file_name
, LO_NAME_SIZE
);
1115 memcpy(lo
->lo_crypt_name
, info
->lo_crypt_name
, LO_NAME_SIZE
);
1116 lo
->lo_file_name
[LO_NAME_SIZE
-1] = 0;
1117 lo
->lo_crypt_name
[LO_NAME_SIZE
-1] = 0;
1121 lo
->transfer
= xfer
->transfer
;
1122 lo
->ioctl
= xfer
->ioctl
;
1124 if ((lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
) !=
1125 (info
->lo_flags
& LO_FLAGS_AUTOCLEAR
))
1126 lo
->lo_flags
^= LO_FLAGS_AUTOCLEAR
;
1128 if ((info
->lo_flags
& LO_FLAGS_PARTSCAN
) &&
1129 !(lo
->lo_flags
& LO_FLAGS_PARTSCAN
)) {
1130 lo
->lo_flags
|= LO_FLAGS_PARTSCAN
;
1131 lo
->lo_disk
->flags
&= ~GENHD_FL_NO_PART_SCAN
;
1132 ioctl_by_bdev(lo
->lo_device
, BLKRRPART
, 0);
1135 lo
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1136 lo
->lo_init
[0] = info
->lo_init
[0];
1137 lo
->lo_init
[1] = info
->lo_init
[1];
1138 if (info
->lo_encrypt_key_size
) {
1139 memcpy(lo
->lo_encrypt_key
, info
->lo_encrypt_key
,
1140 info
->lo_encrypt_key_size
);
1141 lo
->lo_key_owner
= uid
;
1148 loop_get_status(struct loop_device
*lo
, struct loop_info64
*info
)
1150 struct file
*file
= lo
->lo_backing_file
;
1154 if (lo
->lo_state
!= Lo_bound
)
1156 error
= vfs_getattr(&file
->f_path
, &stat
);
1159 memset(info
, 0, sizeof(*info
));
1160 info
->lo_number
= lo
->lo_number
;
1161 info
->lo_device
= huge_encode_dev(stat
.dev
);
1162 info
->lo_inode
= stat
.ino
;
1163 info
->lo_rdevice
= huge_encode_dev(lo
->lo_device
? stat
.rdev
: stat
.dev
);
1164 info
->lo_offset
= lo
->lo_offset
;
1165 info
->lo_sizelimit
= lo
->lo_sizelimit
;
1166 info
->lo_flags
= lo
->lo_flags
;
1167 memcpy(info
->lo_file_name
, lo
->lo_file_name
, LO_NAME_SIZE
);
1168 memcpy(info
->lo_crypt_name
, lo
->lo_crypt_name
, LO_NAME_SIZE
);
1169 info
->lo_encrypt_type
=
1170 lo
->lo_encryption
? lo
->lo_encryption
->number
: 0;
1171 if (lo
->lo_encrypt_key_size
&& capable(CAP_SYS_ADMIN
)) {
1172 info
->lo_encrypt_key_size
= lo
->lo_encrypt_key_size
;
1173 memcpy(info
->lo_encrypt_key
, lo
->lo_encrypt_key
,
1174 lo
->lo_encrypt_key_size
);
1180 loop_info64_from_old(const struct loop_info
*info
, struct loop_info64
*info64
)
1182 memset(info64
, 0, sizeof(*info64
));
1183 info64
->lo_number
= info
->lo_number
;
1184 info64
->lo_device
= info
->lo_device
;
1185 info64
->lo_inode
= info
->lo_inode
;
1186 info64
->lo_rdevice
= info
->lo_rdevice
;
1187 info64
->lo_offset
= info
->lo_offset
;
1188 info64
->lo_sizelimit
= 0;
1189 info64
->lo_encrypt_type
= info
->lo_encrypt_type
;
1190 info64
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1191 info64
->lo_flags
= info
->lo_flags
;
1192 info64
->lo_init
[0] = info
->lo_init
[0];
1193 info64
->lo_init
[1] = info
->lo_init
[1];
1194 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1195 memcpy(info64
->lo_crypt_name
, info
->lo_name
, LO_NAME_SIZE
);
1197 memcpy(info64
->lo_file_name
, info
->lo_name
, LO_NAME_SIZE
);
1198 memcpy(info64
->lo_encrypt_key
, info
->lo_encrypt_key
, LO_KEY_SIZE
);
1202 loop_info64_to_old(const struct loop_info64
*info64
, struct loop_info
*info
)
1204 memset(info
, 0, sizeof(*info
));
1205 info
->lo_number
= info64
->lo_number
;
1206 info
->lo_device
= info64
->lo_device
;
1207 info
->lo_inode
= info64
->lo_inode
;
1208 info
->lo_rdevice
= info64
->lo_rdevice
;
