2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
64 #include <asm/sections.h>
65 #include <asm/tlbflush.h>
66 #include <asm/div64.h>
69 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
70 static DEFINE_MUTEX(pcp_batch_high_lock
);
72 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
73 DEFINE_PER_CPU(int, numa_node
);
74 EXPORT_PER_CPU_SYMBOL(numa_node
);
77 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
79 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
80 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
81 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
82 * defined in <linux/topology.h>.
84 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
85 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
89 * Array of node states.
91 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
92 [N_POSSIBLE
] = NODE_MASK_ALL
,
93 [N_ONLINE
] = { { [0] = 1UL } },
95 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
97 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
99 #ifdef CONFIG_MOVABLE_NODE
100 [N_MEMORY
] = { { [0] = 1UL } },
102 [N_CPU
] = { { [0] = 1UL } },
105 EXPORT_SYMBOL(node_states
);
107 /* Protect totalram_pages and zone->managed_pages */
108 static DEFINE_SPINLOCK(managed_page_count_lock
);
110 unsigned long totalram_pages __read_mostly
;
111 unsigned long totalreserve_pages __read_mostly
;
113 * When calculating the number of globally allowed dirty pages, there
114 * is a certain number of per-zone reserves that should not be
115 * considered dirtyable memory. This is the sum of those reserves
116 * over all existing zones that contribute dirtyable memory.
118 unsigned long dirty_balance_reserve __read_mostly
;
120 int percpu_pagelist_fraction
;
121 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
123 #ifdef CONFIG_PM_SLEEP
125 * The following functions are used by the suspend/hibernate code to temporarily
126 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
127 * while devices are suspended. To avoid races with the suspend/hibernate code,
128 * they should always be called with pm_mutex held (gfp_allowed_mask also should
129 * only be modified with pm_mutex held, unless the suspend/hibernate code is
130 * guaranteed not to run in parallel with that modification).
133 static gfp_t saved_gfp_mask
;
135 void pm_restore_gfp_mask(void)
137 WARN_ON(!mutex_is_locked(&pm_mutex
));
138 if (saved_gfp_mask
) {
139 gfp_allowed_mask
= saved_gfp_mask
;
144 void pm_restrict_gfp_mask(void)
146 WARN_ON(!mutex_is_locked(&pm_mutex
));
147 WARN_ON(saved_gfp_mask
);
148 saved_gfp_mask
= gfp_allowed_mask
;
149 gfp_allowed_mask
&= ~GFP_IOFS
;
152 bool pm_suspended_storage(void)
154 if ((gfp_allowed_mask
& GFP_IOFS
) == GFP_IOFS
)
158 #endif /* CONFIG_PM_SLEEP */
160 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
161 int pageblock_order __read_mostly
;
164 static void __free_pages_ok(struct page
*page
, unsigned int order
);
167 * results with 256, 32 in the lowmem_reserve sysctl:
168 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
169 * 1G machine -> (16M dma, 784M normal, 224M high)
170 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
171 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
172 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
174 * TBD: should special case ZONE_DMA32 machines here - in those we normally
175 * don't need any ZONE_NORMAL reservation
177 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
178 #ifdef CONFIG_ZONE_DMA
181 #ifdef CONFIG_ZONE_DMA32
184 #ifdef CONFIG_HIGHMEM
190 EXPORT_SYMBOL(totalram_pages
);
192 static char * const zone_names
[MAX_NR_ZONES
] = {
193 #ifdef CONFIG_ZONE_DMA
196 #ifdef CONFIG_ZONE_DMA32
200 #ifdef CONFIG_HIGHMEM
206 int min_free_kbytes
= 1024;
207 int user_min_free_kbytes
;
209 static unsigned long __meminitdata nr_kernel_pages
;
210 static unsigned long __meminitdata nr_all_pages
;
211 static unsigned long __meminitdata dma_reserve
;
213 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
214 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
215 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
216 static unsigned long __initdata required_kernelcore
;
217 static unsigned long __initdata required_movablecore
;
218 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
220 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222 EXPORT_SYMBOL(movable_zone
);
223 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
226 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
227 int nr_online_nodes __read_mostly
= 1;
228 EXPORT_SYMBOL(nr_node_ids
);
229 EXPORT_SYMBOL(nr_online_nodes
);
232 int page_group_by_mobility_disabled __read_mostly
;
234 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
237 if (unlikely(page_group_by_mobility_disabled
))
238 migratetype
= MIGRATE_UNMOVABLE
;
240 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
241 PB_migrate
, PB_migrate_end
);
244 bool oom_killer_disabled __read_mostly
;
246 #ifdef CONFIG_DEBUG_VM
247 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
251 unsigned long pfn
= page_to_pfn(page
);
252 unsigned long sp
, start_pfn
;
255 seq
= zone_span_seqbegin(zone
);
256 start_pfn
= zone
->zone_start_pfn
;
257 sp
= zone
->spanned_pages
;
258 if (!zone_spans_pfn(zone
, pfn
))
260 } while (zone_span_seqretry(zone
, seq
));
263 pr_err("page %lu outside zone [ %lu - %lu ]\n",
264 pfn
, start_pfn
, start_pfn
+ sp
);
269 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
271 if (!pfn_valid_within(page_to_pfn(page
)))
273 if (zone
!= page_zone(page
))
279 * Temporary debugging check for pages not lying within a given zone.
281 static int bad_range(struct zone
*zone
, struct page
*page
)
283 if (page_outside_zone_boundaries(zone
, page
))
285 if (!page_is_consistent(zone
, page
))
291 static inline int bad_range(struct zone
*zone
, struct page
*page
)
297 static void bad_page(struct page
*page
)
299 static unsigned long resume
;
300 static unsigned long nr_shown
;
301 static unsigned long nr_unshown
;
303 /* Don't complain about poisoned pages */
304 if (PageHWPoison(page
)) {
305 page_mapcount_reset(page
); /* remove PageBuddy */
310 * Allow a burst of 60 reports, then keep quiet for that minute;
311 * or allow a steady drip of one report per second.
313 if (nr_shown
== 60) {
314 if (time_before(jiffies
, resume
)) {
320 "BUG: Bad page state: %lu messages suppressed\n",
327 resume
= jiffies
+ 60 * HZ
;
329 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
330 current
->comm
, page_to_pfn(page
));
336 /* Leave bad fields for debug, except PageBuddy could make trouble */
337 page_mapcount_reset(page
); /* remove PageBuddy */
338 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
342 * Higher-order pages are called "compound pages". They are structured thusly:
344 * The first PAGE_SIZE page is called the "head page".
346 * The remaining PAGE_SIZE pages are called "tail pages".
348 * All pages have PG_compound set. All tail pages have their ->first_page
349 * pointing at the head page.
351 * The first tail page's ->lru.next holds the address of the compound page's
352 * put_page() function. Its ->lru.prev holds the order of allocation.
353 * This usage means that zero-order pages may not be compound.
356 static void free_compound_page(struct page
*page
)
358 __free_pages_ok(page
, compound_order(page
));
361 void prep_compound_page(struct page
*page
, unsigned long order
)
364 int nr_pages
= 1 << order
;
366 set_compound_page_dtor(page
, free_compound_page
);
367 set_compound_order(page
, order
);
369 for (i
= 1; i
< nr_pages
; i
++) {
370 struct page
*p
= page
+ i
;
372 set_page_count(p
, 0);
373 p
->first_page
= page
;
377 /* update __split_huge_page_refcount if you change this function */
378 static int destroy_compound_page(struct page
*page
, unsigned long order
)
381 int nr_pages
= 1 << order
;
384 if (unlikely(compound_order(page
) != order
)) {
389 __ClearPageHead(page
);
391 for (i
= 1; i
< nr_pages
; i
++) {
392 struct page
*p
= page
+ i
;
394 if (unlikely(!PageTail(p
) || (p
->first_page
!= page
))) {
404 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
409 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
410 * and __GFP_HIGHMEM from hard or soft interrupt context.
412 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
413 for (i
= 0; i
< (1 << order
); i
++)
414 clear_highpage(page
+ i
);
417 #ifdef CONFIG_DEBUG_PAGEALLOC
418 unsigned int _debug_guardpage_minorder
;
420 static int __init
debug_guardpage_minorder_setup(char *buf
)
424 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
425 printk(KERN_ERR
"Bad debug_guardpage_minorder value\n");
428 _debug_guardpage_minorder
= res
;
429 printk(KERN_INFO
"Setting debug_guardpage_minorder to %lu\n", res
);
432 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup
);
434 static inline void set_page_guard_flag(struct page
*page
)
436 __set_bit(PAGE_DEBUG_FLAG_GUARD
, &page
->debug_flags
);
439 static inline void clear_page_guard_flag(struct page
*page
)
441 __clear_bit(PAGE_DEBUG_FLAG_GUARD
, &page
->debug_flags
);
444 static inline void set_page_guard_flag(struct page
*page
) { }
445 static inline void clear_page_guard_flag(struct page
*page
) { }
448 static inline void set_page_order(struct page
*page
, int order
)
450 set_page_private(page
, order
);
451 __SetPageBuddy(page
);
454 static inline void rmv_page_order(struct page
*page
)
456 __ClearPageBuddy(page
);
457 set_page_private(page
, 0);
461 * Locate the struct page for both the matching buddy in our
462 * pair (buddy1) and the combined O(n+1) page they form (page).
464 * 1) Any buddy B1 will have an order O twin B2 which satisfies
465 * the following equation:
467 * For example, if the starting buddy (buddy2) is #8 its order
469 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
471 * 2) Any buddy B will have an order O+1 parent P which
472 * satisfies the following equation:
475 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
477 static inline unsigned long
478 __find_buddy_index(unsigned long page_idx
, unsigned int order
)
480 return page_idx
^ (1 << order
);
484 * This function checks whether a page is free && is the buddy
485 * we can do coalesce a page and its buddy if
486 * (a) the buddy is not in a hole &&
487 * (b) the buddy is in the buddy system &&
488 * (c) a page and its buddy have the same order &&
489 * (d) a page and its buddy are in the same zone.
491 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
492 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
494 * For recording page's order, we use page_private(page).
496 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
499 if (!pfn_valid_within(page_to_pfn(buddy
)))
502 if (page_zone_id(page
) != page_zone_id(buddy
))
505 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
506 VM_BUG_ON(page_count(buddy
) != 0);
510 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
511 VM_BUG_ON(page_count(buddy
) != 0);
518 * Freeing function for a buddy system allocator.
520 * The concept of a buddy system is to maintain direct-mapped table
521 * (containing bit values) for memory blocks of various "orders".
522 * The bottom level table contains the map for the smallest allocatable
523 * units of memory (here, pages), and each level above it describes
524 * pairs of units from the levels below, hence, "buddies".
525 * At a high level, all that happens here is marking the table entry
526 * at the bottom level available, and propagating the changes upward
527 * as necessary, plus some accounting needed to play nicely with other
528 * parts of the VM system.
529 * At each level, we keep a list of pages, which are heads of continuous
530 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
531 * order is recorded in page_private(page) field.
532 * So when we are allocating or freeing one, we can derive the state of the
533 * other. That is, if we allocate a small block, and both were
534 * free, the remainder of the region must be split into blocks.
535 * If a block is freed, and its buddy is also free, then this
536 * triggers coalescing into a block of larger size.
541 static inline void __free_one_page(struct page
*page
,
542 struct zone
*zone
, unsigned int order
,
545 unsigned long page_idx
;
546 unsigned long combined_idx
;
547 unsigned long uninitialized_var(buddy_idx
);
550 VM_BUG_ON(!zone_is_initialized(zone
));
552 if (unlikely(PageCompound(page
)))
553 if (unlikely(destroy_compound_page(page
, order
)))
556 VM_BUG_ON(migratetype
== -1);
558 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
560 VM_BUG_ON(page_idx
& ((1 << order
) - 1));
561 VM_BUG_ON(bad_range(zone
, page
));
563 while (order
< MAX_ORDER
-1) {
564 buddy_idx
= __find_buddy_index(page_idx
, order
);
565 buddy
= page
+ (buddy_idx
- page_idx
);
566 if (!page_is_buddy(page
, buddy
, order
))
569 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
570 * merge with it and move up one order.
572 if (page_is_guard(buddy
)) {
573 clear_page_guard_flag(buddy
);
574 set_page_private(page
, 0);
575 __mod_zone_freepage_state(zone
, 1 << order
,
578 list_del(&buddy
->lru
);
579 zone
->free_area
[order
].nr_free
--;
580 rmv_page_order(buddy
);
582 combined_idx
= buddy_idx
& page_idx
;
583 page
= page
+ (combined_idx
- page_idx
);
584 page_idx
= combined_idx
;
587 set_page_order(page
, order
);
590 * If this is not the largest possible page, check if the buddy
591 * of the next-highest order is free. If it is, it's possible
592 * that pages are being freed that will coalesce soon. In case,
593 * that is happening, add the free page to the tail of the list
594 * so it's less likely to be used soon and more likely to be merged
595 * as a higher order page
597 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
598 struct page
*higher_page
, *higher_buddy
;
599 combined_idx
= buddy_idx
& page_idx
;
600 higher_page
= page
+ (combined_idx
- page_idx
);
601 buddy_idx
= __find_buddy_index(combined_idx
, order
+ 1);
602 higher_buddy
= higher_page
+ (buddy_idx
- combined_idx
);
603 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
604 list_add_tail(&page
->lru
,
605 &zone
->free_area
[order
].free_list
[migratetype
]);
610 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
612 zone
->free_area
[order
].nr_free
++;
615 static inline int free_pages_check(struct page
*page
)
617 if (unlikely(page_mapcount(page
) |
618 (page
->mapping
!= NULL
) |
619 (atomic_read(&page
->_count
) != 0) |
620 (page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
) |
621 (mem_cgroup_bad_page_check(page
)))) {
625 page_nid_reset_last(page
);
626 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
627 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
632 * Frees a number of pages from the PCP lists
633 * Assumes all pages on list are in same zone, and of same order.
634 * count is the number of pages to free.
636 * If the zone was previously in an "all pages pinned" state then look to
637 * see if this freeing clears that state.
639 * And clear the zone's pages_scanned counter, to hold off the "all pages are
640 * pinned" detection logic.
642 static void free_pcppages_bulk(struct zone
*zone
, int count
,
643 struct per_cpu_pages
*pcp
)
649 spin_lock(&zone
->lock
);
650 zone
->all_unreclaimable
= 0;
651 zone
->pages_scanned
= 0;
655 struct list_head
*list
;
658 * Remove pages from lists in a round-robin fashion. A
659 * batch_free count is maintained that is incremented when an
660 * empty list is encountered. This is so more pages are freed
661 * off fuller lists instead of spinning excessively around empty
666 if (++migratetype
== MIGRATE_PCPTYPES
)
668 list
= &pcp
->lists
[migratetype
];
669 } while (list_empty(list
));
671 /* This is the only non-empty list. Free them all. */
672 if (batch_free
== MIGRATE_PCPTYPES
)
673 batch_free
= to_free
;
676 int mt
; /* migratetype of the to-be-freed page */
678 page
= list_entry(list
->prev
, struct page
, lru
);
679 /* must delete as __free_one_page list manipulates */
680 list_del(&page
->lru
);
681 mt
= get_freepage_migratetype(page
);
682 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
683 __free_one_page(page
, zone
, 0, mt
);
684 trace_mm_page_pcpu_drain(page
, 0, mt
);
685 if (likely(!is_migrate_isolate_page(page
))) {
686 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1);
687 if (is_migrate_cma(mt
))
688 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
, 1);
690 } while (--to_free
&& --batch_free
&& !list_empty(list
));
692 spin_unlock(&zone
->lock
);
695 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
,
698 spin_lock(&zone
->lock
);
699 zone
->all_unreclaimable
= 0;
700 zone
->pages_scanned
= 0;
702 __free_one_page(page
, zone
, order
, migratetype
);
703 if (unlikely(!is_migrate_isolate(migratetype
)))
704 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
705 spin_unlock(&zone
->lock
);
708 static bool free_pages_prepare(struct page
*page
, unsigned int order
)
713 trace_mm_page_free(page
, order
);
714 kmemcheck_free_shadow(page
, order
);
717 page
->mapping
= NULL
;
718 for (i
= 0; i
< (1 << order
); i
++)
719 bad
+= free_pages_check(page
+ i
);
723 if (!PageHighMem(page
)) {
724 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
725 debug_check_no_obj_freed(page_address(page
),
728 arch_free_page(page
, order
);
729 kernel_map_pages(page
, 1 << order
, 0);
734 static void __free_pages_ok(struct page
*page
, unsigned int order
)
739 if (!free_pages_prepare(page
, order
))
742 local_irq_save(flags
);
743 __count_vm_events(PGFREE
, 1 << order
);
744 migratetype
= get_pageblock_migratetype(page
);
745 set_freepage_migratetype(page
, migratetype
);
746 free_one_page(page_zone(page
), page
, order
, migratetype
);
747 local_irq_restore(flags
);
750 void __init
__free_pages_bootmem(struct page
*page
, unsigned int order
)
752 unsigned int nr_pages
= 1 << order
;
756 for (loop
= 0; loop
< nr_pages
; loop
++) {
757 struct page
*p
= &page
[loop
];
759 if (loop
+ 1 < nr_pages
)
761 __ClearPageReserved(p
);
762 set_page_count(p
, 0);
765 page_zone(page
)->managed_pages
+= 1 << order
;
766 set_page_refcounted(page
);
767 __free_pages(page
, order
);
771 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
772 void __init
init_cma_reserved_pageblock(struct page
*page
)
774 unsigned i
= pageblock_nr_pages
;
775 struct page
*p
= page
;
778 __ClearPageReserved(p
);
779 set_page_count(p
, 0);
782 set_page_refcounted(page
);
783 set_pageblock_migratetype(page
, MIGRATE_CMA
);
784 __free_pages(page
, pageblock_order
);
785 adjust_managed_page_count(page
, pageblock_nr_pages
);
790 * The order of subdivision here is critical for the IO subsystem.
791 * Please do not alter this order without good reasons and regression
792 * testing. Specifically, as large blocks of memory are subdivided,
793 * the order in which smaller blocks are delivered depends on the order
794 * they're subdivided in this function. This is the primary factor
795 * influencing the order in which pages are delivered to the IO
796 * subsystem according to empirical testing, and this is also justified
797 * by considering the behavior of a buddy system containing a single
798 * large block of memory acted on by a series of small allocations.
799 * This behavior is a critical factor in sglist merging's success.
803 static inline void expand(struct zone
*zone
, struct page
*page
,
804 int low
, int high
, struct free_area
*area
,
807 unsigned long size
= 1 << high
;
813 VM_BUG_ON(bad_range(zone
, &page
[size
]));
815 #ifdef CONFIG_DEBUG_PAGEALLOC
816 if (high
< debug_guardpage_minorder()) {
818 * Mark as guard pages (or page), that will allow to
819 * merge back to allocator when buddy will be freed.
