MAINTAINERS: ARM: SIRF: add missed drivers into maintain list
[linux-2.6.git] / fs / jbd2 / journal.c
blob52032647dd4a32f7c8efaea95227634071f8d7d3
1 /*
2 * linux/fs/jbd2/journal.c
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Generic filesystem journal-writing code; part of the ext2fs
13 * journaling system.
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
50 #include <asm/uaccess.h>
51 #include <asm/page.h>
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug);
57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
59 #endif
61 EXPORT_SYMBOL(jbd2_journal_extend);
62 EXPORT_SYMBOL(jbd2_journal_stop);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70 EXPORT_SYMBOL(jbd2_journal_forget);
71 #if 0
72 EXPORT_SYMBOL(journal_sync_buffer);
73 #endif
74 EXPORT_SYMBOL(jbd2_journal_flush);
75 EXPORT_SYMBOL(jbd2_journal_revoke);
77 EXPORT_SYMBOL(jbd2_journal_init_dev);
78 EXPORT_SYMBOL(jbd2_journal_init_inode);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features);
81 EXPORT_SYMBOL(jbd2_journal_set_features);
82 EXPORT_SYMBOL(jbd2_journal_load);
83 EXPORT_SYMBOL(jbd2_journal_destroy);
84 EXPORT_SYMBOL(jbd2_journal_abort);
85 EXPORT_SYMBOL(jbd2_journal_errno);
86 EXPORT_SYMBOL(jbd2_journal_ack_err);
87 EXPORT_SYMBOL(jbd2_journal_clear_err);
88 EXPORT_SYMBOL(jbd2_log_wait_commit);
89 EXPORT_SYMBOL(jbd2_log_start_commit);
90 EXPORT_SYMBOL(jbd2_journal_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92 EXPORT_SYMBOL(jbd2_journal_wipe);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96 EXPORT_SYMBOL(jbd2_journal_force_commit);
97 EXPORT_SYMBOL(jbd2_journal_file_inode);
98 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
99 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
101 EXPORT_SYMBOL(jbd2_inode_cache);
103 static void __journal_abort_soft (journal_t *journal, int errno);
104 static int jbd2_journal_create_slab(size_t slab_size);
106 #ifdef CONFIG_JBD2_DEBUG
107 void __jbd2_debug(int level, const char *file, const char *func,
108 unsigned int line, const char *fmt, ...)
110 struct va_format vaf;
111 va_list args;
113 if (level > jbd2_journal_enable_debug)
114 return;
115 va_start(args, fmt);
116 vaf.fmt = fmt;
117 vaf.va = &args;
118 printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
119 va_end(args);
121 EXPORT_SYMBOL(__jbd2_debug);
122 #endif
124 /* Checksumming functions */
125 int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
127 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
128 return 1;
130 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
133 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
135 __u32 csum;
136 __be32 old_csum;
138 old_csum = sb->s_checksum;
139 sb->s_checksum = 0;
140 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
141 sb->s_checksum = old_csum;
143 return cpu_to_be32(csum);
146 int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
148 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
149 return 1;
151 return sb->s_checksum == jbd2_superblock_csum(j, sb);
154 void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
156 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
157 return;
159 sb->s_checksum = jbd2_superblock_csum(j, sb);
163 * Helper function used to manage commit timeouts
166 static void commit_timeout(unsigned long __data)
168 struct task_struct * p = (struct task_struct *) __data;
170 wake_up_process(p);
174 * kjournald2: The main thread function used to manage a logging device
175 * journal.
177 * This kernel thread is responsible for two things:
179 * 1) COMMIT: Every so often we need to commit the current state of the
180 * filesystem to disk. The journal thread is responsible for writing
181 * all of the metadata buffers to disk.
183 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
184 * of the data in that part of the log has been rewritten elsewhere on
185 * the disk. Flushing these old buffers to reclaim space in the log is
186 * known as checkpointing, and this thread is responsible for that job.
189 static int kjournald2(void *arg)
191 journal_t *journal = arg;
192 transaction_t *transaction;
195 * Set up an interval timer which can be used to trigger a commit wakeup
196 * after the commit interval expires
198 setup_timer(&journal->j_commit_timer, commit_timeout,
199 (unsigned long)current);
201 set_freezable();
203 /* Record that the journal thread is running */
204 journal->j_task = current;
205 wake_up(&journal->j_wait_done_commit);
208 * And now, wait forever for commit wakeup events.
210 write_lock(&journal->j_state_lock);
212 loop:
213 if (journal->j_flags & JBD2_UNMOUNT)
214 goto end_loop;
216 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
217 journal->j_commit_sequence, journal->j_commit_request);
219 if (journal->j_commit_sequence != journal->j_commit_request) {
220 jbd_debug(1, "OK, requests differ\n");
221 write_unlock(&journal->j_state_lock);
222 del_timer_sync(&journal->j_commit_timer);
223 jbd2_journal_commit_transaction(journal);
224 write_lock(&journal->j_state_lock);
225 goto loop;
228 wake_up(&journal->j_wait_done_commit);
229 if (freezing(current)) {
231 * The simpler the better. Flushing journal isn't a
232 * good idea, because that depends on threads that may
233 * be already stopped.
235 jbd_debug(1, "Now suspending kjournald2\n");
236 write_unlock(&journal->j_state_lock);
237 try_to_freeze();
238 write_lock(&journal->j_state_lock);
239 } else {
241 * We assume on resume that commits are already there,
242 * so we don't sleep
244 DEFINE_WAIT(wait);
245 int should_sleep = 1;
247 prepare_to_wait(&journal->j_wait_commit, &wait,
248 TASK_INTERRUPTIBLE);
249 if (journal->j_commit_sequence != journal->j_commit_request)
250 should_sleep = 0;
251 transaction = journal->j_running_transaction;
252 if (transaction && time_after_eq(jiffies,
253 transaction->t_expires))
254 should_sleep = 0;
255 if (journal->j_flags & JBD2_UNMOUNT)
256 should_sleep = 0;
257 if (should_sleep) {
258 write_unlock(&journal->j_state_lock);
259 schedule();
260 write_lock(&journal->j_state_lock);
262 finish_wait(&journal->j_wait_commit, &wait);
265 jbd_debug(1, "kjournald2 wakes\n");
268 * Were we woken up by a commit wakeup event?
270 transaction = journal->j_running_transaction;
271 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
272 journal->j_commit_request = transaction->t_tid;
273 jbd_debug(1, "woke because of timeout\n");
275 goto loop;
277 end_loop:
278 write_unlock(&journal->j_state_lock);
279 del_timer_sync(&journal->j_commit_timer);
280 journal->j_task = NULL;
281 wake_up(&journal->j_wait_done_commit);
282 jbd_debug(1, "Journal thread exiting.\n");
283 return 0;
286 static int jbd2_journal_start_thread(journal_t *journal)
288 struct task_struct *t;
290 t = kthread_run(kjournald2, journal, "jbd2/%s",
291 journal->j_devname);
292 if (IS_ERR(t))
293 return PTR_ERR(t);
295 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
296 return 0;
299 static void journal_kill_thread(journal_t *journal)
301 write_lock(&journal->j_state_lock);
302 journal->j_flags |= JBD2_UNMOUNT;
304 while (journal->j_task) {
305 wake_up(&journal->j_wait_commit);
306 write_unlock(&journal->j_state_lock);
307 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
308 write_lock(&journal->j_state_lock);
310 write_unlock(&journal->j_state_lock);
314 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
316 * Writes a metadata buffer to a given disk block. The actual IO is not
317 * performed but a new buffer_head is constructed which labels the data
318 * to be written with the correct destination disk block.
320 * Any magic-number escaping which needs to be done will cause a
321 * copy-out here. If the buffer happens to start with the
322 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
323 * magic number is only written to the log for descripter blocks. In
324 * this case, we copy the data and replace the first word with 0, and we
325 * return a result code which indicates that this buffer needs to be
326 * marked as an escaped buffer in the corresponding log descriptor
327 * block. The missing word can then be restored when the block is read
328 * during recovery.
330 * If the source buffer has already been modified by a new transaction
331 * since we took the last commit snapshot, we use the frozen copy of
332 * that data for IO. If we end up using the existing buffer_head's data
333 * for the write, then we have to make sure nobody modifies it while the
334 * IO is in progress. do_get_write_access() handles this.
336 * The function returns a pointer to the buffer_head to be used for IO.
339 * Return value:
340 * <0: Error
341 * >=0: Finished OK
343 * On success:
344 * Bit 0 set == escape performed on the data
345 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
348 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
349 struct journal_head *jh_in,
350 struct buffer_head **bh_out,
351 sector_t blocknr)
353 int need_copy_out = 0;
354 int done_copy_out = 0;
355 int do_escape = 0;
356 char *mapped_data;
357 struct buffer_head *new_bh;
358 struct page *new_page;
359 unsigned int new_offset;
360 struct buffer_head *bh_in = jh2bh(jh_in);
361 journal_t *journal = transaction->t_journal;
364 * The buffer really shouldn't be locked: only the current committing
365 * transaction is allowed to write it, so nobody else is allowed
366 * to do any IO.
368 * akpm: except if we're journalling data, and write() output is
369 * also part of a shared mapping, and another thread has
370 * decided to launch a writepage() against this buffer.