1209 info
->lo_offset
= info64
->lo_offset
;
1210 info
->lo_encrypt_type
= info64
->lo_encrypt_type
;
1211 info
->lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1212 info
->lo_flags
= info64
->lo_flags
;
1213 info
->lo_init
[0] = info64
->lo_init
[0];
1214 info
->lo_init
[1] = info64
->lo_init
[1];
1215 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1216 memcpy(info
->lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1218 memcpy(info
->lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1219 memcpy(info
->lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1221 /* error in case values were truncated */
1222 if (info
->lo_device
!= info64
->lo_device
||
1223 info
->lo_rdevice
!= info64
->lo_rdevice
||
1224 info
->lo_inode
!= info64
->lo_inode
||
1225 info
->lo_offset
!= info64
->lo_offset
)
1232 loop_set_status_old(struct loop_device
*lo
, const struct loop_info __user
*arg
)
1234 struct loop_info info
;
1235 struct loop_info64 info64
;
1237 if (copy_from_user(&info
, arg
, sizeof (struct loop_info
)))
1239 loop_info64_from_old(&info
, &info64
);
1240 return loop_set_status(lo
, &info64
);
1244 loop_set_status64(struct loop_device
*lo
, const struct loop_info64 __user
*arg
)
1246 struct loop_info64 info64
;
1248 if (copy_from_user(&info64
, arg
, sizeof (struct loop_info64
)))
1250 return loop_set_status(lo
, &info64
);
1254 loop_get_status_old(struct loop_device
*lo
, struct loop_info __user
*arg
) {
1255 struct loop_info info
;
1256 struct loop_info64 info64
;
1262 err
= loop_get_status(lo
, &info64
);
1264 err
= loop_info64_to_old(&info64
, &info
);
1265 if (!err
&& copy_to_user(arg
, &info
, sizeof(info
)))
1272 loop_get_status64(struct loop_device
*lo
, struct loop_info64 __user
*arg
) {
1273 struct loop_info64 info64
;
1279 err
= loop_get_status(lo
, &info64
);
1280 if (!err
&& copy_to_user(arg
, &info64
, sizeof(info64
)))
1286 static int loop_set_capacity(struct loop_device
*lo
, struct block_device
*bdev
)
1288 if (unlikely(lo
->lo_state
!= Lo_bound
))
1291 return figure_loop_size(lo
, lo
->lo_offset
, lo
->lo_sizelimit
);
1294 static int lo_ioctl(struct block_device
*bdev
, fmode_t mode
,
1295 unsigned int cmd
, unsigned long arg
)
1297 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1300 mutex_lock_nested(&lo
->lo_ctl_mutex
, 1);
1303 err
= loop_set_fd(lo
, mode
, bdev
, arg
);
1305 case LOOP_CHANGE_FD
:
1306 err
= loop_change_fd(lo
, bdev
, arg
);
1309 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1310 err
= loop_clr_fd(lo
);
1314 case LOOP_SET_STATUS
:
1316 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
))
1317 err
= loop_set_status_old(lo
,
1318 (struct loop_info __user
*)arg
);
1320 case LOOP_GET_STATUS
:
1321 err
= loop_get_status_old(lo
, (struct loop_info __user
*) arg
);
1323 case LOOP_SET_STATUS64
:
1325 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
))
1326 err
= loop_set_status64(lo
,
1327 (struct loop_info64 __user
*) arg
);
1329 case LOOP_GET_STATUS64
:
1330 err
= loop_get_status64(lo
, (struct loop_info64 __user
*) arg
);
1332 case LOOP_SET_CAPACITY
:
1334 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
))
1335 err
= loop_set_capacity(lo
, bdev
);
1338 err
= lo
->ioctl
? lo
->ioctl(lo
, cmd
, arg
) : -EINVAL
;