820 * Corresponding page table entries will not be touched,
821 * pages will stay not present in virtual address space
823 INIT_LIST_HEAD(&page
[size
].lru
);
824 set_page_guard_flag(&page
[size
]);
825 set_page_private(&page
[size
], high
);
826 /* Guard pages are not available for any usage */
827 __mod_zone_freepage_state(zone
, -(1 << high
),
832 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
834 set_page_order(&page
[size
], high
);
839 * This page is about to be returned from the page allocator
841 static inline int check_new_page(struct page
*page
)
843 if (unlikely(page_mapcount(page
) |
844 (page
->mapping
!= NULL
) |
845 (atomic_read(&page
->_count
) != 0) |
846 (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
) |
847 (mem_cgroup_bad_page_check(page
)))) {
854 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
858 for (i
= 0; i
< (1 << order
); i
++) {
859 struct page
*p
= page
+ i
;
860 if (unlikely(check_new_page(p
)))
864 set_page_private(page
, 0);
865 set_page_refcounted(page
);
867 arch_alloc_page(page
, order
);
868 kernel_map_pages(page
, 1 << order
, 1);
870 if (gfp_flags
& __GFP_ZERO
)
871 prep_zero_page(page
, order
, gfp_flags
);
873 if (order
&& (gfp_flags
& __GFP_COMP
))
874 prep_compound_page(page
, order
);
880 * Go through the free lists for the given migratetype and remove
881 * the smallest available page from the freelists
884 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
887 unsigned int current_order
;
888 struct free_area
* area
;
891 /* Find a page of the appropriate size in the preferred list */
892 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
893 area
= &(zone
->free_area
[current_order
]);
894 if (list_empty(&area
->free_list
[migratetype
]))
897 page
= list_entry(area
->free_list
[migratetype
].next
,
899 list_del(&page
->lru
);
900 rmv_page_order(page
);
902 expand(zone
, page
, order
, current_order
, area
, migratetype
);
911 * This array describes the order lists are fallen back to when
912 * the free lists for the desirable migrate type are depleted
914 static int fallbacks
[MIGRATE_TYPES
][4] = {
915 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
916 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
918 [MIGRATE_MOVABLE
] = { MIGRATE_CMA
, MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
919 [MIGRATE_CMA
] = { MIGRATE_RESERVE
}, /* Never used */
921 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
923 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
}, /* Never used */
924 #ifdef CONFIG_MEMORY_ISOLATION
925 [MIGRATE_ISOLATE
] = { MIGRATE_RESERVE
}, /* Never used */
930 * Move the free pages in a range to the free lists of the requested type.
931 * Note that start_page and end_pages are not aligned on a pageblock
932 * boundary. If alignment is required, use move_freepages_block()
934 int move_freepages(struct zone
*zone
,
935 struct page
*start_page
, struct page
*end_page
,
942 #ifndef CONFIG_HOLES_IN_ZONE
944 * page_zone is not safe to call in this context when
945 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
946 * anyway as we check zone boundaries in move_freepages_block().
947 * Remove at a later date when no bug reports exist related to
948 * grouping pages by mobility
950 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
953 for (page
= start_page
; page
<= end_page
;) {
954 /* Make sure we are not inadvertently changing nodes */
955 VM_BUG_ON(page_to_nid(page
) != zone_to_nid(zone
));
957 if (!pfn_valid_within(page_to_pfn(page
))) {
962 if (!PageBuddy(page
)) {
967 order
= page_order(page
);
968 list_move(&page
->lru
,
969 &zone
->free_area
[order
].free_list
[migratetype
]);
970 set_freepage_migratetype(page
, migratetype
);
972 pages_moved
+= 1 << order
;
978 int move_freepages_block(struct zone
*zone
, struct page
*page
,
981 unsigned long start_pfn
, end_pfn
;
982 struct page
*start_page
, *end_page
;
984 start_pfn
= page_to_pfn(page
);
985 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
986 start_page
= pfn_to_page(start_pfn
);
987 end_page
= start_page
+ pageblock_nr_pages
- 1;
988 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
990 /* Do not cross zone boundaries */
991 if (!zone_spans_pfn(zone
, start_pfn
))
993 if (!zone_spans_pfn(zone
, end_pfn
))
996 return move_freepages(zone
, start_page
, end_page
, migratetype
);
999 static void change_pageblock_range(struct page
*pageblock_page
,
1000 int start_order
, int migratetype
)
1002 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
1004 while (nr_pageblocks
--) {
1005 set_pageblock_migratetype(pageblock_page
, migratetype
);
1006 pageblock_page
+= pageblock_nr_pages
;
1010 /* Remove an element from the buddy allocator from the fallback list */
1011 static inline struct page
*
1012 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
1014 struct free_area
* area
;
1019 /* Find the largest possible block of pages in the other list */
1020 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
1023 migratetype
= fallbacks
[start_migratetype
][i
];
1025 /* MIGRATE_RESERVE handled later if necessary */
1026 if (migratetype
== MIGRATE_RESERVE
)
1029 area
= &(zone
->free_area
[current_order
]);
1030 if (list_empty(&area
->free_list
[migratetype
]))
1033 page
= list_entry(area
->free_list
[migratetype
].next
,
1038 * If breaking a large block of pages, move all free
1039 * pages to the preferred allocation list. If falling
1040 * back for a reclaimable kernel allocation, be more
1041 * aggressive about taking ownership of free pages
1043 * On the other hand, never change migration
1044 * type of MIGRATE_CMA pageblocks nor move CMA
1045 * pages on different free lists. We don't
1046 * want unmovable pages to be allocated from
1047 * MIGRATE_CMA areas.
1049 if (!is_migrate_cma(migratetype
) &&
1050 (current_order
>= pageblock_order
/ 2 ||
1051 start_migratetype
== MIGRATE_RECLAIMABLE
||
1052 page_group_by_mobility_disabled
)) {
1054 pages
= move_freepages_block(zone
, page
,
1057 /* Claim the whole block if over half of it is free */
1058 if (pages
>= (1 << (pageblock_order
-1)) ||
1059 page_group_by_mobility_disabled
)
1060 set_pageblock_migratetype(page
,
1063 migratetype
= start_migratetype
;
1066 /* Remove the page from the freelists */
1067 list_del(&page
->lru
);
1068 rmv_page_order(page
);
1070 /* Take ownership for orders >= pageblock_order */
1071 if (current_order
>= pageblock_order
&&
1072 !is_migrate_cma(migratetype
))
1073 change_pageblock_range(page
, current_order
,
1076 expand(zone
, page
, order
, current_order
, area
,
1077 is_migrate_cma(migratetype
)
1078 ? migratetype
: start_migratetype
);
1080 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
1081 start_migratetype
, migratetype
);
1091 * Do the hard work of removing an element from the buddy allocator.
1092 * Call me with the zone->lock already held.
1094 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
1100 page
= __rmqueue_smallest(zone
, order
, migratetype
);
1102 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
1103 page
= __rmqueue_fallback(zone
, order
, migratetype
);
1106 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1107 * is used because __rmqueue_smallest is an inline function
1108 * and we want just one call site
1111 migratetype
= MIGRATE_RESERVE
;
1116 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
1121 * Obtain a specified number of elements from the buddy allocator, all under
1122 * a single hold of the lock, for efficiency. Add them to the supplied list.
1123 * Returns the number of new pages which were placed at *list.
1125 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
1126 unsigned long count
, struct list_head
*list
,
1127 int migratetype
, int cold
)
1129 int mt
= migratetype
, i
;
1131 spin_lock(&zone
->lock
);
1132 for (i
= 0; i
< count
; ++i
) {
1133 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
1134 if (unlikely(page
== NULL
))
1138 * Split buddy pages returned by expand() are received here
1139 * in physical page order. The page is added to the callers and
1140 * list and the list head then moves forward. From the callers
1141 * perspective, the linked list is ordered by page number in
1142 * some conditions. This is useful for IO devices that can
1143 * merge IO requests if the physical pages are ordered
1146 if (likely(cold
== 0))
1147 list_add(&page
->lru
, list
);
1149 list_add_tail(&page
->lru
, list
);
1150 if (IS_ENABLED(CONFIG_CMA
)) {
1151 mt
= get_pageblock_migratetype(page
);
1152 if (!is_migrate_cma(mt
) && !is_migrate_isolate(mt
))
1155 set_freepage_migratetype(page
, mt
);
1157 if (is_migrate_cma(mt
))
1158 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
1161 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
1162 spin_unlock(&zone
->lock
);
1168 * Called from the vmstat counter updater to drain pagesets of this
1169 * currently executing processor on remote nodes after they have
1172 * Note that this function must be called with the thread pinned to
1173 * a single processor.
1175 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
1177 unsigned long flags
;
1179 unsigned long batch
;
1181 local_irq_save(flags
);
1182 batch
= ACCESS_ONCE(pcp
->batch
);
1183 if (pcp
->count
>= batch
)
1186 to_drain
= pcp
->count
;
1188 free_pcppages_bulk(zone
, to_drain
, pcp
);
1189 pcp
->count
-= to_drain
;
1191 local_irq_restore(flags
);
1196 * Drain pages of the indicated processor.
1198 * The processor must either be the current processor and the
1199 * thread pinned to the current processor or a processor that
1202 static void drain_pages(unsigned int cpu
)
1204 unsigned long flags
;
1207 for_each_populated_zone(zone
) {
1208 struct per_cpu_pageset
*pset
;
1209 struct per_cpu_pages
*pcp
;
1211 local_irq_save(flags
);
1212 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
1216 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1219 local_irq_restore(flags
);
1224 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1226 void drain_local_pages(void *arg
)
1228 drain_pages(smp_processor_id());
1232 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1234 * Note that this code is protected against sending an IPI to an offline
1235 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1236 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1237 * nothing keeps CPUs from showing up after we populated the cpumask and
1238 * before the call to on_each_cpu_mask().
1240 void drain_all_pages(void)
1243 struct per_cpu_pageset
*pcp
;
1247 * Allocate in the BSS so we wont require allocation in
1248 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1250 static cpumask_t cpus_with_pcps
;
1253 * We don't care about racing with CPU hotplug event
1254 * as offline notification will cause the notified
1255 * cpu to drain that CPU pcps and on_each_cpu_mask
1256 * disables preemption as part of its processing
1258 for_each_online_cpu(cpu
) {
1259 bool has_pcps
= false;
1260 for_each_populated_zone(zone
) {
1261 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
1262 if (pcp
->pcp
.count
) {
1268 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
1270 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
1272 on_each_cpu_mask(&cpus_with_pcps
, drain_local_pages
, NULL
, 1);
1275 #ifdef CONFIG_HIBERNATION
1277 void mark_free_pages(struct zone
*zone
)
1279 unsigned long pfn
, max_zone_pfn
;
1280 unsigned long flags
;
1282 struct list_head
*curr
;
1284 if (!zone
->spanned_pages
)
1287 spin_lock_irqsave(&zone
->lock
, flags
);
1289 max_zone_pfn
= zone_end_pfn(zone
);
1290 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1291 if (pfn_valid(pfn
)) {
1292 struct page
*page
= pfn_to_page(pfn
);
1294 if (!swsusp_page_is_forbidden(page
))
1295 swsusp_unset_page_free(page
);
1298 for_each_migratetype_order(order
, t
) {
1299 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1302 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1303 for (i
= 0; i
< (1UL << order
); i
++)
1304 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1307 spin_unlock_irqrestore(&zone
->lock
, flags
);
1309 #endif /* CONFIG_PM */
1312 * Free a 0-order page
1313 * cold == 1 ? free a cold page : free a hot page
1315 void free_hot_cold_page(struct page
*page
, int cold
)
1317 struct zone
*zone
= page_zone(page
);
1318 struct per_cpu_pages
*pcp
;
1319 unsigned long flags
;
1322 if (!free_pages_prepare(page
, 0))
1325 migratetype
= get_pageblock_migratetype(page
);
1326 set_freepage_migratetype(page
, migratetype
);
1327 local_irq_save(flags
);
1328 __count_vm_event(PGFREE
);
1331 * We only track unmovable, reclaimable and movable on pcp lists.
1332 * Free ISOLATE pages back to the allocator because they are being
1333 * offlined but treat RESERVE as movable pages so we can get those
1334 * areas back if necessary. Otherwise, we may have to free
1335 * excessively into the page allocator
1337 if (migratetype
>= MIGRATE_PCPTYPES
) {
1338 if (unlikely(is_migrate_isolate(migratetype
))) {
1339 free_one_page(zone
, page
, 0, migratetype
);
1342 migratetype
= MIGRATE_MOVABLE
;
1345 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1347 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
1349 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
1351 if (pcp
->count
>= pcp
->high
) {
1352 unsigned long batch
= ACCESS_ONCE(pcp
->batch
);
1353 free_pcppages_bulk(zone
, batch
, pcp
);
1354 pcp
->count
-= batch
;
1358 local_irq_restore(flags
);
1362 * Free a list of 0-order pages
1364 void free_hot_cold_page_list(struct list_head
*list
, int cold
)
1366 struct page
*page
, *next
;
1368 list_for_each_entry_safe(page
, next
, list
, lru
) {
1369 trace_mm_page_free_batched(page
, cold
);
1370 free_hot_cold_page(page
, cold
);
1375 * split_page takes a non-compound higher-order page, and splits it into
1376 * n (1<<order) sub-pages: page[0..n]
1377 * Each sub-page must be freed individually.
1379 * Note: this is probably too low level an operation for use in drivers.
1380 * Please consult with lkml before using this in your driver.
1382 void split_page(struct page
*page
, unsigned int order
)
1386 VM_BUG_ON(PageCompound(page
));
1387 VM_BUG_ON(!page_count(page
));
1389 #ifdef CONFIG_KMEMCHECK
1391 * Split shadow pages too, because free(page[0]) would
1392 * otherwise free the whole shadow.
1394 if (kmemcheck_page_is_tracked(page
))
1395 split_page(virt_to_page(page
[0].shadow
), order
);
1398 for (i
= 1; i
< (1 << order
); i
++)
1399 set_page_refcounted(page
+ i
);
1401 EXPORT_SYMBOL_GPL(split_page
);
1403 static int __isolate_free_page(struct page
*page
, unsigned int order
)
1405 unsigned long watermark
;
1409 BUG_ON(!PageBuddy(page
));
1411 zone
= page_zone(page
);
1412 mt
= get_pageblock_migratetype(page
);
1414 if (!is_migrate_isolate(mt
)) {
1415 /* Obey watermarks as if the page was being allocated */
1416 watermark
= low_wmark_pages(zone
) + (1 << order
);
1417 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
1420 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
1423 /* Remove page from free list */
1424 list_del(&page
->lru
);
1425 zone
->free_area
[order
].nr_free
--;
1426 rmv_page_order(page
);
1428 /* Set the pageblock if the isolated page is at least a pageblock */
1429 if (order
>= pageblock_order
- 1) {
1430 struct page
*endpage
= page
+ (1 << order
) - 1;
1431 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
1432 int mt
= get_pageblock_migratetype(page
);
1433 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
))
1434 set_pageblock_migratetype(page
,
1439 return 1UL << order
;
1443 * Similar to split_page except the page is already free. As this is only
1444 * being used for migration, the migratetype of the block also changes.
1445 * As this is called with interrupts disabled, the caller is responsible
1446 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1449 * Note: this is probably too low level an operation for use in drivers.
1450 * Please consult with lkml before using this in your driver.
1452 int split_free_page(struct page
*page
)
1457 order
= page_order(page
);
1459 nr_pages
= __isolate_free_page(page
, order
);
1463 /* Split into individual pages */
1464 set_page_refcounted(page
);
1465 split_page(page
, order
);
1470 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1471 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1475 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1476 struct zone
*zone
, int order
, gfp_t gfp_flags
,
1479 unsigned long flags
;
1481 int cold
= !!(gfp_flags
& __GFP_COLD
);
1484 if (likely(order
== 0)) {
1485 struct per_cpu_pages
*pcp
;
1486 struct list_head
*list
;
1488 local_irq_save(flags
);
1489 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1490 list
= &pcp
->lists
[migratetype
];
1491 if (list_empty(list
)) {
1492 pcp
->count
+= rmqueue_bulk(zone
, 0,
1495 if (unlikely(list_empty(list
)))
1500 page
= list_entry(list
->prev
, struct page
, lru
);
1502 page
= list_entry(list
->next
, struct page
, lru
);
1504 list_del(&page
->lru
);
1507 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
1509 * __GFP_NOFAIL is not to be used in new code.
1511 * All __GFP_NOFAIL callers should be fixed so that they
1512 * properly detect and handle allocation failures.
1514 * We most definitely don't want callers attempting to
1515 * allocate greater than order-1 page units with
1518 WARN_ON_ONCE(order
> 1);
1520 spin_lock_irqsave(&zone
->lock
, flags
);
1521 page
= __rmqueue(zone
, order
, migratetype
);
1522 spin_unlock(&zone
->lock
);
1525 __mod_zone_freepage_state(zone
, -(1 << order
),
1526 get_pageblock_migratetype(page
));
1529 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1530 zone_statistics(preferred_zone
, zone
, gfp_flags
);
1531 local_irq_restore(flags
);
1533 VM_BUG_ON(bad_range(zone
, page
));
1534 if (prep_new_page(page
, order
, gfp_flags
))
1539 local_irq_restore(flags
);
1543 #ifdef CONFIG_FAIL_PAGE_ALLOC
1546 struct fault_attr attr
;
1548 u32 ignore_gfp_highmem
;
1549 u32 ignore_gfp_wait
;
1551 } fail_page_alloc
= {
1552 .attr
= FAULT_ATTR_INITIALIZER
,
1553 .ignore_gfp_wait
= 1,
1554 .ignore_gfp_highmem
= 1,
1558 static int __init
setup_fail_page_alloc(char *str
)
1560 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1562 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1564 static bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1566 if (order
< fail_page_alloc
.min_order
)
1568 if (gfp_mask
& __GFP_NOFAIL
)
1570 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1572 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1575 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1578 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1580 static int __init
fail_page_alloc_debugfs(void)
1582 umode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1585 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
1586 &fail_page_alloc
.attr
);
1588 return PTR_ERR(dir
);
1590 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1591 &fail_page_alloc
.ignore_gfp_wait
))
1593 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1594 &fail_page_alloc
.ignore_gfp_highmem
))
1596 if (!debugfs_create_u32("min-order", mode
, dir
,
1597 &fail_page_alloc
.min_order
))
1602 debugfs_remove_recursive(dir
);
1607 late_initcall(fail_page_alloc_debugfs
);
1609 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1611 #else /* CONFIG_FAIL_PAGE_ALLOC */
1613 static inline bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1618 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1621 * Return true if free pages are above 'mark'. This takes into account the order
1622 * of the allocation.
1624 static bool __zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1625 int classzone_idx
, int alloc_flags
, long free_pages
)
1627 /* free_pages my go negative - that's OK */
1629 long lowmem_reserve
= z
->lowmem_reserve
[classzone_idx
];
1633 free_pages
-= (1 << order
) - 1;
1634 if (alloc_flags
& ALLOC_HIGH
)
1636 if (alloc_flags
& ALLOC_HARDER
)
1639 /* If allocation can't use CMA areas don't use free CMA pages */
1640 if (!(alloc_flags
& ALLOC_CMA
))
1641 free_cma
= zone_page_state(z
, NR_FREE_CMA_PAGES
);
1644 if (free_pages
- free_cma
<= min
+ lowmem_reserve
)
1646 for (o
= 0; o
< order
; o
++) {
1647 /* At the next order, this order's pages become unavailable */
1648 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1650 /* Require fewer higher order pages to be free */
1653 if (free_pages
<= min
)
1659 bool zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1660 int classzone_idx
, int alloc_flags
)
1662 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1663 zone_page_state(z
, NR_FREE_PAGES
));
1666 bool zone_watermark_ok_safe(struct zone
*z
, int order
, unsigned long mark
,
1667 int classzone_idx
, int alloc_flags
)
1669 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
1671 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
1672 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
1674 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1680 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1681 * skip over zones that are not allowed by the cpuset, or that have
1682 * been recently (in last second) found to be nearly full. See further
1683 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1684 * that have to skip over a lot of full or unallowed zones.
1686 * If the zonelist cache is present in the passed in zonelist, then
1687 * returns a pointer to the allowed node mask (either the current
1688 * tasks mems_allowed, or node_states[N_MEMORY].)
1690 * If the zonelist cache is not available for this zonelist, does
1691 * nothing and returns NULL.
1693 * If the fullzones BITMAP in the zonelist cache is stale (more than
1694 * a second since last zap'd) then we zap it out (clear its bits.)