372 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
374 retry_alloc:
375 new_bh = alloc_buffer_head(GFP_NOFS);
376 if (!new_bh) {
378 * Failure is not an option, but __GFP_NOFAIL is going
379 * away; so we retry ourselves here.
381 congestion_wait(BLK_RW_ASYNC, HZ/50);
382 goto retry_alloc;
385 /* keep subsequent assertions sane */
386 atomic_set(&new_bh->b_count, 1);
388 jbd_lock_bh_state(bh_in);
389 repeat:
391 * If a new transaction has already done a buffer copy-out, then
392 * we use that version of the data for the commit.
394 if (jh_in->b_frozen_data) {
395 done_copy_out = 1;
396 new_page = virt_to_page(jh_in->b_frozen_data);
397 new_offset = offset_in_page(jh_in->b_frozen_data);
398 } else {
399 new_page = jh2bh(jh_in)->b_page;
400 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
403 mapped_data = kmap_atomic(new_page);
405 * Fire data frozen trigger if data already wasn't frozen. Do this
406 * before checking for escaping, as the trigger may modify the magic
407 * offset. If a copy-out happens afterwards, it will have the correct
408 * data in the buffer.
410 if (!done_copy_out)
411 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
412 jh_in->b_triggers);
415 * Check for escaping
417 if (*((__be32 *)(mapped_data + new_offset)) ==
418 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
419 need_copy_out = 1;
420 do_escape = 1;
422 kunmap_atomic(mapped_data);
425 * Do we need to do a data copy?
427 if (need_copy_out && !done_copy_out) {
428 char *tmp;
430 jbd_unlock_bh_state(bh_in);
431 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
432 if (!tmp) {
433 brelse(new_bh);
434 return -ENOMEM;
436 jbd_lock_bh_state(bh_in);
437 if (jh_in->b_frozen_data) {
438 jbd2_free(tmp, bh_in->b_size);
439 goto repeat;
442 jh_in->b_frozen_data = tmp;
443 mapped_data = kmap_atomic(new_page);
444 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
445 kunmap_atomic(mapped_data);
447 new_page = virt_to_page(tmp);
448 new_offset = offset_in_page(tmp);
449 done_copy_out = 1;
452 * This isn't strictly necessary, as we're using frozen
453 * data for the escaping, but it keeps consistency with
454 * b_frozen_data usage.
456 jh_in->b_frozen_triggers = jh_in->b_triggers;
460 * Did we need to do an escaping? Now we've done all the
461 * copying, we can finally do so.
463 if (do_escape) {
464 mapped_data = kmap_atomic(new_page);
465 *((unsigned int *)(mapped_data + new_offset)) = 0;
466 kunmap_atomic(mapped_data);
469 set_bh_page(new_bh, new_page, new_offset);
470 new_bh->b_size = bh_in->b_size;
471 new_bh->b_bdev = journal->j_dev;
472 new_bh->b_blocknr = blocknr;
473 new_bh->b_private = bh_in;
474 set_buffer_mapped(new_bh);
475 set_buffer_dirty(new_bh);
477 *bh_out = new_bh;
480 * The to-be-written buffer needs to get moved to the io queue,
481 * and the original buffer whose contents we are shadowing or
482 * copying is moved to the transaction's shadow queue.
484 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
485 spin_lock(&journal->j_list_lock);
486 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
487 spin_unlock(&journal->j_list_lock);
488 set_buffer_shadow(bh_in);
489 jbd_unlock_bh_state(bh_in);
491 return do_escape | (done_copy_out << 1);
495 * Allocation code for the journal file. Manage the space left in the
496 * journal, so that we can begin checkpointing when appropriate.
500 * Called with j_state_lock locked for writing.
501 * Returns true if a transaction commit was started.
503 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
505 /* Return if the txn has already requested to be committed */
506 if (journal->j_commit_request == target)
507 return 0;
510 * The only transaction we can possibly wait upon is the
511 * currently running transaction (if it exists). Otherwise,
512 * the target tid must be an old one.
514 if (journal->j_running_transaction &&
515 journal->j_running_transaction->t_tid == target) {
517 * We want a new commit: OK, mark the request and wakeup the
518 * commit thread. We do _not_ do the commit ourselves.
521 journal->j_commit_request = target;
522 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
523 journal->j_commit_request,
524 journal->j_commit_sequence);
525 journal->j_running_transaction->t_requested = jiffies;
526 wake_up(&journal->j_wait_commit);
527 return 1;
528 } else if (!tid_geq(journal->j_commit_request, target))
529 /* This should never happen, but if it does, preserve
530 the evidence before kjournald goes into a loop and
531 increments j_commit_sequence beyond all recognition. */
532 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
533 journal->j_commit_request,
534 journal->j_commit_sequence,
535 target, journal->j_running_transaction ?
536 journal->j_running_transaction->t_tid : 0);
537 return 0;
540 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
542 int ret;
544 write_lock(&journal->j_state_lock);
545 ret = __jbd2_log_start_commit(journal, tid);
546 write_unlock(&journal->j_state_lock);
547 return ret;
551 * Force and wait any uncommitted transactions. We can only force the running
552 * transaction if we don't have an active handle, otherwise, we will deadlock.
553 * Returns: <0 in case of error,
554 * 0 if nothing to commit,
555 * 1 if transaction was successfully committed.
557 static int __jbd2_journal_force_commit(journal_t *journal)
559 transaction_t *transaction = NULL;
560 tid_t tid;
561 int need_to_start = 0, ret = 0;
563 read_lock(&journal->j_state_lock);
564 if (journal->j_running_transaction && !current->journal_info) {
565 transaction = journal->j_running_transaction;
566 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
567 need_to_start = 1;
568 } else if (journal->j_committing_transaction)
569 transaction = journal->j_committing_transaction;
571 if (!transaction) {
572 /* Nothing to commit */
573 read_unlock(&journal->j_state_lock);
574 return 0;
576 tid = transaction->t_tid;
577 read_unlock(&journal->j_state_lock);
578 if (need_to_start)
579 jbd2_log_start_commit(journal, tid);
580 ret = jbd2_log_wait_commit(journal, tid);
581 if (!ret)
582 ret = 1;
584 return ret;
588 * Force and wait upon a commit if the calling process is not within
589 * transaction. This is used for forcing out undo-protected data which contains
590 * bitmaps, when the fs is running out of space.
592 * @journal: journal to force
593 * Returns true if progress was made.
595 int jbd2_journal_force_commit_nested(journal_t *journal)
597 int ret;
599 ret = __jbd2_journal_force_commit(journal);
600 return ret > 0;
604 * int journal_force_commit() - force any uncommitted transactions
605 * @journal: journal to force
607 * Caller want unconditional commit. We can only force the running transaction
608 * if we don't have an active handle, otherwise, we will deadlock.
610 int jbd2_journal_force_commit(journal_t *journal)
612 int ret;
614 J_ASSERT(!current->journal_info);
615 ret = __jbd2_journal_force_commit(journal);
616 if (ret > 0)
617 ret = 0;
618 return ret;
622 * Start a commit of the current running transaction (if any). Returns true
623 * if a transaction is going to be committed (or is currently already
624 * committing), and fills its tid in at *ptid
626 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
628 int ret = 0;
630 write_lock(&journal->j_state_lock);
631 if (journal->j_running_transaction) {
632 tid_t tid = journal->j_running_transaction->t_tid;
634 __jbd2_log_start_commit(journal, tid);
635 /* There's a running transaction and we've just made sure
636 * it's commit has been scheduled. */
637 if (ptid)
638 *ptid = tid;
639 ret = 1;
640 } else if (journal->j_committing_transaction) {
642 * If commit has been started, then we have to wait for
643 * completion of that transaction.
645 if (ptid)
646 *ptid = journal->j_committing_transaction->t_tid;
647 ret = 1;
649 write_unlock(&journal->j_state_lock);
650 return ret;
654 * Return 1 if a given transaction has not yet sent barrier request
655 * connected with a transaction commit. If 0 is returned, transaction
656 * may or may not have sent the barrier. Used to avoid sending barrier
657 * twice in common cases.
659 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
661 int ret = 0;
662 transaction_t *commit_trans;
664 if (!(journal->j_flags & JBD2_BARRIER))
665 return 0;
666 read_lock(&journal->j_state_lock);
667 /* Transaction already committed? */
668 if (tid_geq(journal->j_commit_sequence, tid))
669 goto out;
670 commit_trans = journal->j_committing_transaction;
671 if (!commit_trans || commit_trans->t_tid != tid) {
672 ret = 1;
673 goto out;
676 * Transaction is being committed and we already proceeded to
677 * submitting a flush to fs partition?
679 if (journal->j_fs_dev != journal->j_dev) {
680 if (!commit_trans->t_need_data_flush ||
681 commit_trans->t_state >= T_COMMIT_DFLUSH)
682 goto out;
683 } else {
684 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
685 goto out;
687 ret = 1;
688 out:
689 read_unlock(&journal->j_state_lock);
690 return ret;
692 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
695 * Wait for a specified commit to complete.
696 * The caller may not hold the journal lock.