1340 mutex_unlock(&lo
->lo_ctl_mutex
);
1346 #ifdef CONFIG_COMPAT
1347 struct compat_loop_info
{
1348 compat_int_t lo_number
; /* ioctl r/o */
1349 compat_dev_t lo_device
; /* ioctl r/o */
1350 compat_ulong_t lo_inode
; /* ioctl r/o */
1351 compat_dev_t lo_rdevice
; /* ioctl r/o */
1352 compat_int_t lo_offset
;
1353 compat_int_t lo_encrypt_type
;
1354 compat_int_t lo_encrypt_key_size
; /* ioctl w/o */
1355 compat_int_t lo_flags
; /* ioctl r/o */
1356 char lo_name
[LO_NAME_SIZE
];
1357 unsigned char lo_encrypt_key
[LO_KEY_SIZE
]; /* ioctl w/o */
1358 compat_ulong_t lo_init
[2];
1363 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1364 * - noinlined to reduce stack space usage in main part of driver
1367 loop_info64_from_compat(const struct compat_loop_info __user
*arg
,
1368 struct loop_info64
*info64
)
1370 struct compat_loop_info info
;
1372 if (copy_from_user(&info
, arg
, sizeof(info
)))
1375 memset(info64
, 0, sizeof(*info64
));
1376 info64
->lo_number
= info
.lo_number
;
1377 info64
->lo_device
= info
.lo_device
;
1378 info64
->lo_inode
= info
.lo_inode
;
1379 info64
->lo_rdevice
= info
.lo_rdevice
;
1380 info64
->lo_offset
= info
.lo_offset
;
1381 info64
->lo_sizelimit
= 0;
1382 info64
->lo_encrypt_type
= info
.lo_encrypt_type
;
1383 info64
->lo_encrypt_key_size
= info
.lo_encrypt_key_size
;
1384 info64
->lo_flags
= info
.lo_flags
;
1385 info64
->lo_init
[0] = info
.lo_init
[0];
1386 info64
->lo_init
[1] = info
.lo_init
[1];
1387 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1388 memcpy(info64
->lo_crypt_name
, info
.lo_name
, LO_NAME_SIZE
);
1390 memcpy(info64
->lo_file_name
, info
.lo_name
, LO_NAME_SIZE
);
1391 memcpy(info64
->lo_encrypt_key
, info
.lo_encrypt_key
, LO_KEY_SIZE
);
1396 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1397 * - noinlined to reduce stack space usage in main part of driver
1400 loop_info64_to_compat(const struct loop_info64
*info64
,
1401 struct compat_loop_info __user
*arg
)
1403 struct compat_loop_info info
;
1405 memset(&info
, 0, sizeof(info
));
1406 info
.lo_number
= info64
->lo_number
;
1407 info
.lo_device
= info64
->lo_device
;
1408 info
.lo_inode
= info64
->lo_inode
;
1409 info
.lo_rdevice
= info64
->lo_rdevice
;
1410 info
.lo_offset
= info64
->lo_offset
;
1411 info
.lo_encrypt_type
= info64
->lo_encrypt_type
;
1412 info
.lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1413 info
.lo_flags
= info64
->lo_flags
;
1414 info
.lo_init
[0] = info64
->lo_init
[0];
1415 info
.lo_init
[1] = info64
->lo_init
[1];
1416 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1417 memcpy(info
.lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1419 memcpy(info
.lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1420 memcpy(info
.lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1422 /* error in case values were truncated */
1423 if (info
.lo_device
!= info64
->lo_device
||
1424 info
.lo_rdevice
!= info64
->lo_rdevice
||
1425 info
.lo_inode
!= info64
->lo_inode
||
1426 info
.lo_offset
!= info64
->lo_offset
||
1427 info
.lo_init
[0] != info64
->lo_init
[0] ||
1428 info
.lo_init
[1] != info64
->lo_init
[1])
1431 if (copy_to_user(arg
, &info
, sizeof(info
)))
1437 loop_set_status_compat(struct loop_device
*lo
,