1696 * We hold off even calling zlc_setup, until after we've checked the
1697 * first zone in the zonelist, on the theory that most allocations will
1698 * be satisfied from that first zone, so best to examine that zone as
1699 * quickly as we can.
1701 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1703 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1704 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1706 zlc
= zonelist
->zlcache_ptr
;
1710 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1711 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1712 zlc
->last_full_zap
= jiffies
;
1715 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1716 &cpuset_current_mems_allowed
:
1717 &node_states
[N_MEMORY
];
1718 return allowednodes
;
1722 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1723 * if it is worth looking at further for free memory:
1724 * 1) Check that the zone isn't thought to be full (doesn't have its
1725 * bit set in the zonelist_cache fullzones BITMAP).
1726 * 2) Check that the zones node (obtained from the zonelist_cache
1727 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1728 * Return true (non-zero) if zone is worth looking at further, or
1729 * else return false (zero) if it is not.
1731 * This check -ignores- the distinction between various watermarks,
1732 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1733 * found to be full for any variation of these watermarks, it will
1734 * be considered full for up to one second by all requests, unless
1735 * we are so low on memory on all allowed nodes that we are forced
1736 * into the second scan of the zonelist.
1738 * In the second scan we ignore this zonelist cache and exactly
1739 * apply the watermarks to all zones, even it is slower to do so.
1740 * We are low on memory in the second scan, and should leave no stone
1741 * unturned looking for a free page.
1743 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1744 nodemask_t
*allowednodes
)
1746 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1747 int i
; /* index of *z in zonelist zones */
1748 int n
; /* node that zone *z is on */
1750 zlc
= zonelist
->zlcache_ptr
;
1754 i
= z
- zonelist
->_zonerefs
;
1757 /* This zone is worth trying if it is allowed but not full */
1758 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1762 * Given 'z' scanning a zonelist, set the corresponding bit in
1763 * zlc->fullzones, so that subsequent attempts to allocate a page
1764 * from that zone don't waste time re-examining it.
1766 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1768 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1769 int i
; /* index of *z in zonelist zones */
1771 zlc
= zonelist
->zlcache_ptr
;
1775 i
= z
- zonelist
->_zonerefs
;
1777 set_bit(i
, zlc
->fullzones
);
1781 * clear all zones full, called after direct reclaim makes progress so that
1782 * a zone that was recently full is not skipped over for up to a second
1784 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1786 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1788 zlc
= zonelist
->zlcache_ptr
;
1792 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1795 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
1797 return node_isset(local_zone
->node
, zone
->zone_pgdat
->reclaim_nodes
);
1800 static void __paginginit
init_zone_allows_reclaim(int nid
)
1804 for_each_online_node(i
)
1805 if (node_distance(nid
, i
) <= RECLAIM_DISTANCE
)
1806 node_set(i
, NODE_DATA(nid
)->reclaim_nodes
);
1808 zone_reclaim_mode
= 1;
1811 #else /* CONFIG_NUMA */
1813 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1818 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1819 nodemask_t
*allowednodes
)
1824 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1828 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1832 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
1837 static inline void init_zone_allows_reclaim(int nid
)
1840 #endif /* CONFIG_NUMA */
1843 * get_page_from_freelist goes through the zonelist trying to allocate
1846 static struct page
*
1847 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1848 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
1849 struct zone
*preferred_zone
, int migratetype
)
1852 struct page
*page
= NULL
;
1855 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1856 int zlc_active
= 0; /* set if using zonelist_cache */
1857 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1859 classzone_idx
= zone_idx(preferred_zone
);
1862 * Scan zonelist, looking for a zone with enough free.
1863 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1865 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1866 high_zoneidx
, nodemask
) {
1867 if (IS_ENABLED(CONFIG_NUMA
) && zlc_active
&&
1868 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1870 if ((alloc_flags
& ALLOC_CPUSET
) &&
1871 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1874 * When allocating a page cache page for writing, we
1875 * want to get it from a zone that is within its dirty
1876 * limit, such that no single zone holds more than its
1877 * proportional share of globally allowed dirty pages.
1878 * The dirty limits take into account the zone's
1879 * lowmem reserves and high watermark so that kswapd
1880 * should be able to balance it without having to
1881 * write pages from its LRU list.
1883 * This may look like it could increase pressure on
1884 * lower zones by failing allocations in higher zones
1885 * before they are full. But the pages that do spill
1886 * over are limited as the lower zones are protected
1887 * by this very same mechanism. It should not become
1888 * a practical burden to them.
1890 * XXX: For now, allow allocations to potentially
1891 * exceed the per-zone dirty limit in the slowpath
1892 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1893 * which is important when on a NUMA setup the allowed
1894 * zones are together not big enough to reach the
1895 * global limit. The proper fix for these situations
1896 * will require awareness of zones in the
1897 * dirty-throttling and the flusher threads.
1899 if ((alloc_flags
& ALLOC_WMARK_LOW
) &&
1900 (gfp_mask
& __GFP_WRITE
) && !zone_dirty_ok(zone
))
1901 goto this_zone_full
;
1903 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
1904 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1908 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
1909 if (zone_watermark_ok(zone
, order
, mark
,
1910 classzone_idx
, alloc_flags
))
1913 if (IS_ENABLED(CONFIG_NUMA
) &&
1914 !did_zlc_setup
&& nr_online_nodes
> 1) {
1916 * we do zlc_setup if there are multiple nodes
1917 * and before considering the first zone allowed
1920 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1925 if (zone_reclaim_mode
== 0 ||
1926 !zone_allows_reclaim(preferred_zone
, zone
))
1927 goto this_zone_full
;
1930 * As we may have just activated ZLC, check if the first
1931 * eligible zone has failed zone_reclaim recently.
1933 if (IS_ENABLED(CONFIG_NUMA
) && zlc_active
&&
1934 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1937 ret
= zone_reclaim(zone
, gfp_mask
, order
);
1939 case ZONE_RECLAIM_NOSCAN
:
1942 case ZONE_RECLAIM_FULL
:
1943 /* scanned but unreclaimable */
1946 /* did we reclaim enough */
1947 if (zone_watermark_ok(zone
, order
, mark
,
1948 classzone_idx
, alloc_flags
))
1952 * Failed to reclaim enough to meet watermark.
1953 * Only mark the zone full if checking the min
1954 * watermark or if we failed to reclaim just
1955 * 1<<order pages or else the page allocator
1956 * fastpath will prematurely mark zones full
1957 * when the watermark is between the low and
1960 if (((alloc_flags
& ALLOC_WMARK_MASK
) == ALLOC_WMARK_MIN
) ||
1961 ret
== ZONE_RECLAIM_SOME
)
1962 goto this_zone_full
;
1969 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
1970 gfp_mask
, migratetype
);
1974 if (IS_ENABLED(CONFIG_NUMA
))
1975 zlc_mark_zone_full(zonelist
, z
);
1978 if (unlikely(IS_ENABLED(CONFIG_NUMA
) && page
== NULL
&& zlc_active
)) {
1979 /* Disable zlc cache for second zonelist scan */
1986 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1987 * necessary to allocate the page. The expectation is
1988 * that the caller is taking steps that will free more
1989 * memory. The caller should avoid the page being used
1990 * for !PFMEMALLOC purposes.
1992 page
->pfmemalloc
= !!(alloc_flags
& ALLOC_NO_WATERMARKS
);
1998 * Large machines with many possible nodes should not always dump per-node
1999 * meminfo in irq context.
2001 static inline bool should_suppress_show_mem(void)
2006 ret
= in_interrupt();
2011 static DEFINE_RATELIMIT_STATE(nopage_rs
,
2012 DEFAULT_RATELIMIT_INTERVAL
,
2013 DEFAULT_RATELIMIT_BURST
);
2015 void warn_alloc_failed(gfp_t gfp_mask
, int order
, const char *fmt
, ...)
2017 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
2019 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
) ||
2020 debug_guardpage_minorder() > 0)
2024 * Walking all memory to count page types is very expensive and should
2025 * be inhibited in non-blockable contexts.
2027 if (!(gfp_mask
& __GFP_WAIT
))
2028 filter
|= SHOW_MEM_FILTER_PAGE_COUNT
;
2031 * This documents exceptions given to allocations in certain
2032 * contexts that are allowed to allocate outside current's set
2035 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2036 if (test_thread_flag(TIF_MEMDIE
) ||
2037 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
2038 filter
&= ~SHOW_MEM_FILTER_NODES
;
2039 if (in_interrupt() || !(gfp_mask
& __GFP_WAIT
))
2040 filter
&= ~SHOW_MEM_FILTER_NODES
;
2043 struct va_format vaf
;
2046 va_start(args
, fmt
);
2051 pr_warn("%pV", &vaf
);
2056 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2057 current
->comm
, order
, gfp_mask
);
2060 if (!should_suppress_show_mem())
2065 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
2066 unsigned long did_some_progress
,
2067 unsigned long pages_reclaimed
)
2069 /* Do not loop if specifically requested */
2070 if (gfp_mask
& __GFP_NORETRY
)
2073 /* Always retry if specifically requested */
2074 if (gfp_mask
& __GFP_NOFAIL
)
2078 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2079 * making forward progress without invoking OOM. Suspend also disables
2080 * storage devices so kswapd will not help. Bail if we are suspending.
2082 if (!did_some_progress
&& pm_suspended_storage())
2086 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2087 * means __GFP_NOFAIL, but that may not be true in other
2090 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
2094 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2095 * specified, then we retry until we no longer reclaim any pages
2096 * (above), or we've reclaimed an order of pages at least as
2097 * large as the allocation's order. In both cases, if the
2098 * allocation still fails, we stop retrying.
2100 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
2106 static inline struct page
*
2107 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
2108 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2109 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2114 /* Acquire the OOM killer lock for the zones in zonelist */
2115 if (!try_set_zonelist_oom(zonelist
, gfp_mask
)) {
2116 schedule_timeout_uninterruptible(1);
2121 * Go through the zonelist yet one more time, keep very high watermark
2122 * here, this is only to catch a parallel oom killing, we must fail if
2123 * we're still under heavy pressure.
2125 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
2126 order
, zonelist
, high_zoneidx
,
2127 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
2128 preferred_zone
, migratetype
);
2132 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2133 /* The OOM killer will not help higher order allocs */
2134 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2136 /* The OOM killer does not needlessly kill tasks for lowmem */
2137 if (high_zoneidx
< ZONE_NORMAL
)
2140 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2141 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2142 * The caller should handle page allocation failure by itself if
2143 * it specifies __GFP_THISNODE.
2144 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2146 if (gfp_mask
& __GFP_THISNODE
)
2149 /* Exhausted what can be done so it's blamo time */
2150 out_of_memory(zonelist
, gfp_mask
, order
, nodemask
, false);
2153 clear_zonelist_oom(zonelist
, gfp_mask
);
2157 #ifdef CONFIG_COMPACTION
2158 /* Try memory compaction for high-order allocations before reclaim */
2159 static struct page
*
2160 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2161 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2162 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2163 int migratetype
, bool sync_migration
,
2164 bool *contended_compaction
, bool *deferred_compaction
,
2165 unsigned long *did_some_progress
)
2170 if (compaction_deferred(preferred_zone
, order
)) {
2171 *deferred_compaction
= true;
2175 current
->flags
|= PF_MEMALLOC
;
2176 *did_some_progress
= try_to_compact_pages(zonelist
, order
, gfp_mask
,
2177 nodemask
, sync_migration
,
2178 contended_compaction
);
2179 current
->flags
&= ~PF_MEMALLOC
;
2181 if (*did_some_progress
!= COMPACT_SKIPPED
) {
2184 /* Page migration frees to the PCP lists but we want merging */
2185 drain_pages(get_cpu());
2188 page
= get_page_from_freelist(gfp_mask
, nodemask
,
2189 order
, zonelist
, high_zoneidx
,
2190 alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2191 preferred_zone
, migratetype
);
2193 preferred_zone
->compact_blockskip_flush
= false;
2194 preferred_zone
->compact_considered
= 0;
2195 preferred_zone
->compact_defer_shift
= 0;
2196 if (order
>= preferred_zone
->compact_order_failed
)
2197 preferred_zone
->compact_order_failed
= order
+ 1;
2198 count_vm_event(COMPACTSUCCESS
);
2203 * It's bad if compaction run occurs and fails.
2204 * The most likely reason is that pages exist,
2205 * but not enough to satisfy watermarks.
2207 count_vm_event(COMPACTFAIL
);
2210 * As async compaction considers a subset of pageblocks, only
2211 * defer if the failure was a sync compaction failure.
2214 defer_compaction(preferred_zone
, order
);
2222 static inline struct page
*
2223 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
2224 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2225 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2226 int migratetype
, bool sync_migration
,
2227 bool *contended_compaction
, bool *deferred_compaction
,
2228 unsigned long *did_some_progress
)
2232 #endif /* CONFIG_COMPACTION */
2234 /* Perform direct synchronous page reclaim */
2236 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
, struct zonelist
*zonelist
,
2237 nodemask_t
*nodemask
)
2239 struct reclaim_state reclaim_state
;
2244 /* We now go into synchronous reclaim */
2245 cpuset_memory_pressure_bump();
2246 current
->flags
|= PF_MEMALLOC
;
2247 lockdep_set_current_reclaim_state(gfp_mask
);
2248 reclaim_state
.reclaimed_slab
= 0;
2249 current
->reclaim_state
= &reclaim_state
;
2251 progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
2253 current
->reclaim_state
= NULL
;
2254 lockdep_clear_current_reclaim_state();
2255 current
->flags
&= ~PF_MEMALLOC
;
2262 /* The really slow allocator path where we enter direct reclaim */
2263 static inline struct page
*
2264 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
2265 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2266 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
2267 int migratetype
, unsigned long *did_some_progress
)
2269 struct page
*page
= NULL
;
2270 bool drained
= false;
2272 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, zonelist
,
2274 if (unlikely(!(*did_some_progress
)))
2277 /* After successful reclaim, reconsider all zones for allocation */
2278 if (IS_ENABLED(CONFIG_NUMA
))
2279 zlc_clear_zones_full(zonelist
);
2282 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2283 zonelist
, high_zoneidx
,
2284 alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2285 preferred_zone
, migratetype
);
2288 * If an allocation failed after direct reclaim, it could be because
2289 * pages are pinned on the per-cpu lists. Drain them and try again
2291 if (!page
&& !drained
) {
2301 * This is called in the allocator slow-path if the allocation request is of
2302 * sufficient urgency to ignore watermarks and take other desperate measures
2304 static inline struct page
*
2305 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
2306 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2307 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2313 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2314 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
2315 preferred_zone
, migratetype
);
2317 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
2318 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2319 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
2325 void wake_all_kswapd(unsigned int order
, struct zonelist
*zonelist
,
2326 enum zone_type high_zoneidx
,
2327 enum zone_type classzone_idx
)
2332 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
2333 wakeup_kswapd(zone
, order
, classzone_idx
);
2337 gfp_to_alloc_flags(gfp_t gfp_mask
)
2339 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
2340 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2342 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2343 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
2346 * The caller may dip into page reserves a bit more if the caller
2347 * cannot run direct reclaim, or if the caller has realtime scheduling
2348 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2349 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2351 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
2355 * Not worth trying to allocate harder for
2356 * __GFP_NOMEMALLOC even if it can't schedule.
2358 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2359 alloc_flags
|= ALLOC_HARDER
;
2361 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2362 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2364 alloc_flags
&= ~ALLOC_CPUSET
;
2365 } else if (unlikely(rt_task(current
)) && !in_interrupt())
2366 alloc_flags
|= ALLOC_HARDER
;
2368 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
2369 if (gfp_mask
& __GFP_MEMALLOC
)
2370 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2371 else if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
2372 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2373 else if (!in_interrupt() &&
2374 ((current
->flags
& PF_MEMALLOC
) ||
2375 unlikely(test_thread_flag(TIF_MEMDIE
))))
2376 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2379 if (allocflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
2380 alloc_flags
|= ALLOC_CMA
;
2385 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
2387 return !!(gfp_to_alloc_flags(gfp_mask
) & ALLOC_NO_WATERMARKS
);
2390 static inline struct page
*
2391 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
2392 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2393 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2396 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2397 struct page
*page
= NULL
;
2399 unsigned long pages_reclaimed
= 0;
2400 unsigned long did_some_progress
;
2401 bool sync_migration
= false;
2402 bool deferred_compaction
= false;
2403 bool contended_compaction
= false;
2406 * In the slowpath, we sanity check order to avoid ever trying to
2407 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2408 * be using allocators in order of preference for an area that is
2411 if (order
>= MAX_ORDER
) {
2412 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
2417 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2418 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2419 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2420 * using a larger set of nodes after it has established that the
2421 * allowed per node queues are empty and that nodes are
2424 if (IS_ENABLED(CONFIG_NUMA
) &&
2425 (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
2429 if (!(gfp_mask
& __GFP_NO_KSWAPD
))
2430 wake_all_kswapd(order
, zonelist
, high_zoneidx
,
2431 zone_idx(preferred_zone
));
2434 * OK, we're below the kswapd watermark and have kicked background
2435 * reclaim. Now things get more complex, so set up alloc_flags according
2436 * to how we want to proceed.
2438 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
2441 * Find the true preferred zone if the allocation is unconstrained by
2444 if (!(alloc_flags
& ALLOC_CPUSET
) && !nodemask
)
2445 first_zones_zonelist(zonelist
, high_zoneidx
, NULL
,
2449 /* This is the last chance, in general, before the goto nopage. */
2450 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
2451 high_zoneidx
, alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2452 preferred_zone
, migratetype
);
2456 /* Allocate without watermarks if the context allows */
2457 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
2459 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2460 * the allocation is high priority and these type of
2461 * allocations are system rather than user orientated
2463 zonelist
= node_zonelist(numa_node_id(), gfp_mask
);
2465 page
= __alloc_pages_high_priority(gfp_mask
, order
,
2466 zonelist
, high_zoneidx
, nodemask
,
2467 preferred_zone
, migratetype
);
2473 /* Atomic allocations - we can't balance anything */
2477 /* Avoid recursion of direct reclaim */
2478 if (current
->flags
& PF_MEMALLOC
)
2481 /* Avoid allocations with no watermarks from looping endlessly */
2482 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
2486 * Try direct compaction. The first pass is asynchronous. Subsequent
2487 * attempts after direct reclaim are synchronous
2489 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2490 zonelist
, high_zoneidx
,
2492 alloc_flags
, preferred_zone
,
2493 migratetype
, sync_migration
,
2494 &contended_compaction
,
2495 &deferred_compaction
,
2496 &did_some_progress
);
2499 sync_migration
= true;
2502 * If compaction is deferred for high-order allocations, it is because
2503 * sync compaction recently failed. In this is the case and the caller
2504 * requested a movable allocation that does not heavily disrupt the
2505 * system then fail the allocation instead of entering direct reclaim.
2507 if ((deferred_compaction
|| contended_compaction
) &&
2508 (gfp_mask
& __GFP_NO_KSWAPD
))
2511 /* Try direct reclaim and then allocating */
2512 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
2513 zonelist
, high_zoneidx
,
2515 alloc_flags
, preferred_zone
,
2516 migratetype
, &did_some_progress
);
2521 * If we failed to make any progress reclaiming, then we are
2522 * running out of options and have to consider going OOM
2524 if (!did_some_progress
) {
2525 if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
2526 if (oom_killer_disabled
)
2528 /* Coredumps can quickly deplete all memory reserves */
2529 if ((current
->flags
& PF_DUMPCORE
) &&
2530 !(gfp_mask
& __GFP_NOFAIL
))
2532 page
= __alloc_pages_may_oom(gfp_mask
, order
,
2533 zonelist
, high_zoneidx
,
2534 nodemask
, preferred_zone
,
2539 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2541 * The oom killer is not called for high-order
2542 * allocations that may fail, so if no progress
2543 * is being made, there are no other options and
2544 * retrying is unlikely to help.