698 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
700 int err = 0;
702 read_lock(&journal->j_state_lock);
703 #ifdef CONFIG_JBD2_DEBUG
704 if (!tid_geq(journal->j_commit_request, tid)) {
705 printk(KERN_EMERG
706 "%s: error: j_commit_request=%d, tid=%d\n",
707 __func__, journal->j_commit_request, tid);
709 #endif
710 while (tid_gt(tid, journal->j_commit_sequence)) {
711 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
712 tid, journal->j_commit_sequence);
713 wake_up(&journal->j_wait_commit);
714 read_unlock(&journal->j_state_lock);
715 wait_event(journal->j_wait_done_commit,
716 !tid_gt(tid, journal->j_commit_sequence));
717 read_lock(&journal->j_state_lock);
719 read_unlock(&journal->j_state_lock);
721 if (unlikely(is_journal_aborted(journal))) {
722 printk(KERN_EMERG "journal commit I/O error\n");
723 err = -EIO;
725 return err;
729 * When this function returns the transaction corresponding to tid
730 * will be completed. If the transaction has currently running, start
731 * committing that transaction before waiting for it to complete. If
732 * the transaction id is stale, it is by definition already completed,
733 * so just return SUCCESS.
735 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
737 int need_to_wait = 1;
739 read_lock(&journal->j_state_lock);
740 if (journal->j_running_transaction &&
741 journal->j_running_transaction->t_tid == tid) {
742 if (journal->j_commit_request != tid) {
743 /* transaction not yet started, so request it */
744 read_unlock(&journal->j_state_lock);
745 jbd2_log_start_commit(journal, tid);
746 goto wait_commit;
748 } else if (!(journal->j_committing_transaction &&
749 journal->j_committing_transaction->t_tid == tid))
750 need_to_wait = 0;
751 read_unlock(&journal->j_state_lock);
752 if (!need_to_wait)
753 return 0;
754 wait_commit:
755 return jbd2_log_wait_commit(journal, tid);
757 EXPORT_SYMBOL(jbd2_complete_transaction);
760 * Log buffer allocation routines:
763 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
765 unsigned long blocknr;
767 write_lock(&journal->j_state_lock);
768 J_ASSERT(journal->j_free > 1);
770 blocknr = journal->j_head;
771 journal->j_head++;
772 journal->j_free--;
773 if (journal->j_head == journal->j_last)
774 journal->j_head = journal->j_first;
775 write_unlock(&journal->j_state_lock);
776 return jbd2_journal_bmap(journal, blocknr, retp);
780 * Conversion of logical to physical block numbers for the journal
782 * On external journals the journal blocks are identity-mapped, so
783 * this is a no-op. If needed, we can use j_blk_offset - everything is
784 * ready.
786 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
787 unsigned long long *retp)
789 int err = 0;
790 unsigned long long ret;
792 if (journal->j_inode) {
793 ret = bmap(journal->j_inode, blocknr);
794 if (ret)
795 *retp = ret;
796 else {
797 printk(KERN_ALERT "%s: journal block not found "
798 "at offset %lu on %s\n",
799 __func__, blocknr, journal->j_devname);
800 err = -EIO;
801 __journal_abort_soft(journal, err);
803 } else {
804 *retp = blocknr; /* +journal->j_blk_offset */
806 return err;
810 * We play buffer_head aliasing tricks to write data/metadata blocks to
811 * the journal without copying their contents, but for journal
812 * descriptor blocks we do need to generate bona fide buffers.
814 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
815 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
816 * But we don't bother doing that, so there will be coherency problems with
817 * mmaps of blockdevs which hold live JBD-controlled filesystems.
819 struct buffer_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
821 struct buffer_head *bh;
822 unsigned long long blocknr;
823 int err;
825 err = jbd2_journal_next_log_block(journal, &blocknr);
827 if (err)
828 return NULL;
830 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
831 if (!bh)
832 return NULL;
833 lock_buffer(bh);
834 memset(bh->b_data, 0, journal->j_blocksize);
835 set_buffer_uptodate(bh);
836 unlock_buffer(bh);
837 BUFFER_TRACE(bh, "return this buffer");
838 return bh;
842 * Return tid of the oldest transaction in the journal and block in the journal
843 * where the transaction starts.
845 * If the journal is now empty, return which will be the next transaction ID
846 * we will write and where will that transaction start.
848 * The return value is 0 if journal tail cannot be pushed any further, 1 if
849 * it can.
851 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
852 unsigned long *block)
854 transaction_t *transaction;
855 int ret;
857 read_lock(&journal->j_state_lock);
858 spin_lock(&journal->j_list_lock);
859 transaction = journal->j_checkpoint_transactions;
860 if (transaction) {
861 *tid = transaction->t_tid;
862 *block = transaction->t_log_start;
863 } else if ((transaction = journal->j_committing_transaction) != NULL) {
864 *tid = transaction->t_tid;
865 *block = transaction->t_log_start;
866 } else if ((transaction = journal->j_running_transaction) != NULL) {
867 *tid = transaction->t_tid;
868 *block = journal->j_head;
869 } else {
870 *tid = journal->j_transaction_sequence;
871 *block = journal->j_head;
873 ret = tid_gt(*tid, journal->j_tail_sequence);
874 spin_unlock(&journal->j_list_lock);
875 read_unlock(&journal->j_state_lock);
877 return ret;
881 * Update information in journal structure and in on disk journal superblock
882 * about log tail. This function does not check whether information passed in
883 * really pushes log tail further. It's responsibility of the caller to make
884 * sure provided log tail information is valid (e.g. by holding
885 * j_checkpoint_mutex all the time between computing log tail and calling this
886 * function as is the case with jbd2_cleanup_journal_tail()).
888 * Requires j_checkpoint_mutex
890 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
892 unsigned long freed;
894 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
897 * We cannot afford for write to remain in drive's caches since as
898 * soon as we update j_tail, next transaction can start reusing journal
899 * space and if we lose sb update during power failure we'd replay
900 * old transaction with possibly newly overwritten data.
902 jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
903 write_lock(&journal->j_state_lock);
904 freed = block - journal->j_tail;
905 if (block < journal->j_tail)
906 freed += journal->j_last - journal->j_first;
908 trace_jbd2_update_log_tail(journal, tid, block, freed);
909 jbd_debug(1,
910 "Cleaning journal tail from %d to %d (offset %lu), "
911 "freeing %lu\n",
912 journal->j_tail_sequence, tid, block, freed);
914 journal->j_free += freed;
915 journal->j_tail_sequence = tid;
916 journal->j_tail = block;
917 write_unlock(&journal->j_state_lock);
921 * This is a variaon of __jbd2_update_log_tail which checks for validity of
922 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
923 * with other threads updating log tail.
925 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
927 mutex_lock(&journal->j_checkpoint_mutex);
928 if (tid_gt(tid, journal->j_tail_sequence))
929 __jbd2_update_log_tail(journal, tid, block);
930 mutex_unlock(&journal->j_checkpoint_mutex);
933 struct jbd2_stats_proc_session {
934 journal_t *journal;
935 struct transaction_stats_s *stats;
936 int start;
937 int max;
940 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
942 return *pos ? NULL : SEQ_START_TOKEN;
945 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
947 return NULL;
950 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
952 struct jbd2_stats_proc_session *s = seq->private;
954 if (v != SEQ_START_TOKEN)
955 return 0;
956 seq_printf(seq, "%lu transactions (%lu requested), "
957 "each up to %u blocks\n",
958 s->stats->ts_tid, s->stats->ts_requested,
959 s->journal->j_max_transaction_buffers);
960 if (s->stats->ts_tid == 0)
961 return 0;
962 seq_printf(seq, "average: \n %ums waiting for transaction\n",
963 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
964 seq_printf(seq, " %ums request delay\n",
965 (s->stats->ts_requested == 0) ? 0 :
966 jiffies_to_msecs(s->stats->run.rs_request_delay /
967 s->stats->ts_requested));
968 seq_printf(seq, " %ums running transaction\n",
969 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
970 seq_printf(seq, " %ums transaction was being locked\n",
971 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
972 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
973 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
974 seq_printf(seq, " %ums logging transaction\n",
975 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
976 seq_printf(seq, " %lluus average transaction commit time\n",
977 div_u64(s->journal->j_average_commit_time, 1000));
978 seq_printf(seq, " %lu handles per transaction\n",
979 s->stats->run.rs_handle_count / s->stats->ts_tid);
980 seq_printf(seq, " %lu blocks per transaction\n",
981 s->stats->run.rs_blocks / s->stats->ts_tid);
982 seq_printf(seq, " %lu logged blocks per transaction\n",
983 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
984 return 0;
987 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
991 static const struct seq_operations jbd2_seq_info_ops = {
992 .start = jbd2_seq_info_start,
993 .next = jbd2_seq_info_next,
994 .stop = jbd2_seq_info_stop,
995 .show = jbd2_seq_info_show,
998 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1000 journal_t *journal = PDE_DATA(inode);
1001 struct jbd2_stats_proc_session *s;
1002 int rc, size;
1004 s = kmalloc(sizeof(*s), GFP_KERNEL);
1005 if (s == NULL)
1006 return -ENOMEM;
1007 size = sizeof(struct transaction_stats_s);
1008 s->stats = kmalloc(size, GFP_KERNEL);
1009 if (s->stats == NULL) {
1010 kfree(s);
1011 return -ENOMEM;
1013 spin_lock(&journal->j_history_lock);
1014 memcpy(s->stats, &journal->j_stats, size);
1015 s->journal = journal;
1016 spin_unlock(&journal->j_history_lock);
1018 rc = seq_open(file, &jbd2_seq_info_ops);
1019 if (rc == 0) {
1020 struct seq_file *m = file->private_data;
1021 m->private = s;
1022 } else {
1023 kfree(s->stats);
1024 kfree(s);