1438 const struct compat_loop_info __user
*arg
)
1440 struct loop_info64 info64
;
1443 ret
= loop_info64_from_compat(arg
, &info64
);
1446 return loop_set_status(lo
, &info64
);
1450 loop_get_status_compat(struct loop_device
*lo
,
1451 struct compat_loop_info __user
*arg
)
1453 struct loop_info64 info64
;
1459 err
= loop_get_status(lo
, &info64
);
1461 err
= loop_info64_to_compat(&info64
, arg
);
1465 static int lo_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
1466 unsigned int cmd
, unsigned long arg
)
1468 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1472 case LOOP_SET_STATUS
:
1473 mutex_lock(&lo
->lo_ctl_mutex
);
1474 err
= loop_set_status_compat(
1475 lo
, (const struct compat_loop_info __user
*) arg
);
1476 mutex_unlock(&lo
->lo_ctl_mutex
);
1478 case LOOP_GET_STATUS
:
1479 mutex_lock(&lo
->lo_ctl_mutex
);
1480 err
= loop_get_status_compat(
1481 lo
, (struct compat_loop_info __user
*) arg
);
1482 mutex_unlock(&lo
->lo_ctl_mutex
);
1484 case LOOP_SET_CAPACITY
:
1486 case LOOP_GET_STATUS64
:
1487 case LOOP_SET_STATUS64
:
1488 arg
= (unsigned long) compat_ptr(arg
);
1490 case LOOP_CHANGE_FD
:
1491 err
= lo_ioctl(bdev
, mode
, cmd
, arg
);
1501 static int lo_open(struct block_device
*bdev
, fmode_t mode
)
1503 struct loop_device
*lo
;
1506 mutex_lock(&loop_index_mutex
);
1507 lo
= bdev
->bd_disk
->private_data
;
1513 mutex_lock(&lo
->lo_ctl_mutex
);
1515 mutex_unlock(&lo
->lo_ctl_mutex
);
1517 mutex_unlock(&loop_index_mutex
);
1521 static void lo_release(struct gendisk
*disk
, fmode_t mode
)
1523 struct loop_device
*lo
= disk
->private_data
;
1526 mutex_lock(&lo
->lo_ctl_mutex
);
1528 if (--lo
->lo_refcnt
)
1531 if (lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
) {
1533 * In autoclear mode, stop the loop thread
1534 * and remove configuration after last close.
1536 err
= loop_clr_fd(lo
);
1541 * Otherwise keep thread (if running) and config,
1542 * but flush possible ongoing bios in thread.
1548 mutex_unlock(&lo
->lo_ctl_mutex
);
1551 static const struct block_device_operations lo_fops
= {
1552 .owner
= THIS_MODULE
,
1554 .release
= lo_release
,
1556 #ifdef CONFIG_COMPAT
1557 .compat_ioctl
= lo_compat_ioctl
,
1562 * And now the modules code and kernel interface.
1564 static int max_loop
;
1565 module_param(max_loop
, int, S_IRUGO
);
1566 MODULE_PARM_DESC(max_loop
, "Maximum number of loop devices");
1567 module_param(max_part
, int, S_IRUGO
);
1568 MODULE_PARM_DESC(max_part
, "Maximum number of partitions per loop device");
1569 MODULE_LICENSE("GPL");
1570 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR
);
1572 int loop_register_transfer(struct loop_func_table
*funcs
)
1574 unsigned int n
= funcs
->number
;
1576 if (n
>= MAX_LO_CRYPT
|| xfer_funcs
[n
])
1578 xfer_funcs
[n
] = funcs
;
1582 static int unregister_transfer_cb(int id
, void *ptr
, void *data
)
1584 struct loop_device
*lo
= ptr
;
1585 struct loop_func_table
*xfer
= data
;
1587 mutex_lock(&lo
->lo_ctl_mutex
);
1588 if (lo
->lo_encryption
== xfer
)
1589 loop_release_xfer(lo
);
1590 mutex_unlock(&lo
->lo_ctl_mutex
);
1594 int loop_unregister_transfer(int number
)
1596 unsigned int n
= number
;
1597 struct loop_func_table
*xfer
;
1599 if (n
== 0 || n
>= MAX_LO_CRYPT
|| (xfer
= xfer_funcs
[n
]) == NULL
)
1602 xfer_funcs