2546 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2549 * The oom killer is not called for lowmem
2550 * allocations to prevent needlessly killing
2553 if (high_zoneidx
< ZONE_NORMAL
)
2561 /* Check if we should retry the allocation */
2562 pages_reclaimed
+= did_some_progress
;
2563 if (should_alloc_retry(gfp_mask
, order
, did_some_progress
,
2565 /* Wait for some write requests to complete then retry */
2566 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2570 * High-order allocations do not necessarily loop after
2571 * direct reclaim and reclaim/compaction depends on compaction
2572 * being called after reclaim so call directly if necessary
2574 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2575 zonelist
, high_zoneidx
,
2577 alloc_flags
, preferred_zone
,
2578 migratetype
, sync_migration
,
2579 &contended_compaction
,
2580 &deferred_compaction
,
2581 &did_some_progress
);
2587 warn_alloc_failed(gfp_mask
, order
, NULL
);
2590 if (kmemcheck_enabled
)
2591 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
2597 * This is the 'heart' of the zoned buddy allocator.
2600 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
2601 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
2603 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
2604 struct zone
*preferred_zone
;
2605 struct page
*page
= NULL
;
2606 int migratetype
= allocflags_to_migratetype(gfp_mask
);
2607 unsigned int cpuset_mems_cookie
;
2608 int alloc_flags
= ALLOC_WMARK_LOW
|ALLOC_CPUSET
;
2609 struct mem_cgroup
*memcg
= NULL
;
2611 gfp_mask
&= gfp_allowed_mask
;
2613 lockdep_trace_alloc(gfp_mask
);
2615 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2617 if (should_fail_alloc_page(gfp_mask
, order
))
2621 * Check the zones suitable for the gfp_mask contain at least one
2622 * valid zone. It's possible to have an empty zonelist as a result
2623 * of GFP_THISNODE and a memoryless node
2625 if (unlikely(!zonelist
->_zonerefs
->zone
))
2629 * Will only have any effect when __GFP_KMEMCG is set. This is
2630 * verified in the (always inline) callee
2632 if (!memcg_kmem_newpage_charge(gfp_mask
, &memcg
, order
))
2636 cpuset_mems_cookie
= get_mems_allowed();
2638 /* The preferred zone is used for statistics later */
2639 first_zones_zonelist(zonelist
, high_zoneidx
,
2640 nodemask
? : &cpuset_current_mems_allowed
,
2642 if (!preferred_zone
)
2646 if (allocflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
2647 alloc_flags
|= ALLOC_CMA
;
2649 /* First allocation attempt */
2650 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
2651 zonelist
, high_zoneidx
, alloc_flags
,
2652 preferred_zone
, migratetype
);
2653 if (unlikely(!page
)) {
2655 * Runtime PM, block IO and its error handling path
2656 * can deadlock because I/O on the device might not
2659 gfp_mask
= memalloc_noio_flags(gfp_mask
);
2660 page
= __alloc_pages_slowpath(gfp_mask
, order
,
2661 zonelist
, high_zoneidx
, nodemask
,
2662 preferred_zone
, migratetype
);
2665 trace_mm_page_alloc(page
, order
, gfp_mask
, migratetype
);
2669 * When updating a task's mems_allowed, it is possible to race with
2670 * parallel threads in such a way that an allocation can fail while
2671 * the mask is being updated. If a page allocation is about to fail,
2672 * check if the cpuset changed during allocation and if so, retry.
2674 if (unlikely(!put_mems_allowed(cpuset_mems_cookie
) && !page
))
2677 memcg_kmem_commit_charge(page
, memcg
, order
);
2681 EXPORT_SYMBOL(__alloc_pages_nodemask
);
2684 * Common helper functions.
2686 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
2691 * __get_free_pages() returns a 32-bit address, which cannot represent
2694 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
2696 page
= alloc_pages(gfp_mask
, order
);
2699 return (unsigned long) page_address(page
);
2701 EXPORT_SYMBOL(__get_free_pages
);
2703 unsigned long get_zeroed_page(gfp_t gfp_mask
)
2705 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
2707 EXPORT_SYMBOL(get_zeroed_page
);
2709 void __free_pages(struct page
*page
, unsigned int order
)
2711 if (put_page_testzero(page
)) {
2713 free_hot_cold_page(page
, 0);
2715 __free_pages_ok(page
, order
);
2719 EXPORT_SYMBOL(__free_pages
);
2721 void free_pages(unsigned long addr
, unsigned int order
)
2724 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2725 __free_pages(virt_to_page((void *)addr
), order
);
2729 EXPORT_SYMBOL(free_pages
);
2732 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2733 * pages allocated with __GFP_KMEMCG.
2735 * Those pages are accounted to a particular memcg, embedded in the
2736 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2737 * for that information only to find out that it is NULL for users who have no
2738 * interest in that whatsoever, we provide these functions.
2740 * The caller knows better which flags it relies on.
2742 void __free_memcg_kmem_pages(struct page
*page
, unsigned int order
)
2744 memcg_kmem_uncharge_pages(page
, order
);
2745 __free_pages(page
, order
);
2748 void free_memcg_kmem_pages(unsigned long addr
, unsigned int order
)
2751 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2752 __free_memcg_kmem_pages(virt_to_page((void *)addr
), order
);
2756 static void *make_alloc_exact(unsigned long addr
, unsigned order
, size_t size
)
2759 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
2760 unsigned long used
= addr
+ PAGE_ALIGN(size
);
2762 split_page(virt_to_page((void *)addr
), order
);
2763 while (used
< alloc_end
) {
2768 return (void *)addr
;
2772 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2773 * @size: the number of bytes to allocate
2774 * @gfp_mask: GFP flags for the allocation
2776 * This function is similar to alloc_pages(), except that it allocates the
2777 * minimum number of pages to satisfy the request. alloc_pages() can only
2778 * allocate memory in power-of-two pages.
2780 * This function is also limited by MAX_ORDER.
2782 * Memory allocated by this function must be released by free_pages_exact().
2784 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
2786 unsigned int order
= get_order(size
);
2789 addr
= __get_free_pages(gfp_mask
, order
);
2790 return make_alloc_exact(addr
, order
, size
);
2792 EXPORT_SYMBOL(alloc_pages_exact
);
2795 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2797 * @nid: the preferred node ID where memory should be allocated
2798 * @size: the number of bytes to allocate
2799 * @gfp_mask: GFP flags for the allocation
2801 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2803 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2806 void *alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
2808 unsigned order
= get_order(size
);
2809 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
2812 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
2814 EXPORT_SYMBOL(alloc_pages_exact_nid
);
2817 * free_pages_exact - release memory allocated via alloc_pages_exact()
2818 * @virt: the value returned by alloc_pages_exact.
2819 * @size: size of allocation, same value as passed to alloc_pages_exact().
2821 * Release the memory allocated by a previous call to alloc_pages_exact.
2823 void free_pages_exact(void *virt
, size_t size
)
2825 unsigned long addr
= (unsigned long)virt
;
2826 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2828 while (addr
< end
) {
2833 EXPORT_SYMBOL(free_pages_exact
);
2836 * nr_free_zone_pages - count number of pages beyond high watermark
2837 * @offset: The zone index of the highest zone
2839 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2840 * high watermark within all zones at or below a given zone index. For each
2841 * zone, the number of pages is calculated as:
2842 * managed_pages - high_pages
2844 static unsigned long nr_free_zone_pages(int offset
)
2849 /* Just pick one node, since fallback list is circular */
2850 unsigned long sum
= 0;
2852 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
2854 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
2855 unsigned long size
= zone
->managed_pages
;
2856 unsigned long high
= high_wmark_pages(zone
);
2865 * nr_free_buffer_pages - count number of pages beyond high watermark
2867 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2868 * watermark within ZONE_DMA and ZONE_NORMAL.
2870 unsigned long nr_free_buffer_pages(void)
2872 return nr_free_zone_pages(gfp_zone(GFP_USER
));
2874 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
2877 * nr_free_pagecache_pages - count number of pages beyond high watermark
2879 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2880 * high watermark within all zones.
2882 unsigned long nr_free_pagecache_pages(void)
2884 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
2887 static inline void show_node(struct zone
*zone
)
2889 if (IS_ENABLED(CONFIG_NUMA
))
2890 printk("Node %d ", zone_to_nid(zone
));
2893 void si_meminfo(struct sysinfo
*val
)
2895 val
->totalram
= totalram_pages
;
2897 val
->freeram
= global_page_state(NR_FREE_PAGES
);
2898 val
->bufferram
= nr_blockdev_pages();
2899 val
->totalhigh
= totalhigh_pages
;
2900 val
->freehigh
= nr_free_highpages();
2901 val
->mem_unit
= PAGE_SIZE
;
2904 EXPORT_SYMBOL(si_meminfo
);
2907 void si_meminfo_node(struct sysinfo
*val
, int nid
)
2909 int zone_type
; /* needs to be signed */
2910 unsigned long managed_pages
= 0;
2911 pg_data_t
*pgdat
= NODE_DATA(nid
);
2913 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
2914 managed_pages
+= pgdat
->node_zones
[zone_type
].managed_pages
;
2915 val
->totalram
= managed_pages
;
2916 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
2917 #ifdef CONFIG_HIGHMEM
2918 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].managed_pages
;
2919 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
2925 val
->mem_unit
= PAGE_SIZE
;
2930 * Determine whether the node should be displayed or not, depending on whether
2931 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2933 bool skip_free_areas_node(unsigned int flags
, int nid
)
2936 unsigned int cpuset_mems_cookie
;
2938 if (!(flags
& SHOW_MEM_FILTER_NODES
))
2942 cpuset_mems_cookie
= get_mems_allowed();
2943 ret
= !node_isset(nid
, cpuset_current_mems_allowed
);
2944 } while (!put_mems_allowed(cpuset_mems_cookie
));
2949 #define K(x) ((x) << (PAGE_SHIFT-10))
2951 static void show_migration_types(unsigned char type
)
2953 static const char types
[MIGRATE_TYPES
] = {
2954 [MIGRATE_UNMOVABLE
] = 'U',
2955 [MIGRATE_RECLAIMABLE
] = 'E',
2956 [MIGRATE_MOVABLE
] = 'M',
2957 [MIGRATE_RESERVE
] = 'R',
2959 [MIGRATE_CMA
] = 'C',
2961 #ifdef CONFIG_MEMORY_ISOLATION
2962 [MIGRATE_ISOLATE
] = 'I',
2965 char tmp
[MIGRATE_TYPES
+ 1];
2969 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
2970 if (type
& (1 << i
))
2975 printk("(%s) ", tmp
);
2979 * Show free area list (used inside shift_scroll-lock stuff)
2980 * We also calculate the percentage fragmentation. We do this by counting the
2981 * memory on each free list with the exception of the first item on the list.
2982 * Suppresses nodes that are not allowed by current's cpuset if
2983 * SHOW_MEM_FILTER_NODES is passed.
2985 void show_free_areas(unsigned int filter
)
2990 for_each_populated_zone(zone
) {
2991 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
2994 printk("%s per-cpu:\n", zone
->name
);
2996 for_each_online_cpu(cpu
) {
2997 struct per_cpu_pageset
*pageset
;
2999 pageset
= per_cpu_ptr(zone
->pageset
, cpu
);
3001 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3002 cpu
, pageset
->pcp
.high
,
3003 pageset
->pcp
.batch
, pageset
->pcp
.count
);
3007 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3008 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3010 " dirty:%lu writeback:%lu unstable:%lu\n"
3011 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3012 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3014 global_page_state(NR_ACTIVE_ANON
),
3015 global_page_state(NR_INACTIVE_ANON
),
3016 global_page_state(NR_ISOLATED_ANON
),
3017 global_page_state(NR_ACTIVE_FILE
),
3018 global_page_state(NR_INACTIVE_FILE
),
3019 global_page_state(NR_ISOLATED_FILE
),
3020 global_page_state(NR_UNEVICTABLE
),
3021 global_page_state(NR_FILE_DIRTY
),
3022 global_page_state(NR_WRITEBACK
),
3023 global_page_state(NR_UNSTABLE_NFS
),
3024 global_page_state(NR_FREE_PAGES
),
3025 global_page_state(NR_SLAB_RECLAIMABLE
),
3026 global_page_state(NR_SLAB_UNRECLAIMABLE
),
3027 global_page_state(NR_FILE_MAPPED
),
3028 global_page_state(NR_SHMEM
),
3029 global_page_state(NR_PAGETABLE
),
3030 global_page_state(NR_BOUNCE
),
3031 global_page_state(NR_FREE_CMA_PAGES
));
3033 for_each_populated_zone(zone
) {
3036 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3044 " active_anon:%lukB"
3045 " inactive_anon:%lukB"
3046 " active_file:%lukB"
3047 " inactive_file:%lukB"
3048 " unevictable:%lukB"
3049 " isolated(anon):%lukB"
3050 " isolated(file):%lukB"
3058 " slab_reclaimable:%lukB"
3059 " slab_unreclaimable:%lukB"
3060 " kernel_stack:%lukB"
3065 " writeback_tmp:%lukB"
3066 " pages_scanned:%lu"
3067 " all_unreclaimable? %s"
3070 K(zone_page_state(zone
, NR_FREE_PAGES
)),
3071 K(min_wmark_pages(zone
)),
3072 K(low_wmark_pages(zone
)),
3073 K(high_wmark_pages(zone
)),
3074 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
3075 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
3076 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
3077 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
3078 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
3079 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
3080 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
3081 K(zone
->present_pages
),
3082 K(zone
->managed_pages
),
3083 K(zone_page_state(zone
, NR_MLOCK
)),
3084 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
3085 K(zone_page_state(zone
, NR_WRITEBACK
)),
3086 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
3087 K(zone_page_state(zone
, NR_SHMEM
)),
3088 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
3089 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
3090 zone_page_state(zone
, NR_KERNEL_STACK
) *
3092 K(zone_page_state(zone
, NR_PAGETABLE
)),
3093 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
3094 K(zone_page_state(zone
, NR_BOUNCE
)),
3095 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)),
3096 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
3097 zone
->pages_scanned
,
3098 (zone
->all_unreclaimable
? "yes" : "no")
3100 printk("lowmem_reserve[]:");
3101 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3102 printk(" %lu", zone
->lowmem_reserve
[i
]);
3106 for_each_populated_zone(zone
) {
3107 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
3108 unsigned char types
[MAX_ORDER
];
3110 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
3113 printk("%s: ", zone
->name
);
3115 spin_lock_irqsave(&zone
->lock
, flags
);
3116 for (order
= 0; order
< MAX_ORDER
; order
++) {
3117 struct free_area
*area
= &zone
->free_area
[order
];
3120 nr
[order
] = area
->nr_free
;
3121 total
+= nr
[order
] << order
;
3124 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
3125 if (!list_empty(&area
->free_list
[type
]))
3126 types
[order
] |= 1 << type
;
3129 spin_unlock_irqrestore(&zone
->lock
, flags
);
3130 for (order
= 0; order
< MAX_ORDER
; order
++) {
3131 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
3133 show_migration_types(types
[order
]);
3135 printk("= %lukB\n", K(total
));
3138 hugetlb_show_meminfo();
3140 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
3142 show_swap_cache_info();
3145 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
3147 zoneref
->zone
= zone
;
3148 zoneref
->zone_idx
= zone_idx(zone
);
3152 * Builds allocation fallback zone lists.
3154 * Add all populated zones of a node to the zonelist.
3156 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
3160 enum zone_type zone_type
= MAX_NR_ZONES
;
3164 zone
= pgdat
->node_zones
+ zone_type
;
3165 if (populated_zone(zone
)) {
3166 zoneref_set_zone(zone
,
3167 &zonelist
->_zonerefs
[nr_zones
++]);
3168 check_highest_zone(zone_type
);
3170 } while (zone_type
);
3178 * 0 = automatic detection of better ordering.
3179 * 1 = order by ([node] distance, -zonetype)
3180 * 2 = order by (-zonetype, [node] distance)
3182 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3183 * the same zonelist. So only NUMA can configure this param.
3185 #define ZONELIST_ORDER_DEFAULT 0
3186 #define ZONELIST_ORDER_NODE 1
3187 #define ZONELIST_ORDER_ZONE 2
3189 /* zonelist order in the kernel.
3190 * set_zonelist_order() will set this to NODE or ZONE.
3192 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3193 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
3197 /* The value user specified ....changed by config */
3198 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3199 /* string for sysctl */
3200 #define NUMA_ZONELIST_ORDER_LEN 16
3201 char numa_zonelist_order
[16] = "default";
3204 * interface for configure zonelist ordering.
3205 * command line option "numa_zonelist_order"
3206 * = "[dD]efault - default, automatic configuration.
3207 * = "[nN]ode - order by node locality, then by zone within node
3208 * = "[zZ]one - order by zone, then by locality within zone
3211 static int __parse_numa_zonelist_order(char *s
)
3213 if (*s
== 'd' || *s
== 'D') {
3214 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
3215 } else if (*s
== 'n' || *s
== 'N') {
3216 user_zonelist_order
= ZONELIST_ORDER_NODE
;
3217 } else if (*s
== 'z' || *s
== 'Z') {
3218 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
3221 "Ignoring invalid numa_zonelist_order value: "
3228 static __init
int setup_numa_zonelist_order(char *s
)
3235 ret
= __parse_numa_zonelist_order(s
);
3237 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
3241 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
3244 * sysctl handler for numa_zonelist_order
3246 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
3247 void __user
*buffer
, size_t *length
,
3250 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
3252 static DEFINE_MUTEX(zl_order_mutex
);
3254 mutex_lock(&zl_order_mutex
);
3256 if (strlen((char *)table
->data
) >= NUMA_ZONELIST_ORDER_LEN
) {
3260 strcpy(saved_string
, (char *)table
->data
);
3262 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
3266 int oldval
= user_zonelist_order
;
3268 ret
= __parse_numa_zonelist_order((char *)table
->data
);
3271 * bogus value. restore saved string
3273 strncpy((char *)table
->data
, saved_string
,
3274 NUMA_ZONELIST_ORDER_LEN
);
3275 user_zonelist_order
= oldval
;
3276 } else if (oldval
!= user_zonelist_order
) {
3277 mutex_lock(&zonelists_mutex
);
3278 build_all_zonelists(NULL
, NULL
);
3279 mutex_unlock(&zonelists_mutex
);
3283 mutex_unlock(&zl_order_mutex
);
3288 #define MAX_NODE_LOAD (nr_online_nodes)
3289 static int node_load
[MAX_NUMNODES
];
3292 * find_next_best_node - find the next node that should appear in a given node's fallback list
3293 * @node: node whose fallback list we're appending
3294 * @used_node_mask: nodemask_t of already used nodes
3296 * We use a number of factors to determine which is the next node that should
3297 * appear on a given node's fallback list. The node should not have appeared
3298 * already in @node's fallback list, and it should be the next closest node
3299 * according to the distance array (which contains arbitrary distance values
3300 * from each node to each node in the system), and should also prefer nodes
3301 * with no CPUs, since presumably they'll have very little allocation pressure
3302 * on them otherwise.
3303 * It returns -1 if no node is found.
