2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
115 #include <linux/user_namespace.h>
116 #include <linux/static_key.h>
117 #include <linux/memcontrol.h>
118 #include <linux/prefetch.h>
120 #include <asm/uaccess.h>
122 #include <linux/netdevice.h>
123 #include <net/protocol.h>
124 #include <linux/skbuff.h>
125 #include <net/net_namespace.h>
126 #include <net/request_sock.h>
127 #include <net/sock.h>
128 #include <linux/net_tstamp.h>
129 #include <net/xfrm.h>
130 #include <linux/ipsec.h>
131 #include <net/cls_cgroup.h>
132 #include <net/netprio_cgroup.h>
134 #include <linux/filter.h>
136 #include <trace/events/sock.h>
142 #include <net/ll_poll.h>
144 static DEFINE_MUTEX(proto_list_mutex
);
145 static LIST_HEAD(proto_list
);
147 #ifdef CONFIG_MEMCG_KMEM
148 int mem_cgroup_sockets_init(struct mem_cgroup
*memcg
, struct cgroup_subsys
*ss
)
153 mutex_lock(&proto_list_mutex
);
154 list_for_each_entry(proto
, &proto_list
, node
) {
155 if (proto
->init_cgroup
) {
156 ret
= proto
->init_cgroup(memcg
, ss
);
162 mutex_unlock(&proto_list_mutex
);
165 list_for_each_entry_continue_reverse(proto
, &proto_list
, node
)
166 if (proto
->destroy_cgroup
)
167 proto
->destroy_cgroup(memcg
);
168 mutex_unlock(&proto_list_mutex
);
172 void mem_cgroup_sockets_destroy(struct mem_cgroup
*memcg
)
176 mutex_lock(&proto_list_mutex
);
177 list_for_each_entry_reverse(proto
, &proto_list
, node
)
178 if (proto
->destroy_cgroup
)
179 proto
->destroy_cgroup(memcg
);
180 mutex_unlock(&proto_list_mutex
);
185 * Each address family might have different locking rules, so we have
186 * one slock key per address family:
188 static struct lock_class_key af_family_keys
[AF_MAX
];
189 static struct lock_class_key af_family_slock_keys
[AF_MAX
];
191 #if defined(CONFIG_MEMCG_KMEM)
192 struct static_key memcg_socket_limit_enabled
;
193 EXPORT_SYMBOL(memcg_socket_limit_enabled
);
197 * Make lock validator output more readable. (we pre-construct these
198 * strings build-time, so that runtime initialization of socket
201 static const char *const af_family_key_strings
[AF_MAX
+1] = {
202 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
203 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
204 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
205 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
206 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
207 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
208 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
209 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
210 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
211 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
212 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
213 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
214 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
215 "sk_lock-AF_NFC" , "sk_lock-AF_VSOCK" , "sk_lock-AF_MAX"
217 static const char *const af_family_slock_key_strings
[AF_MAX
+1] = {
218 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
219 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
220 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
221 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
222 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
223 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
224 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
225 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
226 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
227 "slock-27" , "slock-28" , "slock-AF_CAN" ,
228 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
229 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
230 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
231 "slock-AF_NFC" , "slock-AF_VSOCK" ,"slock-AF_MAX"
233 static const char *const af_family_clock_key_strings
[AF_MAX
+1] = {
234 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
235 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
236 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
237 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
238 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
239 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
240 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
241 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
242 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
243 "clock-27" , "clock-28" , "clock-AF_CAN" ,
244 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
245 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
246 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
247 "clock-AF_NFC" , "clock-AF_VSOCK" , "clock-AF_MAX"
251 * sk_callback_lock locking rules are per-address-family,
252 * so split the lock classes by using a per-AF key:
254 static struct lock_class_key af_callback_keys
[AF_MAX
];
256 /* Take into consideration the size of the struct sk_buff overhead in the
257 * determination of these values, since that is non-constant across
258 * platforms. This makes socket queueing behavior and performance
259 * not depend upon such differences.
261 #define _SK_MEM_PACKETS 256
262 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
263 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
264 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
266 /* Run time adjustable parameters. */
267 __u32 sysctl_wmem_max __read_mostly
= SK_WMEM_MAX
;
268 EXPORT_SYMBOL(sysctl_wmem_max
);
269 __u32 sysctl_rmem_max __read_mostly
= SK_RMEM_MAX
;
270 EXPORT_SYMBOL(sysctl_rmem_max
);
271 __u32 sysctl_wmem_default __read_mostly
= SK_WMEM_MAX
;
272 __u32 sysctl_rmem_default __read_mostly
= SK_RMEM_MAX
;
274 /* Maximal space eaten by iovec or ancillary data plus some space */
275 int sysctl_optmem_max __read_mostly
= sizeof(unsigned long)*(2*UIO_MAXIOV
+512);
276 EXPORT_SYMBOL(sysctl_optmem_max
);
278 struct static_key memalloc_socks
= STATIC_KEY_INIT_FALSE
;
279 EXPORT_SYMBOL_GPL(memalloc_socks
);
282 * sk_set_memalloc - sets %SOCK_MEMALLOC
283 * @sk: socket to set it on
285 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
286 * It's the responsibility of the admin to adjust min_free_kbytes
287 * to meet the requirements
289 void sk_set_memalloc(struct sock
*sk
)
291 sock_set_flag(sk
, SOCK_MEMALLOC
);
292 sk
->sk_allocation
|= __GFP_MEMALLOC
;
293 static_key_slow_inc(&memalloc_socks
);
295 EXPORT_SYMBOL_GPL(sk_set_memalloc
);
297 void sk_clear_memalloc(struct sock
*sk
)
299 sock_reset_flag(sk
, SOCK_MEMALLOC
);
300 sk
->sk_allocation
&= ~__GFP_MEMALLOC
;
301 static_key_slow_dec(&memalloc_socks
);
304 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
305 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
306 * it has rmem allocations there is a risk that the user of the
307 * socket cannot make forward progress due to exceeding the rmem
308 * limits. By rights, sk_clear_memalloc() should only be called
309 * on sockets being torn down but warn and reset the accounting if
310 * that assumption breaks.
312 if (WARN_ON(sk
->sk_forward_alloc
))
315 EXPORT_SYMBOL_GPL(sk_clear_memalloc
);
317 int __sk_backlog_rcv(struct sock
*sk
, struct sk_buff
*skb
)
320 unsigned long pflags
= current
->flags
;
322 /* these should have been dropped before queueing */
323 BUG_ON(!sock_flag(sk
, SOCK_MEMALLOC
));
325 current
->flags
|= PF_MEMALLOC
;
326 ret
= sk
->sk_backlog_rcv(sk
, skb
);
327 tsk_restore_flags(current
, pflags
, PF_MEMALLOC
);