[n
] = NULL
;
1603 idr_for_each(&loop_index_idr
, &unregister_transfer_cb
, xfer
);
1607 EXPORT_SYMBOL(loop_register_transfer
);
1608 EXPORT_SYMBOL(loop_unregister_transfer
);
1610 static int loop_add(struct loop_device
**l
, int i
)
1612 struct loop_device
*lo
;
1613 struct gendisk
*disk
;
1617 lo
= kzalloc(sizeof(*lo
), GFP_KERNEL
);
1621 /* allocate id, if @id >= 0, we're requesting that specific id */
1623 err
= idr_alloc(&loop_index_idr
, lo
, i
, i
+ 1, GFP_KERNEL
);
1627 err
= idr_alloc(&loop_index_idr
, lo
, 0, 0, GFP_KERNEL
);
1634 lo
->lo_queue
= blk_alloc_queue(GFP_KERNEL
);
1638 disk
= lo
->lo_disk
= alloc_disk(1 << part_shift
);
1640 goto out_free_queue
;
1643 * Disable partition scanning by default. The in-kernel partition
1644 * scanning can be requested individually per-device during its
1645 * setup. Userspace can always add and remove partitions from all
1646 * devices. The needed partition minors are allocated from the
1647 * extended minor space, the main loop device numbers will continue
1648 * to match the loop minors, regardless of the number of partitions
1651 * If max_part is given, partition scanning is globally enabled for
1652 * all loop devices. The minors for the main loop devices will be
1653 * multiples of max_part.
1655 * Note: Global-for-all-devices, set-only-at-init, read-only module
1656 * parameteters like 'max_loop' and 'max_part' make things needlessly
1657 * complicated, are too static, inflexible and may surprise
1658 * userspace tools. Parameters like this in general should be avoided.
1661 disk
->flags
|= GENHD_FL_NO_PART_SCAN
;
1662 disk
->flags
|= GENHD_FL_EXT_DEVT
;
1663 mutex_init(&lo
->lo_ctl_mutex
);
1665 lo
->lo_thread
= NULL
;
1666 init_waitqueue_head(&lo
->lo_event
);
1667 init_waitqueue_head(&lo
->lo_req_wait
);
1668 spin_lock_init(&lo
->lo_lock
);
1669 disk
->major
= LOOP_MAJOR
;
1670 disk
->first_minor
= i
<< part_shift
;
1671 disk
->fops
= &lo_fops
;
1672 disk
->private_data
= lo
;
1673 disk
->queue
= lo
->lo_queue
;
1674 sprintf(disk
->disk_name
, "loop%d", i
);
1677 return lo
->lo_number
;
1680 blk_cleanup_queue(lo
->lo_queue
);
1687 static void loop_remove(struct loop_device
*lo
)
1689 del_gendisk(lo
->lo_disk
);
1690 blk_cleanup_queue(lo
->lo_queue
);
1691 put_disk(lo
->lo_disk
);
1695 static int find_free_cb(int id
, void *ptr
, void *data
)
1697 struct loop_device
*lo
= ptr
;
1698 struct loop_device
**l
= data
;
1700 if (lo
->lo_state
== Lo_unbound
) {
1707 static int loop_lookup(struct loop_device
**l
, int i
)
1709 struct loop_device
*lo
;
1715 err
= idr_for_each(&loop_index_idr
, &find_free_cb
, &lo
);
1718 ret
= lo
->lo_number
;
1723 /* lookup and return a specific i */
1724 lo
= idr_find(&loop_index_idr
, i
);
1727 ret
= lo
->lo_number
;
1733 static struct kobject
*loop_probe(dev_t dev
, int *part
, void *data
)
1735 struct loop_device
*lo
;
1736 struct kobject
*kobj
;
1739 mutex_lock(&loop_index_mutex
);
1740 err
= loop_lookup(&lo
, MINOR(dev
) >> part_shift
);
1742 err
= loop_add(&lo
, MINOR(dev
) >> part_shift
);
1744 kobj
= ERR_PTR(err
);
1746 kobj
= get_disk(lo
->lo_disk
);
1747 mutex_unlock(&loop_index_mutex
);
1753 static long loop_control_ioctl(struct file
*file
, unsigned int cmd
,
1756 struct loop_device
*lo