3305 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
3308 int min_val
= INT_MAX
;
3309 int best_node
= NUMA_NO_NODE
;
3310 const struct cpumask
*tmp
= cpumask_of_node(0);
3312 /* Use the local node if we haven't already */
3313 if (!node_isset(node
, *used_node_mask
)) {
3314 node_set(node
, *used_node_mask
);
3318 for_each_node_state(n
, N_MEMORY
) {
3320 /* Don't want a node to appear more than once */
3321 if (node_isset(n
, *used_node_mask
))
3324 /* Use the distance array to find the distance */
3325 val
= node_distance(node
, n
);
3327 /* Penalize nodes under us ("prefer the next node") */
3330 /* Give preference to headless and unused nodes */
3331 tmp
= cpumask_of_node(n
);
3332 if (!cpumask_empty(tmp
))
3333 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
3335 /* Slight preference for less loaded node */
3336 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
3337 val
+= node_load
[n
];
3339 if (val
< min_val
) {
3346 node_set(best_node
, *used_node_mask
);
3353 * Build zonelists ordered by node and zones within node.
3354 * This results in maximum locality--normal zone overflows into local
3355 * DMA zone, if any--but risks exhausting DMA zone.
3357 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
3360 struct zonelist
*zonelist
;
3362 zonelist
= &pgdat
->node_zonelists
[0];
3363 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
3365 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
3366 zonelist
->_zonerefs
[j
].zone
= NULL
;
3367 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3371 * Build gfp_thisnode zonelists
3373 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
3376 struct zonelist
*zonelist
;
3378 zonelist
= &pgdat
->node_zonelists
[1];
3379 j
= build_zonelists_node(pgdat
, zonelist
, 0);
3380 zonelist
->_zonerefs
[j
].zone
= NULL
;
3381 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3385 * Build zonelists ordered by zone and nodes within zones.
3386 * This results in conserving DMA zone[s] until all Normal memory is
3387 * exhausted, but results in overflowing to remote node while memory
3388 * may still exist in local DMA zone.
3390 static int node_order
[MAX_NUMNODES
];
3392 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
3395 int zone_type
; /* needs to be signed */
3397 struct zonelist
*zonelist
;
3399 zonelist
= &pgdat
->node_zonelists
[0];
3401 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
3402 for (j
= 0; j
< nr_nodes
; j
++) {
3403 node
= node_order
[j
];
3404 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
3405 if (populated_zone(z
)) {
3407 &zonelist
->_zonerefs
[pos
++]);
3408 check_highest_zone(zone_type
);
3412 zonelist
->_zonerefs
[pos
].zone
= NULL
;
3413 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
3416 static int default_zonelist_order(void)
3419 unsigned long low_kmem_size
,total_size
;
3423 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3424 * If they are really small and used heavily, the system can fall
3425 * into OOM very easily.
3426 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3428 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3431 for_each_online_node(nid
) {
3432 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
3433 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
3434 if (populated_zone(z
)) {
3435 if (zone_type
< ZONE_NORMAL
)
3436 low_kmem_size
+= z
->managed_pages
;
3437 total_size
+= z
->managed_pages
;
3438 } else if (zone_type
== ZONE_NORMAL
) {
3440 * If any node has only lowmem, then node order
3441 * is preferred to allow kernel allocations
3442 * locally; otherwise, they can easily infringe
3443 * on other nodes when there is an abundance of
3444 * lowmem available to allocate from.
3446 return ZONELIST_ORDER_NODE
;
3450 if (!low_kmem_size
|| /* there are no DMA area. */
3451 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
3452 return ZONELIST_ORDER_NODE
;
3454 * look into each node's config.
3455 * If there is a node whose DMA/DMA32 memory is very big area on
3456 * local memory, NODE_ORDER may be suitable.
3458 average_size
= total_size
/
3459 (nodes_weight(node_states
[N_MEMORY
]) + 1);
3460 for_each_online_node(nid
) {
3463 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
3464 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
3465 if (populated_zone(z
)) {
3466 if (zone_type
< ZONE_NORMAL
)
3467 low_kmem_size
+= z
->present_pages
;
3468 total_size
+= z
->present_pages
;
3471 if (low_kmem_size
&&
3472 total_size
> average_size
&& /* ignore small node */
3473 low_kmem_size
> total_size
* 70/100)
3474 return ZONELIST_ORDER_NODE
;
3476 return ZONELIST_ORDER_ZONE
;
3479 static void set_zonelist_order(void)
3481 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
3482 current_zonelist_order
= default_zonelist_order();
3484 current_zonelist_order
= user_zonelist_order
;
3487 static void build_zonelists(pg_data_t
*pgdat
)
3491 nodemask_t used_mask
;
3492 int local_node
, prev_node
;
3493 struct zonelist
*zonelist
;
3494 int order
= current_zonelist_order
;
3496 /* initialize zonelists */
3497 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
3498 zonelist
= pgdat
->node_zonelists
+ i
;
3499 zonelist
->_zonerefs
[0].zone
= NULL
;
3500 zonelist
->_zonerefs
[0].zone_idx
= 0;
3503 /* NUMA-aware ordering of nodes */
3504 local_node
= pgdat
->node_id
;
3505 load
= nr_online_nodes
;
3506 prev_node
= local_node
;
3507 nodes_clear(used_mask
);
3509 memset(node_order
, 0, sizeof(node_order
));
3512 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
3514 * We don't want to pressure a particular node.
3515 * So adding penalty to the first node in same
3516 * distance group to make it round-robin.
3518 if (node_distance(local_node
, node
) !=
3519 node_distance(local_node
, prev_node
))
3520 node_load
[node
] = load
;
3524 if (order
== ZONELIST_ORDER_NODE
)
3525 build_zonelists_in_node_order(pgdat
, node
);
3527 node_order
[j
++] = node
; /* remember order */
3530 if (order
== ZONELIST_ORDER_ZONE
) {
3531 /* calculate node order -- i.e., DMA last! */
3532 build_zonelists_in_zone_order(pgdat
, j
);
3535 build_thisnode_zonelists(pgdat
);
3538 /* Construct the zonelist performance cache - see further mmzone.h */
3539 static void build_zonelist_cache(pg_data_t
*pgdat
)
3541 struct zonelist
*zonelist
;
3542 struct zonelist_cache
*zlc
;
3545 zonelist
= &pgdat
->node_zonelists
[0];
3546 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
3547 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
3548 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
3549 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
3552 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3554 * Return node id of node used for "local" allocations.
3555 * I.e., first node id of first zone in arg node's generic zonelist.
3556 * Used for initializing percpu 'numa_mem', which is used primarily
3557 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3559 int local_memory_node(int node
)
3563 (void)first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
3564 gfp_zone(GFP_KERNEL
),
3571 #else /* CONFIG_NUMA */
3573 static void set_zonelist_order(void)
3575 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
3578 static void build_zonelists(pg_data_t
*pgdat
)
3580 int node
, local_node
;
3582 struct zonelist
*zonelist
;
3584 local_node
= pgdat
->node_id
;
3586 zonelist
= &pgdat
->node_zonelists
[0];
3587 j
= build_zonelists_node(pgdat
, zonelist
, 0);
3590 * Now we build the zonelist so that it contains the zones
3591 * of all the other nodes.
3592 * We don't want to pressure a particular node, so when
3593 * building the zones for node N, we make sure that the
3594 * zones coming right after the local ones are those from
3595 * node N+1 (modulo N)
3597 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
3598 if (!node_online(node
))
3600 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
3602 for (node
= 0; node
< local_node
; node
++) {
3603 if (!node_online(node
))
3605 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
);
3608 zonelist
->_zonerefs
[j
].zone
= NULL
;
3609 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3612 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3613 static void build_zonelist_cache(pg_data_t
*pgdat
)
3615 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
3618 #endif /* CONFIG_NUMA */
3621 * Boot pageset table. One per cpu which is going to be used for all
3622 * zones and all nodes. The parameters will be set in such a way
3623 * that an item put on a list will immediately be handed over to
3624 * the buddy list. This is safe since pageset manipulation is done
3625 * with interrupts disabled.
3627 * The boot_pagesets must be kept even after bootup is complete for
3628 * unused processors and/or zones. They do play a role for bootstrapping
3629 * hotplugged processors.
3631 * zoneinfo_show() and maybe other functions do
3632 * not check if the processor is online before following the pageset pointer.
3633 * Other parts of the kernel may not check if the zone is available.
3635 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
3636 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
3637 static void setup_zone_pageset(struct zone
*zone
);
3640 * Global mutex to protect against size modification of zonelists
3641 * as well as to serialize pageset setup for the new populated zone.
3643 DEFINE_MUTEX(zonelists_mutex
);
3645 /* return values int ....just for stop_machine() */
3646 static int __build_all_zonelists(void *data
)
3650 pg_data_t
*self
= data
;
3653 memset(node_load
, 0, sizeof(node_load
));
3656 if (self
&& !node_online(self
->node_id
)) {
3657 build_zonelists(self
);
3658 build_zonelist_cache(self
);
3661 for_each_online_node(nid
) {
3662 pg_data_t
*pgdat
= NODE_DATA(nid
);
3664 build_zonelists(pgdat
);
3665 build_zonelist_cache(pgdat
);
3669 * Initialize the boot_pagesets that are going to be used
3670 * for bootstrapping processors. The real pagesets for
3671 * each zone will be allocated later when the per cpu
3672 * allocator is available.
3674 * boot_pagesets are used also for bootstrapping offline
3675 * cpus if the system is already booted because the pagesets
3676 * are needed to initialize allocators on a specific cpu too.
3677 * F.e. the percpu allocator needs the page allocator which
3678 * needs the percpu allocator in order to allocate its pagesets
3679 * (a chicken-egg dilemma).
3681 for_each_possible_cpu(cpu
) {
3682 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
3684 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3686 * We now know the "local memory node" for each node--
3687 * i.e., the node of the first zone in the generic zonelist.
3688 * Set up numa_mem percpu variable for on-line cpus. During
3689 * boot, only the boot cpu should be on-line; we'll init the
3690 * secondary cpus' numa_mem as they come on-line. During
3691 * node/memory hotplug, we'll fixup all on-line cpus.
3693 if (cpu_online(cpu
))
3694 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
3702 * Called with zonelists_mutex held always
3703 * unless system_state == SYSTEM_BOOTING.
3705 void __ref
build_all_zonelists(pg_data_t
*pgdat
, struct zone
*zone
)
3707 set_zonelist_order();
3709 if (system_state
== SYSTEM_BOOTING
) {
3710 __build_all_zonelists(NULL
);
3711 mminit_verify_zonelist();
3712 cpuset_init_current_mems_allowed();
3714 #ifdef CONFIG_MEMORY_HOTPLUG
3716 setup_zone_pageset(zone
);
3718 /* we have to stop all cpus to guarantee there is no user
3720 stop_machine(__build_all_zonelists
, pgdat
, NULL
);
3721 /* cpuset refresh routine should be here */
3723 vm_total_pages
= nr_free_pagecache_pages();
3725 * Disable grouping by mobility if the number of pages in the
3726 * system is too low to allow the mechanism to work. It would be
3727 * more accurate, but expensive to check per-zone. This check is
3728 * made on memory-hotadd so a system can start with mobility
3729 * disabled and enable it later
3731 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
3732 page_group_by_mobility_disabled
= 1;
3734 page_group_by_mobility_disabled
= 0;
3736 printk("Built %i zonelists in %s order, mobility grouping %s. "
3737 "Total pages: %ld\n",
3739 zonelist_order_name
[current_zonelist_order
],
3740 page_group_by_mobility_disabled
? "off" : "on",
3743 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
3748 * Helper functions to size the waitqueue hash table.
3749 * Essentially these want to choose hash table sizes sufficiently
3750 * large so that collisions trying to wait on pages are rare.
3751 * But in fact, the number of active page waitqueues on typical
3752 * systems is ridiculously low, less than 200. So this is even
3753 * conservative, even though it seems large.
3755 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3756 * waitqueues, i.e. the size of the waitq table given the number of pages.
3758 #define PAGES_PER_WAITQUEUE 256
3760 #ifndef CONFIG_MEMORY_HOTPLUG
3761 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3763 unsigned long size
= 1;
3765 pages
/= PAGES_PER_WAITQUEUE
;
3767 while (size
< pages
)
3771 * Once we have dozens or even hundreds of threads sleeping
3772 * on IO we've got bigger problems than wait queue collision.
3773 * Limit the size of the wait table to a reasonable size.
3775 size
= min(size
, 4096UL);
3777 return max(size
, 4UL);
3781 * A zone's size might be changed by hot-add, so it is not possible to determine
3782 * a suitable size for its wait_table. So we use the maximum size now.
3784 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3786 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3787 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3788 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3790 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3791 * or more by the traditional way. (See above). It equals:
3793 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3794 * ia64(16K page size) : = ( 8G + 4M)byte.
3795 * powerpc (64K page size) : = (32G +16M)byte.
3797 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3804 * This is an integer logarithm so that shifts can be used later
3805 * to extract the more random high bits from the multiplicative
3806 * hash function before the remainder is taken.
3808 static inline unsigned long wait_table_bits(unsigned long size
)
3813 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3816 * Check if a pageblock contains reserved pages
3818 static int pageblock_is_reserved(unsigned long start_pfn
, unsigned long end_pfn
)
3822 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3823 if (!pfn_valid_within(pfn
) || PageReserved(pfn_to_page(pfn
)))
3830 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3831 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3832 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3833 * higher will lead to a bigger reserve which will get freed as contiguous
3834 * blocks as reclaim kicks in
3836 static void setup_zone_migrate_reserve(struct zone
*zone
)
3838 unsigned long start_pfn
, pfn
, end_pfn
, block_end_pfn
;
3840 unsigned long block_migratetype
;
3844 * Get the start pfn, end pfn and the number of blocks to reserve
3845 * We have to be careful to be aligned to pageblock_nr_pages to
3846 * make sure that we always check pfn_valid for the first page in
3849 start_pfn
= zone
->zone_start_pfn
;
3850 end_pfn
= zone_end_pfn(zone
);
3851 start_pfn
= roundup(start_pfn
, pageblock_nr_pages
);
3852 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
3856 * Reserve blocks are generally in place to help high-order atomic
3857 * allocations that are short-lived. A min_free_kbytes value that
3858 * would result in more than 2 reserve blocks for atomic allocations
3859 * is assumed to be in place to help anti-fragmentation for the
3860 * future allocation of hugepages at runtime.
3862 reserve
= min(2, reserve
);
3864 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
3865 if (!pfn_valid(pfn
))
3867 page
= pfn_to_page(pfn
);
3869 /* Watch out for overlapping nodes */
3870 if (page_to_nid(page
) != zone_to_nid(zone
))
3873 block_migratetype
= get_pageblock_migratetype(page
);
3875 /* Only test what is necessary when the reserves are not met */
3878 * Blocks with reserved pages will never free, skip
3881 block_end_pfn
= min(pfn
+ pageblock_nr_pages
, end_pfn
);
3882 if (pageblock_is_reserved(pfn
, block_end_pfn
))
3885 /* If this block is reserved, account for it */
3886 if (block_migratetype
== MIGRATE_RESERVE
) {
3891 /* Suitable for reserving if this block is movable */
3892 if (block_migratetype
== MIGRATE_MOVABLE
) {
3893 set_pageblock_migratetype(page
,
3895 move_freepages_block(zone
, page
,
3903 * If the reserve is met and this is a previous reserved block,
3906 if (block_migratetype
== MIGRATE_RESERVE
) {
3907 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3908 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
3914 * Initially all pages are reserved - free ones are freed
3915 * up by free_all_bootmem() once the early boot process is
3916 * done. Non-atomic initialization, single-pass.
3918 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
3919 unsigned long start_pfn
, enum memmap_context context
)
3922 unsigned long end_pfn
= start_pfn
+ size
;
3926 if (highest_memmap_pfn
< end_pfn
- 1)
3927 highest_memmap_pfn
= end_pfn
- 1;
3929 z
= &NODE_DATA(nid
)->node_zones
[zone
];
3930 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3932 * There can be holes in boot-time mem_map[]s
3933 * handed to this function. They do not
3934 * exist on hotplugged memory.
3936 if (context
== MEMMAP_EARLY
) {
3937 if (!early_pfn_valid(pfn
))
3939 if (!early_pfn_in_nid(pfn
, nid
))
3942 page
= pfn_to_page(pfn
);
3943 set_page_links(page
, zone
, nid
, pfn
);
3944 mminit_verify_page_links(page
, zone
, nid
, pfn
);
3945 init_page_count(page
);
3946 page_mapcount_reset(page
);
3947 page_nid_reset_last(page
);
3948 SetPageReserved(page
);
3950 * Mark the block movable so that blocks are reserved for
3951 * movable at startup. This will force kernel allocations
3952 * to reserve their blocks rather than leaking throughout
3953 * the address space during boot when many long-lived
3954 * kernel allocations are made. Later some blocks near
3955 * the start are marked MIGRATE_RESERVE by
3956 * setup_zone_migrate_reserve()
3958 * bitmap is created for zone's valid pfn range. but memmap
3959 * can be created for invalid pages (for alignment)
3960 * check here not to call set_pageblock_migratetype() against
3963 if ((z
->zone_start_pfn
<= pfn
)
3964 && (pfn
< zone_end_pfn(z
))
3965 && !(pfn
& (pageblock_nr_pages
- 1)))
3966 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3968 INIT_LIST_HEAD(&page
->lru
);
3969 #ifdef WANT_PAGE_VIRTUAL
3970 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3971 if (!is_highmem_idx(zone
))
3972 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
3977 static void __meminit
zone_init_free_lists(struct zone
*zone
)
3980 for_each_migratetype_order(order
, t
) {
3981 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
3982 zone
->free_area
[order
].nr_free
= 0;
3986 #ifndef __HAVE_ARCH_MEMMAP_INIT
3987 #define memmap_init(size, nid, zone, start_pfn) \
3988 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3991 static int __meminit
zone_batchsize(struct zone
*zone
)
3997 * The per-cpu-pages pools are set to around 1000th of the
3998 * size of the zone. But no more than 1/2 of a meg.
4000 * OK, so we don't know how big the cache is. So guess.
4002 batch
= zone
->managed_pages
/ 1024;
4003 if (batch
* PAGE_SIZE
> 512 * 1024)
4004 batch
= (512 * 1024) / PAGE_SIZE
;
4005 batch
/= 4; /* We effectively *= 4 below */
4010 * Clamp the batch to a 2^n - 1 value. Having a power
4011 * of 2 value was found to be more likely to have
4012 * suboptimal cache aliasing properties in some cases.
4014 * For example if 2 tasks are alternately allocating
4015 * batches of pages, one task can end up with a lot
4016 * of pages of one half of the possible page colors
4017 * and the other with pages of the other colors.
4019 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
4024 /* The deferral and batching of frees should be suppressed under NOMMU
4027 * The problem is that NOMMU needs to be able to allocate large chunks
4028 * of contiguous memory as there's no hardware page translation to
4029 * assemble apparent contiguous memory from discontiguous pages.
4031 * Queueing large contiguous runs of pages for batching, however,
4032 * causes the pages to actually be freed in smaller chunks. As there
4033 * can be a significant delay between the individual batches being
4034 * recycled, this leads to the once large chunks of space being
4035 * fragmented and becoming unavailable for high-order allocations.
4042 * pcp->high and pcp->batch values are related and dependent on one another:
4043 * ->batch must never be higher then ->high.
4044 * The following function updates them in a safe manner without read side
4047 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4048 * those fields changing asynchronously (acording the the above rule).
4050 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4051 * outside of boot time (or some other assurance that no concurrent updaters
4054 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
4055 unsigned long batch
)
4057 /* start with a fail safe value for batch */
4061 /* Update high, then batch, in order */
4068 /* a companion to pageset_set_high() */
4069 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
4071 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
4074 static void pageset_init(struct per_cpu_pageset
*p
)
4076 struct per_cpu_pages
*pcp
;
4079 memset(p
, 0, sizeof(*p
));
4083 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
4084 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
4087 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
4090 pageset_set_batch(p
, batch
);
4094 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4095 * to the value high for the pageset p.