331 EXPORT_SYMBOL(__sk_backlog_rcv
);
333 static int sock_set_timeout(long *timeo_p
, char __user
*optval
, int optlen
)
337 if (optlen
< sizeof(tv
))
339 if (copy_from_user(&tv
, optval
, sizeof(tv
)))
341 if (tv
.tv_usec
< 0 || tv
.tv_usec
>= USEC_PER_SEC
)
345 static int warned __read_mostly
;
348 if (warned
< 10 && net_ratelimit()) {
350 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
351 __func__
, current
->comm
, task_pid_nr(current
));
355 *timeo_p
= MAX_SCHEDULE_TIMEOUT
;
356 if (tv
.tv_sec
== 0 && tv
.tv_usec
== 0)
358 if (tv
.tv_sec
< (MAX_SCHEDULE_TIMEOUT
/HZ
- 1))
359 *timeo_p
= tv
.tv_sec
*HZ
+ (tv
.tv_usec
+(1000000/HZ
-1))/(1000000/HZ
);
363 static void sock_warn_obsolete_bsdism(const char *name
)
366 static char warncomm
[TASK_COMM_LEN
];
367 if (strcmp(warncomm
, current
->comm
) && warned
< 5) {
368 strcpy(warncomm
, current
->comm
);
369 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
375 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
377 static void sock_disable_timestamp(struct sock
*sk
, unsigned long flags
)
379 if (sk
->sk_flags
& flags
) {
380 sk
->sk_flags
&= ~flags
;
381 if (!(sk
->sk_flags
& SK_FLAGS_TIMESTAMP
))
382 net_disable_timestamp();
387 int sock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
392 struct sk_buff_head
*list
= &sk
->sk_receive_queue
;
394 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
) {
395 atomic_inc(&sk
->sk_drops
);
396 trace_sock_rcvqueue_full(sk
, skb
);
400 err
= sk_filter(sk
, skb
);
404 if (!sk_rmem_schedule(sk
, skb
, skb
->truesize
)) {
405 atomic_inc(&sk
->sk_drops
);
410 skb_set_owner_r(skb
, sk
);
412 /* Cache the SKB length before we tack it onto the receive
413 * queue. Once it is added it no longer belongs to us and
414 * may be freed by other threads of control pulling packets
419 /* we escape from rcu protected region, make sure we dont leak
424 spin_lock_irqsave(&list
->lock
, flags
);
425 skb
->dropcount
= atomic_read(&sk
->sk_drops
);
426 __skb_queue_tail(list
, skb
);
427 spin_unlock_irqrestore(&list
->lock
, flags
);
429 if (!sock_flag(sk
, SOCK_DEAD
))
430 sk
->sk_data_ready(sk
, skb_len
);
433 EXPORT_SYMBOL(sock_queue_rcv_skb
);
435 int sk_receive_skb(struct sock
*sk
, struct sk_buff
*skb
, const int nested
)
437 int rc
= NET_RX_SUCCESS
;
439 if (sk_filter(sk
, skb
))
440 goto discard_and_relse
;
444 if (sk_rcvqueues_full(sk
, skb
, sk
->sk_rcvbuf
)) {
445 atomic_inc(&sk
->sk_drops
);
446 goto discard_and_relse
;
449 bh_lock_sock_nested(sk
);
452 if (!sock_owned_by_user(sk
)) {
454 * trylock + unlock semantics:
456 mutex_acquire(&sk
->sk_lock
.dep_map
, 0, 1, _RET_IP_
);
458 rc
= sk_backlog_rcv(sk
, skb
);
460 mutex_release(&sk
->sk_lock
.dep_map
, 1, _RET_IP_
);
461 } else if (sk_add_backlog(sk
, skb
, sk
->sk_rcvbuf
)) {
463 atomic_inc(&sk
->sk_drops
);
464 goto discard_and_relse
;
475 EXPORT_SYMBOL(sk_receive_skb
);
477 void sk_reset_txq(struct sock
*sk
)
479 sk_tx_queue_clear(sk
);
481 EXPORT_SYMBOL(sk_reset_txq
);
483 struct dst_entry
*__sk_dst_check(struct sock
*sk
, u32 cookie
)
485 struct dst_entry
*dst
= __sk_dst_get(sk
);
487 if (dst
&& dst
->obsolete
&& dst
->ops
->check(dst
, cookie
) == NULL
) {
488 sk_tx_queue_clear(sk
);
489 RCU_INIT_POINTER(sk
->sk_dst_cache
, NULL
);
496 EXPORT_SYMBOL(__sk_dst_check
);
498 struct dst_entry
*sk_dst_check(struct sock
*sk
, u32 cookie
)
500 struct dst_entry
*dst
= sk_dst_get(sk
);
502 if (dst
&& dst
->obsolete
&& dst
->ops
->check(dst
, cookie
) == NULL
) {
510 EXPORT_SYMBOL(sk_dst_check
);
512 static int sock_setbindtodevice(struct sock
*sk
, char __user
*optval
,
515 int ret
= -ENOPROTOOPT
;
516 #ifdef CONFIG_NETDEVICES
517 struct net
*net
= sock_net(sk
);
518 char devname
[IFNAMSIZ
];
523 if (!ns_capable(net
->user_ns
, CAP_NET_RAW
))
530 /* Bind this socket to a particular device like "eth0",
531 * as specified in the passed interface name. If the
532 * name is "" or the option length is zero the socket
535 if (optlen
> IFNAMSIZ
- 1)
536 optlen
= IFNAMSIZ
- 1;
537 memset(devname
, 0, sizeof(devname
));
540 if (copy_from_user(devname
, optval
, optlen
))
544 if (devname
[0] != '\0') {
545 struct net_device
*dev
;
548 dev
= dev_get_by_name_rcu(net
, devname
);
550 index
= dev
->ifindex
;
558 sk
->sk_bound_dev_if
= index
;
570 static int sock_getbindtodevice(struct sock
*sk
, char __user
*optval
,
571 int __user
*optlen
, int len
)
573 int ret
= -ENOPROTOOPT
;
574 #ifdef CONFIG_NETDEVICES
575 struct net
*net
= sock_net(sk
);
576 struct net_device
*dev
;
577 char devname
[IFNAMSIZ
];
580 if (sk
->sk_bound_dev_if
== 0) {
590 seq
= read_seqcount_begin(&devnet_rename_seq
);
592 dev
= dev_get_by_index_rcu(net
, sk
->sk_bound_dev_if
);
599 strcpy(devname
, dev
->name
);
601 if (read_seqcount_retry(&devnet_rename_seq
, seq
))
604 len
= strlen(devname
) + 1;
607 if (copy_to_user(optval
, devname
, len
))
612 if (put_user(len
, optlen
))
623 static inline void sock_valbool_flag(struct sock
*sk
, int bit
, int valbool
)
626 sock_set_flag(sk
, bit
);
628 sock_reset_flag(sk
, bit
);
632 * This is meant for all protocols to use and covers goings on
633 * at the socket level. Everything here is generic.
636 int sock_setsockopt(struct socket
*sock
, int level
, int optname
,
637 char __user
*optval
, unsigned int optlen
)
639 struct sock
*sk
= sock
->sk
;
646 * Options without arguments
649 if (optname
== SO_BINDTODEVICE
)
650 return sock_setbindtodevice(sk
, optval
, optlen
);
652 if (optlen
< sizeof(int))
655 if (get_user(val
, (int __user
*)optval
))
658 valbool
= val
? 1 : 0;
664 if (val
&& !capable(CAP_NET_ADMIN
))
667 sock_valbool_flag(sk
, SOCK_DBG
, valbool
);
670 sk
->sk_reuse
= (valbool
? SK_CAN_REUSE
: SK_NO_REUSE
);
673 sk
->sk_reuseport
= valbool
;
682 sock_valbool_flag(sk
, SOCK_LOCALROUTE
, valbool
);
685 sock_valbool_flag(sk
, SOCK_BROADCAST
, valbool
);
688 /* Don't error on this BSD doesn't and if you think
689 * about it this is right. Otherwise apps have to
690 * play 'guess the biggest size' games. RCVBUF/SNDBUF
691 * are treated in BSD as hints
693 val
= min_t(u32
, val
, sysctl_wmem_max
);
695 sk
->sk_userlocks
|= SOCK_SNDBUF_LOCK
;
696 sk
->sk_sndbuf
= max_t(u32
, val
* 2, SOCK_MIN_SNDBUF
);
697 /* Wake up sending tasks if we upped the value. */
698 sk
->sk_write_space(sk
);
702 if (!capable(CAP_NET_ADMIN
)) {
709 /* Don't error on this BSD doesn't and if you think
710 * about it this is right. Otherwise apps have to
711 * play 'guess the biggest size' games. RCVBUF/SNDBUF
712 * are treated in BSD as hints
714 val
= min_t(u32
, val
, sysctl_rmem_max
);
716 sk
->sk_userlocks
|= SOCK_RCVBUF_LOCK
;
718 * We double it on the way in to account for
719 * "struct sk_buff" etc. overhead. Applications
720 * assume that the SO_RCVBUF setting they make will
721 * allow that much actual data to be received on that
724 * Applications are unaware that "struct sk_buff" and
725 * other overheads allocate from the receive buffer
726 * during socket buffer allocation.
728 * And after considering the possible alternatives,
729 * returning the value we actually used in getsockopt
730 * is the most desirable behavior.
732 sk
->sk_rcvbuf
= max_t(u32
, val
* 2, SOCK_MIN_RCVBUF
);
736 if (!capable(CAP_NET_ADMIN
)) {
744 if (sk
->sk_protocol
== IPPROTO_TCP
&&
745 sk
->sk_type
== SOCK_STREAM
)
746 tcp_set_keepalive(sk
, valbool
);
748 sock_valbool_flag(sk
, SOCK_KEEPOPEN
, valbool
);
752 sock_valbool_flag(sk