1026 return rc;
1030 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1032 struct seq_file *seq = file->private_data;
1033 struct jbd2_stats_proc_session *s = seq->private;
1034 kfree(s->stats);
1035 kfree(s);
1036 return seq_release(inode, file);
1039 static const struct file_operations jbd2_seq_info_fops = {
1040 .owner = THIS_MODULE,
1041 .open = jbd2_seq_info_open,
1042 .read = seq_read,
1043 .llseek = seq_lseek,
1044 .release = jbd2_seq_info_release,
1047 static struct proc_dir_entry *proc_jbd2_stats;
1049 static void jbd2_stats_proc_init(journal_t *journal)
1051 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1052 if (journal->j_proc_entry) {
1053 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1054 &jbd2_seq_info_fops, journal);
1058 static void jbd2_stats_proc_exit(journal_t *journal)
1060 remove_proc_entry("info", journal->j_proc_entry);
1061 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1065 * Management for journal control blocks: functions to create and
1066 * destroy journal_t structures, and to initialise and read existing
1067 * journal blocks from disk. */
1069 /* First: create and setup a journal_t object in memory. We initialise
1070 * very few fields yet: that has to wait until we have created the
1071 * journal structures from from scratch, or loaded them from disk. */
1073 static journal_t * journal_init_common (void)
1075 journal_t *journal;
1076 int err;
1078 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1079 if (!journal)
1080 return NULL;
1082 init_waitqueue_head(&journal->j_wait_transaction_locked);
1083 init_waitqueue_head(&journal->j_wait_done_commit);
1084 init_waitqueue_head(&journal->j_wait_commit);
1085 init_waitqueue_head(&journal->j_wait_updates);
1086 init_waitqueue_head(&journal->j_wait_reserved);
1087 mutex_init(&journal->j_barrier);
1088 mutex_init(&journal->j_checkpoint_mutex);
1089 spin_lock_init(&journal->j_revoke_lock);
1090 spin_lock_init(&journal->j_list_lock);
1091 rwlock_init(&journal->j_state_lock);
1093 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1094 journal->j_min_batch_time = 0;
1095 journal->j_max_batch_time = 15000; /* 15ms */
1096 atomic_set(&journal->j_reserved_credits, 0);
1098 /* The journal is marked for error until we succeed with recovery! */
1099 journal->j_flags = JBD2_ABORT;
1101 /* Set up a default-sized revoke table for the new mount. */
1102 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1103 if (err) {
1104 kfree(journal);
1105 return NULL;
1108 spin_lock_init(&journal->j_history_lock);
1110 return journal;
1113 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1115 * Create a journal structure assigned some fixed set of disk blocks to
1116 * the journal. We don't actually touch those disk blocks yet, but we
1117 * need to set up all of the mapping information to tell the journaling
1118 * system where the journal blocks are.
1123 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1124 * @bdev: Block device on which to create the journal
1125 * @fs_dev: Device which hold journalled filesystem for this journal.
1126 * @start: Block nr Start of journal.
1127 * @len: Length of the journal in blocks.
1128 * @blocksize: blocksize of journalling device
1130 * Returns: a newly created journal_t *
1132 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1133 * range of blocks on an arbitrary block device.
1136 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1137 struct block_device *fs_dev,
1138 unsigned long long start, int len, int blocksize)
1140 journal_t *journal = journal_init_common();
1141 struct buffer_head *bh;
1142 char *p;
1143 int n;
1145 if (!journal)
1146 return NULL;
1148 /* journal descriptor can store up to n blocks -bzzz */
1149 journal->j_blocksize = blocksize;
1150 journal->j_dev = bdev;
1151 journal->j_fs_dev = fs_dev;
1152 journal->j_blk_offset = start;
1153 journal->j_maxlen = len;
1154 bdevname(journal->j_dev, journal->j_devname);
1155 p = journal->j_devname;
1156 while ((p = strchr(p, '/')))
1157 *p = '!';
1158 jbd2_stats_proc_init(journal);
1159 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1160 journal->j_wbufsize = n;
1161 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1162 if (!journal->j_wbuf) {
1163 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1164 __func__);
1165 goto out_err;
1168 bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1169 if (!bh) {
1170 printk(KERN_ERR
1171 "%s: Cannot get buffer for journal superblock\n",
1172 __func__);
1173 goto out_err;
1175 journal->j_sb_buffer = bh;
1176 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1178 return journal;
1179 out_err:
1180 kfree(journal->j_wbuf);
1181 jbd2_stats_proc_exit(journal);
1182 kfree(journal);
1183 return NULL;
1187 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1188 * @inode: An inode to create the journal in
1190 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1191 * the journal. The inode must exist already, must support bmap() and
1192 * must have all data blocks preallocated.
1194 journal_t * jbd2_journal_init_inode (struct inode *inode)
1196 struct buffer_head *bh;
1197 journal_t *journal = journal_init_common();
1198 char *p;
1199 int err;
1200 int n;
1201 unsigned long long blocknr;
1203 if (!journal)
1204 return NULL;
1206 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1207 journal->j_inode = inode;
1208 bdevname(journal->j_dev, journal->j_devname);
1209 p = journal->j_devname;
1210 while ((p = strchr(p, '/')))
1211 *p = '!';
1212 p = journal->j_devname + strlen(journal->j_devname);
1213 sprintf(p, "-%lu", journal->j_inode->i_ino);
1214 jbd_debug(1,
1215 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1216 journal, inode->i_sb->s_id, inode->i_ino,
1217 (long long) inode->i_size,
1218 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1220 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1221 journal->j_blocksize = inode->i_sb->s_blocksize;
1222 jbd2_stats_proc_init(journal);
1224 /* journal descriptor can store up to n blocks -bzzz */
1225 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1226 journal->j_wbufsize = n;
1227 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1228 if (!journal->j_wbuf) {
1229 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1230 __func__);
1231 goto out_err;
1234 err = jbd2_journal_bmap(journal, 0, &blocknr);
1235 /* If that failed, give up */
1236 if (err) {
1237 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1238 __func__);
1239 goto out_err;
1242 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1243 if (!bh) {
1244 printk(KERN_ERR
1245 "%s: Cannot get buffer for journal superblock\n",
1246 __func__);
1247 goto out_err;
1249 journal->j_sb_buffer = bh;
1250 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1252 return journal;
1253 out_err:
1254 kfree(journal->j_wbuf);
1255 jbd2_stats_proc_exit(journal);
1256 kfree(journal);
1257 return NULL;
1261 * If the journal init or create aborts, we need to mark the journal
1262 * superblock as being NULL to prevent the journal destroy from writing
1263 * back a bogus superblock.
1265 static void journal_fail_superblock (journal_t *journal)
1267 struct buffer_head *bh = journal->j_sb_buffer;
1268 brelse(bh);
1269 journal->j_sb_buffer = NULL;
1273 * Given a journal_t structure, initialise the various fields for
1274 * startup of a new journaling session. We use this both when creating
1275 * a journal, and after recovering an old journal to reset it for
1276 * subsequent use.
1279 static int journal_reset(journal_t *journal)
1281 journal_superblock_t *sb = journal->j_superblock;
1282 unsigned long long first, last;
1284 first = be32_to_cpu(sb->s_first);
1285 last = be32_to_cpu(sb->s_maxlen);
1286 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1287 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1288 first, last);
1289 journal_fail_superblock(journal);
1290 return -EINVAL;
1293 journal->j_first = first;
1294 journal->j_last = last;
1296 journal->j_head = first;
1297 journal->j_tail = first;
1298 journal->j_free = last - first;
1300 journal->j_tail_sequence = journal->j_transaction_sequence;
1301 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1302 journal->j_commit_request = journal->j_commit_sequence;
1304 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1307 * As a special case, if the on-disk copy is already marked as needing
1308 * no recovery (s_start == 0), then we can safely defer the superblock
1309 * update until the next commit by setting JBD2_FLUSHED. This avoids
1310 * attempting a write to a potential-readonly device.
1312 if (sb->s_start == 0) {
1313 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1314 "(start %ld, seq %d, errno %d)\n",
1315 journal->j_tail, journal->j_tail_sequence,
1316 journal->j_errno);
1317 journal->j_flags |= JBD2_FLUSHED;
1318 } else {
1319 /* Lock here to make assertions happy... */
1320 mutex_lock(&journal->j_checkpoint_mutex);
1322 * Update log tail information. We use WRITE_FUA since new
1323 * transaction will start reusing journal space and so we
1324 * must make sure information about current log tail is on
1325 * disk before that.
1327 jbd2_journal_update_sb_log_tail(journal,
1328 journal->j_tail_sequence,
1329 journal->j_tail,
1330 WRITE_FUA);
1331 mutex_unlock(&journal->j_checkpoint_mutex);
1333 return jbd2_journal_start_thread(journal);
1336 static void jbd2_write_superblock(journal_t *journal, int write_op)
1338 struct buffer_head *bh = journal->j_sb_buffer;
1339 journal_superblock_t *sb = journal->j_superblock;
1340 int ret;
1342 trace_jbd2_write_superblock(journal, write_op);
1343 if (!(journal->j_flags & JBD2_BARRIER))
1344 write_op &= ~(REQ_FUA | REQ_FLUSH);
1345 lock_buffer(bh);
1346 if (buffer_write_io_error(bh)) {
1348 * Oh, dear. A previous attempt to write the journal
1349 * superblock failed. This could happen because the
1350 * USB device was yanked out. Or it could happen to
1351 * be a transient write error and maybe the block will
1352 * be remapped. Nothing we can do but to retry the
1353 * write and hope for the best.