4097 static void pageset_set_high(struct per_cpu_pageset
*p
,
4100 unsigned long batch
= max(1UL, high
/ 4);
4101 if ((high
/ 4) > (PAGE_SHIFT
* 8))
4102 batch
= PAGE_SHIFT
* 8;
4104 pageset_update(&p
->pcp
, high
, batch
);
4107 static void __meminit
pageset_set_high_and_batch(struct zone
*zone
,
4108 struct per_cpu_pageset
*pcp
)
4110 if (percpu_pagelist_fraction
)
4111 pageset_set_high(pcp
,
4112 (zone
->managed_pages
/
4113 percpu_pagelist_fraction
));
4115 pageset_set_batch(pcp
, zone_batchsize(zone
));
4118 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
4120 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
4123 pageset_set_high_and_batch(zone
, pcp
);
4126 static void __meminit
setup_zone_pageset(struct zone
*zone
)
4129 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
4130 for_each_possible_cpu(cpu
)
4131 zone_pageset_init(zone
, cpu
);
4135 * Allocate per cpu pagesets and initialize them.
4136 * Before this call only boot pagesets were available.
4138 void __init
setup_per_cpu_pageset(void)
4142 for_each_populated_zone(zone
)
4143 setup_zone_pageset(zone
);
4146 static noinline __init_refok
4147 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
4150 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
4154 * The per-page waitqueue mechanism uses hashed waitqueues
4157 zone
->wait_table_hash_nr_entries
=
4158 wait_table_hash_nr_entries(zone_size_pages
);
4159 zone
->wait_table_bits
=
4160 wait_table_bits(zone
->wait_table_hash_nr_entries
);
4161 alloc_size
= zone
->wait_table_hash_nr_entries
4162 * sizeof(wait_queue_head_t
);
4164 if (!slab_is_available()) {
4165 zone
->wait_table
= (wait_queue_head_t
*)
4166 alloc_bootmem_node_nopanic(pgdat
, alloc_size
);
4169 * This case means that a zone whose size was 0 gets new memory
4170 * via memory hot-add.
4171 * But it may be the case that a new node was hot-added. In
4172 * this case vmalloc() will not be able to use this new node's
4173 * memory - this wait_table must be initialized to use this new
4174 * node itself as well.
4175 * To use this new node's memory, further consideration will be
4178 zone
->wait_table
= vmalloc(alloc_size
);
4180 if (!zone
->wait_table
)
4183 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
4184 init_waitqueue_head(zone
->wait_table
+ i
);
4189 static __meminit
void zone_pcp_init(struct zone
*zone
)
4192 * per cpu subsystem is not up at this point. The following code
4193 * relies on the ability of the linker to provide the
4194 * offset of a (static) per cpu variable into the per cpu area.
4196 zone
->pageset
= &boot_pageset
;
4198 if (zone
->present_pages
)
4199 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
4200 zone
->name
, zone
->present_pages
,
4201 zone_batchsize(zone
));
4204 int __meminit
init_currently_empty_zone(struct zone
*zone
,
4205 unsigned long zone_start_pfn
,
4207 enum memmap_context context
)
4209 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
4211 ret
= zone_wait_table_init(zone
, size
);
4214 pgdat
->nr_zones
= zone_idx(zone
) + 1;
4216 zone
->zone_start_pfn
= zone_start_pfn
;
4218 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
4219 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4221 (unsigned long)zone_idx(zone
),
4222 zone_start_pfn
, (zone_start_pfn
+ size
));
4224 zone_init_free_lists(zone
);
4229 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4230 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4232 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4233 * Architectures may implement their own version but if add_active_range()
4234 * was used and there are no special requirements, this is a convenient
4237 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
4239 unsigned long start_pfn
, end_pfn
;
4242 * NOTE: The following SMP-unsafe globals are only used early in boot
4243 * when the kernel is running single-threaded.
4245 static unsigned long __meminitdata last_start_pfn
, last_end_pfn
;
4246 static int __meminitdata last_nid
;
4248 if (last_start_pfn
<= pfn
&& pfn
< last_end_pfn
)
4251 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
4252 if (start_pfn
<= pfn
&& pfn
< end_pfn
) {
4253 last_start_pfn
= start_pfn
;
4254 last_end_pfn
= end_pfn
;
4258 /* This is a memory hole */
4261 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4263 int __meminit
early_pfn_to_nid(unsigned long pfn
)
4267 nid
= __early_pfn_to_nid(pfn
);
4270 /* just returns 0 */
4274 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4275 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
4279 nid
= __early_pfn_to_nid(pfn
);
4280 if (nid
>= 0 && nid
!= node
)
4287 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4288 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4289 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4291 * If an architecture guarantees that all ranges registered with
4292 * add_active_ranges() contain no holes and may be freed, this
4293 * this function may be used instead of calling free_bootmem() manually.
4295 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
4297 unsigned long start_pfn
, end_pfn
;
4300 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
4301 start_pfn
= min(start_pfn
, max_low_pfn
);
4302 end_pfn
= min(end_pfn
, max_low_pfn
);
4304 if (start_pfn
< end_pfn
)
4305 free_bootmem_node(NODE_DATA(this_nid
),
4306 PFN_PHYS(start_pfn
),
4307 (end_pfn
- start_pfn
) << PAGE_SHIFT
);
4312 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4313 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4315 * If an architecture guarantees that all ranges registered with
4316 * add_active_ranges() contain no holes and may be freed, this
4317 * function may be used instead of calling memory_present() manually.
4319 void __init
sparse_memory_present_with_active_regions(int nid
)
4321 unsigned long start_pfn
, end_pfn
;
4324 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
4325 memory_present(this_nid
, start_pfn
, end_pfn
);
4329 * get_pfn_range_for_nid - Return the start and end page frames for a node
4330 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4331 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4332 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4334 * It returns the start and end page frame of a node based on information
4335 * provided by an arch calling add_active_range(). If called for a node
4336 * with no available memory, a warning is printed and the start and end
4339 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
4340 unsigned long *start_pfn
, unsigned long *end_pfn
)
4342 unsigned long this_start_pfn
, this_end_pfn
;
4348 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
4349 *start_pfn
= min(*start_pfn
, this_start_pfn
);
4350 *end_pfn
= max(*end_pfn
, this_end_pfn
);
4353 if (*start_pfn
== -1UL)
4358 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4359 * assumption is made that zones within a node are ordered in monotonic
4360 * increasing memory addresses so that the "highest" populated zone is used
4362 static void __init
find_usable_zone_for_movable(void)
4365 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
4366 if (zone_index
== ZONE_MOVABLE
)
4369 if (arch_zone_highest_possible_pfn
[zone_index
] >
4370 arch_zone_lowest_possible_pfn
[zone_index
])
4374 VM_BUG_ON(zone_index
== -1);
4375 movable_zone
= zone_index
;
4379 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4380 * because it is sized independent of architecture. Unlike the other zones,
4381 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4382 * in each node depending on the size of each node and how evenly kernelcore
4383 * is distributed. This helper function adjusts the zone ranges
4384 * provided by the architecture for a given node by using the end of the
4385 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4386 * zones within a node are in order of monotonic increases memory addresses
4388 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
4389 unsigned long zone_type
,
4390 unsigned long node_start_pfn
,
4391 unsigned long node_end_pfn
,
4392 unsigned long *zone_start_pfn
,
4393 unsigned long *zone_end_pfn
)
4395 /* Only adjust if ZONE_MOVABLE is on this node */
4396 if (zone_movable_pfn
[nid
]) {
4397 /* Size ZONE_MOVABLE */
4398 if (zone_type
== ZONE_MOVABLE
) {
4399 *zone_start_pfn
= zone_movable_pfn
[nid
];
4400 *zone_end_pfn
= min(node_end_pfn
,
4401 arch_zone_highest_possible_pfn
[movable_zone
]);
4403 /* Adjust for ZONE_MOVABLE starting within this range */
4404 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
4405 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
4406 *zone_end_pfn
= zone_movable_pfn
[nid
];
4408 /* Check if this whole range is within ZONE_MOVABLE */
4409 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
4410 *zone_start_pfn
= *zone_end_pfn
;
4415 * Return the number of pages a zone spans in a node, including holes
4416 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4418 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4419 unsigned long zone_type
,
4420 unsigned long node_start_pfn
,
4421 unsigned long node_end_pfn
,
4422 unsigned long *ignored
)
4424 unsigned long zone_start_pfn
, zone_end_pfn
;
4426 /* Get the start and end of the zone */
4427 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
4428 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
4429 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4430 node_start_pfn
, node_end_pfn
,
4431 &zone_start_pfn
, &zone_end_pfn
);
4433 /* Check that this node has pages within the zone's required range */
4434 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
4437 /* Move the zone boundaries inside the node if necessary */
4438 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
4439 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
4441 /* Return the spanned pages */
4442 return zone_end_pfn
- zone_start_pfn
;
4446 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4447 * then all holes in the requested range will be accounted for.
4449 unsigned long __meminit
__absent_pages_in_range(int nid
,
4450 unsigned long range_start_pfn
,
4451 unsigned long range_end_pfn
)
4453 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
4454 unsigned long start_pfn
, end_pfn
;
4457 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
4458 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
4459 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
4460 nr_absent
-= end_pfn
- start_pfn
;
4466 * absent_pages_in_range - Return number of page frames in holes within a range
4467 * @start_pfn: The start PFN to start searching for holes
4468 * @end_pfn: The end PFN to stop searching for holes
4470 * It returns the number of pages frames in memory holes within a range.
4472 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
4473 unsigned long end_pfn
)
4475 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
4478 /* Return the number of page frames in holes in a zone on a node */
4479 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4480 unsigned long zone_type
,
4481 unsigned long node_start_pfn
,
4482 unsigned long node_end_pfn
,
4483 unsigned long *ignored
)
4485 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
4486 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
4487 unsigned long zone_start_pfn
, zone_end_pfn
;
4489 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
4490 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
4492 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4493 node_start_pfn
, node_end_pfn
,
4494 &zone_start_pfn
, &zone_end_pfn
);
4495 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
4498 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4499 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4500 unsigned long zone_type
,
4501 unsigned long node_start_pfn
,
4502 unsigned long node_end_pfn
,
4503 unsigned long *zones_size
)
4505 return zones_size
[zone_type
];
4508 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4509 unsigned long zone_type
,
4510 unsigned long node_start_pfn
,
4511 unsigned long node_end_pfn
,
4512 unsigned long *zholes_size
)
4517 return zholes_size
[zone_type
];
4520 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4522 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
4523 unsigned long node_start_pfn
,
4524 unsigned long node_end_pfn
,
4525 unsigned long *zones_size
,
4526 unsigned long *zholes_size
)
4528 unsigned long realtotalpages
, totalpages
= 0;
4531 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4532 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
4536 pgdat
->node_spanned_pages
= totalpages
;
4538 realtotalpages
= totalpages
;
4539 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4541 zone_absent_pages_in_node(pgdat
->node_id
, i
,
4542 node_start_pfn
, node_end_pfn
,
4544 pgdat
->node_present_pages
= realtotalpages
;
4545 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
4549 #ifndef CONFIG_SPARSEMEM
4551 * Calculate the size of the zone->blockflags rounded to an unsigned long
4552 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4553 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4554 * round what is now in bits to nearest long in bits, then return it in
4557 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
4559 unsigned long usemapsize
;
4561 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
4562 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
4563 usemapsize
= usemapsize
>> pageblock_order
;
4564 usemapsize
*= NR_PAGEBLOCK_BITS
;
4565 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
4567 return usemapsize
/ 8;
4570 static void __init
setup_usemap(struct pglist_data
*pgdat
,
4572 unsigned long zone_start_pfn
,
4573 unsigned long zonesize
)
4575 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
4576 zone
->pageblock_flags
= NULL
;
4578 zone
->pageblock_flags
= alloc_bootmem_node_nopanic(pgdat
,
4582 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
4583 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
4584 #endif /* CONFIG_SPARSEMEM */
4586 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4588 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4589 void __init
set_pageblock_order(void)
4593 /* Check that pageblock_nr_pages has not already been setup */
4594 if (pageblock_order
)
4597 if (HPAGE_SHIFT
> PAGE_SHIFT
)
4598 order
= HUGETLB_PAGE_ORDER
;
4600 order
= MAX_ORDER
- 1;
4603 * Assume the largest contiguous order of interest is a huge page.
4604 * This value may be variable depending on boot parameters on IA64 and
4607 pageblock_order
= order
;
4609 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4612 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4613 * is unused as pageblock_order is set at compile-time. See
4614 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4617 void __init
set_pageblock_order(void)
4621 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4623 static unsigned long __paginginit
calc_memmap_size(unsigned long spanned_pages
,
4624 unsigned long present_pages
)
4626 unsigned long pages
= spanned_pages
;
4629 * Provide a more accurate estimation if there are holes within
4630 * the zone and SPARSEMEM is in use. If there are holes within the
4631 * zone, each populated memory region may cost us one or two extra
4632 * memmap pages due to alignment because memmap pages for each
4633 * populated regions may not naturally algined on page boundary.
4634 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4636 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
4637 IS_ENABLED(CONFIG_SPARSEMEM
))
4638 pages
= present_pages
;
4640 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
4644 * Set up the zone data structures:
4645 * - mark all pages reserved
4646 * - mark all memory queues empty
4647 * - clear the memory bitmaps
4649 * NOTE: pgdat should get zeroed by caller.
4651 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
4652 unsigned long node_start_pfn
, unsigned long node_end_pfn
,
4653 unsigned long *zones_size
, unsigned long *zholes_size
)
4656 int nid
= pgdat
->node_id
;
4657 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
4660 pgdat_resize_init(pgdat
);
4661 #ifdef CONFIG_NUMA_BALANCING
4662 spin_lock_init(&pgdat
->numabalancing_migrate_lock
);
4663 pgdat
->numabalancing_migrate_nr_pages
= 0;
4664 pgdat
->numabalancing_migrate_next_window
= jiffies
;
4666 init_waitqueue_head(&pgdat
->kswapd_wait
);
4667 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
4668 pgdat_page_cgroup_init(pgdat
);
4670 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4671 struct zone
*zone
= pgdat
->node_zones
+ j
;
4672 unsigned long size
, realsize
, freesize
, memmap_pages
;
4674 size
= zone_spanned_pages_in_node(nid
, j
, node_start_pfn
,
4675 node_end_pfn
, zones_size
);
4676 realsize
= freesize
= size
- zone_absent_pages_in_node(nid
, j
,
4682 * Adjust freesize so that it accounts for how much memory
4683 * is used by this zone for memmap. This affects the watermark
4684 * and per-cpu initialisations
4686 memmap_pages
= calc_memmap_size(size
, realsize
);
4687 if (freesize
>= memmap_pages
) {
4688 freesize
-= memmap_pages
;
4691 " %s zone: %lu pages used for memmap\n",
4692 zone_names
[j
], memmap_pages
);
4695 " %s zone: %lu pages exceeds freesize %lu\n",
4696 zone_names
[j
], memmap_pages
, freesize
);
4698 /* Account for reserved pages */
4699 if (j
== 0 && freesize
> dma_reserve
) {
4700 freesize
-= dma_reserve
;
4701 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
4702 zone_names
[0], dma_reserve
);
4705 if (!is_highmem_idx(j
))
4706 nr_kernel_pages
+= freesize
;
4707 /* Charge for highmem memmap if there are enough kernel pages */
4708 else if (nr_kernel_pages
> memmap_pages
* 2)
4709 nr_kernel_pages
-= memmap_pages
;
4710 nr_all_pages
+= freesize
;
4712 zone
->spanned_pages
= size
;
4713 zone
->present_pages
= realsize
;
4715 * Set an approximate value for lowmem here, it will be adjusted
4716 * when the bootmem allocator frees pages into the buddy system.
4717 * And all highmem pages will be managed by the buddy system.
4719 zone
->managed_pages
= is_highmem_idx(j
) ? realsize
: freesize
;
4722 zone
->min_unmapped_pages
= (freesize
*sysctl_min_unmapped_ratio
)
4724 zone
->min_slab_pages
= (freesize
* sysctl_min_slab_ratio
) / 100;
4726 zone
->name
= zone_names
[j
];
4727 spin_lock_init(&zone
->lock
);
4728 spin_lock_init(&zone
->lru_lock
);
4729 zone_seqlock_init(zone
);
4730 zone
->zone_pgdat
= pgdat
;
4732 zone_pcp_init(zone
);
4733 lruvec_init(&zone
->lruvec
);
4737 set_pageblock_order();
4738 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
4739 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
4740 size
, MEMMAP_EARLY
);
4742 memmap_init(size
, nid
, j
, zone_start_pfn
);
4743 zone_start_pfn
+= size
;
4747 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
4749 /* Skip empty nodes */
4750 if (!pgdat
->node_spanned_pages
)
4753 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4754 /* ia64 gets its own node_mem_map, before this, without bootmem */
4755 if (!pgdat
->node_mem_map
) {
4756 unsigned long size
, start
, end
;
4760 * The zone's endpoints aren't required to be MAX_ORDER
4761 * aligned but the node_mem_map endpoints must be in order
4762 * for the buddy allocator to function correctly.
4764 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
4765 end
= pgdat_end_pfn(pgdat
);
4766 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
4767 size
= (end
- start
) * sizeof(struct page
);
4768 map
= alloc_remap(pgdat
->node_id
, size
);
4770 map
= alloc_bootmem_node_nopanic(pgdat
, size
);
4771 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
4773 #ifndef CONFIG_NEED_MULTIPLE_NODES
4775 * With no DISCONTIG, the global mem_map is just set as node 0's
4777 if (pgdat
== NODE_DATA(0)) {
4778 mem_map
= NODE_DATA(0)->node_mem_map
;
4779 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4780 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
4781 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
4782 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4785 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4788 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
4789 unsigned long node_start_pfn
, unsigned long *zholes_size
)
4791 pg_data_t
*pgdat
= NODE_DATA(nid
);
4792 unsigned long start_pfn
= 0;
4793 unsigned long end_pfn
= 0;
4795 /* pg_data_t should be reset to zero when it's allocated */
4796 WARN_ON(pgdat
->nr_zones
|| pgdat
->classzone_idx
);
4798 pgdat
->node_id
= nid
;
4799 pgdat
->node_start_pfn
= node_start_pfn
;
4800 init_zone_allows_reclaim(nid
);
4801 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4802 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
4804 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
4805 zones_size
, zholes_size
);
4807 alloc_node_mem_map(pgdat
);
4808 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4809 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4810 nid
, (unsigned long)pgdat
,
4811 (unsigned long)pgdat
->node_mem_map
);
4814 free_area_init_core(pgdat
, start_pfn
, end_pfn
,
4815 zones_size
, zholes_size
);
4818 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4820 #if MAX_NUMNODES > 1
4822 * Figure out the number of possible node ids.
4824 void __init
setup_nr_node_ids(void)
4827 unsigned int highest
= 0;
4829 for_each_node_mask(node
, node_possible_map
)
4831 nr_node_ids
= highest
+ 1;
4836 * node_map_pfn_alignment - determine the maximum internode alignment
4838 * This function should be called after node map is populated and sorted.
4839 * It calculates the maximum power of two alignment which can distinguish
4842 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4843 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4844 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4845 * shifted, 1GiB is enough and this function will indicate so.
4847 * This is used to test whether pfn -> nid mapping of the chosen memory
4848 * model has fine enough granularity to avoid incorrect mapping for the
4849 * populated node map.
4851 * Returns the determined alignment in pfn's. 0 if there is no alignment
4852 * requirement (single node).
4854 unsigned long __init
node_map_pfn_alignment(void)
4856 unsigned long accl_mask
= 0, last_end
= 0;
4857 unsigned long start
, end
, mask
;
4861 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
4862 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
4869 * Start with a mask granular enough to pin-point to the
4870 * start pfn and tick off bits one-by-one until it becomes
4871 * too coarse to separate the current node from the last.