, SOCK_URGINLINE
, valbool
);
756 sk
->sk_no_check
= valbool
;
760 if ((val
>= 0 && val
<= 6) ||
761 ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
))
762 sk
->sk_priority
= val
;
768 if (optlen
< sizeof(ling
)) {
769 ret
= -EINVAL
; /* 1003.1g */
772 if (copy_from_user(&ling
, optval
, sizeof(ling
))) {
777 sock_reset_flag(sk
, SOCK_LINGER
);
779 #if (BITS_PER_LONG == 32)
780 if ((unsigned int)ling
.l_linger
>= MAX_SCHEDULE_TIMEOUT
/HZ
)
781 sk
->sk_lingertime
= MAX_SCHEDULE_TIMEOUT
;
784 sk
->sk_lingertime
= (unsigned int)ling
.l_linger
* HZ
;
785 sock_set_flag(sk
, SOCK_LINGER
);
790 sock_warn_obsolete_bsdism("setsockopt");
795 set_bit(SOCK_PASSCRED
, &sock
->flags
);
797 clear_bit(SOCK_PASSCRED
, &sock
->flags
);
803 if (optname
== SO_TIMESTAMP
)
804 sock_reset_flag(sk
, SOCK_RCVTSTAMPNS
);
806 sock_set_flag(sk
, SOCK_RCVTSTAMPNS
);
807 sock_set_flag(sk
, SOCK_RCVTSTAMP
);
808 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
810 sock_reset_flag(sk
, SOCK_RCVTSTAMP
);
811 sock_reset_flag(sk
, SOCK_RCVTSTAMPNS
);
815 case SO_TIMESTAMPING
:
816 if (val
& ~SOF_TIMESTAMPING_MASK
) {
820 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_TX_HARDWARE
,
821 val
& SOF_TIMESTAMPING_TX_HARDWARE
);
822 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_TX_SOFTWARE
,
823 val
& SOF_TIMESTAMPING_TX_SOFTWARE
);
824 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_RX_HARDWARE
,
825 val
& SOF_TIMESTAMPING_RX_HARDWARE
);
826 if (val
& SOF_TIMESTAMPING_RX_SOFTWARE
)
827 sock_enable_timestamp(sk
,
828 SOCK_TIMESTAMPING_RX_SOFTWARE
);
830 sock_disable_timestamp(sk
,
831 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE
));
832 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_SOFTWARE
,
833 val
& SOF_TIMESTAMPING_SOFTWARE
);
834 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_SYS_HARDWARE
,
835 val
& SOF_TIMESTAMPING_SYS_HARDWARE
);
836 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_RAW_HARDWARE
,
837 val
& SOF_TIMESTAMPING_RAW_HARDWARE
);
843 sk
->sk_rcvlowat
= val
? : 1;
847 ret
= sock_set_timeout(&sk
->sk_rcvtimeo
, optval
, optlen
);
851 ret
= sock_set_timeout(&sk
->sk_sndtimeo
, optval
, optlen
);
854 case SO_ATTACH_FILTER
:
856 if (optlen
== sizeof(struct sock_fprog
)) {
857 struct sock_fprog fprog
;
860 if (copy_from_user(&fprog
, optval
, sizeof(fprog
)))
863 ret
= sk_attach_filter(&fprog
, sk
);
867 case SO_DETACH_FILTER
:
868 ret
= sk_detach_filter(sk
);
872 if (sock_flag(sk
, SOCK_FILTER_LOCKED
) && !valbool
)
875 sock_valbool_flag(sk
, SOCK_FILTER_LOCKED
, valbool
);
880 set_bit(SOCK_PASSSEC
, &sock
->flags
);
882 clear_bit(SOCK_PASSSEC
, &sock
->flags
);
885 if (!ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
))
891 /* We implement the SO_SNDLOWAT etc to
892 not be settable (1003.1g 5.3) */
894 sock_valbool_flag(sk
, SOCK_RXQ_OVFL
, valbool
);
898 sock_valbool_flag(sk
, SOCK_WIFI_STATUS
, valbool
);
902 if (sock
->ops
->set_peek_off
)
903 sock
->ops
->set_peek_off(sk
, val
);
909 sock_valbool_flag(sk
, SOCK_NOFCS
, valbool
);
912 case SO_SELECT_ERR_QUEUE
:
913 sock_valbool_flag(sk
, SOCK_SELECT_ERR_QUEUE
, valbool
);
923 EXPORT_SYMBOL(sock_setsockopt
);
926 void cred_to_ucred(struct pid
*pid
, const struct cred
*cred
,
929 ucred
->pid
= pid_vnr(pid
);
930 ucred
->uid
= ucred
->gid
= -1;
932 struct user_namespace
*current_ns
= current_user_ns();
934 ucred
->uid
= from_kuid_munged(current_ns
, cred
->euid
);
935 ucred
->gid
= from_kgid_munged(current_ns
, cred
->egid
);
938 EXPORT_SYMBOL_GPL(cred_to_ucred
);
940 int sock_getsockopt(struct socket
*sock
, int level
, int optname
,
941 char __user
*optval
, int __user
*optlen
)
943 struct sock
*sk
= sock
->sk
;
951 int lv
= sizeof(int);
954 if (get_user(len
, optlen
))
959 memset(&v
, 0, sizeof(v
));
963 v
.val
= sock_flag(sk
, SOCK_DBG
);
967 v
.val
= sock_flag(sk
, SOCK_LOCALROUTE
);
971 v
.val
= sock_flag(sk
, SOCK_BROADCAST
);
975 v
.val
= sk
->sk_sndbuf
;
979 v
.val
= sk
->sk_rcvbuf
;
983 v
.val
= sk
->sk_reuse
;
987 v
.val
= sk
->sk_reuseport
;
991 v
.val
= sock_flag(sk
, SOCK_KEEPOPEN
);
999 v
.val
= sk
->sk_protocol
;
1003 v
.val
= sk
->sk_family
;
1007 v
.val
= -sock_error(sk
);
1009 v
.val
= xchg(&sk
->sk_err_soft
, 0);
1013 v
.val
= sock_flag(sk
, SOCK_URGINLINE
);
1017 v
.val
= sk
->sk_no_check
;
1021 v
.val
= sk
->sk_priority
;
1025 lv
= sizeof(v
.ling
);
1026 v
.ling
.l_onoff
= sock_flag(sk
, SOCK_LINGER
);
1027 v
.ling
.l_linger
= sk
->sk_lingertime
/ HZ
;
1031 sock_warn_obsolete_bsdism("getsockopt");
1035 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMP
) &&
1036 !sock_flag(sk
, SOCK_RCVTSTAMPNS
);
1039 case SO_TIMESTAMPNS
:
1040 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMPNS
);
1043 case SO_TIMESTAMPING
:
1045 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_HARDWARE
))
1046 v
.val
|= SOF_TIMESTAMPING_TX_HARDWARE
;
1047 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_SOFTWARE
))
1048 v
.val
|= SOF_TIMESTAMPING_TX_SOFTWARE
;
1049 if (sock_flag(sk
, SOCK_TIMESTAMPING_RX_HARDWARE
))
1050 v
.val
|= SOF_TIMESTAMPING_RX_HARDWARE
;
1051 if (sock_flag(sk
, SOCK_TIMESTAMPING_RX_SOFTWARE
))
1052 v
.val
|= SOF_TIMESTAMPING_RX_SOFTWARE
;
1053 if (sock_flag(sk
, SOCK_TIMESTAMPING_SOFTWARE
))
1054 v
.val
|= SOF_TIMESTAMPING_SOFTWARE
;
1055 if (sock_flag(sk
, SOCK_TIMESTAMPING_SYS_HARDWARE
))
1056 v
.val
|= SOF_TIMESTAMPING_SYS_HARDWARE
;
1057 if (sock_flag(sk
, SOCK_TIMESTAMPING_RAW_HARDWARE
))
1058 v
.val
|= SOF_TIMESTAMPING_RAW_HARDWARE
;
1062 lv
= sizeof(struct timeval
);
1063 if (sk
->sk_rcvtimeo
== MAX_SCHEDULE_TIMEOUT
) {
1067 v
.tm
.tv_sec
= sk
->sk_rcvtimeo
/ HZ
;
1068 v
.tm
.tv_usec
= ((sk
->sk_rcvtimeo
% HZ
) * 1000000) / HZ
;
1073 lv
= sizeof(struct timeval
);
1074 if (sk
->sk_sndtimeo
== MAX_SCHEDULE_TIMEOUT
) {
1078 v
.tm
.tv_sec
= sk
->sk_sndtimeo
/ HZ
;
1079 v
.tm
.tv_usec
= ((sk
->sk_sndtimeo
% HZ
) * 1000000) / HZ
;
1084 v
.val
= sk
->sk_rcvlowat
;
1092 v
.val
= !!test_bit(SOCK_PASSCRED
, &sock
->flags
);
1097 struct ucred peercred
;
1098 if (len
> sizeof(peercred
))
1099 len
= sizeof(peercred
);
1100 cred_to_ucred(sk
->sk_peer_pid
, sk
->sk_peer_cred
, &peercred
);
1101 if (copy_to_user(optval
, &peercred
, len
))
1110 if (sock
->ops
->getname(sock
, (struct sockaddr
*)address
, &lv
, 2))
1114 if (copy_to_user(optval
, address
, len
))
1119 /* Dubious BSD thing... Probably nobody even uses it, but
1120 * the UNIX standard wants it for whatever reason... -DaveM
1123 v
.val
= sk
->sk_state
== TCP_LISTEN
;
1127 v
.val
= !!test_bit(SOCK_PASSSEC
, &sock
->flags
);
1131 return security_socket_getpeersec_stream(sock
, optval
, optlen
, len
);
1134 v
.val
= sk
->sk_mark
;
1138 v
.val
= sock_flag(sk
, SOCK_RXQ_OVFL
);
1141 case SO_WIFI_STATUS
:
1142 v
.val
= sock_flag(sk
, SOCK_WIFI_STATUS
);
1146 if (!sock
->ops
->set_peek_off
)
1149 v
.val
= sk
->sk_peek_off
;
1152 v
.val
= sock_flag(sk
, SOCK_NOFCS
);
1155 case SO_BINDTODEVICE
:
1156 return sock_getbindtodevice(sk
, optval
, optlen
, len
);
1159 len
= sk_get_filter(sk
, (struct sock_filter __user
*)optval
, len
);
1165 case SO_LOCK_FILTER
:
1166 v
.val
= sock_flag(sk
, SOCK_FILTER_LOCKED
);
1169 case SO_SELECT_ERR_QUEUE
:
1170 v
.val
= sock_flag(sk
, SOCK_SELECT_ERR_QUEUE
);
1174 return -ENOPROTOOPT
;
1179 if (copy_to_user(optval
, &v
, len
))
1182 if (put_user(len
, optlen
))
1188 * Initialize an sk_lock.
1190 * (We also register the sk_lock with the lock validator.)