1355 printk(KERN_ERR "JBD2: previous I/O error detected "
1356 "for journal superblock update for %s.\n",
1357 journal->j_devname);
1358 clear_buffer_write_io_error(bh);
1359 set_buffer_uptodate(bh);
1361 jbd2_superblock_csum_set(journal, sb);
1362 get_bh(bh);
1363 bh->b_end_io = end_buffer_write_sync;
1364 ret = submit_bh(write_op, bh);
1365 wait_on_buffer(bh);
1366 if (buffer_write_io_error(bh)) {
1367 clear_buffer_write_io_error(bh);
1368 set_buffer_uptodate(bh);
1369 ret = -EIO;
1371 if (ret) {
1372 printk(KERN_ERR "JBD2: Error %d detected when updating "
1373 "journal superblock for %s.\n", ret,
1374 journal->j_devname);
1379 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1380 * @journal: The journal to update.
1381 * @tail_tid: TID of the new transaction at the tail of the log
1382 * @tail_block: The first block of the transaction at the tail of the log
1383 * @write_op: With which operation should we write the journal sb
1385 * Update a journal's superblock information about log tail and write it to
1386 * disk, waiting for the IO to complete.
1388 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1389 unsigned long tail_block, int write_op)
1391 journal_superblock_t *sb = journal->j_superblock;
1393 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1394 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1395 tail_block, tail_tid);
1397 sb->s_sequence = cpu_to_be32(tail_tid);
1398 sb->s_start = cpu_to_be32(tail_block);
1400 jbd2_write_superblock(journal, write_op);
1402 /* Log is no longer empty */
1403 write_lock(&journal->j_state_lock);
1404 WARN_ON(!sb->s_sequence);
1405 journal->j_flags &= ~JBD2_FLUSHED;
1406 write_unlock(&journal->j_state_lock);
1410 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1411 * @journal: The journal to update.
1413 * Update a journal's dynamic superblock fields to show that journal is empty.
1414 * Write updated superblock to disk waiting for IO to complete.
1416 static void jbd2_mark_journal_empty(journal_t *journal)
1418 journal_superblock_t *sb = journal->j_superblock;
1420 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1421 read_lock(&journal->j_state_lock);
1422 /* Is it already empty? */
1423 if (sb->s_start == 0) {
1424 read_unlock(&journal->j_state_lock);
1425 return;
1427 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1428 journal->j_tail_sequence);
1430 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1431 sb->s_start = cpu_to_be32(0);
1432 read_unlock(&journal->j_state_lock);
1434 jbd2_write_superblock(journal, WRITE_FUA);
1436 /* Log is no longer empty */
1437 write_lock(&journal->j_state_lock);
1438 journal->j_flags |= JBD2_FLUSHED;
1439 write_unlock(&journal->j_state_lock);
1444 * jbd2_journal_update_sb_errno() - Update error in the journal.
1445 * @journal: The journal to update.
1447 * Update a journal's errno. Write updated superblock to disk waiting for IO
1448 * to complete.
1450 void jbd2_journal_update_sb_errno(journal_t *journal)
1452 journal_superblock_t *sb = journal->j_superblock;
1454 read_lock(&journal->j_state_lock);
1455 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1456 journal->j_errno);
1457 sb->s_errno = cpu_to_be32(journal->j_errno);
1458 read_unlock(&journal->j_state_lock);
1460 jbd2_write_superblock(journal, WRITE_SYNC);
1462 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1465 * Read the superblock for a given journal, performing initial
1466 * validation of the format.
1468 static int journal_get_superblock(journal_t *journal)
1470 struct buffer_head *bh;
1471 journal_superblock_t *sb;
1472 int err = -EIO;
1474 bh = journal->j_sb_buffer;
1476 J_ASSERT(bh != NULL);
1477 if (!buffer_uptodate(bh)) {
1478 ll_rw_block(READ, 1, &bh);
1479 wait_on_buffer(bh);
1480 if (!buffer_uptodate(bh)) {
1481 printk(KERN_ERR
1482 "JBD2: IO error reading journal superblock\n");
1483 goto out;
1487 if (buffer_verified(bh))
1488 return 0;
1490 sb = journal->j_superblock;
1492 err = -EINVAL;
1494 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1495 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1496 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1497 goto out;
1500 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1501 case JBD2_SUPERBLOCK_V1:
1502 journal->j_format_version = 1;
1503 break;
1504 case JBD2_SUPERBLOCK_V2:
1505 journal->j_format_version = 2;
1506 break;
1507 default:
1508 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1509 goto out;
1512 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1513 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1514 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1515 printk(KERN_WARNING "JBD2: journal file too short\n");
1516 goto out;
1519 if (be32_to_cpu(sb->s_first) == 0 ||
1520 be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1521 printk(KERN_WARNING
1522 "JBD2: Invalid start block of journal: %u\n",
1523 be32_to_cpu(sb->s_first));
1524 goto out;
1527 if (JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM) &&
1528 JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1529 /* Can't have checksum v1 and v2 on at the same time! */
1530 printk(KERN_ERR "JBD: Can't enable checksumming v1 and v2 "
1531 "at the same time!\n");
1532 goto out;
1535 if (!jbd2_verify_csum_type(journal, sb)) {
1536 printk(KERN_ERR "JBD: Unknown checksum type\n");
1537 goto out;
1540 /* Load the checksum driver */
1541 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1542 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1543 if (IS_ERR(journal->j_chksum_driver)) {
1544 printk(KERN_ERR "JBD: Cannot load crc32c driver.\n");
1545 err = PTR_ERR(journal->j_chksum_driver);
1546 journal->j_chksum_driver = NULL;
1547 goto out;
1551 /* Check superblock checksum */
1552 if (!jbd2_superblock_csum_verify(journal, sb)) {
1553 printk(KERN_ERR "JBD: journal checksum error\n");
1554 goto out;
1557 /* Precompute checksum seed for all metadata */
1558 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
1559 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1560 sizeof(sb->s_uuid));
1562 set_buffer_verified(bh);
1564 return 0;
1566 out:
1567 journal_fail_superblock(journal);
1568 return err;
1572 * Load the on-disk journal superblock and read the key fields into the
1573 * journal_t.
1576 static int load_superblock(journal_t *journal)
1578 int err;
1579 journal_superblock_t *sb;
1581 err = journal_get_superblock(journal);
1582 if (err)
1583 return err;
1585 sb = journal->j_superblock;
1587 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1588 journal->j_tail = be32_to_cpu(sb->s_start);
1589 journal->j_first = be32_to_cpu(sb->s_first);
1590 journal->j_last = be32_to_cpu(sb->s_maxlen);
1591 journal->j_errno = be32_to_cpu(sb->s_errno);
1593 return 0;
1598 * int jbd2_journal_load() - Read journal from disk.
1599 * @journal: Journal to act on.
1601 * Given a journal_t structure which tells us which disk blocks contain
1602 * a journal, read the journal from disk to initialise the in-memory
1603 * structures.
1605 int jbd2_journal_load(journal_t *journal)
1607 int err;
1608 journal_superblock_t *sb;
1610 err = load_superblock(journal);
1611 if (err)
1612 return err;
1614 sb = journal->j_superblock;
1615 /* If this is a V2 superblock, then we have to check the
1616 * features flags on it. */
1618 if (journal->j_format_version >= 2) {
1619 if ((sb->s_feature_ro_compat &
1620 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1621 (sb->s_feature_incompat &
1622 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1623 printk(KERN_WARNING
1624 "JBD2: Unrecognised features on journal\n");
1625 return -EINVAL;
1630 * Create a slab for this blocksize
1632 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1633 if (err)
1634 return err;
1636 /* Let the recovery code check whether it needs to recover any
1637 * data from the journal. */
1638 if (jbd2_journal_recover(journal))
1639 goto recovery_error;
1641 if (journal->j_failed_commit) {
1642 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1643 "is corrupt.\n", journal->j_failed_commit,
1644 journal->j_devname);
1645 return -EIO;
1648 /* OK, we've finished with the dynamic journal bits:
1649 * reinitialise the dynamic contents of the superblock in memory
1650 * and reset them on disk. */
1651 if (journal_reset(journal))
1652 goto recovery_error;
1654 journal->j_flags &= ~JBD2_ABORT;
1655 journal->j_flags |= JBD2_LOADED;
1656 return 0;
1658 recovery_error:
1659 printk(KERN_WARNING "JBD2: recovery failed\n");
1660 return -EIO;
1664 * void jbd2_journal_destroy() - Release a journal_t structure.
1665 * @journal: Journal to act on.
1667 * Release a journal_t structure once it is no longer in use by the
1668 * journaled object.
1669 * Return <0 if we couldn't clean up the journal.