4873 mask
= ~((1 << __ffs(start
)) - 1);
4874 while (mask
&& last_end
<= (start
& (mask
<< 1)))
4877 /* accumulate all internode masks */
4881 /* convert mask to number of pages */
4882 return ~accl_mask
+ 1;
4885 /* Find the lowest pfn for a node */
4886 static unsigned long __init
find_min_pfn_for_node(int nid
)
4888 unsigned long min_pfn
= ULONG_MAX
;
4889 unsigned long start_pfn
;
4892 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
4893 min_pfn
= min(min_pfn
, start_pfn
);
4895 if (min_pfn
== ULONG_MAX
) {
4897 "Could not find start_pfn for node %d\n", nid
);
4905 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4907 * It returns the minimum PFN based on information provided via
4908 * add_active_range().
4910 unsigned long __init
find_min_pfn_with_active_regions(void)
4912 return find_min_pfn_for_node(MAX_NUMNODES
);
4916 * early_calculate_totalpages()
4917 * Sum pages in active regions for movable zone.
4918 * Populate N_MEMORY for calculating usable_nodes.
4920 static unsigned long __init
early_calculate_totalpages(void)
4922 unsigned long totalpages
= 0;
4923 unsigned long start_pfn
, end_pfn
;
4926 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
4927 unsigned long pages
= end_pfn
- start_pfn
;
4929 totalpages
+= pages
;
4931 node_set_state(nid
, N_MEMORY
);
4937 * Find the PFN the Movable zone begins in each node. Kernel memory
4938 * is spread evenly between nodes as long as the nodes have enough
4939 * memory. When they don't, some nodes will have more kernelcore than
4942 static void __init
find_zone_movable_pfns_for_nodes(void)
4945 unsigned long usable_startpfn
;
4946 unsigned long kernelcore_node
, kernelcore_remaining
;
4947 /* save the state before borrow the nodemask */
4948 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
4949 unsigned long totalpages
= early_calculate_totalpages();
4950 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
4953 * If movablecore was specified, calculate what size of
4954 * kernelcore that corresponds so that memory usable for
4955 * any allocation type is evenly spread. If both kernelcore
4956 * and movablecore are specified, then the value of kernelcore
4957 * will be used for required_kernelcore if it's greater than
4958 * what movablecore would have allowed.
4960 if (required_movablecore
) {
4961 unsigned long corepages
;
4964 * Round-up so that ZONE_MOVABLE is at least as large as what
4965 * was requested by the user
4967 required_movablecore
=
4968 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
4969 corepages
= totalpages
- required_movablecore
;
4971 required_kernelcore
= max(required_kernelcore
, corepages
);
4974 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4975 if (!required_kernelcore
)
4978 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4979 find_usable_zone_for_movable();
4980 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
4983 /* Spread kernelcore memory as evenly as possible throughout nodes */
4984 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4985 for_each_node_state(nid
, N_MEMORY
) {
4986 unsigned long start_pfn
, end_pfn
;
4989 * Recalculate kernelcore_node if the division per node
4990 * now exceeds what is necessary to satisfy the requested
4991 * amount of memory for the kernel
4993 if (required_kernelcore
< kernelcore_node
)
4994 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4997 * As the map is walked, we track how much memory is usable
4998 * by the kernel using kernelcore_remaining. When it is
4999 * 0, the rest of the node is usable by ZONE_MOVABLE
5001 kernelcore_remaining
= kernelcore_node
;
5003 /* Go through each range of PFNs within this node */
5004 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
5005 unsigned long size_pages
;
5007 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
5008 if (start_pfn
>= end_pfn
)
5011 /* Account for what is only usable for kernelcore */
5012 if (start_pfn
< usable_startpfn
) {
5013 unsigned long kernel_pages
;
5014 kernel_pages
= min(end_pfn
, usable_startpfn
)
5017 kernelcore_remaining
-= min(kernel_pages
,
5018 kernelcore_remaining
);
5019 required_kernelcore
-= min(kernel_pages
,
5020 required_kernelcore
);
5022 /* Continue if range is now fully accounted */
5023 if (end_pfn
<= usable_startpfn
) {
5026 * Push zone_movable_pfn to the end so
5027 * that if we have to rebalance
5028 * kernelcore across nodes, we will
5029 * not double account here
5031 zone_movable_pfn
[nid
] = end_pfn
;
5034 start_pfn
= usable_startpfn
;
5038 * The usable PFN range for ZONE_MOVABLE is from
5039 * start_pfn->end_pfn. Calculate size_pages as the
5040 * number of pages used as kernelcore
5042 size_pages
= end_pfn
- start_pfn
;
5043 if (size_pages
> kernelcore_remaining
)
5044 size_pages
= kernelcore_remaining
;
5045 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
5048 * Some kernelcore has been met, update counts and
5049 * break if the kernelcore for this node has been
5052 required_kernelcore
-= min(required_kernelcore
,
5054 kernelcore_remaining
-= size_pages
;
5055 if (!kernelcore_remaining
)
5061 * If there is still required_kernelcore, we do another pass with one
5062 * less node in the count. This will push zone_movable_pfn[nid] further
5063 * along on the nodes that still have memory until kernelcore is
5067 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
5070 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5071 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
5072 zone_movable_pfn
[nid
] =
5073 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
5076 /* restore the node_state */
5077 node_states
[N_MEMORY
] = saved_node_state
;
5080 /* Any regular or high memory on that node ? */
5081 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
5083 enum zone_type zone_type
;
5085 if (N_MEMORY
== N_NORMAL_MEMORY
)
5088 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
5089 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
5090 if (zone
->present_pages
) {
5091 node_set_state(nid
, N_HIGH_MEMORY
);
5092 if (N_NORMAL_MEMORY
!= N_HIGH_MEMORY
&&
5093 zone_type
<= ZONE_NORMAL
)
5094 node_set_state(nid
, N_NORMAL_MEMORY
);
5101 * free_area_init_nodes - Initialise all pg_data_t and zone data
5102 * @max_zone_pfn: an array of max PFNs for each zone
5104 * This will call free_area_init_node() for each active node in the system.
5105 * Using the page ranges provided by add_active_range(), the size of each
5106 * zone in each node and their holes is calculated. If the maximum PFN
5107 * between two adjacent zones match, it is assumed that the zone is empty.
5108 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5109 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5110 * starts where the previous one ended. For example, ZONE_DMA32 starts
5111 * at arch_max_dma_pfn.
5113 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
5115 unsigned long start_pfn
, end_pfn
;
5118 /* Record where the zone boundaries are */
5119 memset(arch_zone_lowest_possible_pfn
, 0,
5120 sizeof(arch_zone_lowest_possible_pfn
));
5121 memset(arch_zone_highest_possible_pfn
, 0,
5122 sizeof(arch_zone_highest_possible_pfn
));
5123 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
5124 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
5125 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
5126 if (i
== ZONE_MOVABLE
)
5128 arch_zone_lowest_possible_pfn
[i
] =
5129 arch_zone_highest_possible_pfn
[i
-1];
5130 arch_zone_highest_possible_pfn
[i
] =
5131 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
5133 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
5134 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
5136 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5137 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
5138 find_zone_movable_pfns_for_nodes();
5140 /* Print out the zone ranges */
5141 printk("Zone ranges:\n");
5142 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5143 if (i
== ZONE_MOVABLE
)
5145 printk(KERN_CONT
" %-8s ", zone_names
[i
]);
5146 if (arch_zone_lowest_possible_pfn
[i
] ==
5147 arch_zone_highest_possible_pfn
[i
])
5148 printk(KERN_CONT
"empty\n");
5150 printk(KERN_CONT
"[mem %0#10lx-%0#10lx]\n",
5151 arch_zone_lowest_possible_pfn
[i
] << PAGE_SHIFT
,
5152 (arch_zone_highest_possible_pfn
[i
]
5153 << PAGE_SHIFT
) - 1);
5156 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5157 printk("Movable zone start for each node\n");
5158 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5159 if (zone_movable_pfn
[i
])
5160 printk(" Node %d: %#010lx\n", i
,
5161 zone_movable_pfn
[i
] << PAGE_SHIFT
);
5164 /* Print out the early node map */
5165 printk("Early memory node ranges\n");
5166 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
5167 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid
,
5168 start_pfn
<< PAGE_SHIFT
, (end_pfn
<< PAGE_SHIFT
) - 1);
5170 /* Initialise every node */
5171 mminit_verify_pageflags_layout();
5172 setup_nr_node_ids();
5173 for_each_online_node(nid
) {
5174 pg_data_t
*pgdat
= NODE_DATA(nid
);
5175 free_area_init_node(nid
, NULL
,
5176 find_min_pfn_for_node(nid
), NULL
);
5178 /* Any memory on that node */
5179 if (pgdat
->node_present_pages
)
5180 node_set_state(nid
, N_MEMORY
);
5181 check_for_memory(pgdat
, nid
);
5185 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
5187 unsigned long long coremem
;
5191 coremem
= memparse(p
, &p
);
5192 *core
= coremem
>> PAGE_SHIFT
;
5194 /* Paranoid check that UL is enough for the coremem value */
5195 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
5201 * kernelcore=size sets the amount of memory for use for allocations that
5202 * cannot be reclaimed or migrated.
5204 static int __init
cmdline_parse_kernelcore(char *p
)
5206 return cmdline_parse_core(p
, &required_kernelcore
);
5210 * movablecore=size sets the amount of memory for use for allocations that
5211 * can be reclaimed or migrated.
5213 static int __init
cmdline_parse_movablecore(char *p
)
5215 return cmdline_parse_core(p
, &required_movablecore
);
5218 early_param("kernelcore", cmdline_parse_kernelcore
);
5219 early_param("movablecore", cmdline_parse_movablecore
);
5221 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5223 void adjust_managed_page_count(struct page
*page
, long count
)
5225 spin_lock(&managed_page_count_lock
);
5226 page_zone(page
)->managed_pages
+= count
;
5227 totalram_pages
+= count
;
5228 #ifdef CONFIG_HIGHMEM
5229 if (PageHighMem(page
))
5230 totalhigh_pages
+= count
;
5232 spin_unlock(&managed_page_count_lock
);
5234 EXPORT_SYMBOL(adjust_managed_page_count
);
5236 unsigned long free_reserved_area(void *start
, void *end
, int poison
, char *s
)
5239 unsigned long pages
= 0;
5241 start
= (void *)PAGE_ALIGN((unsigned long)start
);
5242 end
= (void *)((unsigned long)end
& PAGE_MASK
);
5243 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
5244 if ((unsigned int)poison
<= 0xFF)
5245 memset(pos
, poison
, PAGE_SIZE
);
5246 free_reserved_page(virt_to_page(pos
));
5250 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5251 s
, pages
<< (PAGE_SHIFT
- 10), start
, end
);
5255 EXPORT_SYMBOL(free_reserved_area
);
5257 #ifdef CONFIG_HIGHMEM
5258 void free_highmem_page(struct page
*page
)
5260 __free_reserved_page(page
);
5262 page_zone(page
)->managed_pages
++;
5268 void __init
mem_init_print_info(const char *str
)
5270 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
5271 unsigned long init_code_size
, init_data_size
;
5273 physpages
= get_num_physpages();
5274 codesize
= _etext
- _stext
;
5275 datasize
= _edata
- _sdata
;
5276 rosize
= __end_rodata
- __start_rodata
;
5277 bss_size
= __bss_stop
- __bss_start
;
5278 init_data_size
= __init_end
- __init_begin
;
5279 init_code_size
= _einittext
- _sinittext
;
5282 * Detect special cases and adjust section sizes accordingly:
5283 * 1) .init.* may be embedded into .data sections
5284 * 2) .init.text.* may be out of [__init_begin, __init_end],
5285 * please refer to arch/tile/kernel/vmlinux.lds.S.
5286 * 3) .rodata.* may be embedded into .text or .data sections.
5288 #define adj_init_size(start, end, size, pos, adj) \
5289 if (start <= pos && pos < end && size > adj) \
5292 adj_init_size(__init_begin
, __init_end
, init_data_size
,
5293 _sinittext
, init_code_size
);
5294 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
5295 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
5296 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
5297 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
5299 #undef adj_init_size
5301 printk("Memory: %luK/%luK available "
5302 "(%luK kernel code, %luK rwdata, %luK rodata, "
5303 "%luK init, %luK bss, %luK reserved"
5304 #ifdef CONFIG_HIGHMEM
5308 nr_free_pages() << (PAGE_SHIFT
-10), physpages
<< (PAGE_SHIFT
-10),
5309 codesize
>> 10, datasize
>> 10, rosize
>> 10,
5310 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
5311 (physpages
- totalram_pages
) << (PAGE_SHIFT
-10),
5312 #ifdef CONFIG_HIGHMEM
5313 totalhigh_pages
<< (PAGE_SHIFT
-10),
5315 str
? ", " : "", str
? str
: "");
5319 * set_dma_reserve - set the specified number of pages reserved in the first zone
5320 * @new_dma_reserve: The number of pages to mark reserved
5322 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5323 * In the DMA zone, a significant percentage may be consumed by kernel image
5324 * and other unfreeable allocations which can skew the watermarks badly. This
5325 * function may optionally be used to account for unfreeable pages in the
5326 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5327 * smaller per-cpu batchsize.
5329 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
5331 dma_reserve
= new_dma_reserve
;
5334 void __init
free_area_init(unsigned long *zones_size
)
5336 free_area_init_node(0, zones_size
,
5337 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
5340 static int page_alloc_cpu_notify(struct notifier_block
*self
,
5341 unsigned long action
, void *hcpu
)
5343 int cpu
= (unsigned long)hcpu
;
5345 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
5346 lru_add_drain_cpu(cpu
);
5350 * Spill the event counters of the dead processor
5351 * into the current processors event counters.
5352 * This artificially elevates the count of the current
5355 vm_events_fold_cpu(cpu
);
5358 * Zero the differential counters of the dead processor
5359 * so that the vm statistics are consistent.
5361 * This is only okay since the processor is dead and cannot
5362 * race with what we are doing.
5364 refresh_cpu_vm_stats(cpu
);
5369 void __init
page_alloc_init(void)
5371 hotcpu_notifier(page_alloc_cpu_notify
, 0);
5375 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5376 * or min_free_kbytes changes.
5378 static void calculate_totalreserve_pages(void)
5380 struct pglist_data
*pgdat
;
5381 unsigned long reserve_pages
= 0;
5382 enum zone_type i
, j
;
5384 for_each_online_pgdat(pgdat
) {
5385 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5386 struct zone
*zone
= pgdat
->node_zones
+ i
;
5387 unsigned long max
= 0;
5389 /* Find valid and maximum lowmem_reserve in the zone */
5390 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
5391 if (zone
->lowmem_reserve
[j
] > max
)
5392 max
= zone
->lowmem_reserve
[j
];
5395 /* we treat the high watermark as reserved pages. */
5396 max
+= high_wmark_pages(zone
);
5398 if (max
> zone
->managed_pages
)
5399 max
= zone
->managed_pages
;
5400 reserve_pages
+= max
;
5402 * Lowmem reserves are not available to
5403 * GFP_HIGHUSER page cache allocations and
5404 * kswapd tries to balance zones to their high
5405 * watermark. As a result, neither should be
5406 * regarded as dirtyable memory, to prevent a
5407 * situation where reclaim has to clean pages
5408 * in order to balance the zones.
5410 zone
->dirty_balance_reserve
= max
;
5413 dirty_balance_reserve
= reserve_pages
;
5414 totalreserve_pages
= reserve_pages
;
5418 * setup_per_zone_lowmem_reserve - called whenever
5419 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5420 * has a correct pages reserved value, so an adequate number of
5421 * pages are left in the zone after a successful __alloc_pages().
5423 static void setup_per_zone_lowmem_reserve(void)
5425 struct pglist_data
*pgdat
;
5426 enum zone_type j
, idx
;
5428 for_each_online_pgdat(pgdat
) {
5429 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
5430 struct zone
*zone
= pgdat
->node_zones
+ j
;
5431 unsigned long managed_pages
= zone
->managed_pages
;
5433 zone
->lowmem_reserve
[j
] = 0;
5437 struct zone
*lower_zone
;
5441 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
5442 sysctl_lowmem_reserve_ratio
[idx
] = 1;
5444 lower_zone
= pgdat
->node_zones
+ idx
;
5445 lower_zone
->lowmem_reserve
[j
] = managed_pages
/
5446 sysctl_lowmem_reserve_ratio
[idx
];
5447 managed_pages
+= lower_zone
->managed_pages
;
5452 /* update totalreserve_pages */
5453 calculate_totalreserve_pages();
5456 static void __setup_per_zone_wmarks(void)
5458 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
5459 unsigned long lowmem_pages
= 0;
5461 unsigned long flags
;
5463 /* Calculate total number of !ZONE_HIGHMEM pages */
5464 for_each_zone(zone
) {
5465 if (!is_highmem(zone
))
5466 lowmem_pages
+= zone
->managed_pages
;
5469 for_each_zone(zone
) {
5472 spin_lock_irqsave(&zone
->lock
, flags
);
5473 tmp
= (u64
)pages_min
* zone
->managed_pages
;
5474 do_div(tmp
, lowmem_pages
);
5475 if (is_highmem(zone
)) {
5477 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5478 * need highmem pages, so cap pages_min to a small
5481 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5482 * deltas controls asynch page reclaim, and so should
5483 * not be capped for highmem.
5485 unsigned long min_pages
;
5487 min_pages
= zone
->managed_pages
/ 1024;
5488 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
5489 zone
->watermark
[WMARK_MIN
] = min_pages
;
5492 * If it's a lowmem zone, reserve a number of pages
5493 * proportionate to the zone's size.
5495 zone
->watermark
[WMARK_MIN
] = tmp
;
5498 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
5499 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
5501 setup_zone_migrate_reserve(zone
);
5502 spin_unlock_irqrestore(&zone
->lock
, flags
);
5505 /* update totalreserve_pages */
5506 calculate_totalreserve_pages();
5510 * setup_per_zone_wmarks - called when min_free_kbytes changes
5511 * or when memory is hot-{added|removed}
5513 * Ensures that the watermark[min,low,high] values for each zone are set
5514 * correctly with respect to min_free_kbytes.
5516 void setup_per_zone_wmarks(void)
5518 mutex_lock(&zonelists_mutex
);
5519 __setup_per_zone_wmarks();
5520 mutex_unlock(&zonelists_mutex
);
5524 * The inactive anon list should be small enough that the VM never has to
5525 * do too much work, but large enough that each inactive page has a chance
5526 * to be referenced again before it is swapped out.
5528 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5529 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5530 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5531 * the anonymous pages are kept on the inactive list.
5534 * memory ratio inactive anon
5535 * -------------------------------------
5544 static void __meminit
calculate_zone_inactive_ratio(struct zone
*zone
)
5546 unsigned int gb
, ratio
;
5548 /* Zone size in gigabytes */
5549 gb
= zone
->managed_pages
>> (30 - PAGE_SHIFT
);
5551 ratio
= int_sqrt(10 * gb
);
5555 zone
->inactive_ratio
= ratio
;
5558 static void __meminit
setup_per_zone_inactive_ratio(void)
5563 calculate_zone_inactive_ratio(zone
);
5567 * Initialise min_free_kbytes.