1192 static inline void sock_lock_init(struct sock
*sk
)
1194 sock_lock_init_class_and_name(sk
,
1195 af_family_slock_key_strings
[sk
->sk_family
],
1196 af_family_slock_keys
+ sk
->sk_family
,
1197 af_family_key_strings
[sk
->sk_family
],
1198 af_family_keys
+ sk
->sk_family
);
1202 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1203 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1204 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1206 static void sock_copy(struct sock
*nsk
, const struct sock
*osk
)
1208 #ifdef CONFIG_SECURITY_NETWORK
1209 void *sptr
= nsk
->sk_security
;
1211 memcpy(nsk
, osk
, offsetof(struct sock
, sk_dontcopy_begin
));
1213 memcpy(&nsk
->sk_dontcopy_end
, &osk
->sk_dontcopy_end
,
1214 osk
->sk_prot
->obj_size
- offsetof(struct sock
, sk_dontcopy_end
));
1216 #ifdef CONFIG_SECURITY_NETWORK
1217 nsk
->sk_security
= sptr
;
1218 security_sk_clone(osk
, nsk
);
1222 void sk_prot_clear_portaddr_nulls(struct sock
*sk
, int size
)
1224 unsigned long nulls1
, nulls2
;
1226 nulls1
= offsetof(struct sock
, __sk_common
.skc_node
.next
);
1227 nulls2
= offsetof(struct sock
, __sk_common
.skc_portaddr_node
.next
);
1228 if (nulls1
> nulls2
)
1229 swap(nulls1
, nulls2
);
1232 memset((char *)sk
, 0, nulls1
);
1233 memset((char *)sk
+ nulls1
+ sizeof(void *), 0,
1234 nulls2
- nulls1
- sizeof(void *));
1235 memset((char *)sk
+ nulls2
+ sizeof(void *), 0,
1236 size
- nulls2
- sizeof(void *));
1238 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls
);
1240 static struct sock
*sk_prot_alloc(struct proto
*prot
, gfp_t priority
,
1244 struct kmem_cache
*slab
;
1248 sk
= kmem_cache_alloc(slab
, priority
& ~__GFP_ZERO
);
1251 if (priority
& __GFP_ZERO
) {
1253 prot
->clear_sk(sk
, prot
->obj_size
);
1255 sk_prot_clear_nulls(sk
, prot
->obj_size
);
1258 sk
= kmalloc(prot
->obj_size
, priority
);
1261 kmemcheck_annotate_bitfield(sk
, flags
);
1263 if (security_sk_alloc(sk
, family
, priority
))
1266 if (!try_module_get(prot
->owner
))
1268 sk_tx_queue_clear(sk
);
1274 security_sk_free(sk
);
1277 kmem_cache_free(slab
, sk
);
1283 static void sk_prot_free(struct proto
*prot
, struct sock
*sk
)
1285 struct kmem_cache
*slab
;
1286 struct module
*owner
;
1288 owner
= prot
->owner
;
1291 security_sk_free(sk
);
1293 kmem_cache_free(slab
, sk
);
1299 #if IS_ENABLED(CONFIG_NET_CLS_CGROUP)
1300 void sock_update_classid(struct sock
*sk
)
1304 classid
= task_cls_classid(current
);
1305 if (classid
!= sk
->sk_classid
)
1306 sk
->sk_classid
= classid
;
1308 EXPORT_SYMBOL(sock_update_classid
);
1311 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1312 void sock_update_netprioidx(struct sock
*sk
)
1317 sk
->sk_cgrp_prioidx
= task_netprioidx(current
);
1319 EXPORT_SYMBOL_GPL(sock_update_netprioidx
);
1323 * sk_alloc - All socket objects are allocated here
1324 * @net: the applicable net namespace
1325 * @family: protocol family
1326 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1327 * @prot: struct proto associated with this new sock instance
1329 struct sock
*sk_alloc(struct net
*net
, int family
, gfp_t priority
,
1334 sk
= sk_prot_alloc(prot
, priority
| __GFP_ZERO
, family
);
1336 sk
->sk_family
= family
;
1338 * See comment in struct sock definition to understand
1339 * why we need sk_prot_creator -acme
1341 sk
->sk_prot
= sk
->sk_prot_creator
= prot
;
1343 sock_net_set(sk
, get_net(net
));
1344 atomic_set(&sk
->sk_wmem_alloc
, 1);
1346 sock_update_classid(sk
);
1347 sock_update_netprioidx(sk
);
1352 EXPORT_SYMBOL(sk_alloc
);
1354 static void __sk_free(struct sock
*sk
)
1356 struct sk_filter
*filter
;
1358 if (sk
->sk_destruct
)
1359 sk
->sk_destruct(sk
);
1361 filter
= rcu_dereference_check(sk
->sk_filter
,
1362 atomic_read(&sk
->sk_wmem_alloc
) == 0);
1364 sk_filter_uncharge(sk
, filter
);
1365 RCU_INIT_POINTER(sk
->sk_filter
, NULL
);
1368 sock_disable_timestamp(sk
, SK_FLAGS_TIMESTAMP
);
1370 if (atomic_read(&sk
->sk_omem_alloc
))
1371 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1372 __func__
, atomic_read(&sk
->sk_omem_alloc
));
1374 if (sk
->sk_peer_cred
)
1375 put_cred(sk
->sk_peer_cred
);
1376 put_pid(sk
->sk_peer_pid
);
1377 put_net(sock_net(sk
));
1378 sk_prot_free(sk
->sk_prot_creator
, sk
);
1381 void sk_free(struct sock
*sk
)
1384 * We subtract one from sk_wmem_alloc and can know if
1385 * some packets are still in some tx queue.
1386 * If not null, sock_wfree() will call __sk_free(sk) later
1388 if (atomic_dec_and_test(&sk
->sk_wmem_alloc
))
1391 EXPORT_SYMBOL(sk_free
);
1394 * Last sock_put should drop reference to sk->sk_net. It has already
1395 * been dropped in sk_change_net. Taking reference to stopping namespace
1397 * Take reference to a socket to remove it from hash _alive_ and after that
1398 * destroy it in the context of init_net.
1400 void sk_release_kernel(struct sock
*sk
)
1402 if (sk
== NULL
|| sk
->sk_socket
== NULL
)
1406 sock_release(sk
->sk_socket
);
1407 release_net(sock_net(sk
));
1408 sock_net_set(sk
, get_net(&init_net
));
1411 EXPORT_SYMBOL(sk_release_kernel
);
1413 static void sk_update_clone(const struct sock
*sk
, struct sock
*newsk
)
1415 if (mem_cgroup_sockets_enabled
&& sk
->sk_cgrp
)
1416 sock_update_memcg(newsk
);
1420 * sk_clone_lock - clone a socket, and lock its clone
1421 * @sk: the socket to clone
1422 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1424 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1426 struct sock
*sk_clone_lock(const struct sock
*sk
, const gfp_t priority
)
1430 newsk
= sk_prot_alloc(sk
->sk_prot
, priority
, sk
->sk_family
);
1431 if (newsk
!= NULL
) {
1432 struct sk_filter
*filter
;
1434 sock_copy(newsk
, sk
);
1437 get_net(sock_net(newsk
));
1438 sk_node_init(&newsk
->sk_node
);
1439 sock_lock_init(newsk
);
1440 bh_lock_sock(newsk
);
1441 newsk
->sk_backlog
.head
= newsk
->sk_backlog
.tail
= NULL
;
1442 newsk
->sk_backlog
.len
= 0;
1444 atomic_set(&newsk
->sk_rmem_alloc
, 0);
1446 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1448 atomic_set(&newsk
->sk_wmem_alloc
, 1);
1449 atomic_set(&newsk
->sk_omem_alloc
, 0);
1450 skb_queue_head_init(&newsk
->sk_receive_queue
);
1451 skb_queue_head_init(&newsk
->sk_write_queue
);
1452 #ifdef CONFIG_NET_DMA
1453 skb_queue_head_init(&newsk
->sk_async_wait_queue
);
1456 spin_lock_init(&newsk
->sk_dst_lock
);
1457 rwlock_init(&newsk
->sk_callback_lock
);
1458 lockdep_set_class_and_name(&newsk
->sk_callback_lock
,
1459 af_callback_keys
+ newsk
->sk_family
,
1460 af_family_clock_key_strings
[newsk
->sk_family
]);
1462 newsk
->sk_dst_cache
= NULL
;
1463 newsk
->sk_wmem_queued
= 0;
1464 newsk
->sk_forward_alloc
= 0;
1465 newsk
->sk_send_head
= NULL
;
1466 newsk
->sk_userlocks
= sk
->sk_userlocks
& ~SOCK_BINDPORT_LOCK
;
1468 sock_reset_flag(newsk
, SOCK_DONE
);
1469 skb_queue_head_init(&newsk
->sk_error_queue
);
1471 filter
= rcu_dereference_protected(newsk
->sk_filter
, 1);
1473 sk_filter_charge(newsk
, filter
);
1475 if (unlikely(xfrm_sk_clone_policy(newsk
))) {
1476 /* It is still raw copy of parent, so invalidate
1477 * destructor and make plain sk_free() */
1478 newsk
->sk_destruct
= NULL
;
1479 bh_unlock_sock(newsk
);
1486 newsk
->sk_priority
= 0;
1488 * Before updating sk_refcnt, we must commit prior changes to memory
1489 * (Documentation/RCU/rculist_nulls.txt for details)
1492 atomic_set(&newsk
->sk_refcnt
, 2);
1495 * Increment the counter in the same struct proto as the master
1496 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1497 * is the same as sk->sk_prot->socks, as this field was copied
1500 * This _changes_ the previous behaviour, where
1501 * tcp_create_openreq_child always was incrementing the
1502 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1503 * to be taken into account in all callers. -acme
1505 sk_refcnt_debug_inc(newsk
);
1506 sk_set_socket(newsk
, NULL
);
1507 newsk
->sk_wq
= NULL
;
1509 sk_update_clone(sk
, newsk
);
1511 if (newsk
->sk_prot
->sockets_allocated
)
1512 sk_sockets_allocated_inc(newsk
);
1514 if (newsk
->sk_flags
& SK_FLAGS_TIMESTAMP
)
1515 net_enable_timestamp();
1520 EXPORT_SYMBOL_GPL(sk_clone_lock
);
1522 void sk_setup_caps(struct sock
*sk
, struct dst_entry
*dst
)
1524 __sk_dst_set(sk
, dst
);
1525 sk
->sk_route_caps
= dst
->dev
->features
;
1526 if (sk
->sk_route_caps
& NETIF_F_GSO
)
1527 sk
->sk_route_caps
|= NETIF_F_GSO_SOFTWARE
;
1528 sk
->sk_route_caps
&= ~sk
->sk_route_nocaps
;
1529 if (sk_can_gso(sk
)) {
1530 if (dst
->header_len
) {
1531 sk
->sk_route_caps
&= ~NETIF_F_GSO_MASK
;
1533 sk
->sk_route_caps
|= NETIF_F_SG
| NETIF_F_HW_CSUM
;
1534 sk
->sk_gso_max_size
= dst
->dev
->gso_max_size
;
1535 sk
->sk_gso_max_segs
= dst
->dev
->gso_max_segs
;
1539 EXPORT_SYMBOL_GPL(sk_setup_caps
);
1542 * Simple resource managers for sockets.
1547 * Write buffer destructor automatically called from kfree_skb.
1549 void sock_wfree(struct sk_buff
*skb
)
1551 struct sock
*sk
= skb
->sk
;
1552 unsigned int len
= skb
->truesize
;
1554 if (!sock_flag(sk
, SOCK_USE_WRITE_QUEUE
)) {
1556 * Keep a reference on sk_wmem_alloc, this will be released
1557 * after sk_write_space() call
1559 atomic_sub(len
- 1, &sk
->sk_wmem_alloc
);
1560 sk
->sk_write_space(sk
);
1564 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1565 * could not do because of in-flight packets
1567 if (atomic_sub_and_test(len
, &sk
->sk_wmem_alloc
))
1570 EXPORT_SYMBOL(sock_wfree
);
1573 * Read buffer destructor automatically called from kfree_skb.