1671 int jbd2_journal_destroy(journal_t *journal)
1673 int err = 0;
1675 /* Wait for the commit thread to wake up and die. */
1676 journal_kill_thread(journal);
1678 /* Force a final log commit */
1679 if (journal->j_running_transaction)
1680 jbd2_journal_commit_transaction(journal);
1682 /* Force any old transactions to disk */
1684 /* Totally anal locking here... */
1685 spin_lock(&journal->j_list_lock);
1686 while (journal->j_checkpoint_transactions != NULL) {
1687 spin_unlock(&journal->j_list_lock);
1688 mutex_lock(&journal->j_checkpoint_mutex);
1689 jbd2_log_do_checkpoint(journal);
1690 mutex_unlock(&journal->j_checkpoint_mutex);
1691 spin_lock(&journal->j_list_lock);
1694 J_ASSERT(journal->j_running_transaction == NULL);
1695 J_ASSERT(journal->j_committing_transaction == NULL);
1696 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1697 spin_unlock(&journal->j_list_lock);
1699 if (journal->j_sb_buffer) {
1700 if (!is_journal_aborted(journal)) {
1701 mutex_lock(&journal->j_checkpoint_mutex);
1702 jbd2_mark_journal_empty(journal);
1703 mutex_unlock(&journal->j_checkpoint_mutex);
1704 } else
1705 err = -EIO;
1706 brelse(journal->j_sb_buffer);
1709 if (journal->j_proc_entry)
1710 jbd2_stats_proc_exit(journal);
1711 if (journal->j_inode)
1712 iput(journal->j_inode);
1713 if (journal->j_revoke)
1714 jbd2_journal_destroy_revoke(journal);
1715 if (journal->j_chksum_driver)
1716 crypto_free_shash(journal->j_chksum_driver);
1717 kfree(journal->j_wbuf);
1718 kfree(journal);
1720 return err;
1725 *int jbd2_journal_check_used_features () - Check if features specified are used.
1726 * @journal: Journal to check.
1727 * @compat: bitmask of compatible features
1728 * @ro: bitmask of features that force read-only mount
1729 * @incompat: bitmask of incompatible features
1731 * Check whether the journal uses all of a given set of
1732 * features. Return true (non-zero) if it does.
1735 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1736 unsigned long ro, unsigned long incompat)
1738 journal_superblock_t *sb;
1740 if (!compat && !ro && !incompat)
1741 return 1;
1742 /* Load journal superblock if it is not loaded yet. */
1743 if (journal->j_format_version == 0 &&
1744 journal_get_superblock(journal) != 0)
1745 return 0;
1746 if (journal->j_format_version == 1)
1747 return 0;
1749 sb = journal->j_superblock;
1751 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1752 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1753 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1754 return 1;
1756 return 0;
1760 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1761 * @journal: Journal to check.
1762 * @compat: bitmask of compatible features
1763 * @ro: bitmask of features that force read-only mount
1764 * @incompat: bitmask of incompatible features
1766 * Check whether the journaling code supports the use of
1767 * all of a given set of features on this journal. Return true
1768 * (non-zero) if it can. */
1770 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1771 unsigned long ro, unsigned long incompat)
1773 if (!compat && !ro && !incompat)
1774 return 1;
1776 /* We can support any known requested features iff the
1777 * superblock is in version 2. Otherwise we fail to support any
1778 * extended sb features. */
1780 if (journal->j_format_version != 2)
1781 return 0;
1783 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1784 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1785 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1786 return 1;
1788 return 0;
1792 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1793 * @journal: Journal to act on.
1794 * @compat: bitmask of compatible features
1795 * @ro: bitmask of features that force read-only mount
1796 * @incompat: bitmask of incompatible features
1798 * Mark a given journal feature as present on the
1799 * superblock. Returns true if the requested features could be set.
1803 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1804 unsigned long ro, unsigned long incompat)
1806 #define INCOMPAT_FEATURE_ON(f) \
1807 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1808 #define COMPAT_FEATURE_ON(f) \
1809 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1810 journal_superblock_t *sb;
1812 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1813 return 1;
1815 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1816 return 0;
1818 /* Asking for checksumming v2 and v1? Only give them v2. */
1819 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2 &&
1820 compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1821 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1823 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1824 compat, ro, incompat);
1826 sb = journal->j_superblock;
1828 /* If enabling v2 checksums, update superblock */
1829 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1830 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1831 sb->s_feature_compat &=
1832 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1834 /* Load the checksum driver */
1835 if (journal->j_chksum_driver == NULL) {
1836 journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1837 0, 0);
1838 if (IS_ERR(journal->j_chksum_driver)) {
1839 printk(KERN_ERR "JBD: Cannot load crc32c "
1840 "driver.\n");
1841 journal->j_chksum_driver = NULL;
1842 return 0;
1846 /* Precompute checksum seed for all metadata */
1847 if (JBD2_HAS_INCOMPAT_FEATURE(journal,
1848 JBD2_FEATURE_INCOMPAT_CSUM_V2))
1849 journal->j_csum_seed = jbd2_chksum(journal, ~0,
1850 sb->s_uuid,
1851 sizeof(sb->s_uuid));
1854 /* If enabling v1 checksums, downgrade superblock */
1855 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1856 sb->s_feature_incompat &=
1857 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2);
1859 sb->s_feature_compat |= cpu_to_be32(compat);
1860 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1861 sb->s_feature_incompat |= cpu_to_be32(incompat);
1863 return 1;
1864 #undef COMPAT_FEATURE_ON
1865 #undef INCOMPAT_FEATURE_ON
1869 * jbd2_journal_clear_features () - Clear a given journal feature in the
1870 * superblock
1871 * @journal: Journal to act on.
1872 * @compat: bitmask of compatible features
1873 * @ro: bitmask of features that force read-only mount
1874 * @incompat: bitmask of incompatible features
1876 * Clear a given journal feature as present on the
1877 * superblock.
1879 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1880 unsigned long ro, unsigned long incompat)
1882 journal_superblock_t *sb;
1884 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1885 compat, ro, incompat);
1887 sb = journal->j_superblock;
1889 sb->s_feature_compat &= ~cpu_to_be32(compat);
1890 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1891 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
1893 EXPORT_SYMBOL(jbd2_journal_clear_features);
1896 * int jbd2_journal_flush () - Flush journal
1897 * @journal: Journal to act on.
1899 * Flush all data for a given journal to disk and empty the journal.
1900 * Filesystems can use this when remounting readonly to ensure that
1901 * recovery does not need to happen on remount.
1904 int jbd2_journal_flush(journal_t *journal)
1906 int err = 0;
1907 transaction_t *transaction = NULL;
1909 write_lock(&journal->j_state_lock);
1911 /* Force everything buffered to the log... */
1912 if (journal->j_running_transaction) {
1913 transaction = journal->j_running_transaction;
1914 __jbd2_log_start_commit(journal, transaction->t_tid);
1915 } else if (journal->j_committing_transaction)
1916 transaction = journal->j_committing_transaction;
1918 /* Wait for the log commit to complete... */
1919 if (transaction) {
1920 tid_t tid = transaction->t_tid;
1922 write_unlock(&journal->j_state_lock);
1923 jbd2_log_wait_commit(journal, tid);
1924 } else {
1925 write_unlock(&journal->j_state_lock);
1928 /* ...and flush everything in the log out to disk. */
1929 spin_lock(&journal->j_list_lock);
1930 while (!err && journal->j_checkpoint_transactions != NULL) {
1931 spin_unlock(&journal->j_list_lock);
1932 mutex_lock(&journal->j_checkpoint_mutex);
1933 err = jbd2_log_do_checkpoint(journal);
1934 mutex_unlock(&journal->j_checkpoint_mutex);
1935 spin_lock(&journal->j_list_lock);
1937 spin_unlock(&journal->j_list_lock);
1939 if (is_journal_aborted(journal))
1940 return -EIO;
1942 mutex_lock(&journal->j_checkpoint_mutex);
1943 jbd2_cleanup_journal_tail(journal);
1945 /* Finally, mark the journal as really needing no recovery.
1946 * This sets s_start==0 in the underlying superblock, which is
1947 * the magic code for a fully-recovered superblock. Any future
1948 * commits of data to the journal will restore the current
1949 * s_start value. */
1950 jbd2_mark_journal_empty(journal);
1951 mutex_unlock(&journal->j_checkpoint_mutex);
1952 write_lock(&journal->j_state_lock);
1953 J_ASSERT(!journal->j_running_transaction);
1954 J_ASSERT(!journal->j_committing_transaction);
1955 J_ASSERT(!journal->j_checkpoint_transactions);
1956 J_ASSERT(journal->j_head == journal->j_tail);
1957 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1958 write_unlock(&journal->j_state_lock);
1959 return 0;
1963 * int jbd2_journal_wipe() - Wipe journal contents
1964 * @journal: Journal to act on.
1965 * @write: flag (see below)
1967 * Wipe out all of the contents of a journal, safely. This will produce
1968 * a warning if the journal contains any valid recovery information.
1969 * Must be called between journal_init_*() and jbd2_journal_load().
1971 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1972 * we merely suppress recovery.