5569 * For small machines we want it small (128k min). For large machines
5570 * we want it large (64MB max). But it is not linear, because network
5571 * bandwidth does not increase linearly with machine size. We use
5573 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5574 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5590 int __meminit
init_per_zone_wmark_min(void)
5592 unsigned long lowmem_kbytes
;
5593 int new_min_free_kbytes
;
5595 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
5596 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
5598 if (new_min_free_kbytes
> user_min_free_kbytes
) {
5599 min_free_kbytes
= new_min_free_kbytes
;
5600 if (min_free_kbytes
< 128)
5601 min_free_kbytes
= 128;
5602 if (min_free_kbytes
> 65536)
5603 min_free_kbytes
= 65536;
5605 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5606 new_min_free_kbytes
, user_min_free_kbytes
);
5608 setup_per_zone_wmarks();
5609 refresh_zone_stat_thresholds();
5610 setup_per_zone_lowmem_reserve();
5611 setup_per_zone_inactive_ratio();
5614 module_init(init_per_zone_wmark_min
)
5617 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5618 * that we can call two helper functions whenever min_free_kbytes
5621 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
5622 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5624 proc_dointvec(table
, write
, buffer
, length
, ppos
);
5626 user_min_free_kbytes
= min_free_kbytes
;
5627 setup_per_zone_wmarks();
5633 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
5634 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5639 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5644 zone
->min_unmapped_pages
= (zone
->managed_pages
*
5645 sysctl_min_unmapped_ratio
) / 100;
5649 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
5650 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5655 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5660 zone
->min_slab_pages
= (zone
->managed_pages
*
5661 sysctl_min_slab_ratio
) / 100;
5667 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5668 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5669 * whenever sysctl_lowmem_reserve_ratio changes.
5671 * The reserve ratio obviously has absolutely no relation with the
5672 * minimum watermarks. The lowmem reserve ratio can only make sense
5673 * if in function of the boot time zone sizes.
5675 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
5676 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5678 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5679 setup_per_zone_lowmem_reserve();
5684 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5685 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5686 * can have before it gets flushed back to buddy allocator.
5688 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
5689 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5695 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5696 if (!write
|| (ret
< 0))
5699 mutex_lock(&pcp_batch_high_lock
);
5700 for_each_populated_zone(zone
) {
5702 high
= zone
->managed_pages
/ percpu_pagelist_fraction
;
5703 for_each_possible_cpu(cpu
)
5704 pageset_set_high(per_cpu_ptr(zone
->pageset
, cpu
),
5707 mutex_unlock(&pcp_batch_high_lock
);
5711 int hashdist
= HASHDIST_DEFAULT
;
5714 static int __init
set_hashdist(char *str
)
5718 hashdist
= simple_strtoul(str
, &str
, 0);
5721 __setup("hashdist=", set_hashdist
);
5725 * allocate a large system hash table from bootmem
5726 * - it is assumed that the hash table must contain an exact power-of-2
5727 * quantity of entries
5728 * - limit is the number of hash buckets, not the total allocation size
5730 void *__init
alloc_large_system_hash(const char *tablename
,
5731 unsigned long bucketsize
,
5732 unsigned long numentries
,
5735 unsigned int *_hash_shift
,
5736 unsigned int *_hash_mask
,
5737 unsigned long low_limit
,
5738 unsigned long high_limit
)
5740 unsigned long long max
= high_limit
;
5741 unsigned long log2qty
, size
;
5744 /* allow the kernel cmdline to have a say */
5746 /* round applicable memory size up to nearest megabyte */
5747 numentries
= nr_kernel_pages
;
5748 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
5749 numentries
>>= 20 - PAGE_SHIFT
;
5750 numentries
<<= 20 - PAGE_SHIFT
;
5752 /* limit to 1 bucket per 2^scale bytes of low memory */
5753 if (scale
> PAGE_SHIFT
)
5754 numentries
>>= (scale
- PAGE_SHIFT
);
5756 numentries
<<= (PAGE_SHIFT
- scale
);
5758 /* Make sure we've got at least a 0-order allocation.. */
5759 if (unlikely(flags
& HASH_SMALL
)) {
5760 /* Makes no sense without HASH_EARLY */
5761 WARN_ON(!(flags
& HASH_EARLY
));
5762 if (!(numentries
>> *_hash_shift
)) {
5763 numentries
= 1UL << *_hash_shift
;
5764 BUG_ON(!numentries
);
5766 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
5767 numentries
= PAGE_SIZE
/ bucketsize
;
5769 numentries
= roundup_pow_of_two(numentries
);
5771 /* limit allocation size to 1/16 total memory by default */
5773 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
5774 do_div(max
, bucketsize
);
5776 max
= min(max
, 0x80000000ULL
);
5778 if (numentries
< low_limit
)
5779 numentries
= low_limit
;
5780 if (numentries
> max
)
5783 log2qty
= ilog2(numentries
);
5786 size
= bucketsize
<< log2qty
;
5787 if (flags
& HASH_EARLY
)
5788 table
= alloc_bootmem_nopanic(size
);
5790 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
5793 * If bucketsize is not a power-of-two, we may free
5794 * some pages at the end of hash table which
5795 * alloc_pages_exact() automatically does
5797 if (get_order(size
) < MAX_ORDER
) {
5798 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
5799 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
5802 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
5805 panic("Failed to allocate %s hash table\n", tablename
);
5807 printk(KERN_INFO
"%s hash table entries: %ld (order: %d, %lu bytes)\n",
5810 ilog2(size
) - PAGE_SHIFT
,
5814 *_hash_shift
= log2qty
;
5816 *_hash_mask
= (1 << log2qty
) - 1;
5821 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5822 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
5825 #ifdef CONFIG_SPARSEMEM
5826 return __pfn_to_section(pfn
)->pageblock_flags
;
5828 return zone
->pageblock_flags
;
5829 #endif /* CONFIG_SPARSEMEM */
5832 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
5834 #ifdef CONFIG_SPARSEMEM
5835 pfn
&= (PAGES_PER_SECTION
-1);
5836 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5838 pfn
= pfn
- round_down(zone
->zone_start_pfn
, pageblock_nr_pages
);
5839 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5840 #endif /* CONFIG_SPARSEMEM */
5844 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5845 * @page: The page within the block of interest
5846 * @start_bitidx: The first bit of interest to retrieve
5847 * @end_bitidx: The last bit of interest
5848 * returns pageblock_bits flags
5850 unsigned long get_pageblock_flags_group(struct page
*page
,
5851 int start_bitidx
, int end_bitidx
)
5854 unsigned long *bitmap
;
5855 unsigned long pfn
, bitidx
;
5856 unsigned long flags
= 0;
5857 unsigned long value
= 1;
5859 zone
= page_zone(page
);
5860 pfn
= page_to_pfn(page
);
5861 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5862 bitidx
= pfn_to_bitidx(zone
, pfn
);
5864 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5865 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
5872 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5873 * @page: The page within the block of interest
5874 * @start_bitidx: The first bit of interest
5875 * @end_bitidx: The last bit of interest
5876 * @flags: The flags to set
5878 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
5879 int start_bitidx
, int end_bitidx
)
5882 unsigned long *bitmap
;
5883 unsigned long pfn
, bitidx
;
5884 unsigned long value
= 1;
5886 zone
= page_zone(page
);
5887 pfn
= page_to_pfn(page
);
5888 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5889 bitidx
= pfn_to_bitidx(zone
, pfn
);
5890 VM_BUG_ON(!zone_spans_pfn(zone
, pfn
));
5892 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5894 __set_bit(bitidx
+ start_bitidx
, bitmap
);
5896 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
5900 * This function checks whether pageblock includes unmovable pages or not.
5901 * If @count is not zero, it is okay to include less @count unmovable pages
5903 * PageLRU check wihtout isolation or lru_lock could race so that
5904 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5905 * expect this function should be exact.
5907 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
5908 bool skip_hwpoisoned_pages
)
5910 unsigned long pfn
, iter
, found
;
5914 * For avoiding noise data, lru_add_drain_all() should be called
5915 * If ZONE_MOVABLE, the zone never contains unmovable pages
5917 if (zone_idx(zone
) == ZONE_MOVABLE
)
5919 mt
= get_pageblock_migratetype(page
);
5920 if (mt
== MIGRATE_MOVABLE
|| is_migrate_cma(mt
))
5923 pfn
= page_to_pfn(page
);
5924 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
5925 unsigned long check
= pfn
+ iter
;
5927 if (!pfn_valid_within(check
))
5930 page
= pfn_to_page(check
);
5932 * We can't use page_count without pin a page
5933 * because another CPU can free compound page.
5934 * This check already skips compound tails of THP
5935 * because their page->_count is zero at all time.
5937 if (!atomic_read(&page
->_count
)) {
5938 if (PageBuddy(page
))
5939 iter
+= (1 << page_order(page
)) - 1;
5944 * The HWPoisoned page may be not in buddy system, and
5945 * page_count() is not 0.
5947 if (skip_hwpoisoned_pages
&& PageHWPoison(page
))
5953 * If there are RECLAIMABLE pages, we need to check it.
5954 * But now, memory offline itself doesn't call shrink_slab()
5955 * and it still to be fixed.
5958 * If the page is not RAM, page_count()should be 0.
5959 * we don't need more check. This is an _used_ not-movable page.
5961 * The problematic thing here is PG_reserved pages. PG_reserved
5962 * is set to both of a memory hole page and a _used_ kernel
5971 bool is_pageblock_removable_nolock(struct page
*page
)
5977 * We have to be careful here because we are iterating over memory
5978 * sections which are not zone aware so we might end up outside of
5979 * the zone but still within the section.
5980 * We have to take care about the node as well. If the node is offline
5981 * its NODE_DATA will be NULL - see page_zone.
5983 if (!node_online(page_to_nid(page
)))
5986 zone
= page_zone(page
);
5987 pfn
= page_to_pfn(page
);
5988 if (!zone_spans_pfn(zone
, pfn
))
5991 return !has_unmovable_pages(zone
, page
, 0, true);
5996 static unsigned long pfn_max_align_down(unsigned long pfn
)
5998 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
5999 pageblock_nr_pages
) - 1);
6002 static unsigned long pfn_max_align_up(unsigned long pfn
)
6004 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
6005 pageblock_nr_pages
));
6008 /* [start, end) must belong to a single zone. */
6009 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
6010 unsigned long start
, unsigned long end
)
6012 /* This function is based on compact_zone() from compaction.c. */
6013 unsigned long nr_reclaimed
;
6014 unsigned long pfn
= start
;
6015 unsigned int tries
= 0;
6020 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
6021 if (fatal_signal_pending(current
)) {
6026 if (list_empty(&cc
->migratepages
)) {
6027 cc
->nr_migratepages
= 0;
6028 pfn
= isolate_migratepages_range(cc
->zone
, cc
,
6035 } else if (++tries
== 5) {
6036 ret
= ret
< 0 ? ret
: -EBUSY
;
6040 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
6042 cc
->nr_migratepages
-= nr_reclaimed
;
6044 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
6045 0, MIGRATE_SYNC
, MR_CMA
);
6048 putback_movable_pages(&cc
->migratepages
);
6055 * alloc_contig_range() -- tries to allocate given range of pages
6056 * @start: start PFN to allocate
6057 * @end: one-past-the-last PFN to allocate
6058 * @migratetype: migratetype of the underlaying pageblocks (either
6059 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6060 * in range must have the same migratetype and it must
6061 * be either of the two.
6063 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6064 * aligned, however it's the caller's responsibility to guarantee that
6065 * we are the only thread that changes migrate type of pageblocks the
6068 * The PFN range must belong to a single zone.
6070 * Returns zero on success or negative error code. On success all
6071 * pages which PFN is in [start, end) are allocated for the caller and
6072 * need to be freed with free_contig_range().
6074 int alloc_contig_range(unsigned long start
, unsigned long end
,
6075 unsigned migratetype
)
6077 unsigned long outer_start
, outer_end
;
6080 struct compact_control cc
= {
6081 .nr_migratepages
= 0,
6083 .zone
= page_zone(pfn_to_page(start
)),
6085 .ignore_skip_hint
= true,
6087 INIT_LIST_HEAD(&cc
.migratepages
);
6090 * What we do here is we mark all pageblocks in range as
6091 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6092 * have different sizes, and due to the way page allocator
6093 * work, we align the range to biggest of the two pages so
6094 * that page allocator won't try to merge buddies from
6095 * different pageblocks and change MIGRATE_ISOLATE to some
6096 * other migration type.
6098 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6099 * migrate the pages from an unaligned range (ie. pages that
6100 * we are interested in). This will put all the pages in
6101 * range back to page allocator as MIGRATE_ISOLATE.
6103 * When this is done, we take the pages in range from page
6104 * allocator removing them from the buddy system. This way
6105 * page allocator will never consider using them.
6107 * This lets us mark the pageblocks back as
6108 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6109 * aligned range but not in the unaligned, original range are
6110 * put back to page allocator so that buddy can use them.
6113 ret
= start_isolate_page_range(pfn_max_align_down(start
),
6114 pfn_max_align_up(end
), migratetype
,
6119 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
6124 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6125 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6126 * more, all pages in [start, end) are free in page allocator.
6127 * What we are going to do is to allocate all pages from
6128 * [start, end) (that is remove them from page allocator).
6130 * The only problem is that pages at the beginning and at the
6131 * end of interesting range may be not aligned with pages that
6132 * page allocator holds, ie. they can be part of higher order
6133 * pages. Because of this, we reserve the bigger range and
6134 * once this is done free the pages we are not interested in.
6136 * We don't have to hold zone->lock here because the pages are
6137 * isolated thus they won't get removed from buddy.
6140 lru_add_drain_all();
6144 outer_start
= start
;
6145 while (!PageBuddy(pfn_to_page(outer_start
))) {
6146 if (++order
>= MAX_ORDER
) {
6150 outer_start
&= ~0UL << order
;
6153 /* Make sure the range is really isolated. */
6154 if (test_pages_isolated(outer_start
, end
, false)) {
6155 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6162 /* Grab isolated pages from freelists. */
6163 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
6169 /* Free head and tail (if any) */
6170 if (start
!= outer_start
)
6171 free_contig_range(outer_start
, start
- outer_start
);
6172 if (end
!= outer_end
)
6173 free_contig_range(end
, outer_end
- end
);
6176 undo_isolate_page_range(pfn_max_align_down(start
),
6177 pfn_max_align_up(end
), migratetype
);
6181 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
6183 unsigned int count
= 0;
6185 for (; nr_pages
--; pfn
++) {
6186 struct page
*page
= pfn_to_page(pfn
);
6188 count
+= page_count(page
) != 1;
6191 WARN(count
!= 0, "%d pages are still in use!\n", count
);
6195 #ifdef CONFIG_MEMORY_HOTPLUG
6197 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6198 * page high values need to be recalulated.
6200 void __meminit
zone_pcp_update(struct zone
*zone
)
6203 mutex_lock(&pcp_batch_high_lock
);
6204 for_each_possible_cpu(cpu
)
6205 pageset_set_high_and_batch(zone
,
6206 per_cpu_ptr(zone
->pageset
, cpu
));
6207 mutex_unlock(&pcp_batch_high_lock
);
6211 void zone_pcp_reset(struct zone
*zone
)
6213 unsigned long flags
;
6215 struct per_cpu_pageset
*pset
;
6217 /* avoid races with drain_pages() */
6218 local_irq_save(flags
);
6219 if (zone
->pageset
!= &boot_pageset
) {
6220 for_each_online_cpu(cpu
) {
6221 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
6222 drain_zonestat(zone
, pset
);
6224 free_percpu(zone
->pageset
);
6225 zone
->pageset
= &boot_pageset
;
6227 local_irq_restore(flags
);
6230 #ifdef CONFIG_MEMORY_HOTREMOVE
6232 * All pages in the range must be isolated before calling this.
6235 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
6241 unsigned long flags
;
6242 /* find the first valid pfn */
6243 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
6248 zone
= page_zone(pfn_to_page(pfn
));
6249 spin_lock_irqsave(&zone
->lock
, flags
);
6251 while (pfn
< end_pfn
) {
6252 if (!pfn_valid(pfn
)) {
6256 page
= pfn_to_page(pfn
);
6258 * The HWPoisoned page may be not in buddy system, and
6259 * page_count() is not 0.
6261 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
6263 SetPageReserved(page
);
6267 BUG_ON(page_count(page
));
6268 BUG_ON(!PageBuddy(page
));
6269 order
= page_order(page
);
6270 #ifdef CONFIG_DEBUG_VM
6271 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
6272 pfn
, 1 << order
, end_pfn
);
6274 list_del(&page
->lru
);
6275 rmv_page_order(page
);
6276 zone
->free_area
[order
].nr_free
--;
6277 #ifdef CONFIG_HIGHMEM
6278 if (PageHighMem(page
))
6279 totalhigh_pages
-= 1 << order
;
6281 for (i
= 0; i
< (1 << order
); i
++)
6282 SetPageReserved((page
+i
));
6283 pfn
+= (1 << order
);
6285 spin_unlock_irqrestore(&zone
->lock
, flags
);
6289 #ifdef CONFIG_MEMORY_FAILURE
6290 bool is_free_buddy_page(struct page
*page
)
6292 struct zone
*zone
= page_zone(page
);
6293 unsigned long pfn
= page_to_pfn(page
);
6294 unsigned long flags
;
6297 spin_lock_irqsave(&zone
->lock
, flags
);
6298 for (order
= 0; order
< MAX_ORDER
; order
++) {
6299 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
6301 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
6304 spin_unlock_irqrestore(&zone
->lock
, flags
);
6306 return order
< MAX_ORDER
;
6310 static const struct trace_print_flags pageflag_names
[] = {
6311 {1UL << PG_locked
, "locked" },
6312 {1UL << PG_error
, "error" },
6313 {1UL << PG_referenced
, "referenced" },
6314 {1UL << PG_uptodate
, "uptodate" },
6315 {1UL << PG_dirty
, "dirty" },
6316 {1UL << PG_lru
, "lru" },
6317 {1UL << PG_active
, "active" },
6318 {1UL << PG_slab
, "slab" },
6319 {1UL << PG_owner_priv_1
, "owner_priv_1" },
6320 {1UL << PG_arch_1
, "arch_1" },
6321 {1UL << PG_reserved
, "reserved" },
6322 {1UL << PG_private
, "private" },
6323 {1UL << PG_private_2
, "private_2" },
6324 {1UL << PG_writeback
, "writeback" },
6325 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6326 {1UL << PG_head
, "head" },
6327 {1UL << PG_tail
, "tail" },
6329 {1UL << PG_compound
, "compound" },
6331 {1UL << PG_swapcache
, "swapcache" },
6332 {1UL << PG_mappedtodisk
, "mappedtodisk" },
6333 {1UL << PG_reclaim
, "reclaim" },
6334 {1UL << PG_swapbacked
, "swapbacked" },
6335 {1UL << PG_unevictable
, "unevictable" },
6337 {1UL << PG_mlocked
, "mlocked" },
6339 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6340 {1UL << PG_uncached
, "uncached" },
6342 #ifdef CONFIG_MEMORY_FAILURE
6343 {1UL << PG_hwpoison
, "hwpoison" },
6345 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6346 {1UL << PG_compound_lock
, "compound_lock" },
6350 static void dump_page_flags(unsigned long flags
)
6352 const char *delim
= "";
6356 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names
) != __NR_PAGEFLAGS
);
6358 printk(KERN_ALERT
"page flags: %#lx(", flags
);
6360 /* remove zone id */
6361 flags
&= (1UL << NR_PAGEFLAGS
) - 1;
6363 for (i
= 0; i
< ARRAY_SIZE(pageflag_names
) && flags
; i
++) {
6365 mask
= pageflag_names
[i
].mask
;
6366 if ((flags
& mask
) != mask
)
6370 printk("%s%s", delim
, pageflag_names
[i
].name
);
6374 /* check for left over flags */
6376 printk("%s%#lx", delim
, flags
);
6381 void dump_page(struct page
*page
)
6384 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6385 page
, atomic_read(&page
->_count
), page_mapcount(page
),
6386 page
->mapping
, page
->index
);
6387 dump_page_flags(page
->flags
);
6388 mem_cgroup_print_bad_page(page
);