1575 void sock_rfree(struct sk_buff
*skb
)
1577 struct sock
*sk
= skb
->sk
;
1578 unsigned int len
= skb
->truesize
;
1580 atomic_sub(len
, &sk
->sk_rmem_alloc
);
1581 sk_mem_uncharge(sk
, len
);
1583 EXPORT_SYMBOL(sock_rfree
);
1585 void sock_edemux(struct sk_buff
*skb
)
1587 struct sock
*sk
= skb
->sk
;
1590 if (sk
->sk_state
== TCP_TIME_WAIT
)
1591 inet_twsk_put(inet_twsk(sk
));
1596 EXPORT_SYMBOL(sock_edemux
);
1598 kuid_t
sock_i_uid(struct sock
*sk
)
1602 read_lock_bh(&sk
->sk_callback_lock
);
1603 uid
= sk
->sk_socket
? SOCK_INODE(sk
->sk_socket
)->i_uid
: GLOBAL_ROOT_UID
;
1604 read_unlock_bh(&sk
->sk_callback_lock
);
1607 EXPORT_SYMBOL(sock_i_uid
);
1609 unsigned long sock_i_ino(struct sock
*sk
)
1613 read_lock_bh(&sk
->sk_callback_lock
);
1614 ino
= sk
->sk_socket
? SOCK_INODE(sk
->sk_socket
)->i_ino
: 0;
1615 read_unlock_bh(&sk
->sk_callback_lock
);
1618 EXPORT_SYMBOL(sock_i_ino
);
1621 * Allocate a skb from the socket's send buffer.
1623 struct sk_buff
*sock_wmalloc(struct sock
*sk
, unsigned long size
, int force
,
1626 if (force
|| atomic_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
) {
1627 struct sk_buff
*skb
= alloc_skb(size
, priority
);
1629 skb_set_owner_w(skb
, sk
);
1635 EXPORT_SYMBOL(sock_wmalloc
);
1638 * Allocate a skb from the socket's receive buffer.
1640 struct sk_buff
*sock_rmalloc(struct sock
*sk
, unsigned long size
, int force
,
1643 if (force
|| atomic_read(&sk
->sk_rmem_alloc
) < sk
->sk_rcvbuf
) {
1644 struct sk_buff
*skb
= alloc_skb(size
, priority
);
1646 skb_set_owner_r(skb
, sk
);
1654 * Allocate a memory block from the socket's option memory buffer.
1656 void *sock_kmalloc(struct sock
*sk
, int size
, gfp_t priority
)
1658 if ((unsigned int)size
<= sysctl_optmem_max
&&
1659 atomic_read(&sk
->sk_omem_alloc
) + size
< sysctl_optmem_max
) {
1661 /* First do the add, to avoid the race if kmalloc
1664 atomic_add(size
, &sk
->sk_omem_alloc
);
1665 mem
= kmalloc(size
, priority
);
1668 atomic_sub(size
, &sk
->sk_omem_alloc
);
1672 EXPORT_SYMBOL(sock_kmalloc
);
1675 * Free an option memory block.
1677 void sock_kfree_s(struct sock
*sk
, void *mem
, int size
)
1680 atomic_sub(size
, &sk
->sk_omem_alloc
);
1682 EXPORT_SYMBOL(sock_kfree_s
);
1684 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1685 I think, these locks should be removed for datagram sockets.
1687 static long sock_wait_for_wmem(struct sock
*sk
, long timeo
)
1691 clear_bit(SOCK_ASYNC_NOSPACE
, &sk
->sk_socket
->flags
);
1695 if (signal_pending(current
))
1697 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1698 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1699 if (atomic_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
)
1701 if (sk
->sk_shutdown
& SEND_SHUTDOWN
)
1705 timeo
= schedule_timeout(timeo
);
1707 finish_wait(sk_sleep(sk
), &wait
);
1713 * Generic send/receive buffer handlers
1716 struct sk_buff
*sock_alloc_send_pskb(struct sock
*sk
, unsigned long header_len
,
1717 unsigned long data_len
, int noblock
,
1720 struct sk_buff
*skb
;
1724 int npages
= (data_len
+ (PAGE_SIZE
- 1)) >> PAGE_SHIFT
;
1727 if (npages
> MAX_SKB_FRAGS
)
1730 gfp_mask
= sk
->sk_allocation
;
1731 if (gfp_mask
& __GFP_WAIT
)
1732 gfp_mask
|= __GFP_REPEAT
;
1734 timeo
= sock_sndtimeo(sk
, noblock
);
1736 err
= sock_error(sk
);
1741 if (sk
->sk_shutdown
& SEND_SHUTDOWN
)
1744 if (atomic_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
) {
1745 skb
= alloc_skb(header_len
, gfp_mask
);
1749 /* No pages, we're done... */
1753 skb
->truesize
+= data_len
;
1754 skb_shinfo(skb
)->nr_frags
= npages
;
1755 for (i
= 0; i
< npages
; i
++) {
1758 page
= alloc_pages(sk
->sk_allocation
, 0);
1761 skb_shinfo(skb
)->nr_frags
= i
;
1766 __skb_fill_page_desc(skb
, i
,
1768 (data_len
>= PAGE_SIZE
?
1771 data_len
-= PAGE_SIZE
;
1774 /* Full success... */
1780 set_bit(SOCK_ASYNC_NOSPACE
, &sk
->sk_socket
->flags
);
1781 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1785 if (signal_pending(current
))
1787 timeo
= sock_wait_for_wmem(sk
, timeo
);
1790 skb_set_owner_w(skb
, sk
);
1794 err
= sock_intr_errno(timeo
);
1799 EXPORT_SYMBOL(sock_alloc_send_pskb
);
1801 struct sk_buff
*sock_alloc_send_skb(struct sock
*sk
, unsigned long size
,
1802 int noblock
, int *errcode
)
1804 return sock_alloc_send_pskb(sk
, size
, 0, noblock
, errcode
);
1806 EXPORT_SYMBOL(sock_alloc_send_skb
);
1808 /* On 32bit arches, an skb frag is limited to 2^15 */
1809 #define SKB_FRAG_PAGE_ORDER get_order(32768)
1811 bool sk_page_frag_refill(struct sock
*sk
, struct page_frag
*pfrag
)
1816 if (atomic_read(&pfrag
->page
->_count
) == 1) {
1820 if (pfrag
->offset
< pfrag
->size
)
1822 put_page(pfrag
->page
);
1825 /* We restrict high order allocations to users that can afford to wait */
1826 order
= (sk
->sk_allocation
& __GFP_WAIT
) ? SKB_FRAG_PAGE_ORDER
: 0;
1829 gfp_t gfp
= sk
->sk_allocation
;
1832 gfp
|= __GFP_COMP
| __GFP_NOWARN
;
1833 pfrag
->page
= alloc_pages(gfp
, order
);
1834 if (likely(pfrag
->page
)) {
1836 pfrag
->size
= PAGE_SIZE
<< order
;
1839 } while (--order
>= 0);
1841 sk_enter_memory_pressure(sk
);
1842 sk_stream_moderate_sndbuf(sk
);
1845 EXPORT_SYMBOL(sk_page_frag_refill
);
1847 static void __lock_sock(struct sock
*sk
)
1848 __releases(&sk
->sk_lock
.slock
)
1849 __acquires(&sk
->sk_lock
.slock
)
1854 prepare_to_wait_exclusive(&sk
->sk_lock
.wq
, &wait
,
1855 TASK_UNINTERRUPTIBLE
);
1856 spin_unlock_bh(&sk
->sk_lock
.slock
);
1858 spin_lock_bh(&sk
->sk_lock
.slock
);
1859 if (!sock_owned_by_user(sk
))
1862 finish_wait(&sk
->sk_lock
.wq
, &wait
);
1865 static void __release_sock(struct sock
*sk
)
1866 __releases(&sk
->sk_lock
.slock
)
1867 __acquires(&sk
->sk_lock
.slock
)
1869 struct sk_buff
*skb
= sk
->sk_backlog
.head
;
1872 sk
->sk_backlog
.head
= sk
->sk_backlog
.tail
= NULL
;
1876 struct sk_buff
*next
= skb
->next
;
1879 WARN_ON_ONCE(skb_dst_is_noref(skb
));
1881 sk_backlog_rcv(sk
, skb
);
1884 * We are in process context here with softirqs
1885 * disabled, use cond_resched_softirq() to preempt.
1886 * This is safe to do because we've taken the backlog
1889 cond_resched_softirq();
1892 } while (skb
!= NULL
);
1895 } while ((skb
= sk
->sk_backlog
.head
) != NULL
);
1898 * Doing the zeroing here guarantee we can not loop forever
1899 * while a wild producer attempts to flood us.
1901 sk
->sk_backlog
.len
= 0;
1905 * sk_wait_data - wait for data to arrive at sk_receive_queue
1906 * @sk: sock to wait on
1907 * @timeo: for how long
1909 * Now socket state including sk->sk_err is changed only under lock,
1910 * hence we may omit checks after joining wait queue.
1911 * We check receive queue before schedule() only as optimization;
1912 * it is very likely that release_sock() added new data.
1914 int sk_wait_data(struct sock
*sk
, long *timeo
)
1919 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1920 set_bit(SOCK_ASYNC_WAITDATA
, &sk
->sk_socket
->flags
);
1921 rc
= sk_wait_event(sk
, timeo
, !skb_queue_empty(&sk
->sk_receive_queue
));
1922 clear_bit(SOCK_ASYNC_WAITDATA
, &sk
->sk_socket
->flags
);
1923 finish_wait(sk_sleep(sk
), &wait
);
1926 EXPORT_SYMBOL(sk_wait_data
);
1929 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1931 * @size: memory size to allocate
1932 * @kind: allocation type
1934 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1935 * rmem allocation. This function assumes that protocols which have
1936 * memory_pressure use sk_wmem_queued as write buffer accounting.