1975 int jbd2_journal_wipe(journal_t *journal, int write)
1977 int err = 0;
1979 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1981 err = load_superblock(journal);
1982 if (err)
1983 return err;
1985 if (!journal->j_tail)
1986 goto no_recovery;
1988 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
1989 write ? "Clearing" : "Ignoring");
1991 err = jbd2_journal_skip_recovery(journal);
1992 if (write) {
1993 /* Lock to make assertions happy... */
1994 mutex_lock(&journal->j_checkpoint_mutex);
1995 jbd2_mark_journal_empty(journal);
1996 mutex_unlock(&journal->j_checkpoint_mutex);
1999 no_recovery:
2000 return err;
2004 * Journal abort has very specific semantics, which we describe
2005 * for journal abort.
2007 * Two internal functions, which provide abort to the jbd layer
2008 * itself are here.
2012 * Quick version for internal journal use (doesn't lock the journal).
2013 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2014 * and don't attempt to make any other journal updates.
2016 void __jbd2_journal_abort_hard(journal_t *journal)
2018 transaction_t *transaction;
2020 if (journal->j_flags & JBD2_ABORT)
2021 return;
2023 printk(KERN_ERR "Aborting journal on device %s.\n",
2024 journal->j_devname);
2026 write_lock(&journal->j_state_lock);
2027 journal->j_flags |= JBD2_ABORT;
2028 transaction = journal->j_running_transaction;
2029 if (transaction)
2030 __jbd2_log_start_commit(journal, transaction->t_tid);
2031 write_unlock(&journal->j_state_lock);
2034 /* Soft abort: record the abort error status in the journal superblock,
2035 * but don't do any other IO. */
2036 static void __journal_abort_soft (journal_t *journal, int errno)
2038 if (journal->j_flags & JBD2_ABORT)
2039 return;
2041 if (!journal->j_errno)
2042 journal->j_errno = errno;
2044 __jbd2_journal_abort_hard(journal);
2046 if (errno)
2047 jbd2_journal_update_sb_errno(journal);
2051 * void jbd2_journal_abort () - Shutdown the journal immediately.
2052 * @journal: the journal to shutdown.
2053 * @errno: an error number to record in the journal indicating
2054 * the reason for the shutdown.
2056 * Perform a complete, immediate shutdown of the ENTIRE
2057 * journal (not of a single transaction). This operation cannot be
2058 * undone without closing and reopening the journal.
2060 * The jbd2_journal_abort function is intended to support higher level error
2061 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2062 * mode.
2064 * Journal abort has very specific semantics. Any existing dirty,
2065 * unjournaled buffers in the main filesystem will still be written to
2066 * disk by bdflush, but the journaling mechanism will be suspended
2067 * immediately and no further transaction commits will be honoured.
2069 * Any dirty, journaled buffers will be written back to disk without
2070 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2071 * filesystem, but we _do_ attempt to leave as much data as possible
2072 * behind for fsck to use for cleanup.
2074 * Any attempt to get a new transaction handle on a journal which is in
2075 * ABORT state will just result in an -EROFS error return. A
2076 * jbd2_journal_stop on an existing handle will return -EIO if we have
2077 * entered abort state during the update.
2079 * Recursive transactions are not disturbed by journal abort until the
2080 * final jbd2_journal_stop, which will receive the -EIO error.
2082 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2083 * which will be recorded (if possible) in the journal superblock. This
2084 * allows a client to record failure conditions in the middle of a
2085 * transaction without having to complete the transaction to record the
2086 * failure to disk. ext3_error, for example, now uses this
2087 * functionality.
2089 * Errors which originate from within the journaling layer will NOT
2090 * supply an errno; a null errno implies that absolutely no further
2091 * writes are done to the journal (unless there are any already in
2092 * progress).
2096 void jbd2_journal_abort(journal_t *journal, int errno)
2098 __journal_abort_soft(journal, errno);
2102 * int jbd2_journal_errno () - returns the journal's error state.
2103 * @journal: journal to examine.
2105 * This is the errno number set with jbd2_journal_abort(), the last
2106 * time the journal was mounted - if the journal was stopped
2107 * without calling abort this will be 0.
2109 * If the journal has been aborted on this mount time -EROFS will
2110 * be returned.
2112 int jbd2_journal_errno(journal_t *journal)
2114 int err;
2116 read_lock(&journal->j_state_lock);
2117 if (journal->j_flags & JBD2_ABORT)
2118 err = -EROFS;
2119 else
2120 err = journal->j_errno;
2121 read_unlock(&journal->j_state_lock);
2122 return err;
2126 * int jbd2_journal_clear_err () - clears the journal's error state
2127 * @journal: journal to act on.
2129 * An error must be cleared or acked to take a FS out of readonly
2130 * mode.
2132 int jbd2_journal_clear_err(journal_t *journal)
2134 int err = 0;
2136 write_lock(&journal->j_state_lock);
2137 if (journal->j_flags & JBD2_ABORT)
2138 err = -EROFS;
2139 else
2140 journal->j_errno = 0;
2141 write_unlock(&journal->j_state_lock);
2142 return err;
2146 * void jbd2_journal_ack_err() - Ack journal err.
2147 * @journal: journal to act on.
2149 * An error must be cleared or acked to take a FS out of readonly
2150 * mode.
2152 void jbd2_journal_ack_err(journal_t *journal)
2154 write_lock(&journal->j_state_lock);
2155 if (journal->j_errno)
2156 journal->j_flags |= JBD2_ACK_ERR;
2157 write_unlock(&journal->j_state_lock);
2160 int jbd2_journal_blocks_per_page(struct inode *inode)
2162 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2166 * helper functions to deal with 32 or 64bit block numbers.
2168 size_t journal_tag_bytes(journal_t *journal)
2170 journal_block_tag_t tag;
2171 size_t x = 0;
2173 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
2174 x += sizeof(tag.t_checksum);
2176 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
2177 return x + JBD2_TAG_SIZE64;
2178 else
2179 return x + JBD2_TAG_SIZE32;
2183 * JBD memory management
2185 * These functions are used to allocate block-sized chunks of memory
2186 * used for making copies of buffer_head data. Very often it will be
2187 * page-sized chunks of data, but sometimes it will be in
2188 * sub-page-size chunks. (For example, 16k pages on Power systems
2189 * with a 4k block file system.) For blocks smaller than a page, we
2190 * use a SLAB allocator. There are slab caches for each block size,
2191 * which are allocated at mount time, if necessary, and we only free
2192 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2193 * this reason we don't need to a mutex to protect access to
2194 * jbd2_slab[] allocating or releasing memory; only in
2195 * jbd2_journal_create_slab().
2197 #define JBD2_MAX_SLABS 8
2198 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2200 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2201 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2202 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2206 static void jbd2_journal_destroy_slabs(void)
2208 int i;
2210 for (i = 0; i < JBD2_MAX_SLABS; i++) {
2211 if (jbd2_slab[i])
2212 kmem_cache_destroy(jbd2_slab[i]);
2213 jbd2_slab[i] = NULL;
2217 static int jbd2_journal_create_slab(size_t size)
2219 static DEFINE_MUTEX(jbd2_slab_create_mutex);
2220 int i = order_base_2(size) - 10;
2221 size_t slab_size;
2223 if (size == PAGE_SIZE)
2224 return 0;
2226 if (i >= JBD2_MAX_SLABS)
2227 return -EINVAL;
2229 if (unlikely(i < 0))
2230 i = 0;
2231 mutex_lock(&jbd2_slab_create_mutex);
2232 if (jbd2_slab[i]) {
2233 mutex_unlock(&jbd2_slab_create_mutex);
2234 return 0; /* Already created */
2237 slab_size = 1 << (i+10);
2238 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2239 slab_size, 0, NULL);
2240 mutex_unlock(&jbd2_slab_create_mutex);
2241 if (!jbd2_slab[i]) {
2242 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2243 return -ENOMEM;
2245 return 0;
2248 static struct kmem_cache *get_slab(size_t size)
2250 int i = order_base_2(size) - 10;
2252 BUG_ON(i >= JBD2_MAX_SLABS);
2253 if (unlikely(i < 0))
2254 i = 0;
2255 BUG_ON(jbd2_slab[i] == NULL);
2256 return jbd2_slab[i];
2259 void *jbd2_alloc(size_t size, gfp_t flags)
2261 void *ptr;
2263 BUG_ON(size & (size-1)); /* Must be a power of 2 */
2265 flags |= __GFP_REPEAT;
2266 if (size == PAGE_SIZE)
2267 ptr = (void *)__get_free_pages(flags, 0);
2268 else if (size > PAGE_SIZE) {
2269 int order = get_order(size);
2271 if (order < 3)
2272 ptr = (void *)__get_free_pages(flags, order);
2273 else
2274 ptr = vmalloc(size);
2275 } else
2276 ptr = kmem_cache_alloc(get_slab(size), flags);
2278 /* Check alignment; SLUB has gotten this wrong in the past,
2279 * and this can lead to user data corruption! */
2280 BUG_ON(((unsigned long) ptr) & (size-1));
2282 return ptr;
2285 void jbd2_free(void *ptr, size_t size)
2287 if (size == PAGE_SIZE) {
2288 free_pages((unsigned long)ptr, 0);
2289 return;
2291 if (size > PAGE_SIZE) {
2292 int order = get_order(size);
2294 if (order < 3)
2295 free_pages((unsigned long)ptr, order);
2296 else
2297 vfree(ptr);
2298 return;
2300 kmem_cache_free(get_slab(size), ptr);
2304 * Journal_head storage management
2306 static struct kmem_cache *jbd2_journal_head_cache;
2307 #ifdef CONFIG_JBD2_DEBUG
2308 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2309 #endif
2311 static int jbd2_journal_init_journal_head_cache(void)
2313 int retval;
2315 J_ASSERT(jbd2_journal_head_cache == NULL);
2316 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2317 sizeof(struct journal_head),
2318 0, /* offset */
2319 SLAB_TEMPORARY, /* flags */
2320 NULL); /* ctor */
2321 retval = 0;
2322 if (!jbd2_journal_head_cache) {
2323 retval = -ENOMEM;
2324 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2326 return retval;
2329 static void jbd2_journal_destroy_journal_head_cache(void)
2331 if (jbd2_journal_head_cache) {
2332 kmem_cache_destroy(jbd2_journal_head_cache);
2333 jbd2_journal_head_cache = NULL;
2338 * journal_head splicing and dicing
2340 static struct journal_head *journal_alloc_journal_head(void)
2342 struct journal_head *ret;
2344 #ifdef CONFIG_JBD2_DEBUG
2345 atomic_inc(&nr_journal_heads);
2346 #endif
2347 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2348 if (!ret) {
2349 jbd_debug(1, "out of memory for journal_head\n");
2350 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2351 while (!ret) {
2352 yield();
2353 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2356 return ret;
2359 static void journal_free_journal_head(struct journal_head *jh)
2361 #ifdef CONFIG_JBD2_DEBUG
2362 atomic_dec(&nr_journal_heads);
2363 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2364 #endif
2365 kmem_cache_free(jbd2_journal_head_cache, jh);
2369 * A journal_head is attached to a buffer_head whenever JBD has an
2370 * interest in the buffer.