;
1759 mutex_lock(&loop_index_mutex
);
1762 ret
= loop_lookup(&lo
, parm
);
1767 ret
= loop_add(&lo
, parm
);
1769 case LOOP_CTL_REMOVE
:
1770 ret
= loop_lookup(&lo
, parm
);
1773 mutex_lock(&lo
->lo_ctl_mutex
);
1774 if (lo
->lo_state
!= Lo_unbound
) {
1776 mutex_unlock(&lo
->lo_ctl_mutex
);
1779 if (lo
->lo_refcnt
> 0) {
1781 mutex_unlock(&lo
->lo_ctl_mutex
);
1784 lo
->lo_disk
->private_data
= NULL
;
1785 mutex_unlock(&lo
->lo_ctl_mutex
);
1786 idr_remove(&loop_index_idr
, lo
->lo_number
);
1789 case LOOP_CTL_GET_FREE
:
1790 ret
= loop_lookup(&lo
, -1);
1793 ret
= loop_add(&lo
, -1);
1795 mutex_unlock(&loop_index_mutex
);
1800 static const struct file_operations loop_ctl_fops
= {
1801 .open
= nonseekable_open
,
1802 .unlocked_ioctl
= loop_control_ioctl
,
1803 .compat_ioctl
= loop_control_ioctl
,
1804 .owner
= THIS_MODULE
,
1805 .llseek
= noop_llseek
,
1808 static struct miscdevice loop_misc
= {
1809 .minor
= LOOP_CTRL_MINOR
,
1810 .name
= "loop-control",
1811 .fops
= &loop_ctl_fops
,
1814 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR
);
1815 MODULE_ALIAS("devname:loop-control");
1817 static int __init
loop_init(void)
1820 unsigned long range
;
1821 struct loop_device
*lo
;
1824 err
= misc_register(&loop_misc
);
1830 part_shift
= fls(max_part
);
1833 * Adjust max_part according to part_shift as it is exported
1834 * to user space so that user can decide correct minor number
1835 * if [s]he want to create more devices.
1837 * Note that -1 is required because partition 0 is reserved
1838 * for the whole disk.
1840 max_part
= (1UL << part_shift
) - 1;
1843 if ((1UL << part_shift
) > DISK_MAX_PARTS
) {
1848 if (max_loop
> 1UL << (MINORBITS
- part_shift
)) {
1854 * If max_loop is specified, create that many devices upfront.
1855 * This also becomes a hard limit. If max_loop is not specified,
1856 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1857 * init time. Loop devices can be requested on-demand with the
1858 * /dev/loop-control interface, or be instantiated by accessing
1859 * a 'dead' device node.
1863 range
= max_loop
<< part_shift
;
1865 nr
= CONFIG_BLK_DEV_LOOP_MIN_COUNT
;
1866 range
= 1UL << MINORBITS
;
1869 if (register_blkdev(LOOP_MAJOR
, "loop")) {
1874 blk_register_region(MKDEV(LOOP_MAJOR
, 0), range
,
1875 THIS_MODULE
, loop_probe
, NULL
, NULL
);
1877 /* pre-create number of devices given by config or max_loop */
1878 mutex_lock(&loop_index_mutex
);
1879 for (i
= 0; i
< nr
; i
++)
1881 mutex_unlock(&loop_index_mutex
);
1883 printk(KERN_INFO
"loop: module loaded\n");
1887 misc_deregister(&loop_misc
);
1891 static int loop_exit_cb(int id
, void *ptr
, void *data
)
1893 struct loop_device
*lo
= ptr
;
1899 static void __exit
loop_exit(void)
1901 unsigned long range
;
1903 range
= max_loop
? max_loop
<< part_shift
: 1UL << MINORBITS
;
1905 idr_for_each(&loop_index_idr
, &loop_exit_cb
, NULL
);
1906 idr_destroy(&loop_index_idr
);
1908 blk_unregister_region(MKDEV(LOOP_MAJOR
, 0), range
);
1909 unregister_blkdev(LOOP_MAJOR
, "loop");
1911 misc_deregister(&loop_misc
);
1914 module_init(loop_init
);
1915 module_exit(loop_exit
);
1918 static int __init
max_loop_setup(char *str
)
1920 max_loop
= simple_strtol(str
, NULL
, 0);
1924 __setup("max_loop=", max_loop_setup
);