1938 int __sk_mem_schedule(struct sock
*sk
, int size
, int kind
)
1940 struct proto
*prot
= sk
->sk_prot
;
1941 int amt
= sk_mem_pages(size
);
1943 int parent_status
= UNDER_LIMIT
;
1945 sk
->sk_forward_alloc
+= amt
* SK_MEM_QUANTUM
;
1947 allocated
= sk_memory_allocated_add(sk
, amt
, &parent_status
);
1950 if (parent_status
== UNDER_LIMIT
&&
1951 allocated
<= sk_prot_mem_limits(sk
, 0)) {
1952 sk_leave_memory_pressure(sk
);
1956 /* Under pressure. (we or our parents) */
1957 if ((parent_status
> SOFT_LIMIT
) ||
1958 allocated
> sk_prot_mem_limits(sk
, 1))
1959 sk_enter_memory_pressure(sk
);
1961 /* Over hard limit (we or our parents) */
1962 if ((parent_status
== OVER_LIMIT
) ||
1963 (allocated
> sk_prot_mem_limits(sk
, 2)))
1964 goto suppress_allocation
;
1966 /* guarantee minimum buffer size under pressure */
1967 if (kind
== SK_MEM_RECV
) {
1968 if (atomic_read(&sk
->sk_rmem_alloc
) < prot
->sysctl_rmem
[0])
1971 } else { /* SK_MEM_SEND */
1972 if (sk
->sk_type
== SOCK_STREAM
) {
1973 if (sk
->sk_wmem_queued
< prot
->sysctl_wmem
[0])
1975 } else if (atomic_read(&sk
->sk_wmem_alloc
) <
1976 prot
->sysctl_wmem
[0])
1980 if (sk_has_memory_pressure(sk
)) {
1983 if (!sk_under_memory_pressure(sk
))
1985 alloc
= sk_sockets_allocated_read_positive(sk
);
1986 if (sk_prot_mem_limits(sk
, 2) > alloc
*
1987 sk_mem_pages(sk
->sk_wmem_queued
+
1988 atomic_read(&sk
->sk_rmem_alloc
) +
1989 sk
->sk_forward_alloc
))
1993 suppress_allocation
:
1995 if (kind
== SK_MEM_SEND
&& sk
->sk_type
== SOCK_STREAM
) {
1996 sk_stream_moderate_sndbuf(sk
);
1998 /* Fail only if socket is _under_ its sndbuf.
1999 * In this case we cannot block, so that we have to fail.
2001 if (sk
->sk_wmem_queued
+ size
>= sk
->sk_sndbuf
)
2005 trace_sock_exceed_buf_limit(sk
, prot
, allocated
);
2007 /* Alas. Undo changes. */
2008 sk
->sk_forward_alloc
-= amt
* SK_MEM_QUANTUM
;
2010 sk_memory_allocated_sub(sk
, amt
);
2014 EXPORT_SYMBOL(__sk_mem_schedule
);
2017 * __sk_reclaim - reclaim memory_allocated
2020 void __sk_mem_reclaim(struct sock
*sk
)
2022 sk_memory_allocated_sub(sk
,
2023 sk
->sk_forward_alloc
>> SK_MEM_QUANTUM_SHIFT
);
2024 sk
->sk_forward_alloc
&= SK_MEM_QUANTUM
- 1;
2026 if (sk_under_memory_pressure(sk
) &&
2027 (sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)))
2028 sk_leave_memory_pressure(sk
);
2030 EXPORT_SYMBOL(__sk_mem_reclaim
);
2034 * Set of default routines for initialising struct proto_ops when
2035 * the protocol does not support a particular function. In certain
2036 * cases where it makes no sense for a protocol to have a "do nothing"
2037 * function, some default processing is provided.
2040 int sock_no_bind(struct socket
*sock
, struct sockaddr
*saddr
, int len
)
2044 EXPORT_SYMBOL(sock_no_bind
);
2046 int sock_no_connect(struct socket
*sock
, struct sockaddr
*saddr
,
2051 EXPORT_SYMBOL(sock_no_connect
);
2053 int sock_no_socketpair(struct socket
*sock1
, struct socket
*sock2
)
2057 EXPORT_SYMBOL(sock_no_socketpair
);
2059 int sock_no_accept(struct socket
*sock
, struct socket
*newsock
, int flags
)
2063 EXPORT_SYMBOL(sock_no_accept
);
2065 int sock_no_getname(struct socket
*sock
, struct sockaddr
*saddr
,
2070 EXPORT_SYMBOL(sock_no_getname
);
2072 unsigned int sock_no_poll(struct file
*file
, struct socket
*sock
, poll_table
*pt
)
2076 EXPORT_SYMBOL(sock_no_poll
);
2078 int sock_no_ioctl(struct socket
*sock
, unsigned int cmd
, unsigned long arg
)
2082 EXPORT_SYMBOL(sock_no_ioctl
);
2084 int sock_no_listen(struct socket
*sock
, int backlog
)
2088 EXPORT_SYMBOL(sock_no_listen
);
2090 int sock_no_shutdown(struct socket
*sock
, int how
)
2094 EXPORT_SYMBOL(sock_no_shutdown
);
2096 int sock_no_setsockopt(struct socket
*sock
, int level
, int optname
,
2097 char __user
*optval
, unsigned int optlen
)
2101 EXPORT_SYMBOL(sock_no_setsockopt
);
2103 int sock_no_getsockopt(struct socket
*sock
, int level
, int optname
,
2104 char __user
*optval
, int __user
*optlen
)
2108 EXPORT_SYMBOL(sock_no_getsockopt
);
2110 int sock_no_sendmsg(struct kiocb
*iocb
, struct socket
*sock
, struct msghdr
*m
,
2115 EXPORT_SYMBOL(sock_no_sendmsg
);
2117 int sock_no_recvmsg(struct kiocb
*iocb
, struct socket
*sock
, struct msghdr
*m
,
2118 size_t len
, int flags
)
2122 EXPORT_SYMBOL(sock_no_recvmsg
);
2124 int sock_no_mmap(struct file
*file
, struct socket
*sock
, struct vm_area_struct
*vma
)
2126 /* Mirror missing mmap method error code */
2129 EXPORT_SYMBOL(sock_no_mmap
);
2131 ssize_t
sock_no_sendpage(struct socket
*sock
, struct page
*page
, int offset
, size_t size
, int flags
)
2134 struct msghdr msg
= {.msg_flags
= flags
};
2136 char *kaddr
= kmap(page
);
2137 iov
.iov_base
= kaddr
+ offset
;
2139 res
= kernel_sendmsg(sock
, &msg
, &iov
, 1, size
);
2143 EXPORT_SYMBOL(sock_no_sendpage
);
2146 * Default Socket Callbacks
2149 static void sock_def_wakeup(struct sock
*sk
)
2151 struct socket_wq
*wq
;
2154 wq
= rcu_dereference(sk
->sk_wq
);
2155 if (wq_has_sleeper(wq
))
2156 wake_up_interruptible_all(&wq
->wait
);
2160 static void sock_def_error_report(struct sock
*sk
)
2162 struct socket_wq
*wq
;
2165 wq
= rcu_dereference(sk
->sk_wq
);
2166 if (wq_has_sleeper(wq
))
2167 wake_up_interruptible_poll(&wq
->wait
, POLLERR
);
2168 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_ERR
);
2172 static void sock_def_readable(struct sock
*sk
, int len
)
2174 struct socket_wq
*wq
;
2177 wq
= rcu_dereference(sk
->sk_wq
);
2178 if (wq_has_sleeper(wq
))
2179 wake_up_interruptible_sync_poll(&wq
->wait
, POLLIN
| POLLPRI
|
2180 POLLRDNORM
| POLLRDBAND
);
2181 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
2185 static void sock_def_write_space(struct sock
*sk
)
2187 struct socket_wq
*wq
;
2191 /* Do not wake up a writer until he can make "significant"
2194 if ((atomic_read(&sk
->sk_wmem_alloc
) << 1) <= sk
->sk_sndbuf
) {
2195 wq
= rcu_dereference(sk
->sk_wq
);
2196 if (wq_has_sleeper(wq
))
2197 wake_up_interruptible_sync_poll(&wq
->wait
, POLLOUT
|
2198 POLLWRNORM
| POLLWRBAND
);
2200 /* Should agree with poll, otherwise some programs break */
2201 if (sock_writeable(sk
))
2202 sk_wake_async(sk
, SOCK_WAKE_SPACE
, POLL_OUT
);
2208 static void sock_def_destruct(struct sock
*sk
)
2210 kfree(sk
->sk_protinfo
);
2213 void sk_send_sigurg(struct sock
*sk
)
2215 if (sk
->sk_socket
&& sk
->sk_socket
->file
)
2216 if (send_sigurg(&sk
->sk_socket
->file
->f_owner
))
2217 sk_wake_async(sk
, SOCK_WAKE_URG
, POLL_PRI
);
2219 EXPORT_SYMBOL(sk_send_sigurg
);
2221 void sk_reset_timer(struct sock
*sk
, struct timer_list
* timer
,
2222 unsigned long expires
)
2224 if (!mod_timer(timer
, expires
))
2227 EXPORT_SYMBOL(sk_reset_timer
);
2229 void sk_stop_timer(struct sock
*sk
, struct timer_list
* timer
)
2231 if (del_timer(timer
))
2234 EXPORT_SYMBOL(sk_stop_timer
);
2236 void sock_init_data(struct socket
*sock
, struct sock
*sk
)
2238 skb_queue_head_init(&sk
->sk_receive_queue
);
2239 skb_queue_head_init(&sk
->sk_write_queue
);
2240 skb_queue_head_init(&sk
->sk_error_queue
);
2241 #ifdef CONFIG_NET_DMA
2242 skb_queue_head_init(&sk
->sk_async_wait_queue
);
2245 sk
->sk_send_head
= NULL
;
2247 init_timer(&sk
->sk_timer
);
2249 sk
->sk_allocation
= GFP_KERNEL
;
2250 sk
->sk_rcvbuf
= sysctl_rmem_default
;
2251 sk