2372 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2373 * is set. This bit is tested in core kernel code where we need to take
2374 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2375 * there.
2377 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2379 * When a buffer has its BH_JBD bit set it is immune from being released by
2380 * core kernel code, mainly via ->b_count.
2382 * A journal_head is detached from its buffer_head when the journal_head's
2383 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2384 * transaction (b_cp_transaction) hold their references to b_jcount.
2386 * Various places in the kernel want to attach a journal_head to a buffer_head
2387 * _before_ attaching the journal_head to a transaction. To protect the
2388 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2389 * journal_head's b_jcount refcount by one. The caller must call
2390 * jbd2_journal_put_journal_head() to undo this.
2392 * So the typical usage would be:
2394 * (Attach a journal_head if needed. Increments b_jcount)
2395 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2396 * ...
2397 * (Get another reference for transaction)
2398 * jbd2_journal_grab_journal_head(bh);
2399 * jh->b_transaction = xxx;
2400 * (Put original reference)
2401 * jbd2_journal_put_journal_head(jh);
2405 * Give a buffer_head a journal_head.
2407 * May sleep.
2409 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2411 struct journal_head *jh;
2412 struct journal_head *new_jh = NULL;
2414 repeat:
2415 if (!buffer_jbd(bh))
2416 new_jh = journal_alloc_journal_head();
2418 jbd_lock_bh_journal_head(bh);
2419 if (buffer_jbd(bh)) {
2420 jh = bh2jh(bh);
2421 } else {
2422 J_ASSERT_BH(bh,
2423 (atomic_read(&bh->b_count) > 0) ||
2424 (bh->b_page && bh->b_page->mapping));
2426 if (!new_jh) {
2427 jbd_unlock_bh_journal_head(bh);
2428 goto repeat;
2431 jh = new_jh;
2432 new_jh = NULL; /* We consumed it */
2433 set_buffer_jbd(bh);
2434 bh->b_private = jh;
2435 jh->b_bh = bh;
2436 get_bh(bh);
2437 BUFFER_TRACE(bh, "added journal_head");
2439 jh->b_jcount++;
2440 jbd_unlock_bh_journal_head(bh);
2441 if (new_jh)
2442 journal_free_journal_head(new_jh);
2443 return bh->b_private;
2447 * Grab a ref against this buffer_head's journal_head. If it ended up not
2448 * having a journal_head, return NULL
2450 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2452 struct journal_head *jh = NULL;
2454 jbd_lock_bh_journal_head(bh);
2455 if (buffer_jbd(bh)) {
2456 jh = bh2jh(bh);
2457 jh->b_jcount++;
2459 jbd_unlock_bh_journal_head(bh);
2460 return jh;
2463 static void __journal_remove_journal_head(struct buffer_head *bh)
2465 struct journal_head *jh = bh2jh(bh);
2467 J_ASSERT_JH(jh, jh->b_jcount >= 0);
2468 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2469 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2470 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2471 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2472 J_ASSERT_BH(bh, buffer_jbd(bh));
2473 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2474 BUFFER_TRACE(bh, "remove journal_head");
2475 if (jh->b_frozen_data) {
2476 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2477 jbd2_free(jh->b_frozen_data, bh->b_size);
2479 if (jh->b_committed_data) {
2480 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2481 jbd2_free(jh->b_committed_data, bh->b_size);
2483 bh->b_private = NULL;
2484 jh->b_bh = NULL; /* debug, really */
2485 clear_buffer_jbd(bh);
2486 journal_free_journal_head(jh);
2490 * Drop a reference on the passed journal_head. If it fell to zero then
2491 * release the journal_head from the buffer_head.
2493 void jbd2_journal_put_journal_head(struct journal_head *jh)
2495 struct buffer_head *bh = jh2bh(jh);
2497 jbd_lock_bh_journal_head(bh);
2498 J_ASSERT_JH(jh, jh->b_jcount > 0);
2499 --jh->b_jcount;
2500 if (!jh->b_jcount) {
2501 __journal_remove_journal_head(bh);
2502 jbd_unlock_bh_journal_head(bh);
2503 __brelse(bh);
2504 } else
2505 jbd_unlock_bh_journal_head(bh);
2509 * Initialize jbd inode head
2511 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2513 jinode->i_transaction = NULL;
2514 jinode->i_next_transaction = NULL;
2515 jinode->i_vfs_inode = inode;
2516 jinode->i_flags = 0;
2517 INIT_LIST_HEAD(&jinode->i_list);
2521 * Function to be called before we start removing inode from memory (i.e.,
2522 * clear_inode() is a fine place to be called from). It removes inode from
2523 * transaction's lists.
2525 void jbd2_journal_release_jbd_inode(journal_t *journal,
2526 struct jbd2_inode *jinode)
2528 if (!journal)
2529 return;
2530 restart:
2531 spin_lock(&journal->j_list_lock);
2532 /* Is commit writing out inode - we have to wait */
2533 if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2534 wait_queue_head_t *wq;
2535 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2536 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2537 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2538 spin_unlock(&journal->j_list_lock);
2539 schedule();
2540 finish_wait(wq, &wait.wait);
2541 goto restart;
2544 if (jinode->i_transaction) {
2545 list_del(&jinode->i_list);
2546 jinode->i_transaction = NULL;
2548 spin_unlock(&journal->j_list_lock);
2552 #ifdef CONFIG_PROC_FS
2554 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2556 static void __init jbd2_create_jbd_stats_proc_entry(void)
2558 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2561 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2563 if (proc_jbd2_stats)
2564 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2567 #else
2569 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2570 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2572 #endif
2574 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2576 static int __init jbd2_journal_init_handle_cache(void)
2578 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2579 if (jbd2_handle_cache == NULL) {
2580 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2581 return -ENOMEM;
2583 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2584 if (jbd2_inode_cache == NULL) {
2585 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2586 kmem_cache_destroy(jbd2_handle_cache);
2587 return -ENOMEM;
2589 return 0;
2592 static void jbd2_journal_destroy_handle_cache(void)
2594 if (jbd2_handle_cache)
2595 kmem_cache_destroy(jbd2_handle_cache);
2596 if (jbd2_inode_cache)
2597 kmem_cache_destroy(jbd2_inode_cache);
2602 * Module startup and shutdown
2605 static int __init journal_init_caches(void)
2607 int ret;
2609 ret = jbd2_journal_init_revoke_caches();
2610 if (ret == 0)
2611 ret = jbd2_journal_init_journal_head_cache();
2612 if (ret == 0)
2613 ret = jbd2_journal_init_handle_cache();
2614 if (ret == 0)
2615 ret = jbd2_journal_init_transaction_cache();
2616 return ret;
2619 static void jbd2_journal_destroy_caches(void)
2621 jbd2_journal_destroy_revoke_caches();
2622 jbd2_journal_destroy_journal_head_cache();
2623 jbd2_journal_destroy_handle_cache();
2624 jbd2_journal_destroy_transaction_cache();
2625 jbd2_journal_destroy_slabs();
2628 static int __init journal_init(void)
2630 int ret;
2632 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2634 ret = journal_init_caches();
2635 if (ret == 0) {
2636 jbd2_create_jbd_stats_proc_entry();
2637 } else {
2638 jbd2_journal_destroy_caches();
2640 return ret;
2643 static void __exit journal_exit(void)
2645 #ifdef CONFIG_JBD2_DEBUG
2646 int n = atomic_read(&nr_journal_heads);
2647 if (n)
2648 printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n);
2649 #endif
2650 jbd2_remove_jbd_stats_proc_entry();
2651 jbd2_journal_destroy_caches();
2654 MODULE_LICENSE("GPL");
2655 module_init(journal_init);
2656 module_exit(journal_exit);