->sk_sndbuf
= sysctl_wmem_default
;
2252 sk
->sk_state
= TCP_CLOSE
;
2253 sk_set_socket(sk
, sock
);
2255 sock_set_flag(sk
, SOCK_ZAPPED
);
2258 sk
->sk_type
= sock
->type
;
2259 sk
->sk_wq
= sock
->wq
;
2264 spin_lock_init(&sk
->sk_dst_lock
);
2265 rwlock_init(&sk
->sk_callback_lock
);
2266 lockdep_set_class_and_name(&sk
->sk_callback_lock
,
2267 af_callback_keys
+ sk
->sk_family
,
2268 af_family_clock_key_strings
[sk
->sk_family
]);
2270 sk
->sk_state_change
= sock_def_wakeup
;
2271 sk
->sk_data_ready
= sock_def_readable
;
2272 sk
->sk_write_space
= sock_def_write_space
;
2273 sk
->sk_error_report
= sock_def_error_report
;
2274 sk
->sk_destruct
= sock_def_destruct
;
2276 sk
->sk_frag
.page
= NULL
;
2277 sk
->sk_frag
.offset
= 0;
2278 sk
->sk_peek_off
= -1;
2280 sk
->sk_peer_pid
= NULL
;
2281 sk
->sk_peer_cred
= NULL
;
2282 sk
->sk_write_pending
= 0;
2283 sk
->sk_rcvlowat
= 1;
2284 sk
->sk_rcvtimeo
= MAX_SCHEDULE_TIMEOUT
;
2285 sk
->sk_sndtimeo
= MAX_SCHEDULE_TIMEOUT
;
2287 sk
->sk_stamp
= ktime_set(-1L, 0);
2289 #ifdef CONFIG_NET_LL_RX_POLL
2294 * Before updating sk_refcnt, we must commit prior changes to memory
2295 * (Documentation/RCU/rculist_nulls.txt for details)
2298 atomic_set(&sk
->sk_refcnt
, 1);
2299 atomic_set(&sk
->sk_drops
, 0);
2301 EXPORT_SYMBOL(sock_init_data
);
2303 void lock_sock_nested(struct sock
*sk
, int subclass
)
2306 spin_lock_bh(&sk
->sk_lock
.slock
);
2307 if (sk
->sk_lock
.owned
)
2309 sk
->sk_lock
.owned
= 1;
2310 spin_unlock(&sk
->sk_lock
.slock
);
2312 * The sk_lock has mutex_lock() semantics here:
2314 mutex_acquire(&sk
->sk_lock
.dep_map
, subclass
, 0, _RET_IP_
);
2317 EXPORT_SYMBOL(lock_sock_nested
);
2319 void release_sock(struct sock
*sk
)
2322 * The sk_lock has mutex_unlock() semantics:
2324 mutex_release(&sk
->sk_lock
.dep_map
, 1, _RET_IP_
);
2326 spin_lock_bh(&sk
->sk_lock
.slock
);
2327 if (sk
->sk_backlog
.tail
)
2330 if (sk
->sk_prot
->release_cb
)
2331 sk
->sk_prot
->release_cb(sk
);
2333 sk
->sk_lock
.owned
= 0;
2334 if (waitqueue_active(&sk
->sk_lock
.wq
))
2335 wake_up(&sk
->sk_lock
.wq
);
2336 spin_unlock_bh(&sk
->sk_lock
.slock
);
2338 EXPORT_SYMBOL(release_sock
);
2341 * lock_sock_fast - fast version of lock_sock
2344 * This version should be used for very small section, where process wont block
2345 * return false if fast path is taken
2346 * sk_lock.slock locked, owned = 0, BH disabled
2347 * return true if slow path is taken
2348 * sk_lock.slock unlocked, owned = 1, BH enabled
2350 bool lock_sock_fast(struct sock
*sk
)
2353 spin_lock_bh(&sk
->sk_lock
.slock
);
2355 if (!sk
->sk_lock
.owned
)
2357 * Note : We must disable BH
2362 sk
->sk_lock
.owned
= 1;
2363 spin_unlock(&sk
->sk_lock
.slock
);
2365 * The sk_lock has mutex_lock() semantics here:
2367 mutex_acquire(&sk
->sk_lock
.dep_map
, 0, 0, _RET_IP_
);
2371 EXPORT_SYMBOL(lock_sock_fast
);
2373 int sock_get_timestamp(struct sock
*sk
, struct timeval __user
*userstamp
)
2376 if (!sock_flag(sk
, SOCK_TIMESTAMP
))
2377 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
2378 tv
= ktime_to_timeval(sk
->sk_stamp
);
2379 if (tv
.tv_sec
== -1)
2381 if (tv
.tv_sec
== 0) {
2382 sk
->sk_stamp
= ktime_get_real();
2383 tv
= ktime_to_timeval(sk
->sk_stamp
);
2385 return copy_to_user(userstamp
, &tv
, sizeof(tv
)) ? -EFAULT
: 0;
2387 EXPORT_SYMBOL(sock_get_timestamp
);
2389 int sock_get_timestampns(struct sock
*sk
, struct timespec __user
*userstamp
)
2392 if (!sock_flag(sk
, SOCK_TIMESTAMP
))
2393 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
2394 ts
= ktime_to_timespec(sk
->sk_stamp
);
2395 if (ts
.tv_sec
== -1)
2397 if (ts
.tv_sec
== 0) {
2398 sk
->sk_stamp
= ktime_get_real();
2399 ts
= ktime_to_timespec(sk
->sk_stamp
);
2401 return copy_to_user(userstamp
, &ts
, sizeof(ts
)) ? -EFAULT
: 0;
2403 EXPORT_SYMBOL(sock_get_timestampns
);
2405 void sock_enable_timestamp(struct sock
*sk
, int flag
)
2407 if (!sock_flag(sk
, flag
)) {
2408 unsigned long previous_flags
= sk
->sk_flags
;
2410 sock_set_flag(sk
, flag
);
2412 * we just set one of the two flags which require net
2413 * time stamping, but time stamping might have been on
2414 * already because of the other one
2416 if (!(previous_flags
& SK_FLAGS_TIMESTAMP
))
2417 net_enable_timestamp();
2422 * Get a socket option on an socket.
2424 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2425 * asynchronous errors should be reported by getsockopt. We assume
2426 * this means if you specify SO_ERROR (otherwise whats the point of it).
2428 int sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
2429 char __user
*optval
, int __user
*optlen
)
2431 struct sock
*sk
= sock
->sk
;
2433 return sk
->sk_prot
->getsockopt(sk
, level
, optname
, optval
, optlen
);
2435 EXPORT_SYMBOL(sock_common_getsockopt
);
2437 #ifdef CONFIG_COMPAT
2438 int compat_sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
2439 char __user
*optval
, int __user
*optlen
)
2441 struct sock
*sk
= sock
->sk
;
2443 if (sk
->sk_prot
->compat_getsockopt
!= NULL
)
2444 return sk
->sk_prot
->compat_getsockopt(sk
, level
, optname
,
2446 return sk
->sk_prot
->getsockopt(sk
, level
, optname
, optval
, optlen
);
2448 EXPORT_SYMBOL(compat_sock_common_getsockopt
);
2451 int sock_common_recvmsg(struct kiocb
*iocb
, struct socket
*sock
,
2452 struct msghdr
*msg
, size_t size
, int flags
)
2454 struct sock
*sk
= sock
->sk
;
2458 err
= sk
->sk_prot
->recvmsg(iocb
, sk
, msg
, size
, flags
& MSG_DONTWAIT
,
2459 flags
& ~MSG_DONTWAIT
, &addr_len
);
2461 msg
->msg_namelen
= addr_len
;
2464 EXPORT_SYMBOL(sock_common_recvmsg
);
2467 * Set socket options on an inet socket.
2469 int sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
2470 char __user
*optval
, unsigned int optlen
)
2472 struct sock
*sk
= sock
->sk
;
2474 return sk
->sk_prot
->setsockopt(sk
, level
, optname
, optval
, optlen
);
2476 EXPORT_SYMBOL(sock_common_setsockopt
);
2478 #ifdef CONFIG_COMPAT
2479 int compat_sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
2480 char __user
*optval
, unsigned int optlen
)
2482 struct sock
*sk
= sock
->sk
;
2484 if (sk
->sk_prot
->compat_setsockopt
!= NULL
)
2485 return sk
->sk_prot
->compat_setsockopt(sk
, level
, optname
,
2487 return sk
->sk_prot
->setsockopt(sk
, level
, optname
, optval
, optlen
);
2489 EXPORT_SYMBOL(compat_sock_common_setsockopt
);
2492 void sk_common_release(struct sock
*sk
)
2494 if (sk
->sk_prot
->destroy
)
2495 sk
->sk_prot
->destroy(sk
);
2498 * Observation: when sock_common_release is called, processes have
2499 * no access to socket. But net still has.
2500 * Step one, detach it from networking:
2502 * A. Remove from hash tables.
2505 sk
->sk_prot
->unhash(sk
);
2508 * In this point socket cannot receive new packets, but it is possible
2509 * that some packets are in flight because some CPU runs receiver and
2510 * did hash table lookup before we unhashed socket. They will achieve
2511 * receive queue and will be purged by socket destructor.
2513 * Also we still have packets pending on receive queue and probably,
2514 * our own packets waiting in device queues. sock_destroy will drain
2515 * receive queue, but transmitted packets will delay socket destruction
2516 * until the last reference will be released.
2521 xfrm_sk_free_policy(sk
);
2523 sk_refcnt_debug_release(sk
);
2525 if (sk
->sk_frag
.page
) {
2526 put_page(sk
->sk_frag
.page
);
2527 sk
->sk_frag
.page
= NULL
;
2532 EXPORT_SYMBOL(sk_common_release
);
2534 #ifdef CONFIG_PROC_FS
2535 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2537 int val
[PROTO_INUSE_NR
];
2540 static DECLARE_BITMAP(proto_inuse_idx
, PROTO_INUSE_NR
);
2542 #ifdef CONFIG_NET_NS
2543 void sock_prot_inuse_add(struct net
*net
, struct proto
*prot
, int val
)
2545 __this_cpu_add(net
->core
.inuse
->val
[prot
->inuse_idx
], val
);
2547 EXPORT_SYMBOL_GPL(sock_prot_inuse_add
);
2549 int sock_prot_inuse_get(struct net
*net
, struct proto
*prot
)
2551 int cpu
, idx
= prot
->inuse_idx
;
2554 for_each_possible_cpu(cpu
)
2555 res
+= per_cpu_ptr(net
->core
.inuse
, cpu
)->val
[idx
];
2557 return res
>= 0 ? res
: 0;
2559 EXPORT_SYMBOL_GPL(sock_prot_inuse_get
);
2561 static int __net_init
sock_inuse_init_net(struct net
*net
)
2563 net
->core
.inuse
= alloc_percpu(struct prot_inuse
);
2564 return net
->core
.inuse
? 0 : -ENOMEM
;
2567 static void __net_exit
sock_inuse_exit_net(struct net
*net
)
2569 free_percpu(net
->core
.inuse
);
2572 static struct pernet_operations net_inuse_ops
= {
2573 .init
= sock_inuse_init_net
,
2574 .exit
= sock_inuse_exit_net
,
2577 static __init
int net_inuse_init(void)
2579 if (register_pernet_subsys(&net_inuse_ops
))
2580 panic("Cannot initialize net inuse counters");
2585 core_initcall(net_inuse_init
);
2587 static DEFINE_PER_CPU(struct prot_inuse
, prot_inuse
);
2589 void sock_prot_inuse_add(struct net
*net
, struct proto
*prot
, int val
)
2591 __this_cpu_add(prot_inuse
.val
[prot
->inuse_idx
], val
);
2593 EXPORT_SYMBOL_GPL(sock_prot_inuse_add
);
2595 int sock_prot_inuse_get(struct net
*net
, struct proto
*prot
)
2597 int cpu
, idx
= prot
->inuse_idx
;
2600 for_each_possible_cpu(cpu
)
2601 res
+= per_cpu(prot_inuse
, cpu
).val
[idx
];
2603 return res
>= 0 ? res
: 0;
2605 EXPORT_SYMBOL_GPL(sock_prot_inuse_get
);
2608 static void assign_proto_idx(struct proto
*prot
)
2610 prot
->inuse_idx
= find_first_zero_bit(proto_inuse_idx
, PROTO_INUSE_NR
);
2612 if (unlikely(prot
->inuse_idx
== PROTO_INUSE_NR
- 1)) {
2613 pr_err("PROTO_INUSE_NR exhausted\n");
2617 set_bit(prot
->inuse_idx
, proto_inuse_idx
);
2620 static void release_proto_idx(struct proto
*prot
)
2622 if (prot
->inuse_idx
!= PROTO_INUSE_NR
- 1)
2623 clear_bit(prot
->inuse_idx
, proto_inuse_idx
);
2626 static inline void assign_proto_idx(struct proto
*prot
)
2630 static inline void release_proto_idx(struct proto
*prot
)
2635 int proto_register(struct proto
*prot
, int alloc_slab
)
2638 prot
->slab
= kmem_cache_create(prot
->name
, prot
->obj_size
, 0,
2639 SLAB_HWCACHE_ALIGN
| prot
->slab_flags
,
2642 if (prot
->slab
== NULL
) {
2643 pr_crit("%s: Can't create sock SLAB cache!\n",
2648 if (prot
->rsk_prot
!= NULL
) {
2649 prot
->rsk_prot
->slab_name
= kasprintf(GFP_KERNEL
, "request_sock_%s", prot
->name
);
2650 if (prot
->rsk_prot
->slab_name
== NULL
)
2651 goto out_free_sock_slab
;
2653 prot
->rsk_prot
->slab
= kmem_cache_create(prot
->rsk_prot
->slab_name
,
2654 prot
->rsk_prot
->obj_size
, 0,
2655 SLAB_HWCACHE_ALIGN
, NULL
);
2657 if (prot
->rsk_prot
->slab
== NULL
) {
2658 pr_crit("%s: Can't create request sock SLAB cache!\n",
2660 goto out_free_request_sock_slab_name
;
2664 if (prot
->twsk_prot
!= NULL
) {
2665 prot
->twsk_prot
->twsk_slab_name
= kasprintf(GFP_KERNEL
, "tw_sock_%s", prot
->name
);
2667 if (prot
->twsk_prot
->twsk_slab_name
== NULL
)
2668 goto out_free_request_sock_slab
;
2670 prot
->twsk_prot
->twsk_slab
=
2671 kmem_cache_create(prot
->twsk_prot
->twsk_slab_name
,
2672 prot
->twsk_prot
->twsk_obj_size
,
2674 SLAB_HWCACHE_ALIGN
|
2677 if (prot
->twsk_prot
->twsk_slab
== NULL
)
2678 goto out_free_timewait_sock_slab_name
;
2682 mutex_lock(&proto_list_mutex
);
2683 list_add(&prot
->node
, &proto_list
);
2684 assign_proto_idx(prot
);
2685 mutex_unlock(&proto_list_mutex
);
2688 out_free_timewait_sock_slab_name
:
2689 kfree(prot
->twsk_prot
->twsk_slab_name
);
2690 out_free_request_sock_slab
:
2691 if (prot
->rsk_prot
&& prot
->rsk_prot
->slab
) {
2692 kmem_cache_destroy(prot
->rsk_prot
->slab
);
2693 prot
->rsk_prot
->slab
= NULL
;
2695 out_free_request_sock_slab_name
:
2697 kfree(prot
->rsk_prot
->slab_name
);
2699 kmem_cache_destroy(prot
->slab
);
2704 EXPORT_SYMBOL(proto_register
);
2706 void proto_unregister(struct proto
*prot
)
2708 mutex_lock(&proto_list_mutex
);
2709 release_proto_idx(prot
);
2710 list_del(&prot
->node
);
2711 mutex_unlock(&proto_list_mutex
);
2713 if (prot
->slab
!= NULL
) {
2714 kmem_cache_destroy(prot
->slab
);
2718 if (prot
->rsk_prot
!= NULL
&& prot
->rsk_prot
->slab
!= NULL
) {
2719 kmem_cache_destroy(prot
->rsk_prot
->slab
);
2720 kfree(prot
->rsk_prot
->slab_name
);
2721 prot
->rsk_prot
->slab
= NULL
;
2724 if (prot
->twsk_prot
!= NULL
&& prot
->twsk_prot
->twsk_slab
!= NULL
) {
2725 kmem_cache_destroy(prot
->twsk_prot
->twsk_slab
);
2726 kfree(prot
->twsk_prot
->twsk_slab_name
);
2727 prot
->twsk_prot
->twsk_slab
= NULL
;
2730 EXPORT_SYMBOL(proto_unregister
);
2732 #ifdef CONFIG_PROC_FS
2733 static void *proto_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2734 __acquires(proto_list_mutex
)
2736 mutex_lock(&proto_list_mutex
);
2737 return seq_list_start_head(&proto_list
, *pos
);
2740 static void *proto_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2742 return seq_list_next(v
, &proto_list
, pos
);
2745 static void proto_seq_stop(struct seq_file
*seq
, void *v
)
2746 __releases(proto_list_mutex
)
2748 mutex_unlock(&proto_list_mutex
);
2751 static char proto_method_implemented(const void *method
)
2753 return method
== NULL
? 'n' : 'y';
2755 static long sock_prot_memory_allocated(struct proto
*proto
)
2757 return proto
->memory_allocated
!= NULL
? proto_memory_allocated(proto
) : -1L;
2760 static char *sock_prot_memory_pressure(struct proto
*proto
)
2762 return proto
->memory_pressure
!= NULL
?
2763 proto_memory_pressure(proto
) ? "yes" : "no" : "NI";
2766 static void proto_seq_printf(struct seq_file
*seq
, struct proto
*proto
)
2769 seq_printf(seq
, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2770 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2773 sock_prot_inuse_get(seq_file_net(seq
), proto
),
2774 sock_prot_memory_allocated(proto
),
2775 sock_prot_memory_pressure(proto
),
2777 proto
->slab
== NULL
? "no" : "yes",
2778 module_name(proto
->owner
),
2779 proto_method_implemented(proto
->close
),
2780 proto_method_implemented(proto
->connect
),
2781 proto_method_implemented(proto
->disconnect
),
2782 proto_method_implemented(proto
->accept
),
2783 proto_method_implemented(proto
->ioctl
),
2784 proto_method_implemented(proto
->init
),
2785 proto_method_implemented(proto
->destroy
),
2786 proto_method_implemented(proto
->shutdown
),
2787 proto_method_implemented(proto
->setsockopt
),
2788 proto_method_implemented(proto
->getsockopt
),
2789 proto_method_implemented(proto
->sendmsg
),
2790 proto_method_implemented(proto
->recvmsg
),
2791 proto_method_implemented(proto
->sendpage
),
2792 proto_method_implemented(proto
->bind
),
2793 proto_method_implemented(proto
->backlog_rcv
),
2794 proto_method_implemented(proto
->hash
),
2795 proto_method_implemented(proto
->unhash
),
2796 proto_method_implemented(proto
->get_port
),
2797 proto_method_implemented(proto
->enter_memory_pressure
));
2800 static int proto_seq_show(struct seq_file
*seq
, void *v
)
2802 if (v
== &proto_list
)
2803 seq_printf(seq
, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2812 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2814 proto_seq_printf(seq
, list_entry(v
, struct proto
, node
));
2818 static const struct seq_operations proto_seq_ops
= {
2819 .start
= proto_seq_start
,
2820 .next
= proto_seq_next
,
2821 .stop
= proto_seq_stop
,
2822 .show
= proto_seq_show
,
2825 static int proto_seq_open(struct inode
*inode
, struct file
*file
)
2827 return seq_open_net(inode
, file
, &proto_seq_ops
,
2828 sizeof(struct seq_net_private
));
2831 static const struct file_operations proto_seq_fops
= {
2832 .owner
= THIS_MODULE
,
2833 .open
= proto_seq_open
,
2835 .llseek
= seq_lseek
,
2836 .release
= seq_release_net
,
2839 static __net_init
int proto_init_net(struct net
*net
)
2841 if (!proc_create("protocols", S_IRUGO
, net
->proc_net
, &proto_seq_fops
))
2847 static __net_exit
void proto_exit_net(struct net
*net
)
2849 remove_proc_entry("protocols", net
->proc_net
);
2853 static __net_initdata
struct pernet_operations proto_net_ops
= {
2854 .init
= proto_init_net
,
2855 .exit
= proto_exit_net
,
2858 static int __init
proto_init(void)
2860 return register_pernet_subsys(&proto_net_ops
);
2863 subsys_initcall(proto_init
);
2865 #endif /* PROC_FS */